
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

MUTUAL INFORMATION PRESERVING NEURAL NET-
WORK PRUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Pruning has emerged as one of the primary approaches used to limit the resource
requirements of large neural networks (NNs). Since the proposal of the lottery ticket
hypothesis, researchers have focused either on pruning at initialization or after
training. However, recent theoretical findings have shown that the sample efficiency
of robust pruned models is proportional to the mutual information (MI) between
the pruning masks and the model’s training datasets, whether at initialization or
after training. In this paper, we introduce Mutual Information Preserving Pruning
(MIPP), a structured activation-based pruning technique applicable before or after
training. The core principle of MIPP is to select nodes in a way that conserves
MI shared between the activations of adjacent layers, and consequently between
the data and masks. Approaching the pruning problem in this manner means we
can prove that there exists a function that can map the pruned upstream layer’s
activations to the downstream layer’s, implying re-trainability. We demonstrate
that MIPP consistently outperforms baselines, regardless of whether pruning is
performed before or after training.

1 INTRODUCTION

 Node
Pruned Node

Input Output

, ,,

,

Unpruned NN Pruned NN

, ,,

, ,

MIPP

M
e
t
h
o
d
:

Output

G
o
a
l
: MIPPs goal is to preserve the MI between the activations in adjacent layers, such that:

 Consequently, information in the input is preserved in the nodes and mask.

Input

Figure 1: We introduce MIPP via an illustration. MIPP
is a pruning method that acts to preserve the mutual
information (MI) between the activations in adjacent
layers. In turn, this leads to a pruned network repre-
sentation whose nodes and mask effectively capture the
information contained in the data.

It is well-established that to limit a model’s
resource requirements while maintaining
its performance, it is preferable to prune
and re-train a large model of high accu-
racy rather than train a smaller model from
scratch (LeCun et al., 1989; 1998; Li et al.,
2017; Han et al., 2015). The lottery ticket
hypothesis demonstrated that this was due
to the existence of performant dense sub-
networks embedded in overparameterized
models at initialization Frankle and Carbin
(2019). This discovery motivated a new
body of research on pruning at initial-
ization (PaI), such as SNIP (Lee et al.,
2019), GraSP (Wang et al., 2022), Syn-
Flow (Tanaka et al., 2020), and ProsPr (Al-
izadeh et al., 2022) to name a few. Sub-
networks identified using these methods
perform worse than those obtained through
pruning after training (PaT), even when using straightforward approaches like iterative magnitude
pruning (IMP) Frankle et al. (2021). Kumar et al. (2024)’s PAC-learnability result provided an
information-theoretic justification for this, demonstrating that the sample efficiency of a pruned
learning algorithm is proportional to the effective parameter count, which can be calculated by
summing the number of unmasked parameters and the mutual information (MI) shared between
the pruning mask and training data. Kumar et al. (2024) argues that to maximize the MI term, it
is essential that training occurs, leading to the poor performance of the state-of-the-art (SOTA) PaI
methods.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

a) b) c)

Figure 2: a) Graphical representation of how MI between the mask and the data affects the accuracy
of a small convolution-based and standard NN: we observe that by maximizing MI, the classification
accuracy increases. The experiments are based on synthetic data; for full details refer to Appendix
F.1. b) A study examining how pruning masks, created using various PaI methods and applied to
a small synthetic network, affect the values of I(D;M). For full details about these experiments,
please refer to Appendix F.2. c) Comparison of MIPP’s average accuracy across different sparsity
ratios to the best-performing baseline for each model-dataset combination. MIPP outperforms the
best of the rest significantly, as at high sparsities, they are all much more prone to layer collapse. PaT
baselines: OTO, IMP, SOSP-H, ThiNet. PaI baselines: IterSNIP, IterGrasP, ProsPr, SynFlow.

To provide an intuition for this PAC-learnability result by Kumar et al. (2024), Figure 2.a illustrates
the improved accuracy that results from maximizing MI between the pruning mask and the training
data in both a standard neural network (NN) and a convolutional variant. For these experiments,
the data were synthetic and masks derived before training, so MI values were obtained analytically.
Given the result presented in Kumar et al. (2024), supported in part by Figure 2.a, we conclude that
maximizing MI shared between the pruning mask and training data is a sensible objective when
pruning.

As originally argued by Kumar et al. (2024), optimizing this objective is expected to restrict us to
a PaT approach; without training, we have no reason to expect that the weights or pruning masks
will exhibit any correlation with the data. While this certainly holds for data-independent pruning
schemes, such as magnitude PaT or other PaI solutions (like those presented by Tanaka et al. (2020);
Patil and Dovrolis (2021); Pham et al. (2024)), it may not be universally true. For example, consider
taking an activation-based approach. The activations at each layer of a NN are a function of the
activations preceding them, or of the input data. If the NN is sufficiently expressive, these activations
should contain all the information in the data, whether training has occurred or not. Therefore, if we
can define a mask that preserves all the information in the activations, it should transfer to the data
and maximize our objective, even at initialization.

Consequently, we introduce Mutual Information Preserving Pruning (MIPP), a structured activation-
based pruning technique applicable before or after training. MIPP ensures that MI shared between
activations in adjacent layers is preserved during pruning (please refer to Figure 11.). Rather than
ranking nodes and selecting the top-k, MIPP uses the transfer entropy redundancy criterion (TERC)
(Westphal et al., 2024) to dynamically prune nodes whose activations do not transfer entropy to the
downstream layer. We will show that pruning in this manner ensures the existence of a function
that can re-construct the downstream layer from the pruned upstream layer. Moreover, we will
demonstrate that MIPP establishes pruning masks whose MI with the training data has a maximal
upper bound. This is because MIPP dynamically evaluates and removes redundant nodes in a manner
dependent on those currently maintained in the network representation, a feature that is unachievable
using static ranking-based pruning methods. To illustrate this visually, in Figure 2.b we show that
only MIPP can derive useful pruning masks for a synthetic NN characterized by nodes sharing
redundant information. Finally, we demonstrate MIPP’s utility beyond theoretical justification by
presenting improved pruning results in both post- and pre-training domains, as shown in Figure 2.c.
To summarize, the contributions of this work are as follows:

• We develop MIPP, a structured activation-based pruning method that preserves MI between
the activations of adjacent layers in a deep NN.

1Saxe et al. (2019) demonstrated that the MI relating inputs and activations becomes infinite, for a more
detailed discussion of this and its relation to our work, refer to Appendix I

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

• We prove that perfect MI preservation ensures the existence of a function, discoverable by
gradient descent, which can approximate the activations of the downstream layer from the
activations of the preceding pruned layer. Consequently, MIPP implies re-trainability.

• We prove that pruning using MIPP leads to a maximum upper bound on MI between the
data distribution and the mask distribution (as defined in Kumar et al. (2024)).

• Through comprehensive experimental evaluation2, we demonstrate that MIPP can effectively
prune networks, whether they are trained or not.

2 RELATED WORK

Pruning after training. Traditional structured pruning methods employ metrics such as weight
magnitude (Han et al., 2015; Li et al., 2017; Wang and Fu, 2023), weight gradient (LeCun et al.,
1998; Molchanov et al., 2017), Hessian matrices (Hassibi and Stork, 1992; Peng et al., 2019; Wang
et al., 2019; Nonnenmacher et al., 2022), and combinations thereof, to rank and then remove nodes up
to a defined pruning ratio (PR). Although these methods were originally designed to be applied at the
level of individual weights, they can be adapted for structured cases through non-lossy functions, such
as L1-normalization Wang and Fu (2023). This can be carried out in either a global or local manner,
the former involves ranking all the nodes in a network (Liu et al., 2017; Wang et al., 2019), while
the latter is only applied to individual layers (Zhao et al., 2019; Sung et al., 2024). Global methods
have been effective in determining layer-wise pruning ratios (Blalock et al., 2020). However, at high
PRs, they experience layer-collapse, an undesirable final result in which an entire layer is pruned and
an untrainable network is produced Tanaka et al. (2020). Traditional methods, including magnitude,
gradient, and Hessian-based approaches, continue to represent the SOTA due to recent methodological
refinements. Modern variations of such techniques are iterative, meaning that the model is trained,
some fraction of the weights - lower than the final PR - are removed according to the methods
described, and then the model is retrained and the process is repeated until the PR is reached Frankle
and Carbin (2019); You et al. (2020). These methods are known to lead to highly performant models,
while also being resistant to layer collapse. However, they are computationally expensive because
they require multiple retraining sessions. In response, methods such as SOSP-H have been proposed
Nonnenmacher et al. (2022). SOSP-H ranks and removes nodes in a traditional way, except for the fact
that the metric employed is the Hessian Hassibi and Stork (1992). The Hessian is recognized as the
most computationally expensive yet best-performing metric Molchanov et al. (2019). By employing
a second-order approximation, its benefits can be leveraged in a computationally efficient manner.
While MIPP acts globally, aligning with the methods discussed thus far, it is also activation-based,
diverging from these competing techniques. ThiNet Luo et al. (2017) most closely resembles MIPP
in terms of methodology, although it is known that it is unable to establish layer-wise PRs, which
ensures an inability to conduct any neural architecture search Patil and Dovrolis (2021).

Pruning at initialization. In contrast to pruning after training, pruning at initialization aims to
identify and remove redundant parameters before the training process begins, thereby reducing
computational overhead from the outset. Early approaches, such as SNIP Lee et al. (2019) and GraSP
Wang et al. (2022), leverage sensitivity metrics based on gradients to determine which weights can
be safely pruned. Nevertheless, when applied globally, such methods suffer from layer collapse. In
response, Tanaka et al. (2020) developed an iterative method of PaI, which mirrors that described in
the previous paragraph but without re-training. This reduced layer-collapse occurrence, and improved
the performance when PaI. However, recent results have suggested that the performance of such
methods is not due to the selected nodes, but rather the per-layer PRs. As demonstrated by Frankle
et al. (2021) and Su et al. (2021), the performance of models established using SNIP, GraSP, and
SynFlow is robust to the weight shuffling within layers. Nevertheless, this phenomenon was not
repeated at ultra-high sparsity. Pham et al. (2024) argued that this was evidence that, when one aims
to PaI, their objective should be to preserve the number of effective paths, as achieved in PHEW
and NpB Patil and Dovrolis (2021); Pham et al. (2024). These methods outperformed SNIP despite
being data-independent. Nevertheless, they failed to attain results comparable to PaT, unlike ProsPr
Alizadeh et al. (2022).

2The code is available at the following URL: [the entire codebase of MIPP will be made available upon
publication].

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

3 MUTUAL INFORMATION PRESERVING PRUNING AT A GLANCE

In this section, we introduce the required notation before a formal definition of MIPP. The function
describing a layer l in an NN can be written as follows: fl(xn

l) = xm
l+1 = a(Wm×n

l xn
l + bml). In

the above, a is an activation function, Wm×n
l is a weight matrix, bml the bias, and xn

l is the input to
that layer (LeCun et al., 1998; Goodfellow et al., 2016).

Structured pruning is the process of discovering per-layer binary vector masks (mn
l) that zero out

weight matrix elements corresponding to a node or filter index. We will denote a pruned layer
with a prime symbol (′) (Fahlman and Lebiere, 1990). The set of all masks associated with a
network is given by M0, while the function associated with a pruned layer can be written as:
f ′
l (x

n
l) = x′m

l+1 = a(Wm×n
l xn

l m
n
l + bml). By randomly sampling from the space of possible inputs

and applying the function described by the NN, we form not only the inputs as random variables
(RVs), but also all subsequent activations. We define Xi

l as the RV associated with the activations of
node i in layer l. Meanwhile, the set Xl = {X0

l , X
1
l . . . X

n
l } contains a RV for all of the N neurons

in layer l. We use X0 to indicate the input. If a pruning mask is multiplied with the weights, the
activations associated with pruned nodes are set to zero, which can otherwise be seen as information
theoretically null. We denote the set associated with a pruned layer as X ′

l . If multiple pruning runs
are performed with different datasets, multiple pruning masks will be created. In this case, both our
pruning mask and our data distribution can be viewed as RVs, M0 becoming M, while X0 becomes
D. For a full table of notation please refer to Appendix A.

MIPP is founded on the idea that maximizing MI between realizations of the pruning mask and
the data distribution, denoted as I(D;M), ensures effective pruning with minimal performance
loss. To achieve this, MIPP preserves MI between adjacent layers throughout a network. More
specifically, we aim to isolate masks mn

l , which combine with the weights to produce updated layers
with some of the activations equal to zero. These null activations should not cause a reduction in
the MI between the activations of adjacent layers. More formally, this can be expressed as follows:
M0 = {mn

l ∀l ∈ [1, L] : I(X ′
l−1;Xl) = I(Xl−1;Xl)}.

4 THEORETICAL MOTIVATION

We now motivate MIPP theoretically. As stated, we aim to design a method that preserves MI between
activations such that I(X ′

l−1;Xl) = I(Xl−1;Xl). In this section, we point out two advantages of
doing this. Pruning in this manner not only ensures re-trainability, but it also leads to an optimal
upper bound on the value of MI between the data-distribution and the masks I(D;M) (as defined in
Kumar et al. (2024)).

Re-trainability. We consider one-shot pruning with (re)-training: the objective remove nodes such
that, after retraining, the pruned NN will achieve the same performance as the original. We argue that
one way to achieve this would be to select a subset of nodes from each layer so that there exists a
function, which, when applied to this subset, can still reconstruct the activations of the subsequent
layer. We will then prove that the existence of this function preserves MI between the activations of
these layers.

To illustrate this, we guide the reader through the following example. Consider the case in which
we generate the expected outputs of our NN from the activations of the last layer. More formally,
we write XL = fL−1(XL−1). We now wish to prune the activations preceding the outputs. This
entails minimizing the number of nodes or the cardinality of the set X ′

L−1 in such a manner that there
exists a function that can reliably re-form XL. Furthermore, this function should be discoverable
by gradient ascent. More formally, we would like to derive X ′

L−1 such that XL = supg∈F g(X ′
L−1).

While this formulation reveals little in the way of a potential pruning operation, using the following
theorem, we relate it to the MI-based objective: I(X ′

l−1;Xl) = I(Xl−1;Xl).

Theorem 1: There exists a function g such that the activations of the subsequent layer can be
re-formed from the pruned layer iff MI between these two layers is not affected by pruning. More
formally: XL = supg∈F g(X ′

L−1) ⇔ I(X ′
L−1;XL) = I(XL−1;XL).

Proof. See Appendix C.
Consequently, in this work we aim to select a set of masks (M0) that increase sparsity while
preserving MI between layers. This ensures that, for each pruned layer, there exists a function,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

discoverable by gradient descent, that effectively reconstructs the activations of the subsequent layer
using those of the pruned layer. In other words, MIPP ensures re-trainability. We note that other
methods demonstrate their ability to preserve retrainability through empirical results only Wang and
Fu (2023).

Maximizing I(D;M). As discussed in the introduction, a sensible pruning objective is to maximize
I(D;M). Westphal et al. (2024) proved that TERC, the method we use to preserve MI between
layers, does so via the derivation of a bijective function. This implies that the activations of the
upstream pruned layer X ′

l−1 can be used to produce the downstream layer Xl and vice versa. In this
section, we present theoretical results showing that the existence of such a bijective function allows
the derivation of a maximum upper bound on the achievable MI between the masks and datasets
I(D;M).

Theorem 2: If a pruning method preserves MI between layers activations then the upper bound on
I(D;M) reaches its maximum. More formally: I(X ′

l−1;Xl) = I(Xl−1;Xl) ⇔ I(D;M) ≤ H(D).

Proof. See Appendix D.
As a result, when using MIPP there is a greater upper-bound on the value of I(D;M), which has
been shown to be related to the models’ accuracy and sample efficiency. However, how this quantity
explicitly relates to generalization is more nuanced and is discussed in Appendix J.

5 MIPP

5.1 PRELIMINARIES

5.1.1 TRANSFER ENTROPY REDUNDANCY CRITERION WITH MI ORDERING

Before describing the method, we now provide a summary of TERC and its application to pruning,
through the incorporation of an additional step for MI-based ordering.

Node Pruning using TERC. MIPP uses the transfer entropy redundancy criterion (TERC) (Westphal
et al., 2024) to dynamically prune nodes whose activations do not transfer entropy to the downstream
layer. As discussed in Section 3, we aim to preserve MI between the layers in our network. The
problem of MI preservation is one well-studied in the feature selection community (Battiti, 1994;
Peng et al., 2005; Gao et al., 2016). We chose TERC, as not only does it preserve MI with the target
via a bijective function, but its temporal complexity is also linear in time with respect to the number
of features (Westphal et al., 2024), a key property when working in highly dimensional feature spaces.
In our case, rather than selecting features to describe a target, we are selecting nodes that transfer
entropy to the following layer. Within this context, TERC can be summarized as follows: to begin, all
nodes in the layer are assumed to be useful (and added to the non-pruned set). We then sequentially
evaluate whether the reduction in uncertainty of the subsequent layer’s activations is greater when a
specific node is included in the unpruned set rather than excluded. More formally, for a node Xi

l to be
added the set of pruned nodes, it must satisfy the following condition I(Xl−1;Xl) = I(Xl−1\Xi

l ;Xl).
Otherwise, it is maintained in the network structure. This process is sequentially repeated for all
nodes in the layer. As shown in Westphal et al. (2024), this simple technique will preserve MI
between layers.

MI Ordering. Before applying TERC, we sort the nodes in the pruning layer in descending order of
MI with the target (see Algorithm 2 in Appendix B). This step is motivated by Theorem 3 in Westphal
et al. (2024). In particular, they prove that TERC alone selects unnecessary variables if there exists
perfectly redundant variable subsets of different cardinalities. Ordering partly addresses this problem.

5.1.2 MUTUAL INFORMATION ESTIMATION

Unless restricting oneself to scenarios inapplicable to real-world data (e.g. discrete RVs), verifying
the condition in Section 5.1.1 is computationally intractable. Consequently, we must approximate
the condition using MI estimates, for which many methods have been developed (Moon et al., 1995;
Paninski, 2003; Belghazi et al., 2018; van den Oord et al., 2019; Poole et al., 2019).

For the purposes of pruning, our MI estimates need to only be considered for comparison. Rather than
using a method that is able to provide highly accurate estimates slowly (Franzese et al., 2024), we

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

require one that emphasizes speed and consistent results. For these reasons, we adopt the technique
presented in Covert et al. (2020), in which the authors demonstrate that MI between two random
processes (X and Y) can be approximated as the reduction in error estimation caused by using X
to predict Y . More formally: I(X;Y) ≈ E[l(f∅(∅), Y)] − E[l(fX(X), Y)], where each f is some
function approximated via loss l. If the target is discrete, and a cross entropy loss is used, then this
value is exactly equal to the ground truth MI (Gadgil et al., 2024). Even if the variables are continuous
and a mean squared error loss is used, the above value approaches MI under certain circumstances.

5.2 PRESERVING THE MUTUAL INFORMATION BETWEEN ADJACENT LAYERS IN PRACTICE

In this section, we discuss how to use TERC to preserve MI between a pair of adjacent layers. As
discussed, TERC with MI ordering dictates that, to remove a node, the following should be satisfied:
I(XL−1\Xi

L−1;XL) = I(XL−1;XL). In Section 5.1.2, we described the method we used to estimate
MI. By combining these representations, we can update the condition we wish to approximate as
follows:

I(Xl−1;Xl) = I(Xl−1\Xi
l−1;Xl) (original condition as in TERC),

E[l(fl−1(Xl−1),Xl)] ≥ E[l(hl−1(Xl−1 \Xi
l−1),Xl)] (updated condition).

(1)

Equation 1 represents the simplification possible when I(X;Y) ≈ E[l(f(∅), Y)] − E[l(f(X), Y)]
is substituted into I(Xl−1;Xl) = I(Xl−1\Xi

l−1;Xl). Our condition characterizes the case where
node Xi

l−1 transfers no entropy to the following layer. The monotonicity of MI enforces that we
have the equality seen in line one of Equation 1. When approximating this condition, as shown
in the second line of Equation 1, we can no longer guarantee monotonicity. Therefore, we relax
the equality to the inequality as indicated. Overall, our condition becomes a simple comparison of
two losses quantifying two functions’ ability to reconstruct the downstream layer. The definition of
MI as presented in Covert et al. (2020) is applicable for any fl−1 or hl−1 discovered using function
approximation. However, we need not fit a new function as we already posses fl−1 exactly in the
form of layer l in our network. hl−1 is that same function but re-trained to predict the downstream
layer’s activations with node Xi

l masked in its input. If E[l(hl−1(Xl−1 \Xi
l−1),Xl)] is equal to or

drops below E[l(fl−1(Xl−1),Xl)] our condition is satisfied and we can remove the node Xi
l−1.

Given the above condition, we now describe TERC with MI ordering: initially, we order the nodes in
descending order of the loss achieved when using just this variable as input to predict the downstream
layer fl(Xi

l). We now sequentially traverse the nodes in this order, similarly to Gadgil et al. (2024),
masking them and re-training our layer (to find hl(Xl\Xi

l)) to determine whether the loss function
drops back below its original value E[l(fl−1(Xl−1),Xl)] ≥ E[l(hl−1(Xl \ Xi

l−1),Xl)]. If it fails
to recover, this implies that, without the activations of this node, we are unable to reconstruct the
activations of the downstream layer. In this case, the variable is considered informative and should be
retained in the network and in the set X ′

l−1. Otherwise, the node is removed. Once a node has been
evaluated, the layer can be updated with the new trained function (hl−1).

We have explained how MIPP is a structured pruning method that retains nodes whose activations
transfer entropy to the next layer. The number of nodes maintained in the network is therefore
dynamically dependent on those already selected, making us unable to set a pruning ratio in the
traditional sense Hassibi and Stork (1992); Nonnenmacher et al. (2022). However, we wish to study
MIPP at different degrees of sparsity. Consequently, we now briefly explain how we affect the pruning
ratio discovered using MIPP. From the condition above, it is clear that for a node to be removed from
the network, the loss must fall below the level achieved using all the activations, E[l(fl−1(Xl−1),Xl)].
To adjust the pruning ratio, we update this threshold by allowing it to take values that are regularly
spaced within the range [E[l(fl−1(Xl−1),Xl)],E[l(fl−1(∅),Xl)]]. If we are close to E[l(fl−1(∅),Xl)],
the condition for removing nodes is easily satisfied, and the sparsity ratio is high.

5.3 PRESERVING THE MUTUAL INFORMATION FROM OUTPUTS TO INPUTS

Until now, we have focused on the use of TERC with MI ordering to preserve MI between the
activations of adjacent layers. This process is repeated for each pair of layers. To prune the entire
model, by preserving MI between pairs of layers, one could start from the input layer and move to
the output layer or vice versa. In this section, like Luo et al. (2017), we argue for the latter option.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Figure 3: Top. Deforming MNIST for increased image complexity. These transformations were
applied randomly with equal probability and then kept consistent during training, pruning, and
re-training. Bottom. Changes in pruning ability of MIPP caused by image deformation.

90 92 94 96 98
60

70

80

90

100

To
p-

1
A

cc
ur

ac
y

LeNet5 on Mnist - PaT

60 70 80 90 100
20

40

60

80

VGG11 on Cifar10 - PaT

70 80 90
60

70

80

90

100

LeNet5 on Mnist - PaI

40 60 80 100
20

40

60

80

VGG11 on Cifar10 - PaI

50 60 70 80 90

20

40

60

80

To
p-

1
A

cc
ur

ac
y

ResNet20 on Cifar10 - PaT

70 80 90
60

70

80

90

ResNet56 on Cifar10 - PaT

40 60 80

20

40

60

80

ResNet20 on Cifar10 - PaI

60 80
60

70

80

90

ResNet56 on Cifar10 - PaI

80 85 90 95
40

60

80

To
p-

1
A

cc
ur

ac
y

ResNet18 on Cifar10 - PaT

80 85 90 95
60

70

80

90

ResNet34 on Cifar10 - PaT

70 80 90 100
40

60

80

ResNet18 on Cifar10 - PaI

60 70 80 90 100
60

70

80

90

ResNet34 on Cifar10 - PaI

85 90 95 100
40

50

60

70

To
p-

1
A

cc
ur

ac
y

ResNet50 on Cifar100 - PaT

70 80 90 100

20

40

60

VGG16 on Cifar100 - PaT

60 70 80 90 100
40

50

60

70

ResNet50 on Cifar100 - PaI

85 90 95 100

20

40

60
VGG16 on Cifar100 - PaI

0 25 50 75
% MACS Removed

10

20

30

40

50

To
p-

1
A

cc
ur

ac
y

ResNet20 on TinyImageNet - PaT

70 80 90 100
% MACS Removed

20

40

60

VGG19 on Cifar100 - PaT

0 25 50 75
% MACS Removed

10

20

30

40

ResNet20 on TinyImageNet - PaI

60 80 100
% MACS Removed

20

40

60

VGG19 on Cifar100 - PaI

IMP SOSP-H ThiNet OTO MIPP (Ours) IterGraSP IterSnip ProsPr SynFlow

Figure 4: Comaprison of MIPP’s ability to prune versus baselines both at initialization and after
training. For clarity, we set an accuracy range to avoid viewing data points in which layer collapse
has occurred.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

90 100
0

100

%
 L

C

LeNet5 mnist

75 100
0

100
VGG11 CIFAR10

50 75
0

100
ResNet20 CIFAR10

70 80 90
0

100
ResNet56 CIFAR10

80 100
0

100
ResNet18 CIFAR10

80 100
0

100
ResNet34 CIFAR10

80 100
0

50

ResNet50 CIFAR100

75 100
0

100
VGG16 CIFAR100

80 100
0

100
VGG19 CIFAR100

80 90
0

100
ResNet20 TinyImageNet

80 100
% MACS Removed

0

50

%
 L

C

80 100
% MACS Removed

0

100

50 75
% MACS Removed

0

50

50 75
% MACS Removed

0

100

75 100
% MACS Removed

0

100

80 100
% MACS Removed

0

100

75 100
% MACS Removed

0

100

80 100
% MACS Removed

0

100

50 100
% MACS Removed

0

100

80 90
% MACS Removed

0

100

a) PaT

b) PaI

IMP SOSP-H OTO MIPP (Ours) IterGraSP IterSnip ProsPr SynFlow

Figure 5: The percentage of runs that led to untrainable layer collapse. Specifically, we bin runs by
the percentage of neurons removed, where one bin contains all the runs within a 5% increment. We
then calculate the percentage of these runs that lead to layer collapse.

1 2 3

1

1.1

P
er

-la
ye

r P
R

LeNet5 mnist

1 2 3 4 5 6 7 8
0.9

1

1.1

VGG11 CIFAR10

1 4 7 10 13 16 19

0.75

1

ResNet20 CIFAR10

1 12 23 34 45
0.75

1

ResNet56 CIFAR10

1 4 7 10 13 16

1

1.1
ResNet18 CIFAR10

1 7 13 19 25 31
0.9

1

1.1

ResNet34 CIFAR10

1 10 19 28 37 46

0.9

1

1.1

ResNet50 CIFAR100

1 3 5 7 9 11 13

1

1.1

VGG16 CIFAR100

1 4 7 10 13 16

1

1.1

VGG19 CIFAR100

1 4 7 10 13 16 19

0.8

1

1.2
ResNet20 TinyImageNet

1 2 3
Layer 1 to L

1

1.1

P
er

-la
ye

r P
R

1 2 3 4 5 6 7 8
Layer 1 to L

1

1.1

1 4 7 10 13 16 19
Layer 1 to L

1

1.2

1 12 23 34 45
Layer 1 to L

0.75

1

1.2

1 4 7 10 13 16
Layer 1 to L

1

1.2

1 7 13 19 25 31
Layer 1 to L

0.75

1

1.2

1 10 19 28 37 46
Layer 1 to L

0.75

1

1 3 5 7 9 11 13
Layer 1 to L

0.95

1

1.1

1 4 7 10 13 16
Layer 1 to L

0.9

1

1.1

1 4 7 10 13 16 19
Layer 1 to L

0.9

1

1.1

a) PaT

b) PaI

Figure 6: These experiments demonstrate the per-layer PR selected by MIPP. For the different
layer-wise PRs we divide them by the average of all the layers in order to normalize.

Because each layer in a neural network is an injective function of its predecessor, these pairs share
perfect mutual information (MI), where I(Xl−1;Xl) = H(Xl), meaning network layers’ activations
can only reduce in entropy from inputs to outputs. In fact, when pruning from inputs to outputs, the
first layer (X1) is pruned to reconstruct the second layer (X2), but since the second layer has not been
pruned yet, it may retain irrelevant information that gets maintained in the first layer during pruning.
Conversely, pruning from outputs to inputs begins with layer XL−1, where the pruned version
X ′

L−1 preserves only information needed to reconstruct outputs. When pruning subsequent layers
backwards, each layer only retains entropy required for the already-reduced next layer, ultimately
ensuring the first layer retains only output-relevant information. More practically, this backward
approach evaluates I(X ′

l−1;X ′
l) = I(Xl−1;X ′

l) rather than I(X ′
l−1;Xl) = I(Xl−1;Xl), which is a

function of pruned layers’ activations, mitigating the curse of dimensionality. Algorithm 1 formally
describes MIPP’s steps. In Appendix G.1, we also explain how MIPP can be used for feature selection.

6 EVALUATION

In this section, we discuss the evaluation of MIPP, starting with the experimental settings and the
datasets used. We selected MNIST, CIFAR-10, CIFAR-100, and TinyImageNet for their benchmark
status enabling a comprehensive evaluation of MIPP while ensuring comparability across prior work
(LeCun et al., 1989; Krizhevsky, 2009; University, 2015).

6.1 MODELS, DATASETS AND BASELINES

We begin by applying our method to the simple LeNet5 architecture detecting variations of the MNIST
dataset (LeCun et al., 1998). We then assess its ability to prune ResNet20, ResNet56, ResNet18,
ResNet34, and VGG11 on the CIFAR10 dataset (He et al., 2016; Simonyan and Zisserman, 2015).
Before then investigating ResNet50, VGG16, and VGG19 models networks trained on CIFAR100
(Krizhevsky, 2009). Finally, we also investigate a ResNet20 trained on TinyImageNet (University,
2015). When using MIPP to PaI, we compare to SynFlow (Tanaka et al., 2020), IterGraSP (Wang
et al., 2022), IterSNIP (all 100 iterations) and ProsPr. Meanwhile, when using MIPP to PaT we
compare to IMP Frankle and Carbin (2019), OTO You et al. (2020), ThiNet (Luo et al., 2017) and
SOSP-H (Nonnenmacher et al., 2022). GraSP, SynFlow and SNIP are unstructured; to make them
structured, we apply L1-normalization to all the weights associated with a node. MIPP selects nodes
based on whether their activations transfer entropy to those of the subsequent layer. This approach

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

inherently establishes a unique PR for each run, which we adopt as the global PR for our baseline
methods. ThiNet cannot determine layer-wise PR; so we apply a uniform PR across all layers.

6.2 LENET5 ON VARIETIES OF MNIST

In this section, we begin by analyzing how increasing the complexity of the MNIST dataset impacts
MIPP’s performance. We then evaluate how MIPP compares to baseline methods when applied to a
LeNet-5 architecture on MNIST.

Empirical evidence indicates that the utility of PaI may be limited to simple datasets (Frankle and
Carbin, 2019; Frankle et al., 2021). We provide an information-theoretic argument with empirical
evidence to explain this phenomenon. MIPP, and other effective PaI schemes, preserve and compress
the information encoded in network activations. In untrained networks, these activations reflect the
entirety of the information present in the input data. If these inputs are characterized by information
relevant to the classification task, MIPP (and PaI more generally) remains applicable. For instance, in
the MNIST dataset, the informative pixels assist the classification task, while the remaining pixels,
on the outskirts of the image, are constantly black and contain no information. In such cases, our
method selectively preserves the neurons whose activations correspond to informative pixels. On the
other hand, the converse is also true; our method is inapplicable to models whose input data contains
information not relevant for the classification task. Consequently, if the input data is complex, MIPP
will preserve highly entropic activations over those that are useful for the downstream task, which can
impede MIPP’s PaI capabilities. To demonstrate this effect, in Figure 3 we present experiments that
investigate the effects of deforming MNIST. We deliberately distort MNIST images, preserving the
identifiability of the original digits (Figure 3) while making the formerly black pixels more entropic.
In alignment with our hypothesis, we observe a reduction in our ability to prune an untrained network
but not a trained network when the dataset complexity is increased.

Figure 4 demonstrates that MIPP performs at least as well as the baselines, regardless of whether PaI
or PaT. Additionally, Figure 5 shows that our method exhibits greater resistance to layer collapse.

6.3 OTHER MODELS ON CIFAR10/100 AND TINYIMAGENET

In Figure 4, it is clear that MIPP performs at least as well as baselines, whether PaI or PaT, on most
models when CIFAR10, CIFAR100, or TinyImageNet are acting as input. When PaI ResNet18 and
ResNet34 at high sparsities MIPP outperforms baselines by over 15%. However, our method is more
computationally demanding than PaI competitors, as shown in Appendix H. We observe similarly
impressive results when pruning a VGG19 trained on CIFAR100. These results demonstrate that
certain global pruning objectives can be used to PaI or PaT. In Figure 5 it is clear that MIPP is
consistently the most resistant to layer collapse for all model dataset combinations.

In Figure 6, we observe that MIPP selects highly regularized layer-wise PRs depending on the
network structure, particularly under PaI. Notably, for both ResNet34 and 50 MIPP exhibits both
inter-block and intra-block patterns. This can be explained by these networks respective structures
as shown in Appendix E. This is significant because recent works Pham et al. (2024); Frankle and
Carbin (2019) suggest that discovering optimal layer-wise PRs is the sole aspect of PaI that improves
performance. In contrast, baseline methods exhibit critical limitations: ProsPr and Grasp tend to
induce layer collapse predominantly in the deeper layers, contrasting with other PaI methods which
may exhibit collapse in either the initial or final layers. In comparison, PaT baselines generally yield
stable layer-wise PR selections. For detailed comparisons, see Appendix G.2.

7 CONCLUSION

In this paper, we have introduced MIPP, an activation-based pruning method that can be applied both
before and after training. The core principle of MIPP is to remove neurons or filters from layers if
they do not transfer entropy to the subsequent layer. Consequently, MIPP preserves MI between
the activations of adjacent layers and, therefore, between the data and masks. We have presented a
comprehensive performance evaluation of MIPP considering a variety of datasets and models. Our
experimental evaluation has demonstrated the effectiveness of MIPP in pruning trained and untrained
models of increasing complexity.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

ETHICS STATEMENT

Our investigation into mutual information-preserving neural network pruning presents minimal direct
ethical concerns. Since the focus is theoretical in nature and centered on fundamental principles, we
do not anticipate significant ethical concerns arising from this research.

REPRODUCIBILITY STATEMENT

We provided a comprehensive description of the algorithm and required hyperparameters in the main
body of the paper and the appendixes. We will also make the code available upon publication.

LLM USAGE STATEMENT

We employed Large Language Models (LLMs) throughout this work for editorial and technical
assistance. LLMs helped improve the clarity of our exposition, transcribe mathematical expressions
into LaTeX, enhance figure captions, and implement Python code. They also streamlined our literature
review process by generating properly formatted BibTeX entries.

REFERENCES

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In NeurIPS’89, 1989.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters. In
ICLR’17, 2017.

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for
efficient neural networks. In NeurIPS’15, 2015.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In ICLR’19, 2019.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S. Torr. SNIP: Single-shot network pruning
based on connection sensitivity. In ICLR’19, 2019.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In ICLR’22, 2022.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. In NeurIPS’20, 2020.

Milad Alizadeh, Thalaiyasingam Ajanthan, Xin Yuan, and Philip H. S. Torr. Prospect pruning:
Finding trainable weights at initialization using meta-gradients. In ICLR’22, 2022.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Pruning neural
networks at initialization: Why are we missing the mark? In ICLR’21, 2021.

Tanishq Kumar, Kevin Luo, and Mark Sellke. No free prune: Information-theoretic barriers to
pruning at initialization. In ICML’24, 2024.

Shreyas Malakarjun Patil and Constantine Dovrolis. Phew: Constructing sparse networks that learn
fast and generalize well without training data. In ICML’21, 2021.

Hoang Pham, Shiwei Liu, Lichuan Xiang, Dung Le, Hongkai Wen, Long Tran-Thanh, et al. Towards
data-agnostic pruning at initialization: what makes a good sparse mask? In NeurIPS’24, 2024.

Andrew M. Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Brendan D.
Tracey, and David D. Cox. On the information bottleneck theory of deep learning. Journal of
Statistical Mechanics: Theory and Experiment, 2019(12):124020, 2019.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Charles Westphal, Stephen Hailes, and Mirco Musolesi. Information-theoretic state variable selection
for reinforcement learning. arXiv preprint arXiv:2401.11512, 2024.

Huan Wang and Yun Fu. Trainability preserving neural pruning. In ICLR’23, 2023.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. In ICLR’17, 2017.

Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain surgeon.
In NeurIPS’92, 1992.

Hanyu Peng, Jiaxiang Wu, Shifeng Chen, and Junzhou Huang. Collaborative channel pruning for
deep networks. In ICML’19, 2019.

Chaoqi Wang, Roger Grosse, Sanja Fidler, and Guodong Zhang. EigenDamage: Structured pruning
in the Kronecker-factored eigenbasis. In ICML’19, 2019.

Manuel Nonnenmacher, Thomas Pfeil, Ingo Steinwart, and David Reeb. SOSP: Efficiently Capturing
Global Correlations by Second-Order Structured Pruning. In ICLR’22, 2022.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning
efficient convolutional networks through network slimming. In ICCV’17, 2017.

Chenglong Zhao, Bingbing Ni, Jian Zhang, Qiwei Zhao, Wenjun Zhang, and Qi Tian. Variational
convolutional neural network pruning. In CVPR’19, 2019.

Yi-Lin Sung, Jaehong Yoon, and Mohit Bansal. ECoFLaP: Efficient Coarse-to-Fine Layer-Wise
Pruning for Vision-Language Models. In ICLR’24, 2024.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of
neural network pruning? In MLSys’20, 2020.

Haoran You, Chaojian Li, Pengfei Xu, Yonggan Fu, Yue Wang, Xiaohan Chen, Richard G. Baraniuk,
Zhangyang Wang, and Yingyan Lin. Drawing early-bird tickets: Toward more efficient training of
deep networks. In ICLR’20, 2020.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
for neural network pruning. In CCVPR’19, 2019.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In ICCV’17, 2017.

Xiaoxing Su, Tao Huang, Yibo Li, Shaodi You, Fei Wang, Chen Qian, Chao Zhang, and Chang Xu.
Prioritized architecture sampling with monte-carlo tree search. In CVPR’21, 2021.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep Learning. MIT Press,
2016.

Scott E. Fahlman and Christian Lebiere. The cascade-correlation learning architecture. NeurIPS’90,
1990.

Roberto Battiti. Using mutual information for selecting features in supervised neural net learning.
IEEE Transactions on Neural Networks, 5(4):537–550, 1994.

Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on mutual information criteria
of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27(8):1226–1238, 2005.

Shuyang Gao, Greg Ver Steeg, and Aram Galstyan. Variational information maximization for feature
selection. In NeurIPS’16, 2016.

Young-Il Moon, Balaji Rajagopalan, and Upmanu Lall. Estimation of mutual information using
kernel density estimators. Physical Review E, 52(3):2318–2321, 1995.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Liam Paninski. Estimation of entropy and mutual information. Neural Computation, 15(6):1191–1253,
2003.

Ishmael Belghazi, Sai Rajeswar, Aristide Baratin, R. Devon Hjelm, and Aaron Courville. Mine:
Mutual information neural estimation. In ICML’18, 2018.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. In arXiv:1807.03748, 2019.

Ben Poole, Sherjil Ozair, Aaron Oord, Alexander Alemi, and George Tucker. On variational bounds
of mutual information. In ICML’19, 2019.

Giulio Franzese, Mustapha Bounoua, and Pietro Michiardi. MINDE: Mutual information neural
diffusion estimation. In ICLR’24, 2024.

Ian Covert, Scott M. Lundberg, and Su-In Lee. Understanding global feature contributions with
additive importance measures. In NeurIPS’20, 2020.

Soham Gadgil, Ian Covert, and Su-In Lee. Estimating conditional mutual information for dynamic
feature selection. In ICLR’24, 2024.

Alex Krizhevsky. Learning multiple layers of features from tiny images. PhD thesis, University of
Toronto, 2009.

Stanford University. Tiny ImageNet Visual Recognition Challenge. http://cs231n.stanford.
edu/, 2015. CS231n: Convolutional Neural Networks for Visual Recognition.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CCVPR’16, 2016.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR’15, 2015.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In ICLR’18, 2018.

Terrance DeVries and Graham W. Taylor. Improved regularization of convolutional neural networks
with cutout. In arXiv preprint arXiv:1708.04552, 2017.

Peter L. Bartlett, Dylan J. Foster, and Matus J. Telgarsky. Spectrally-normalized margin bounds for
neural networks. In NeurIPS’17, 2017.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring generaliza-
tion in deep learning. In NeurIPS’17, 2017.

Aosen Xu and Maxim Raginsky. Information-theoretic analysis of generalization capability of
learning algorithms. In NeurIPS’17, 2017.

12

http://cs231n.stanford.edu/
http://cs231n.stanford.edu/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A NOTATION

Table 1: Summary of Notational Conventions.

Type Notation
Loss function l
The function describing layer l fl
The function describing layer l once masked and re-trained hl
A vector of activations associated with layer l xn

l
RV describing the activations of node i in layer l Xi

l
Set of RVs describing all activations in layer l (one realization being xn

l) Xl

Image vector xn
0

Set of pixel RVs describing input data (one realization would be an image xn
0) X0

RV describing different datasets (one realization would be an dataset such as MNIST or X0) D
The mask vector used for layer l mn

l
The set of masks established for all layers in a model M0

The RV describing the different masks established for different data (one realization: M0) M
Set of RVs describing pruned activations in layer l X ′

l
RV describing different pruned activations in layer l occurring due to different datasets (realization:X ′

l) D′
l

Weight matrix Wm×n

Bias vector bm

Activation function a

B ALGORITHMS

In this section, we present not only the overall MIPP algorithm but also TERC with MI ordering
algorithm, which maintains MI between adjacent layers in a network.

Algorithm 1 MIPP.
Input: Activations of all layers: Xl. Output: M0 (a desirable set of node
masks).

1: Initialize empty set of masks: M0 = ∅.
2: for l ∈ [1, L] do
3: X ′

l−1 = Algorithm 2(Xl−1,Xl)
4: for i ∈ [0, n] do

5: mn
l−1(i) =

{
1 if Xi

l−1 ∈ X ′
l−1,

0 otherwise.
6: end for
7: M0 = M0 ∪mn

l−1
8: end for
9: return M0

C PROOF OF THEOREM 1

In this section, we prove Theorem 1. We assume, through the injection of some randomness, that our
values of I(X ′

L−1;XL) are not infinite, for a more detailed discussion of this please refer to Appendix
I. To begin, we remind the reader that we aim to preserve MI between layers such that:

I(X ′
L−1;XL) = I(XL−1;XL), (2)

which, given the relationship I(X;Y) = supf
(
E[f(X | Y]− logE[ef(X)]

)
, becomes:

sup
g

(
E[g(XL−1) | XL]− logE[eg(XL−1)]

)
=sup

f

(
E[f(X ′

L−1) | XL]− logE[ef(X
′
L−1)]

)
. (3)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Algorithm 2 TERC with MI ordering.
Input: Activations of layers L and L − 1: XL and XL−1. Output: X ′

L−1 (a desirable subset of
nodes).

1: Initialize X ′
L−1 = sortdesc

(
XL−1, I(X

i
L−1;XL)

)
2: for Xi

L−1 ∈ XL−1 do
3: if I(X ′

L−1\Xi
L−1;XL) = I(XL−1;XL) then

4: X ′
L−1 = X ′

L−1\Xi
L−1

5: end if
6: end for
7: return X ′

L−1

However, we know that there exists a function g such that g(XL−1) = XL. Therefore, we can rewrite
the above such that:

(
E[XL | XL]− logE[eXL]

)
=sup

f

(
E[f(X ′

L−1) | XL]− logE[ef(X
′
L−1)]

)
,

XL − logE[eXL] = sup
f

(
E[f(X ′

L−1) | XL]− logE[ef(X
′
L−1)]

)
.

(4)

The only circumstances under which Equation 3 holds is if f(X ′
L−1) = XL, thereby proving Theorem

1.

D PROOF OF THEOREM 2

In this section, we prove Theorem 2. To begin, we present axioms that will be used throughout the
proof.

• Firstly, we apply TERC to bijectively preserve MI between activations in layers such that
I(X ′

l−1;Xl) = I(Xl−1;Xl). Given that Xl = f(Xl−1), this implies that from the pruned
upstream layer we should be able to perfectly reconstruct the original layer I(Xl;X ′

l−1) =
H(Xl−1) Westphal et al. (2024).

• With probability one can we recover the mask if we have access to the masked activations
p(m|X ′

l−1) = 1.

• With probability one can we recover the masked activations if we have access to the full
activations p(X ′

l−1|Xl−1) = 1.

• We assume that all the information in the data is discrete (to overcome the problem described
in Saxe et al. (2019) and included in the first layer of the activations I(X0;X1) = H(X0).
Finally, for this proof, we also assume a network with one set of activations to prune.

To begin, we remind the reader that D is a distribution from which we sample input data. Therefore,
an instance of D can be written as the input data to our NN, written X0. Meanwhile, M is a RV
whose realizations are the sets of masks derived using a pruning method, denoted M0. We use these

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

observations to complete the proof.

I(D;M) =
∑

X0∈D,M0∈M
p(X0,M0) log

(
p(X0,M0)

p(X0) p(M0)

)
(5)

(substituting in p(X1|X0,M0) = 1 we obtain)

=
∑

X0∈D,M0∈M
p(X0,M0) log

(
p(X0,M0,X1)

p(X0) p(M0)

)
(6)

(substituting in p(X ′
1|X0,M0,X1) = 1 we obtain)

=
∑

X0∈D,M0∈M
p(X0,M0) log

(
p(X0,M0,X1,X ′

1)

p(X0) p(M0)

)
(7)

=
∑

X0∈D,M0∈M
p(X0,M0) log

(
p(M0|X0,X1,X ′

1)p(X0,X1,X ′
1)

p(X0) p(M0)

)
(8)

(because p(M0|X1,X ′
1) = 1 we obtain) (9)

=
∑

X0∈D,M0∈M
p(X0,M0) log

(
p(X0,X1,X ′

1)

p(X0) p(M0)

)
(10)

=
∑

X0∈D,M0∈M
p(X0,M0) log

(
p(X ′

1|X0,X1)p(X0,X1)

p(X0) p(M0)

)
(11)

(because p(X ′
1|X0,X1) = 1 we obtain)

=
∑

X0∈D,M0∈M
p(X0,M0) log

(
p(X0,X1)

p(X0) p(M0)

)
(12)

=
∑

X0∈D,M0∈M
p(X0,M0) log

(
p(X1|X0)p(X0)

p(X0) p(M0)

)
(13)

(because p(X1|X0) = 1 we obtain)

=
∑

X0∈D,M0∈M
p(X0,M0) log

(
1

p(M0)

)
(14)

= H(M). (15)

As previously pointed out, an instance of our masking variable M is a single set of masks M0. It is
clearly possible to derive this mask from X ′

1; therefore, we obtain M0 = f(X ′
1) and H(M) ≤ H(D′

1)
(where D′

1 is the RV from which X ′
1 is sampled).

We can then write:

H(M) ≤ H(D′
1) (16)

≤ −
∑

X ′
1∈D′

1

p(X ′
1) log p(X ′

1) (17)

(because of TERC’s bijective MI preservation we can sub in p(X1|X ′
1) = 1)

≤ −
∑

X ′
1∈D′

1

p(X ′
1,X1) log p(X ′

1,X1) (18)

≤ −
∑

X ′
1∈D′

1

p(X ′
1|X1)p(X1) log p(X ′

1|X1)p(X1) (19)

(by repeating the process above but inserting p(X0|X1) = 1)
≤ H(D). (20)

We have proven that, if pruning using a method that bijectively preserves MI between pruned and
unpruned activations, the upper bound on I(D;M) can be expressed as I(D;M) ≥ H(D).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Table 2: Comparison of training parameters across datasets.

Dataset MNIST CIFAR10 CIFAR100 TinyImageNet
Solver SGD (0.9, 1e-4) SGD (0.9, 5e-4) SGD (0.9, 5e-4) SGD (0.9, 5e-4)
Batch Size 256 256 256 256
LR 1e-2, [30,60], #90 1e-1, [100,150], #200 1e-1, [100,150], #200 1e-1, [150,200], #250
LR (re-
train)

1e-2, [30], #60 1e-2, [60,90], #120 1e-2, [60,90], #120 1e-2, [100,150], #200

0.4% Pix Rem 7.0% Pix Rem 54.0% Pix Rem 0.6% Pix Rem 5.9% Pix Rem 64.7% Pix Rem

0.9% Pix Rem 18.9% Pix Rem 47.6% Pix Rem 0.6% Pix Rem 11.2% Pix Rem 37.2% Pix Rem

9.1% Pix Rem 20.0% Pix Rem 57.1% Pix Rem 0.6% Pix Rem 9.6% Pix Rem 29.1% Pix Rem

0.7% Pix Rem 15.3% Pix Rem 61.5% Pix Rem 1.3% Pix Rem 13.8% Pix Rem 29.4% Pix Rem

a) Pixels selected - PaT LeNet5 MNIST b) Pixels selected - PaI LeNet5 MNIST

c) Pixels selected - PaT ResNet20 CIFAR10 d) Pixels selected - PaI ResNet20 CIFAR10

e) Pixels selected - PaT ResNet18 CIFAR10 f) Pixels selected - PaI ResNet18 CIFAR10

g) Pixels selected - PaT VGG11 CIFAR10 h) Pixels selected - PaI VGG11 CIFAR10

Selected Pixels

Figure 7: Visual representation of the features selected using MIPP at different sparsities on different
models and datasets (blue implies selected).

E RESNET STRUCTURE

In this section, we present Figure 10, which illustrates the structure of some of the ResNets investi-
gated explaining the per-layer pruning ratios discovered in Figure 9.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

LeNet5 (PaT)
LeNet5 (PaI)

VGG11 (PaT)
VGG11 (PaI)

ResNet20 (PaT)
ResNet20 (PaI)

ResNet18 (PaT)
ResNet18 (PaI)

0.4

0.6

0.8

1.0
N

or
m

 T
op

-1
 A

cc

Mipp vs Best of Rest (avg top-1 acc across all sparsities)

Ours
Best of the Rest

Figure 8: Normalized accuracy of MIPP vs best of the rest when pixel selection occurs.

F FURTHER EXPERIMENTAL SETTINGS

F.1 I(D;M) VS TOP-1 ACC

In this section, we explain the experimental settings for the results achieved in Figure 2 a). In these
simple introductory experiments, we aimed to provide empirical evidence validating the results of
Kumar et al. (2024) in different settings. To achieve this, we used synthetic data to generate a mask
for which we could calculate I(D;M), and then applied this mask to all layers of the network. We
would then train this network (controlling for the initialized weight matrices) and present the final
accuracy seen in the figure.

Data. In this case, to simplify the process of deriving our masks M0, our synthetic data was an
N -dimensional vector of Bernoulli distributions. Of these N Bernoulli distributions, half were
described by ∼ Bernoulli(0.5), while the other half were described by ∼ Bernoulli(0.999999). We
denote this vector as dN . To generate masks with high MI with the data, they should accurately
reflect the patterns in the input data. For instance, if we are generating a set of masks with perfect MI
with the data, and the informative Bernoulli distributions occupy the first 25 positions, then our mask
will have its first 25 positions set to prune. Meanwhile, if the informative Bernoulli distributions
appeared once in every other array element, we may repeat this with the positions we mask. What
matters for perfect MI is that the masks are a perfect function of the distribution vector, represented
as M0 = f(dN). In our case, this function is simply a 1-to-1 mapping. To reduce MI, we simply
add randomness. For instance, if we aimed to reduce the MI by half, we would have only have half
our masking vector be dependent on the data, while the rest is random. Finally, for these experiments,
the target (i.e., y) is a simple sum of all the inputs.

The output data we were trying to predict was a sum of the inputs.

Models. For our simple feed-forward neural network (NN), we used 50 inputs and 3 hidden
layers, each containing 50 nodes. In contrast, our convolutional neural network (ConvNet) had one
convolutional layer with 1 input channel, 8 output channels, and a kernel size of 3. We then flattened
the output and fed it into a linear network with 384 units.

F.2 WHAT PAI METHODS MAXIMIZE I(D;M)?

In this section, we explain the experimental settings for the results reported in Figure 2 b). The goal
of these experiments is to show that for a simple synthetic network characterized by redundancies,
MIPP establishes masks that have a greater MI with the data. We employed a simple MLP composed
of 10 hidden nodes, with input data that was also a vector of dimension 10, where, similarly to in
Appendix F.1, this vector was made of samples from Bernoulli distributions, half of which were
informative (∼ Bernoulli(0.5)) while the other half (∼ Bernoulli(0.999999)) were not. The network
takes this input vector of zeroes and ones and converts them from a binary value to a decimal one.
In this case, a perfect network will have a weight matrix that has powers of two along the diagonal.
We then use multiple PaI methods to establish pruning masks. To calculate I(D;M), we use the
methods described in Covert et al. (2020) with a small network of two hidden layers with 50 nodes
and BCE loss.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

0.8

1

IM
P

LeNet5 mnist

0.75

1

VGG11 CIFAR10

0.75

1

ResNet20 CIFAR10

0

1
ResNet56 CIFAR10

0.5

1

ResNet18 CIFAR10

0.5

1

IM
P

ResNet34 CIFAR10

0.5

1

VGG16 CIFAR100

0.5

1

VGG19 CIFAR100

0.5

1
ResNet50 CIFAR100

0.5

1

ResNet20 TinyImageNet

0.5

1

O
TO

LeNet5 mnist

0.5

1

VGG11 CIFAR10

0.75
1

1.2
ResNet20 CIFAR10

0.5

1

ResNet56 CIFAR10

0.9

1

1.1
ResNet18 CIFAR10

0.75

1

O
TO

ResNet34 CIFAR10

0.75

1

VGG16 CIFAR100

0.5

1

VGG19 CIFAR100

0.75

1

ResNet50 CIFAR100

0.75

1

ResNet20 TinyImageNet

0.9

1

1.1

S
O

S
P

-H

LeNet5 mnist

0

1

VGG11 CIFAR10

0.75
1

1.2
ResNet20 CIFAR10

0.5

1

ResNet56 CIFAR10

0.8

1

ResNet18 CIFAR10

0.75

1

S
O

S
P

-H

ResNet34 CIFAR10

0

1

VGG16 CIFAR100

0

1

VGG19 CIFAR100

0.5

1
ResNet50 CIFAR100

0.5

1

ResNet20 TinyImageNet

0

1

It
er

S
n

ip

LeNet5 mnist

0.5

1

VGG11 CIFAR10

1

1.2
ResNet20 CIFAR10

0.5

1

ResNet56 CIFAR10

0.75

1

ResNet18 CIFAR10

0.75
1

1.2

It
er

S
n

ip

ResNet34 CIFAR10

0.5

1

VGG16 CIFAR100

0.75
1

1.2
VGG19 CIFAR100

0.9
1

1.1
ResNet50 CIFAR100

0.9
1

1.1

ResNet20 TinyImageNet

0

2

G
ra

S
P

LeNet5 mnist

0

1

VGG11 CIFAR10

0.5

1

ResNet20 CIFAR10

0.5

1

ResNet56 CIFAR10

0.75

1

ResNet18 CIFAR10

0.5

1

G
ra

S
P

ResNet34 CIFAR10

0

1

VGG16 CIFAR100

0

1

VGG19 CIFAR100

0.5

1

ResNet50 CIFAR100

0.5

1

ResNet20 TinyImageNet

1

2

S
yn

F
lo

w

LeNet5 mnist

0.5

1

VGG11 CIFAR10

0.75
1

1.2

ResNet20 CIFAR10

0.5

1
ResNet56 CIFAR10

0.8

1

ResNet18 CIFAR10

0.5

1

S
yn

F
lo

w

ResNet34 CIFAR10

0.8

1

VGG16 CIFAR100

0.8

1

VGG19 CIFAR100

0.5

1
ResNet50 CIFAR100

0.9
1

1.1

ResNet20 TinyImageNet

0

1

P
ro

sP
r

LeNet5 mnist

0

1

VGG11 CIFAR10

0.5

1

ResNet20 CIFAR10

0.5

1

ResNet56 CIFAR10

0

1
ResNet18 CIFAR10

1 7 13 19 25 31
Layer number

0.5

1

P
ro

sP
r

ResNet34 CIFAR10

1 3 5 7 9 11 13
Layer number

0.5

1

VGG16 CIFAR100

1 4 7 10 13 16
Layer number

0

1

VGG19 CIFAR100

1 10 19 28 37 46
Layer number

0

1

ResNet50 CIFAR100

1 5 9 13 17
Layer number

0.5

1

ResNet20 TinyImageNet

Figure 9: Layer-wise pruning ratios. Normalized by division of the average PR achieved for that run.

We observe that only MIPP can define pruning masks that are data-dependent. This is due to the
following reasons: firstly, the network performs perfectly and there is no loss, so the derivative-based
metrics are zero; and, secondly, the activations give perfectly redundant information, masking them
would have the exact same effect on the loss (assuming you use a cross entropy loss and not MSE).
Under such conditions, static ranking methods produce results that resemble randomness.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

… …

1x1 conv, 64,
3x3 conv, 64,

1x1 conv, 256,
(x3)

ResNet 50

(x4)
1x1 conv, 128,
3x3 conv, 128,
1x1 conv, 512,

1x1 conv, 256,
3x3 conv, 256,

1x1 conv, 1024,
(x6)

1x1 conv, 512,
3x3 conv, 512,

1x1 conv, 2048,
(x3)

ResNet 34

3x3 conv, 64,
3x3 conv, 64,

3x3 conv, 512,
3x3 conv, 512,
3x3 conv, 512,
3x3 conv, 512,
3x3 conv, 512,
3x3 conv, 512, (x3)

3x3 conv, 256,
3x3 conv, 256, (x6)

3x3 conv, 64,3x3 conv, 128,
3x3 conv, 128,

(x4)

(x3)

… …Block end
Skip connection

Figure 10: ResNet34 and ResNet50 structures: the architectural elements of the network explain the
periodicity of the per-layer PRs derived using our method.

IM
P

SOSP-H
ThiN

et
OTO

MIP
P (O

urs
)

0

100

200

P
ru

ni
ng

 T
im

e
(s

)

LeNet5 mnist

IM
P

SOSP-H
ThiN

et
OTO

MIP
P (O

urs
)

0

1000

2000

VGG11 CIFAR10

IM
P

SOSP-H
ThiN

et
OTO

MIP
P (O

urs
)

0

200

400

600

ResNet20 CIFAR10

IM
P

SOSP-H
ThiN

et
OTO

MIP
P (O

urs
)

0

500

1000

1500
ResNet56 CIFAR10

IM
P

SOSP-H
ThiN

et
OTO

MIP
P (O

urs
)

0

1000

2000

3000

ResNet18 CIFAR10

IM
P

SOSP-H
ThiN

et
OTO

MIP
P (O

urs
)

0

2000

4000

6000

ResNet34 CIFAR10

IM
P

SOSP-H
ThiN

et
OTO

MIP
P (O

urs
)

0

5000

10000

15000

ResNet50 CIFAR100

IM
P

SOSP-H
ThiN

et
OTO

MIP
P (O

urs
)

0

500

1000

VGG16 CIFAR100

IM
P

SOSP-H
ThiN

et
OTO

MIP
P (O

urs
)

0

2000

4000

6000
VGG19 CIFAR100

IM
P

SOSP-H
ThiN

et
OTO

MIP
P (O

urs
)

0

5000

10000

ResNet20 TinyImageNet

Ite
rG

raS
P

Ite
rS

nip

Pros
Pr

Syn
Flow

MIP
P (O

urs
)

0

100

P
ru

ni
ng

 T
im

e
(s

)

LeNet5 mnist

Ite
rG

raS
P

Ite
rS

nip

Pros
Pr

Syn
Flow

MIP
P (O

urs
)

0

1000

2000

VGG11 CIFAR10

Ite
rG

raS
P

Ite
rS

nip

Pros
Pr

Syn
Flow

MIP
P (O

urs
)

0

50

100

ResNet20 CIFAR10

Ite
rG

raS
P

Ite
rS

nip

Pros
Pr

Syn
Flow

MIP
P (O

urs
)

0

1000

2000

ResNet56 CIFAR10

Ite
rG

raS
P

Ite
rS

nip

Pros
Pr

Syn
Flow

MIP
P (O

urs
)

0

2000

4000

ResNet18 CIFAR10

Ite
rG

raS
P

Ite
rS

nip

Pros
Pr

Syn
Flow

MIP
P (O

urs
)

0

5000

10000
ResNet34 CIFAR10

Ite
rG

raS
P

Ite
rS

nip

Pros
Pr

Syn
Flow

MIP
P (O

urs
)

0

10000

ResNet50 CIFAR100

Ite
rG

raS
P

Ite
rS

nip

Pros
Pr

Syn
Flow

MIP
P (O

urs
)

0

500

VGG16 CIFAR100

Ite
rG

raS
P

Ite
rS

nip

Pros
Pr

Syn
Flow

MIP
P (O

urs
)

0

2000

4000

VGG19 CIFAR100

Ite
rG

raS
P

Ite
rS

nip

Pros
Pr

Syn
Flow

MIP
P (O

urs
)

0

5000

10000

ResNet20 TinyImageNet

a) PaT

b) PaI

Figure 11: Pruning times across architectures for all experimental runs. Error bars show 95% confi-
dence intervals. MIPP demonstrates competitive timing with other pruning-after-training methods,
particularly for narrower architectures.

F.3 DATA AUGMENTATION TECHNIQUES

For the CIFAR-10 dataset, we applied standard data augmentation techniques, which included random
cropping with padding and random horizontal flipping. These augmentations are commonly used to
enhance model generalization by introducing variations in the training data. In the case of CIFAR-100,
we employed additional augmentation methods beyond the standard techniques. Specifically, we used
mixup (Zhang et al., 2018), which creates virtual training examples by combining pairs of images and
their labels, and cutout (DeVries and Taylor, 2017), which randomly masks out square regions of an
image to simulate occlusion and encourage the network to focus on more distributed features. These
advanced techniques were included to further enhance performance due to the increased complexity
of the CIFAR-100 dataset. For TinyImageNet, we again adopted a standard suite of transforms.
The transformations included RandomResizedCrop with a scale range of 0.8 to 1.0, which crops
and resizes images more variably than standard cropping, alongside random horizontal flipping. To
further diversify the training data, we introduced ColorJitter to perturb brightness, contrast, saturation,
and hue, as well as small random rotations of up to 10 degrees. The images were then normalized
using TinyImageNet-specific statistics. Additionally, we applied RandomErasing (similar to cutout)
with a probability of 0.5 to randomly mask small regions of the image, further encouraging robust
feature learning.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

IM
P

SOSP-H
ThiN

et
OTO

MIP
P (O

urs
)

0

100

200

P
ru

ni
ng

 T
im

e
(s

)

LeNet5 mnist

IM
P

SOSP-H
ThiN

et
OTO

MIP
P (O

urs
)

0

1000

2000

VGG11 CIFAR10

IM
P

SOSP-H
ThiN

et
OTO

MIP
P (O

urs
)

0

200

400

600

ResNet20 CIFAR10

IM
P

SOSP-H
ThiN

et
OTO

MIP
P (O

urs
)

0

500

1000

1500

ResNet56 CIFAR10

IM
P

SOSP-H
ThiN

et
OTO

MIP
P (O

urs
)

0

1000

2000

3000
ResNet18 CIFAR10

IM
P

SOSP-H
ThiN

et
OTO

MIP
P (O

urs
)

0

2000

4000

ResNet34 CIFAR10

IM
P

SOSP-H
ThiN

et
OTO

MIP
P (O

urs
)

0

5000

10000

15000
ResNet50 CIFAR100

IM
P

SOSP-H
ThiN

et
OTO

MIP
P (O

urs
)

0

500

1000

VGG16 CIFAR100

IM
P

SOSP-H
ThiN

et
OTO

MIP
P (O

urs
)

0

2000

4000

VGG19 CIFAR100

IM
P

SOSP-H
ThiN

et
OTO

MIP
P (O

urs
)

0

2000

4000

6000

ResNet20 TinyImageNet

Ite
rG

raS
P

Ite
rS

nip

Pros
Pr

Syn
Flow

MIP
P (O

urs
)

0

50

100

P
ru

ni
ng

 T
im

e
(s

)

LeNet5 mnist

Ite
rG

raS
P

Ite
rS

nip

Pros
Pr

Syn
Flow

MIP
P (O

urs
)

0

1000

2000

VGG11 CIFAR10

Ite
rG

raS
P

Ite
rS

nip

Pros
Pr

Syn
Flow

MIP
P (O

urs
)

0

20

40

ResNet20 CIFAR10

Ite
rG

raS
P

Ite
rS

nip

Pros
Pr

Syn
Flow

MIP
P (O

urs
)

0

500

ResNet56 CIFAR10

Ite
rG

raS
P

Ite
rS

nip

Pros
Pr

Syn
Flow

MIP
P (O

urs
)

0

2000

ResNet18 CIFAR10

Ite
rG

raS
P

Ite
rS

nip

Pros
Pr

Syn
Flow

MIP
P (O

urs
)

0

2500

5000

ResNet34 CIFAR10

Ite
rG

raS
P

Ite
rS

nip

Pros
Pr

Syn
Flow

MIP
P (O

urs
)

0

5000

10000

ResNet50 CIFAR100

Ite
rG

raS
P

Ite
rS

nip

Pros
Pr

Syn
Flow

MIP
P (O

urs
)

0

250

500

VGG16 CIFAR100

Ite
rG

raS
P

Ite
rS

nip

Pros
Pr

Syn
Flow

MIP
P (O

urs
)

0

2000

VGG19 CIFAR100

Ite
rG

raS
P

Ite
rS

nip

Pros
Pr

Syn
Flow

MIP
P (O

urs
)

0

5000

ResNet20 TinyImageNet

a) PaT

b) PaI

Figure 12: Pruning times for high-sparsity scenarios (>92% of neurons removed). MIPP’s relative
performance improves in high-sparsity regimes due to reduced node comparison costs.

F.4 HYPERPARAMETERS

F.4.1 VISION TRAINING AND RE-TRAINING

Table 2 contains a comparison of the training parameters used for the vision training and retraining
across datasets.

F.4.2 PRUNING

As explained in the main paper, our method involves masking features and re-training a layer to check
if the loss decreases below the original level. For the re-training steps once the mask has been applied
we use 100 epochs with 20 batches of activations with early stopping. At the start of our algorithm,
we also rank the features based of their MI. For this calculation, we again use the same layer for 5
epochs with the same 20 activations. We use our method to prune all linear and convolutional layers.
We prune the batch-normalization nodes associated with nodes in linear/convolutional layers, while
skip connections in ResNets remain unaffected. We note that the batch-normalization layer can be
considered as part of the function fl−1 and therefore retrained to form hl−1. Consequently, MIPP
considers batch-normalization layers to greater effect than other pruning methods. For OTO and IMP,
we used 10 iterations with 20 retraining epochs. The learning rates are reported in Table 2.

G FURTHER EXPERIMENTS

G.1 FEATURE SELECTION EXPERIMENTS

In this section, we investigate MIPP’s ability to select features. In particular, we examine the pixels it
identifies from the MNIST and CIFAR10 datasets. MIPP selects features in the exact same manner
it selects nodes, i.e., by verifying whether entropy is transferred from the pixels to the nodes of the
first layer. In order to do this, we extract the first layer and rank the pixels based on their impact on
reconstructing the activations of the next layer, from least to most significant. We then sequentially
evaluate the pixels in this order, testing whether retraining the layer with each pixel masked results in
a loss that is lower than or equal to the loss obtained using all the pixels.

In Figure 7, we observe a clear preference for selecting central pixels over those located at the
periphery, which are generally less informative. In panels (a) and (b) of Figure 7, we present results
that align with previous research on MNIST pixel importance Covert et al. (2020). These studies
have demonstrated that the most informative pixels are typically concentrated in the center of the
images, with a slight bias toward the right side. Additionally, an intuitive selection pattern is evident
in the CIFAR-10 dataset. When pixel selection is performed after training, the selected pixels exhibit
a high degree of uniformity. In contrast, when selection occurs at initialization, regular patterns still
emerge, although the spacing between selected pixels is less consistent.

In Figure 8, we present the average accuracy achieved when we prune models using MIPP and our
baselines. Unlike the experiment reported in the main body of the paper, we have also used MIPP
to select pixels. In both figures, we observe that MIPP outperforms the baselines. This is because,
unlike any of the baselines, the features are selected in a manner that is dependent on the pruned
model. MIPP can compress both features and the underlying model simultaneously such that the

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

results are compatible, preventing ML practitioners from having to use different methods for feature
and model compression. Often, combining compressed input and compressed models can lead to
performance degradation.

G.2 LAYER WISE PRUNING RATIOS ESTABLISHED USING OTHER METHODS

In the main paper, we present the per-layer PRs obtained by MIPP. In Figure 6, we present these
results for the other methods taken into consideration.

H COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we analyze the computational complexity and runtime of MIPP, which consists of two
distinct stages: (1) mutual information (MI)-based node ordering and (2) entropy-conserving node
pruning.

H.1 THEORETICAL COMPLEXITY

The first stage involves evaluating nodes in a given layer by sequentially masking all but one node,
performing brief layer-wise retraining, and measuring each node’s contribution to reconstructing
subsequent activations. This MI-ordering phase exhibits a complexity of O(n), where n is the number
of nodes in the layer, as each node requires individual evaluation followed by pairwise comparison.

The second stage consists in removing nodes that do not transfer significant entropy to the next layer.
his phase has an effective complexity of O(k), where k denotes the number of nodes retained after
pruning. Since nodes with minimal impact can be identified without requiring full retraining, the
process remains computationally efficient.

Combining both stages, the per-layer complexity of MIPP is O(nk). For a network of depth d
with comparable layer widths, the total complexity becomes O(d(nk)). This scaling makes MIPP
competitive among pruning-after-training (PaT) methods while remaining more computationally
intensive than pruning-at-initialization (PaI) approaches.

H.2 EMPIRICAL PERFORMANCE

Figure 11 demonstrates MIPP’s empirical runtime characteristics. The non-linear relationship
between network width and pruning time is evident, with particularly favorable scaling for narrower
architectures like ResNet-20 compared to wider networks like VGG-19. This aligns with our
theoretical complexity analysis, where the n2 term dominates for layers with many nodes.

Notably, MIPP’s computational cost scales advantageously with pruning severity. As shown in
Figure 12, when pruning to ultra-high sparsity levels (removing >92% of neurons), MIPP’s relative
performance improves compared to moderate sparsity scenarios (Figure 11). This occurs because
high-sparsity pruning reduces both the n2 ordering cost (fewer nodes to compare) and the k retention
cost simultaneously.

While MIPP’s absolute runtime exceeds standard PaI methods (as visible in both subfigures), it
provides unique advantages for edge deployment: the method produces compact models with greater
on-device learning capacity than conventional PaI approaches. This makes MIPP particularly valuable
for applications requiring continuous edge learning, such as autonomous systems or IoT devices,
where the computational cost is justified by the resulting model quality and adaptability.

I DISCUSSION OF RESULTS IN SAXE ET AL. (2019)

In theory, the mutual information I(X l;X l−1) between adjacent layers of a neural network is infinite,
as demonstrated by Saxe et al. (2019). This occurs because there exists an exact deterministic
mapping from layer X l−1 to X l in an idealized noise-free network. The deterministic nature of
this transformation would imply zero conditional entropy H(X l|X l−1) = 0, leading to unbounded
mutual information I(X l;X l−1) → ∞.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

However, in practice we estimate this quantity using the method from Covert et al. (2020), which
yields a finite, approximate lower bound rather than the theoretical infinite value. This approximation
arises from two fundamental limitations. First, the estimator only becomes exact when implemented
with a binary cross-entropy loss LBCE, which is impossible to achieve in our continuous activation
setting where X l ∈ Rd. Second, all practical training pipelines introduce various sources of
randomness - including stochastic initialization, dropout with rate pdrop, mini-batch sampling Bt ⊂ D,
and label smoothing α - that broaden the conditional distribution p(X l|X l−1) from a Dirac delta
δf(x) to one with finite entropy H(X l|X l−1) > 0.

Consequently, the mutual information values we report are empirically measurable, i.e., practical
quantities that satisfy 0 < Î(X l;X l−1) < ∞ under real-world training conditions, rather than the
idealized I(X l;X l−1) → ∞ that would emerge from a perfect deterministic mapping f : X l−1 →
X l (note that in the paper we refer to the MI with randomness as I(X;Y) rather than Î(X;Y) for
clarity of presentation). This distinction is crucial for a correct interpretation of our results.

J HOW DOES I(M ;D) RELATE TO GENERALIZATION?

Through Figure 2 b) and Theorem 2 we have demonstrated that the application of MIPP results
in higher values of I(M ;D). However, Kumar et al. related this quantity to train, not test, loss.
This leaves a gap between our method that aims to raise I(M ;D) and the metric we use to measure
performance: test-time accuracy.3

To address this gap, we note that Kumar et al.’s theorem can be interpreted as follows: for a fixed
training loss below the noise level, increasing the effective parameter count (including I(M ;D))
allows one to achieve the same training loss with a smoother function. Function smoothness, as
measured by the Lipschitz constant, has been shown to be directly related to generalization bounds
in numerous contexts. For instance, Bartlett et al. (2017) and Neyshabur et al. (2017) demonstrated
that generalization bounds can be expressed in terms of the product of layer spectral norms rather
than parameter count. The Lipschitz constant is upwardly bounded by the product of layer-wise
spectral norms. Therefore, smaller Lipschitz constants should enhance generalizability in deep nets
according to Neyshabur et al. (2017) and Bartlett et al. (2017), provided we control for both margins
and structural capacity.

However, even with preserved margins, the relationship between I(M ;D) and generalization remains
nuanced, as the theoretical frameworks of Bartlett et al. (2017) and Neyshabur et al. (2017) do not
consider the following: increasing I(M ;D) could harm generalization if our masks overfit to noise
rather than capturing meaningful structure. This concern aligns with the line of work initiated by Xu
and Raginsky (2017), which demonstrated that generalization error can be bounded by the MI between
the final hypothesis h and data generating processes D. Given that our mask M can be recovered
from our final weights W , it is possible to relate these two quantities via a data processing inequality
I(W ;D) ≥ I(M ;D). However, this bound is vacuous as the final weights can carry vastly more
entropy than the masks. This creates an apparent tension: while Kumar et al.’s framework suggests
higher I(M ;D) enables smoother interpolation, Xu and Raginsky (2017) warn that excessive I(h;D)
indicates memorization of training data specifics. We believe MIPP resolves this tension due to the
constraints of structural pruning. While the masks increase I(M ;D) to capture meaningful patterns,
they also reduce the effective capacity of the network, preventing the growth of I(W ;D) that would
lead to overfitting.

K TRAINING TIMES ACROSS HETEROGENEOUS GPU RESOURCES

Training durations for the evaluated models varied considerably due to the heterogeneous GPU
configurations within the HPC cluster, which included nodes equipped with GPUs ranging from
NVIDIA P100 (16 GB, Pascal) to A100 (80 GB, Ampere). For the following datasets, the observed
wall-clock time per epoch spanned the following ranges:

• MNIST (28×28): LeNet-5: ~10–60 seconds per epoch.
3Note that the results in Figure 2 b) are computed on toy models, as obtaining unbiased estimates of I(M ;D)

for larger networks would require generating prohibitively large numbers of pruning masks.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

• CIFAR-10 (32×32):
– VGG11: ~2–5 minutes per epoch
– ResNet20: ~1.5–4 minutes per epoch
– ResNet56: ~3–6 minutes per epoch
– ResNet18: ~4–8 minutes per epoch
– ResNet34: ~5–10 minutes per epoch

• CIFAR-100 (32×32):
– ResNet50: ~6–18 minutes per epoch
– VGG16: ~8–14 minutes per epoch
– VGG19: ~9–16 minutes per epoch

• Tiny ImageNet (64×64):
– ResNet20: ~4–12 minutes per epoch

These variations reflect both the computational complexity of the models and the diversity of GPU
hardware used during training.

23

	Introduction
	Related Work
	Mutual Information Preserving Pruning at a Glance
	Theoretical Motivation
	MIPP
	Preliminaries
	Transfer Entropy Redundancy Criterion with MI Ordering
	Mutual Information Estimation

	Preserving the Mutual Information Between Adjacent Layers in Practice
	Preserving the Mutual Information from Outputs to Inputs

	Evaluation
	Models, datasets and baselines
	LeNet5 on varieties of MNIST
	Other Models on CIFAR10/100 and TinyImageNet

	Conclusion
	Notation
	Algorithms
	Proof of Theorem 1
	Proof of Theorem 2
	ResNet Structure
	Further Experimental Settings
	I(D;M) vs Top-1 Acc
	What PaI methods maximize I(D;M)?
	Data Augmentation Techniques
	Hyperparameters
	Vision Training and Re-training
	Pruning

	Further Experiments
	Feature Selection Experiments
	Layer Wise Pruning Ratios Established Using Other Methods

	Computational Complexity Analysis
	Theoretical Complexity
	Empirical Performance

	Discussion of Results in Saxe et al. (2019)
	How does I(M; D) relate to generalization?
	Training Times Across Heterogeneous GPU Resources

