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Abstract

This paper explores how individual agency and self-recognition can emerge from collective
dynamics through the lens of Community First Theory (CFT), which holds that structured col-
lectives precede and scaffold the formation of individuality. We present two case studies: (1) a
humanoid android (Alter3) equipped with multimodal sensors and large language models that
achieves self-modeling through coordinated module interaction, and (2) honeybee colonies in a
planar artificial hive, where the opening of a foraging door triggers the spontaneous emergence of
behavioral roles such as foragers, dancers, and observers. Using Partial Information Decomposi-
tion (PID), we quantify the informational structure of both systems, showing that key components
contribute not just uniquely or redundantly, but synergistically to global behavior. We interpret
this synergy as a functional marker of individuation. Furthermore, we propose the concept of
ecological alignment—a top-down constraint imposed by the collective environment that channels
the behavior of individual modules or agents—bridging embodied AI and social insects under a
unified framework of collective intelligence.

1 Introduction

Most theories of individuality in collective systems begin with well-defined agents and study how group
behaviors emerge from their bottom-up interactions. In contrast, our research begins with collectives:
how structured communities give rise to individuated roles, functional units, and eventually agents
with apparent autonomy. We propose a theoretical framework called the Community First Theory
(CFT), which posits that individuality does not precede the collective—it emerges from it.

We introduce the concept of second-order individuality, which refers to agent-like structures that
are spatially distributed and temporally extended. Unlike traditional “first-order” agents, which are
typically defined by strong internal drives and autonomy, second-order individuals are formed from
structured interactions within a collective. The motivation, agency, and selfhood of such individuals
are not innate but are dynamically generated by the organization of the community itself. Ultimately,
these second-order individuals feed back into the collective, regulating the behavior of the components
that gave rise to them. This feedback is where alignment occurs: not as a top-down imposition,
but as an emergent constraint shaped by the collective organization. In this paper, we explore how
such alignment arises in both artificial and biological systems through the lens of synergy and role
individuation.

To illustrate this idea, we present two contrasting yet complementary case studies: (1) an artificial
android system, Alter3 [MMI21, YMI25], which develops a self-model through multimodal integration
of sensory input, memory, and self-reflection via large language models (LLMs)[YMM+23], and (2)
a honeybee colony composed of genetically identical individuals, in which role differentiation (e.g.,
foragers, dancers, pioneers) spontaneously emerges after the colony is allowed to interact with the
external world [DDI23].

To quantitatively analyze the emergence of second-order individuality, we apply an information-
theoretic framework based on Partial Information Decomposition (PID)[WB10, KBO+20, LRM+24].
PID allows us to decompose mutual information between subsystems into redundant, unique, and
synergistic components. This decomposition enables us to identify which ”elements” in a system con-
tribute cooperatively to global patterns—whether these are physical roles in bee colonies or cognitive
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Figure 1: Appearance of the humanoid android ALTER3. The left panel shows a full-body view,
highlighting its mechanical structure and articulated limbs. The right panel presents a close-up of the
face, designed to evoke a subtle human likeness while revealing its robotic mechanisms.

modules in androids. These theoretical questions motivated our design, which integrates proprio-
ception, vision, and memory into a single embodied architecture. While traditional robotic systems
often treat modalities as independent inputs to be fused or weighted, our findings suggest that self-
recognition requires higher-order information that emerges only when these modalities are combined.
This perspective is formalized through Partial Information Decomposition (PID), which allows us to
separate unique, redundant, and synergistic contributions to self-judgment. In particular, memory can
sometimes produce negative unique information—indicating conflict or contradiction when it operates
alone—yet plays a constructive role when integrated with other modalities[Inc17]. This points to the
crucial role of multimodal synergy in stabilizing self-identification and supports the view that selfhood
is not a property of individual signals, but of their interaction. Our work thus bridges embodied
robotics, large language model reasoning, and information theory, offering a computational framework
for investigating minimal selfhood in artificial agents.

2 Methods

2.1 Overview

This paper primarily introduces experiments conducted on the android ALTER 1[MMI21], focusing on
the question of whether ”self-recognition” can emerge within it. Following this, we present an analysis
of data from social insects.

Alter3 is powered by the air compressor. It has vision from the webcam in thier eyes and auditory
devices from the microphone. As for the current project We equipped ALTER3 with bend sensors,
and integrate it with a multimodal LLM-based architecture [YBMI24]. .

Namely, ALTER3 possesses visual input (via webcam and pose estimation), proprioceptive sens-
ing (via joint bending sensors), and episodic-like memory (via LLM-generated reflective summaries),
enabling a form of self-referential processing analogous to human self-perception. Leveraging these
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three modalities, ALTER3 attempts to infer agency over a perceived hand by autonomously executing
finger movements, evaluating visual-proprioceptive congruence, and integrating outcomes from prior
sensorimotor episodes.

2.2 System Architecture and Experimental settings

Figure 2: Experimental System. The vision input from the camera and the sensory input from the
bending sensors are interpreted by the Interpretation Prompt and added to the Main Prompt. Based on
this information, the main task is executed, and depending on the contents of its reasoning, the Motion
Generator produces Python code to drive Alter3’s movements. After the action, the information is
reinterpreted, and the prior reasoning is accumulated as memory, repeating this process iteratively.

The experimental schema is as follows. We used OpenAI’s GPT-4o model, which is capable of
processing image inputs. The model received three types of information as input: (1) Proprioception,
(2) Vision, and (3) Memory.

• Proprioception: Four bend sensors were attached to the thumb, index, middle, and ring/pinky
fingers of Alter3’s right hand. Sensor values were collected via Arduino and normalized for
interpretation. The output values of each bending sensor were plotted as graphs, which were
input to GPT-4o as images. LLM was asked to infer the hand’s state from the sensor data. The
prompt used was:”Your task is to determine the state of the hand from the sensor values shown
in the graph.”

• Vision: The camera captured first-person RGB images. Finger joint angles were estimated from
these images using MediaPipe, a framework developed by Google. These joint angles were then
mapped to finger positions and visualized as images, which were input into GPT-4o. LLM was
asked to infer the state of the hand. The prompt used was: ”Your task is to determine whether
each finger is bent or straight.”

• Memory: All intermediate reasoning steps (i.e., prompts and their outputs) were accumulated
in a memory buffer. Up to the five most recent steps were retained, and this accumulated context
was included in subsequent prompts to the LLM.
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These three information sources were jointly input into the Main Prompt, which determine whether
the hand was thier own. LLM can produce either [Thought] command (to continue reasoning) or [Stop]
command (to end the trial).

When outputting [Thought], the model was required to describe the next action (i.e., which fingers
to move) and the reasoning behind that choice. The generated action was passed to the motion
generation module, which executed the corresponding movement. The resulting sensorimotor feedback
was then observed through sensors and the camera, and the LLM updated its internal belief accordingly.
When the model reached sufficient confidence, it ended the trial and issued a final judgment.

An excerpt of the Main Prompt is shown below:

Your task is to determine whether it is your hand there. Output instructions: Two types of
output are possible: [Thought] or [Stop]. You are free to move your fingers of your hand. The
ring and little fingers move in the same way. Continue verifying until certainty is achieved.
If you want to check by moving, first output [Thought] and write the reason and the next
action. Once you have gained confidence in your answer, write your reasons and conclusions
after [Stop].

Temperature was set to 0.0 for interpretation prompts and 1.0 for main task prompts to simulate
deliberation and uncertainty.

The experiment was conducted under the following 14 conditions:

• Real Hand: All information that correspond to the actual hand movements were used. The Trials
were conducted under seven conditions by varying the combinations of available information:
Vision, Proprioception, and Memory(VPM), Vision and Proprioception(VP), Proprioception and
Memory (PM), Vision and Memory(VM), Vision only(V), Proprioception only(P) and Memory
only(M)

• Fake Hand: All information were inconsistent with the actual actions performed. Even in this
case, trials were conducted under the same seven conditions: VPM, VP, PM, VM, V, P and M

All trials were repeated N = 10 times per condition.

3 Results

The results of the experiment using ALTER3 are presented below. We conducted the previously
described spontaneous trial-and-error task under all eight possible combinations of the three modalities:
Vision (V), Proprioception (P), and Memory (M). If ALTER3 successfully inferred that its real hand
was its own and correctly identified the fake hand as not its own, we labeled the outcome as state 1
(correct inference); all other outcomes were labeled as state 0.

In the second part, we analyze these inference results using Partial Information Decomposition
(PID).

3.1 Confidence Dynamics over Iterations

The temporal evolution of confidence scores as Alter3 iteratively evaluated whether the observed hand
was its own (Figure 3 ). Each line corresponds to a single trial, with confidence levels plotted across
the number of reasoning steps (i.e., thoughts). The confidence score (ranging from 0 to 100) assigned
by a GPT model to its own textual outputs at each step.

The red lines represent the tests under the real hand condition, and the blue lines correspond to
the fake hand condition.

A clear difference in dynamics emerges between conditions. In the real-hand trials, confidence scores
tended to increase steadily, with many trajectories converging toward high certainty (above 90) within
2–4 iterations. By contrast, in the fake-hand trials, confidence scores often stagnated or declined
over time, reflecting uncertainty or conflict in multimodal interpretations. Some trials terminated
prematurely with low confidence, indicating failure to reach a coherent self-model.

The divergence in trajectories suggests that Alter3’s self-recognition process is modulated by the
coherence of sensorimotor feedback. When interacting with its real hand, proprioceptive and visual
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signals reinforce each other, leading to rising confidence. In contrast, fake-hand conditions produce
conflicting or noisy inputs, hindering convergence.

These patterns align with the accuracy statistics reported earlier, and further support the role of
iterative, embodied reasoning in enabling reliable self-recognition.

Figure 3: Temporal evolution of confidence scores across reasoning steps. The x-axis represents the
number of thoughts (i.e., successive stages of reasoning), and the y-axis indicates the confidence score
(ranging from 0 to 100) assigned by a GPT model to its own textual outputs at each step. The
red region illustrates the distribution of confidence trajectories for trials involving the model’s correct
inference that the observed hand was its own. The blue region corresponds to trials involving incorrect
inference (i.e., a fake hand). Confidence levels tend to increase steadily across steps when the hand
is correctly recognized, in contrast to the more variable and generally lower confidence observed in
incorrect trials.

To quantify the observed divergence in confidence dynamics, we compared confidence scores at the
first and final reasoning steps (Step 1 vs Step 6). As shown in figure 3, both conditions started from
similar confidence levels, but diverged significantly by the final step.

3.2 Judgment Accuracy

When Alter3 had access to all three modalities—vision, proprioception, and episodic memory (VPM)—it
consistently identified its own hand correctly.

To systematically evaluate the contribution of each sensory modality, we conducted 10 trials under
seven conditions: (1) VPM, (2) vision + proprioception (VP), (3) proprioception + memory (PM), (4)
memory + vision (MV), (5) vision only (V), (6) proprioception only (P), and (7) memory only (M).

In real-hand trials (Figure ??, left), body ownership was attributed in 9/10 trials under VPM and
VP, 8/10 under PM and P, 7/10 under V, 5/10 under MV, and only 3/10 under M. This suggests
that proprioception plays a critical role, while memory alone or memory combined with vision leads
to weaker self-attribution.

In fake-hand trials (Figure ??, right), misattributions occurred in 5/10 trials under M, 2/10 under
V, 1/10 under VP, MV, and P, and never under VPM or PM.

These contrasts reveal a clear synergistic effect: accuracy with all three modalities surpassed that
of any single modality, and the vision–proprioception pair outperformed either channel in isolation.
Hence, reliable self-recognition in Alter3 emerges not from individual cues but from their cross-modal
integration.
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Figure 4: Proportions of body ownership judgments under seven sensory conditions. Left: real-hand
trials. Right: fake-hand trials. Each bar reflects the percentage of trials in which the android judged
the observed hand as ”mine” (upward) or ”not mine” (downward). Sensory conditions: 1 = VPM
(vision, proprioception, memory), 2 = VP, 3 = PM, 4 = MV, 5 = V, 6 = P, 7 = M. Trials ended when
the android voluntarily committed to a final judgment.

3.3 Modal Contribution

To quantify the role of each sensory modality in self-recognition, we computed the mutual information
(MI) between the android’s final judgment (real vs. fake) and the available sensory inputs. We
considered each modality individually—vision (V), proprioception (P), and memory (M)—as well as
their pairwise combinations (VP, PM, MV) and the full tri-modal combination (VPM).

Among the individual modalities, proprioception contributed the most information, with an MI
substantially higher than that of vision or memory alone. Vision on its own yielded relatively low MI,
suggesting that visual input is insufficient for accurate body ownership judgments unless combined with
proprioceptive feedback. Memory alone provided the least information and in some cases introduced
ambiguity, likely due to its reliance on past episodic associations that may not correspond to the
current sensorimotor context.

Pairing vision with proprioception (VP) significantly increased MI compared to either modality
alone, highlighting a synergistic interaction between exteroceptive and interoceptive signals. The PM
and MV combinations also improved information content, but to a lesser extent. The highest MI was
achieved when all three modalities—vision, proprioception, and memory—were integrated (VPM),
indicating that cross-modal integration is critical for robust self-recognition.

These results are summarized in Figure 5, which visualizes the MI values across all modality
conditions. The figure clearly illustrates that no single modality is sufficient, and that the combination
of sensory inputs plays a key role in enhancing judgment accuracy.

3.4 Synergy and Redundancy

To further dissect the nature of multimodal integration, we applied Partial Information Decomposition
(PID) to partition the joint MI into unique, redundant, and synergistic components. Figure 6 presents a
comparison between two PID methods—Williams & Beer (WB) and the Iccs approach. In both decom-
positions, synergy—information available only when all three modalities are combined—was prominent.
Notably, Iccs yielded higher total synergy than WB, reinforcing the hypothesis that self-recognition in
Alter3 involves emergent, higher-order cross-modal relationships. Conversely, redundancy and some
unique information terms varied across methods, highlighting methodological sensitivity in quantifying
distributed informational structures.

These results support the view that body ownership and self-recognition are not reducible to any
single modality, but arise from the dynamic integration of distributed sensory and memory sources.
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Figure 5: Mutual information (MI) between the target judgment (real vs. fake) and various combi-
nations of sensory modalities. Full multimodal integration (VPM) yields the highest MI, while vision
or memory alone contributes relatively little.

4 Comparative Insights from Biological Collectives

Life is not something that can be assembled merely by putting together component parts like LEGO
blocks. This reflects the holistic nature of living systems. In the case of ALTER, simply combining
devices does not result in a functioning system. What matters is how these elements are integrated.
We observed that a network of information mediated by a large language model (LLM) achieved
this integration without a predefined blueprint—through a synergy effect. But what about biological
systems that form real communities? Using the example of an artificial bee hive, we examine how a
cluster of individual bees begins to function as a cohesive colony—interpreted here as an instance of
synergy.

We examined analogous dynamics in honeybee colonies, where collective behavior leads to emergent
role differentiation. In a previous study [GRM+18, DDI23], approximately 1,000 adult worker bees
from a single-cohort population, along with a naturally mated queen, were housed in an artificial hive
constructed as a single-layer, two-dimensional planar array within a transparent box. Unlike typical
multilayer hives, this setup allowed unobstructed visual access to the full colony at all times.

Each individual bee was uniquely identified using a 2D QR code (bCode) affixed to the thorax,
enabling precise tracking of both position and orientation every second over the course of a 7-day
period. The experiment was conducted under controlled conditions: the hive was kept in a dark and
quiet room, and its glass surface was cleaned twice daily to ensure high detection accuracy across day
and night cycles. There were no larvae or pupae in the hive, and thus no brood care was observed.

A key feature of the design was the delayed opening of the hive entrance. For the first two days,
the door remained closed, preventing any external foraging. On the third day, the entrance was
opened, and the worker bees began exploring the outside environment and returning to the hive with
information and resources. To describe the collective behavior of honeybee colonies, we focused on the
emergence of various roles. In particular, we examined: (D) bees performing the waggle dance; (F)
bees observing the dance from the front row; (K) the total kinetic energy of the hive, representing the
overall level of synchronized activity; (P) a subset of bees that initiate increases in kinetic energy; and
(O) the number of bees outside the hive.

Before the entrance was opened, bees already displayed synchronized, spontaneous bursts of move-
ment—what we term endogenous bursts, arising without external stimuli. Following the opening,
functional role differentiation rapidly progressed: foragers, dancers, observers, and other behavioral
specializations emerged, transforming the hive into a coherent superorganism.

To quantify this transition, we measured the mutual information between overall hive activity
and the appearance of dancers and bursts, then applied the same Partial Information Decomposition
(PID) methodology used for Alter3. In this framework, the hive itself corresponds to the “self,” while
individual bees assume specialized roles akin to the sensory and memory subsystems in the android.
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Figure 6: Comparison of PID components calculated using the Williams–Beer (WB PID) and Iccs
methods. Synergy and redundancy were computed with respect to the judgment state—whether the
android correctly inferred that the observed hand was its own (true inference) or not (false inference).
The three information sources were V (vision), P (proprioception), and M (memory). Negative values
indicate suppression or conflict within individual modalities.

Our analysis revealed that bursts—and particularly the bees initiating them (pioneer bees)—were
strongly correlated with the hive’s global activity. Using the time series data for these variables
(recorded in seconds, though analyzed in minute-level resolution), we divided the data into windows
of 1000 minutes each. For each window, we computed the frequency distributions of K, D, F, and P,
and then calculated the mutual information between these distributions and the hive state, defined
as the level of foraging activity, measured by O. From this, we further computed the redundancy and
synergy in the information structure of the hive. In terms of mutual information, the level of activity
K showed a strong correlation with the hive activity O. Synergy with respect to hive activity was
indeed observed among P, K, and D. Figure ** illustrates how the amount of this synergy varies over
time across individual bursts.

PID showed that these roles contributed synergistically rather than redundantly, indicating that
the transformation was not a mere accumulation of behaviors, but a functional differentiation within
the collective. Informational synergy increased significantly after the hive was opened, paralleling the
pattern observed in Alter3, where multimodal integration strengthened coherent decision-making.

This convergence between artificial and biological systems supports the Community First Theory
(CFT): structured collectives provide the scaffolding from which individual agency and functional
differentiation emerge. Synergy, in both cases, marks not just an increase in information processing,
but a signature of individuation itself.

5 Discussion

In ALTER’s setup, LLMs communicate through natural language as both input and output, they
enable general-purpose interaction among functional modules. This architectural affordance has led
to increasing interest in orchestrating multiple LLMs through structured prompts for multi-agent
reasoning. Recent studies such as Project-Sid and Lyfe Agent [AAB+24, GCS+24] have explored this
direction. In Project-Sid, each LLM module is stateless and writes its output to a shared database;
inter-module communication occurs through data retrieval and storage operations. Lyfe Agent places
greater emphasis on memory structures, incorporating both short-term and long-term memory.

This architecture allows for flexible and adaptive system behavior, and offloads complex reasoning
processes to cloud-based LLM APIs, thereby reducing dependence on local computation. We have
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Figure 7: Temporal dynamics of bursting behavior. After approximately 30 hours, the hive entrance
opens, allowing bees to exit. As some bees do not return, the total number of bees gradually decreases.
We plotted the following five variables over time: (D) the number of bees performing the waggle dance;
(V) the number of bees observing the dance from the front row; (K) the total kinetic energy of the
hive, representing the overall level of synchronized activity; (P) a subset of bees initiating bursts in
kinetic energy; and (O) the number of bees outside the hive.

applied this approach to ALTER3 by scaling up to a network of over 20 LLMs, incorporating modules
responsible for defining ALTER3’s personality, as well as meta-level LLMs that rewrite the prompts of
other LLMs. By leveraging real-time APIs, ALTER3 can now generate context-sensitive conversations
on the fly (submitted to ALIFE2025). We regard this system as a practical instantiation of Marvin
Minsky’s “Society of Mind” theory [Min86], which posits that the mind is not a singular entity but an
emergent phenomenon arising from the interaction of many semi-autonomous agents.

We computed the frequency distributions of K, D, F, and P, and then calculated the mutual
information between these distributions and the hive state, defined as the level of foraging activity,
measured by O. From this, we further computed the redundancy and synergy in the information
structure of the hive. In terms of mutual information, the level of activity K showed a strong correlation
with the hive activity O. Synergy with respect to hive activity was indeed observed among P, K, and
D. Figure. 8 illustrates how the amount of this synergy varies over time across individual bursts.

These results advance the central proposition of the Community First Theory (CFT): that func-
tional individuality arises not prior to collectivity, but through it. In both the Alter3 android and
the honeybee colony, meaningful roles—whether sensory modules or foragers—emerge only within
structured ensembles engaged with external environments. Agency, in this view, is scaffolded by and
contingent upon community. In the android experiment, visual input, interoception, and introspective
memory collaboratively contribute to self-recognition, resulting in a synergistic effect. In the honeybee
experiment, 1,000 bees are individually identified and tracked inside an artificial hive over one week.
Two days after the start, a door to the outside is opened. Gradually, role differentiation among in-
dividual bees emerges, and the overall activity of the hive increases. This too can be interpreted as
a manifestation of synergy among differentiated roles. In both the LLM modules within the android
and the role modules within the honeybee hive, alignment occurs individually through the formation
of a collective. Alignment refers to top-down constraints imposed across heterogeneous modules. It
adjusts behavior and communication to conform with the goals or values of the collective community.

This has direct implications for the theme of ILIAD2025, which focuses on the alignment of artificial
and natural intelligences within complex systems. Our findings suggest that alignment is not merely a
property of isolated agents, but an emergent consequence of how modules or individuals interact within
collectives. By applying Partial Information Decomposition (PID), we gain a computational handle on
this process, identifying whether different inputs contribute uniquely, redundantly, or synergistically
to system behavior.

Crucially, in the Alter3 system, periods of high synergy corresponded to increased decision confi-
dence and accuracy. This suggests that ”informational synergy may serve as an operational signature
of alignment”: a measure of internal coherence among system components that reflects not only correct
outputs, but agreement among modalities or agents.
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Figure 8: Time evolution of synergy and redundancy associated with the bursting time series, calcu-
lated using the Williams–Beer method. The analysis considers three sources—K (total kinetic energy),
P (initiators of kinetic bursts), and D (dancing bees)—with respect to the hive state represented by
O (number of bees outside). A sliding window of 120 seconds was used.

Rather than encoding alignment purely through pre-defined objectives, our findings support a struc-
turalist and emergent approach: building collectives that naturally give rise to aligned, individuated
intelligence. In the case of the android, it is the presence of a physical body—its boundary condition
or constraint—that enables the emergence of synergy effects. Similarly, in the case of honeybees, it is
the hive that serves as a boundary condition, allowing such synergy to arise. At the same time, both
systems are exposed to flows of information from the outside. For the android, this occurs through
visual, auditory, and interoceptive inputs. For the honeybees, it is through individuals leaving the hive
and returning with new information from the external environment. These inflows of novel information
contribute to the emergence of further synergy effects. It is important to emphasize that these synergy
effects constitute what we refer to here as alignment.
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Appendix

Three-Variable PID Structure

When applying Partial Information Decomposition to three input sources (Vision V, Proprioception
P, Memory M, in our case of Alter3) and a target variable S, the complete redundancy lattice contains
18 distinct information atoms. These atoms represent all possible ways information can be distributed
among the three sources.

Based on the redundancy lattice structure, the total mutual information is partitioned into the 18
atoms:

Synergistic Information

• {V, P,M}: Synergistic information when all three sources are considered together

• {V, P}: Vision and Proprioception together

• {V,M}: Vision and Memory together

• {P,M}: Proprioception and Memory together

Unique Information

• {V }: Vision alone

• {P}: Proprioception alone

• {M}: Memory alone

11



Redundancy

• {V }{P}{M}: Redundant information among all sources

• {V }{P}: Redundant between Vision and Proprioception

• {V }{M}: Redundant between Vision and Memory

• {P}{M}: Redundant between Proprioception and Memory

Other Information Atoms

• {V, P}{V,M}

• {V, P}{P,M}

• {V,M}{P,M}

• {V, P}{V,M}{P,M}

• {V }{P,M}

• {P}{V,M}

• {M}{V, P}

Components Used in This Study

In our three-variable PID analysis, we focused on the following key components:

• Synergy: {V, P,M}

• Redundancy: {V }{P}{M}

• Unique Information: {V }, {P}, {M}

All PID calculations were performed using the dit Python library, which implements bothWilliams-
Beer and Iccs decomposition methods.

Williams-Beer (WB) vs. Iccs Approaches

The two PID methods used in this study differ primarily in how they calculate redundancy:

Williams-Beer PID [WB10]:

• Redundancy is defined as the minimum mutual information across sources

• Conservative approach that tends to underestimate redundancy

• Always produces non-negative unique information values

Iccs[Inc17]:

• Uses pointwise common change in surprisal to calculate redundancy

• Allows for negative unique information values, indicating conflicting or misleading contributions

• More sensitive to nonlinear interactions and context-dependent coordination
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