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ABSTRACT

Pruning has emerged as one of the primary approaches used to limit the resource
requirements of large neural networks (NNs). Since the proposal of the lottery ticket
hypothesis, researchers have focused either on pruning at initialization or after
training. However, recent theoretical findings have shown that the sample efficiency
of robust pruned models is proportional to the mutual information (MI) between
the pruning masks and the model’s training datasets, whether at initialization or
after training. In this paper, we introduce Mutual Information Preserving Pruning
(MIPP), a structured activation-based pruning technique applicable before or after
training. The core principle of MIPP is to select nodes in a way that conserves
MI shared between the activations of adjacent layers, and consequently between
the data and masks. Approaching the pruning problem in this manner means we
can prove that there exists a function that can map the pruned upstream layer’s
activations to the downstream layer’s, implying re-trainability. We demonstrate
that MIPP consistently outperforms baselines, regardless of whether pruning is
performed before or after training.

1 INTRODUCTION
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Figure 1: We introduce MIPP via an illustration. MIPP
is a pruning method that acts to preserve the mutual
information (MI) between the activations in adjacent
layers. In turn, this leads to a pruned network repre-
sentation whose nodes and mask effectively capture the
information contained in the data.

It is well-established that to limit a model’s
resource requirements while maintaining
its performance, it is preferable to prune
and re-train a large model of high accu-
racy rather than train a smaller model from
scratch (LeCun et al., 1989; 1998; Li et al.,
2017; Han et al., 2015). The lottery ticket
hypothesis demonstrated that this was due
to the existence of performant dense sub-
networks embedded in overparameterized
models at initialization Frankle and Carbin
(2019). This discovery motivated a new
body of research on pruning at initial-
ization (PaI), such as SNIP (Lee et al.,
2019), GraSP (Wang et al., 2022), Syn-
Flow (Tanaka et al., 2020), and ProsPr (Al-
izadeh et al., 2022) to name a few. Sub-
networks identified using these methods
perform worse than those obtained through
pruning after training (PaT), even when using straightforward approaches like iterative magnitude
pruning (IMP) Frankle et al. (2021). Kumar et al. (2024)’s PAC-learnability result provided an
information-theoretic justification for this, demonstrating that the sample efficiency of a pruned
learning algorithm is proportional to the effective parameter count, which can be calculated by
summing the number of unmasked parameters and the mutual information (MI) shared between
the pruning mask and training data. Kumar et al. (2024) argues that to maximize the MI term, it
is essential that training occurs, leading to the poor performance of the state-of-the-art (SOTA) PaI
methods.
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Figure 2: a) Graphical representation of how MI between the mask and the data affects the accuracy
of a small convolution-based and standard NN: we observe that by maximizing MI, the classification
accuracy increases. The experiments are based on synthetic data; for full details refer to Appendix
F.1. b) A study examining how pruning masks, created using various PaI methods and applied to
a small synthetic network, affect the values of I(D;M). For full details about these experiments,
please refer to Appendix F.2. c) Comparison of MIPP’s average accuracy across different sparsity
ratios to the best-performing baseline for each model-dataset combination. MIPP outperforms the
best of the rest significantly, as at high sparsities, they are all much more prone to layer collapse. PaT
baselines: OTO, IMP, SOSP-H, ThiNet. PaI baselines: IterSNIP, IterGrasP, ProsPr, SynFlow.

To provide an intuition for this PAC-learnability result by Kumar et al. (2024), Figure 2.a illustrates
the improved accuracy that results from maximizing MI between the pruning mask and the training
data in both a standard neural network (NN) and a convolutional variant. For these experiments,
the data were synthetic and masks derived before training, so MI values were obtained analytically.
Given the result presented in Kumar et al. (2024), supported in part by Figure 2.a, we conclude that
maximizing MI shared between the pruning mask and training data is a sensible objective when
pruning.

As originally argued by Kumar et al. (2024), optimizing this objective is expected to restrict us to
a PaT approach; without training, we have no reason to expect that the weights or pruning masks
will exhibit any correlation with the data. While this certainly holds for data-independent pruning
schemes, such as magnitude PaT or other PaI solutions (like those presented by Tanaka et al. (2020);
Patil and Dovrolis (2021); Pham et al. (2024)), it may not be universally true. For example, consider
taking an activation-based approach. The activations at each layer of a NN are a function of the
activations preceding them, or of the input data. If the NN is sufficiently expressive, these activations
should contain all the information in the data, whether training has occurred or not. Therefore, if we
can define a mask that preserves all the information in the activations, it should transfer to the data
and maximize our objective, even at initialization.

Consequently, we introduce Mutual Information Preserving Pruning (MIPP), a structured activation-
based pruning technique applicable before or after training. MIPP ensures that MI shared between
activations in adjacent layers is preserved during pruning (please refer to Figure 11.). Rather than
ranking nodes and selecting the top-k, MIPP uses the transfer entropy redundancy criterion (TERC)
(Westphal et al., 2024) to dynamically prune nodes whose activations do not transfer entropy to the
downstream layer. We will show that pruning in this manner ensures the existence of a function
that can re-construct the downstream layer from the pruned upstream layer. Moreover, we will
demonstrate that MIPP establishes pruning masks whose MI with the training data has a maximal
upper bound. This is because MIPP dynamically evaluates and removes redundant nodes in a manner
dependent on those currently maintained in the network representation, a feature that is unachievable
using static ranking-based pruning methods. To illustrate this visually, in Figure 2.b we show that
only MIPP can derive useful pruning masks for a synthetic NN characterized by nodes sharing
redundant information. Finally, we demonstrate MIPP’s utility beyond theoretical justification by
presenting improved pruning results in both post- and pre-training domains, as shown in Figure 2.c.
To summarize, the contributions of this work are as follows:

• We develop MIPP, a structured activation-based pruning method that preserves MI between
the activations of adjacent layers in a deep NN.

1Saxe et al. (2019) demonstrated that the MI relating inputs and activations becomes infinite, for a more
detailed discussion of this and its relation to our work, refer to Appendix I
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• We prove that perfect MI preservation ensures the existence of a function, discoverable by
gradient descent, which can approximate the activations of the downstream layer from the
activations of the preceding pruned layer. Consequently, MIPP implies re-trainability.

• We prove that pruning using MIPP leads to a maximum upper bound on MI between the
data distribution and the mask distribution (as defined in Kumar et al. (2024)).

• Through comprehensive experimental evaluation2, we demonstrate that MIPP can effectively
prune networks, whether they are trained or not.

2 RELATED WORK

Pruning after training. Traditional structured pruning methods employ metrics such as weight
magnitude (Han et al., 2015; Li et al., 2017; Wang and Fu, 2023), weight gradient (LeCun et al.,
1998; Molchanov et al., 2017), Hessian matrices (Hassibi and Stork, 1992; Peng et al., 2019; Wang
et al., 2019; Nonnenmacher et al., 2022), and combinations thereof, to rank and then remove nodes up
to a defined pruning ratio (PR). Although these methods were originally designed to be applied at the
level of individual weights, they can be adapted for structured cases through non-lossy functions, such
as L1-normalization Wang and Fu (2023). This can be carried out in either a global or local manner,
the former involves ranking all the nodes in a network (Liu et al., 2017; Wang et al., 2019), while
the latter is only applied to individual layers (Zhao et al., 2019; Sung et al., 2024). Global methods
have been effective in determining layer-wise pruning ratios (Blalock et al., 2020). However, at high
PRs, they experience layer-collapse, an undesirable final result in which an entire layer is pruned and
an untrainable network is produced Tanaka et al. (2020). Traditional methods, including magnitude,
gradient, and Hessian-based approaches, continue to represent the SOTA due to recent methodological
refinements. Modern variations of such techniques are iterative, meaning that the model is trained,
some fraction of the weights - lower than the final PR - are removed according to the methods
described, and then the model is retrained and the process is repeated until the PR is reached Frankle
and Carbin (2019); You et al. (2020). These methods are known to lead to highly performant models,
while also being resistant to layer collapse. However, they are computationally expensive because
they require multiple retraining sessions. In response, methods such as SOSP-H have been proposed
Nonnenmacher et al. (2022). SOSP-H ranks and removes nodes in a traditional way, except for the fact
that the metric employed is the Hessian Hassibi and Stork (1992). The Hessian is recognized as the
most computationally expensive yet best-performing metric Molchanov et al. (2019). By employing
a second-order approximation, its benefits can be leveraged in a computationally efficient manner.
While MIPP acts globally, aligning with the methods discussed thus far, it is also activation-based,
diverging from these competing techniques. ThiNet Luo et al. (2017) most closely resembles MIPP
in terms of methodology, although it is known that it is unable to establish layer-wise PRs, which
ensures an inability to conduct any neural architecture search Patil and Dovrolis (2021).

Pruning at initialization. In contrast to pruning after training, pruning at initialization aims to
identify and remove redundant parameters before the training process begins, thereby reducing
computational overhead from the outset. Early approaches, such as SNIP Lee et al. (2019) and GraSP
Wang et al. (2022), leverage sensitivity metrics based on gradients to determine which weights can
be safely pruned. Nevertheless, when applied globally, such methods suffer from layer collapse. In
response, Tanaka et al. (2020) developed an iterative method of PaI, which mirrors that described in
the previous paragraph but without re-training. This reduced layer-collapse occurrence, and improved
the performance when PaI. However, recent results have suggested that the performance of such
methods is not due to the selected nodes, but rather the per-layer PRs. As demonstrated by Frankle
et al. (2021) and Su et al. (2021), the performance of models established using SNIP, GraSP, and
SynFlow is robust to the weight shuffling within layers. Nevertheless, this phenomenon was not
repeated at ultra-high sparsity. Pham et al. (2024) argued that this was evidence that, when one aims
to PaI, their objective should be to preserve the number of effective paths, as achieved in PHEW
and NpB Patil and Dovrolis (2021); Pham et al. (2024). These methods outperformed SNIP despite
being data-independent. Nevertheless, they failed to attain results comparable to PaT, unlike ProsPr
Alizadeh et al. (2022).

2The code is available at the following URL: [the entire codebase of MIPP will be made available upon
publication].
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3 MUTUAL INFORMATION PRESERVING PRUNING AT A GLANCE

In this section, we introduce the required notation before a formal definition of MIPP. The function
describing a layer l in an NN can be written as follows: fl(xn

l ) = xm
l+1 = a(Wm×n

l xn
l + bml ). In

the above, a is an activation function, Wm×n
l is a weight matrix, bml the bias, and xn

l is the input to
that layer (LeCun et al., 1998; Goodfellow et al., 2016).

Structured pruning is the process of discovering per-layer binary vector masks (mn
l ) that zero out

weight matrix elements corresponding to a node or filter index. We will denote a pruned layer
with a prime symbol (′) (Fahlman and Lebiere, 1990). The set of all masks associated with a
network is given by M0, while the function associated with a pruned layer can be written as:
f ′
l (x

n
l ) = x′m

l+1 = a(Wm×n
l xn

l m
n
l + bml ). By randomly sampling from the space of possible inputs

and applying the function described by the NN, we form not only the inputs as random variables
(RVs), but also all subsequent activations. We define Xi

l as the RV associated with the activations of
node i in layer l. Meanwhile, the set Xl = {X0

l , X
1
l . . . X

n
l } contains a RV for all of the N neurons

in layer l. We use X0 to indicate the input. If a pruning mask is multiplied with the weights, the
activations associated with pruned nodes are set to zero, which can otherwise be seen as information
theoretically null. We denote the set associated with a pruned layer as X ′

l . If multiple pruning runs
are performed with different datasets, multiple pruning masks will be created. In this case, both our
pruning mask and our data distribution can be viewed as RVs, M0 becoming M, while X0 becomes
D. For a full table of notation please refer to Appendix A.

MIPP is founded on the idea that maximizing MI between realizations of the pruning mask and
the data distribution, denoted as I(D;M), ensures effective pruning with minimal performance
loss. To achieve this, MIPP preserves MI between adjacent layers throughout a network. More
specifically, we aim to isolate masks mn

l , which combine with the weights to produce updated layers
with some of the activations equal to zero. These null activations should not cause a reduction in
the MI between the activations of adjacent layers. More formally, this can be expressed as follows:
M0 = {mn

l ∀l ∈ [1, L] : I(X ′
l−1;Xl) = I(Xl−1;Xl)}.

4 THEORETICAL MOTIVATION

We now motivate MIPP theoretically. As stated, we aim to design a method that preserves MI between
activations such that I(X ′

l−1;Xl) = I(Xl−1;Xl). In this section, we point out two advantages of
doing this. Pruning in this manner not only ensures re-trainability, but it also leads to an optimal
upper bound on the value of MI between the data-distribution and the masks I(D;M) (as defined in
Kumar et al. (2024)).

Re-trainability. We consider one-shot pruning with (re)-training: the objective remove nodes such
that, after retraining, the pruned NN will achieve the same performance as the original. We argue that
one way to achieve this would be to select a subset of nodes from each layer so that there exists a
function, which, when applied to this subset, can still reconstruct the activations of the subsequent
layer. We will then prove that the existence of this function preserves MI between the activations of
these layers.

To illustrate this, we guide the reader through the following example. Consider the case in which
we generate the expected outputs of our NN from the activations of the last layer. More formally,
we write XL = fL−1(XL−1). We now wish to prune the activations preceding the outputs. This
entails minimizing the number of nodes or the cardinality of the set X ′

L−1 in such a manner that there
exists a function that can reliably re-form XL. Furthermore, this function should be discoverable
by gradient ascent. More formally, we would like to derive X ′

L−1 such that XL = supg∈F g(X ′
L−1).

While this formulation reveals little in the way of a potential pruning operation, using the following
theorem, we relate it to the MI-based objective: I(X ′

l−1;Xl) = I(Xl−1;Xl).

Theorem 1: There exists a function g such that the activations of the subsequent layer can be
re-formed from the pruned layer iff MI between these two layers is not affected by pruning. More
formally: XL = supg∈F g(X ′

L−1) ⇔ I(X ′
L−1;XL) = I(XL−1;XL).

Proof. See Appendix C.
Consequently, in this work we aim to select a set of masks (M0) that increase sparsity while
preserving MI between layers. This ensures that, for each pruned layer, there exists a function,
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discoverable by gradient descent, that effectively reconstructs the activations of the subsequent layer
using those of the pruned layer. In other words, MIPP ensures re-trainability. We note that other
methods demonstrate their ability to preserve retrainability through empirical results only Wang and
Fu (2023).

Maximizing I(D;M). As discussed in the introduction, a sensible pruning objective is to maximize
I(D;M). Westphal et al. (2024) proved that TERC, the method we use to preserve MI between
layers, does so via the derivation of a bijective function. This implies that the activations of the
upstream pruned layer X ′

l−1 can be used to produce the downstream layer Xl and vice versa. In this
section, we present theoretical results showing that the existence of such a bijective function allows
the derivation of a maximum upper bound on the achievable MI between the masks and datasets
I(D;M).

Theorem 2: If a pruning method preserves MI between layers activations then the upper bound on
I(D;M) reaches its maximum. More formally: I(X ′

l−1;Xl) = I(Xl−1;Xl) ⇔ I(D;M) ≤ H(D).

Proof. See Appendix D.
As a result, when using MIPP there is a greater upper-bound on the value of I(D;M), which has
been shown to be related to the models’ accuracy and sample efficiency. However, how this quantity
explicitly relates to generalization is more nuanced and is discussed in Appendix J.

5 MIPP

5.1 PRELIMINARIES

5.1.1 TRANSFER ENTROPY REDUNDANCY CRITERION WITH MI ORDERING

Before describing the method, we now provide a summary of TERC and its application to pruning,
through the incorporation of an additional step for MI-based ordering.

Node Pruning using TERC. MIPP uses the transfer entropy redundancy criterion (TERC) (Westphal
et al., 2024) to dynamically prune nodes whose activations do not transfer entropy to the downstream
layer. As discussed in Section 3, we aim to preserve MI between the layers in our network. The
problem of MI preservation is one well-studied in the feature selection community (Battiti, 1994;
Peng et al., 2005; Gao et al., 2016). We chose TERC, as not only does it preserve MI with the target
via a bijective function, but its temporal complexity is also linear in time with respect to the number
of features (Westphal et al., 2024), a key property when working in highly dimensional feature spaces.
In our case, rather than selecting features to describe a target, we are selecting nodes that transfer
entropy to the following layer. Within this context, TERC can be summarized as follows: to begin, all
nodes in the layer are assumed to be useful (and added to the non-pruned set). We then sequentially
evaluate whether the reduction in uncertainty of the subsequent layer’s activations is greater when a
specific node is included in the unpruned set rather than excluded. More formally, for a node Xi

l to be
added the set of pruned nodes, it must satisfy the following condition I(Xl−1;Xl) = I(Xl−1\Xi

l ;Xl).
Otherwise, it is maintained in the network structure. This process is sequentially repeated for all
nodes in the layer. As shown in Westphal et al. (2024), this simple technique will preserve MI
between layers.

MI Ordering. Before applying TERC, we sort the nodes in the pruning layer in descending order of
MI with the target (see Algorithm 2 in Appendix B). This step is motivated by Theorem 3 in Westphal
et al. (2024). In particular, they prove that TERC alone selects unnecessary variables if there exists
perfectly redundant variable subsets of different cardinalities. Ordering partly addresses this problem.

5.1.2 MUTUAL INFORMATION ESTIMATION

Unless restricting oneself to scenarios inapplicable to real-world data (e.g. discrete RVs), verifying
the condition in Section 5.1.1 is computationally intractable. Consequently, we must approximate
the condition using MI estimates, for which many methods have been developed (Moon et al., 1995;
Paninski, 2003; Belghazi et al., 2018; van den Oord et al., 2019; Poole et al., 2019).

For the purposes of pruning, our MI estimates need to only be considered for comparison. Rather than
using a method that is able to provide highly accurate estimates slowly (Franzese et al., 2024), we
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require one that emphasizes speed and consistent results. For these reasons, we adopt the technique
presented in Covert et al. (2020), in which the authors demonstrate that MI between two random
processes (X and Y ) can be approximated as the reduction in error estimation caused by using X
to predict Y . More formally: I(X;Y ) ≈ E[l(f∅(∅), Y )] − E[l(fX(X), Y )], where each f is some
function approximated via loss l. If the target is discrete, and a cross entropy loss is used, then this
value is exactly equal to the ground truth MI (Gadgil et al., 2024). Even if the variables are continuous
and a mean squared error loss is used, the above value approaches MI under certain circumstances.

5.2 PRESERVING THE MUTUAL INFORMATION BETWEEN ADJACENT LAYERS IN PRACTICE

In this section, we discuss how to use TERC to preserve MI between a pair of adjacent layers. As
discussed, TERC with MI ordering dictates that, to remove a node, the following should be satisfied:
I(XL−1\Xi

L−1;XL) = I(XL−1;XL). In Section 5.1.2, we described the method we used to estimate
MI. By combining these representations, we can update the condition we wish to approximate as
follows:

I(Xl−1;Xl) = I(Xl−1\Xi
l−1;Xl) (original condition as in TERC),

E[l(fl−1(Xl−1),Xl)] ≥ E[l(hl−1(Xl−1 \Xi
l−1),Xl)] (updated condition).

(1)

Equation 1 represents the simplification possible when I(X;Y ) ≈ E[l(f(∅), Y )] − E[l(f(X), Y )]
is substituted into I(Xl−1;Xl) = I(Xl−1\Xi

l−1;Xl). Our condition characterizes the case where
node Xi

l−1 transfers no entropy to the following layer. The monotonicity of MI enforces that we
have the equality seen in line one of Equation 1. When approximating this condition, as shown
in the second line of Equation 1, we can no longer guarantee monotonicity. Therefore, we relax
the equality to the inequality as indicated. Overall, our condition becomes a simple comparison of
two losses quantifying two functions’ ability to reconstruct the downstream layer. The definition of
MI as presented in Covert et al. (2020) is applicable for any fl−1 or hl−1 discovered using function
approximation. However, we need not fit a new function as we already posses fl−1 exactly in the
form of layer l in our network. hl−1 is that same function but re-trained to predict the downstream
layer’s activations with node Xi

l masked in its input. If E[l(hl−1(Xl−1 \Xi
l−1),Xl)] is equal to or

drops below E[l(fl−1(Xl−1),Xl)] our condition is satisfied and we can remove the node Xi
l−1.

Given the above condition, we now describe TERC with MI ordering: initially, we order the nodes in
descending order of the loss achieved when using just this variable as input to predict the downstream
layer fl(Xi

l ). We now sequentially traverse the nodes in this order, similarly to Gadgil et al. (2024),
masking them and re-training our layer (to find hl(Xl\Xi

l )) to determine whether the loss function
drops back below its original value E[l(fl−1(Xl−1),Xl)] ≥ E[l(hl−1(Xl \ Xi

l−1),Xl)]. If it fails
to recover, this implies that, without the activations of this node, we are unable to reconstruct the
activations of the downstream layer. In this case, the variable is considered informative and should be
retained in the network and in the set X ′

l−1. Otherwise, the node is removed. Once a node has been
evaluated, the layer can be updated with the new trained function (hl−1).

We have explained how MIPP is a structured pruning method that retains nodes whose activations
transfer entropy to the next layer. The number of nodes maintained in the network is therefore
dynamically dependent on those already selected, making us unable to set a pruning ratio in the
traditional sense Hassibi and Stork (1992); Nonnenmacher et al. (2022). However, we wish to study
MIPP at different degrees of sparsity. Consequently, we now briefly explain how we affect the pruning
ratio discovered using MIPP. From the condition above, it is clear that for a node to be removed from
the network, the loss must fall below the level achieved using all the activations, E[l(fl−1(Xl−1),Xl)].
To adjust the pruning ratio, we update this threshold by allowing it to take values that are regularly
spaced within the range [E[l(fl−1(Xl−1),Xl)],E[l(fl−1(∅),Xl)]]. If we are close to E[l(fl−1(∅),Xl)],
the condition for removing nodes is easily satisfied, and the sparsity ratio is high.

5.3 PRESERVING THE MUTUAL INFORMATION FROM OUTPUTS TO INPUTS

Until now, we have focused on the use of TERC with MI ordering to preserve MI between the
activations of adjacent layers. This process is repeated for each pair of layers. To prune the entire
model, by preserving MI between pairs of layers, one could start from the input layer and move to
the output layer or vice versa. In this section, like Luo et al. (2017), we argue for the latter option.
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Figure 3: Top. Deforming MNIST for increased image complexity. These transformations were
applied randomly with equal probability and then kept consistent during training, pruning, and
re-training. Bottom. Changes in pruning ability of MIPP caused by image deformation.
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Figure 4: Comaprison of MIPP’s ability to prune versus baselines both at initialization and after
training. For clarity, we set an accuracy range to avoid viewing data points in which layer collapse
has occurred.
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Figure 5: The percentage of runs that led to untrainable layer collapse. Specifically, we bin runs by
the percentage of neurons removed, where one bin contains all the runs within a 5% increment. We
then calculate the percentage of these runs that lead to layer collapse.
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Figure 6: These experiments demonstrate the per-layer PR selected by MIPP. For the different
layer-wise PRs we divide them by the average of all the layers in order to normalize.

Because each layer in a neural network is an injective function of its predecessor, these pairs share
perfect mutual information (MI), where I(Xl−1;Xl) = H(Xl), meaning network layers’ activations
can only reduce in entropy from inputs to outputs. In fact, when pruning from inputs to outputs, the
first layer (X1) is pruned to reconstruct the second layer (X2), but since the second layer has not been
pruned yet, it may retain irrelevant information that gets maintained in the first layer during pruning.
Conversely, pruning from outputs to inputs begins with layer XL−1, where the pruned version
X ′

L−1 preserves only information needed to reconstruct outputs. When pruning subsequent layers
backwards, each layer only retains entropy required for the already-reduced next layer, ultimately
ensuring the first layer retains only output-relevant information. More practically, this backward
approach evaluates I(X ′

l−1;X ′
l ) = I(Xl−1;X ′

l ) rather than I(X ′
l−1;Xl) = I(Xl−1;Xl), which is a

function of pruned layers’ activations, mitigating the curse of dimensionality. Algorithm 1 formally
describes MIPP’s steps. In Appendix G.1, we also explain how MIPP can be used for feature selection.

6 EVALUATION

In this section, we discuss the evaluation of MIPP, starting with the experimental settings and the
datasets used. We selected MNIST, CIFAR-10, CIFAR-100, and TinyImageNet for their benchmark
status enabling a comprehensive evaluation of MIPP while ensuring comparability across prior work
(LeCun et al., 1989; Krizhevsky, 2009; University, 2015).

6.1 MODELS, DATASETS AND BASELINES

We begin by applying our method to the simple LeNet5 architecture detecting variations of the MNIST
dataset (LeCun et al., 1998). We then assess its ability to prune ResNet20, ResNet56, ResNet18,
ResNet34, and VGG11 on the CIFAR10 dataset (He et al., 2016; Simonyan and Zisserman, 2015).
Before then investigating ResNet50, VGG16, and VGG19 models networks trained on CIFAR100
(Krizhevsky, 2009). Finally, we also investigate a ResNet20 trained on TinyImageNet (University,
2015). When using MIPP to PaI, we compare to SynFlow (Tanaka et al., 2020), IterGraSP (Wang
et al., 2022), IterSNIP (all 100 iterations) and ProsPr. Meanwhile, when using MIPP to PaT we
compare to IMP Frankle and Carbin (2019), OTO You et al. (2020), ThiNet (Luo et al., 2017) and
SOSP-H (Nonnenmacher et al., 2022). GraSP, SynFlow and SNIP are unstructured; to make them
structured, we apply L1-normalization to all the weights associated with a node. MIPP selects nodes
based on whether their activations transfer entropy to those of the subsequent layer. This approach
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inherently establishes a unique PR for each run, which we adopt as the global PR for our baseline
methods. ThiNet cannot determine layer-wise PR; so we apply a uniform PR across all layers.

6.2 LENET5 ON VARIETIES OF MNIST

In this section, we begin by analyzing how increasing the complexity of the MNIST dataset impacts
MIPP’s performance. We then evaluate how MIPP compares to baseline methods when applied to a
LeNet-5 architecture on MNIST.

Empirical evidence indicates that the utility of PaI may be limited to simple datasets (Frankle and
Carbin, 2019; Frankle et al., 2021). We provide an information-theoretic argument with empirical
evidence to explain this phenomenon. MIPP, and other effective PaI schemes, preserve and compress
the information encoded in network activations. In untrained networks, these activations reflect the
entirety of the information present in the input data. If these inputs are characterized by information
relevant to the classification task, MIPP (and PaI more generally) remains applicable. For instance, in
the MNIST dataset, the informative pixels assist the classification task, while the remaining pixels,
on the outskirts of the image, are constantly black and contain no information. In such cases, our
method selectively preserves the neurons whose activations correspond to informative pixels. On the
other hand, the converse is also true; our method is inapplicable to models whose input data contains
information not relevant for the classification task. Consequently, if the input data is complex, MIPP
will preserve highly entropic activations over those that are useful for the downstream task, which can
impede MIPP’s PaI capabilities. To demonstrate this effect, in Figure 3 we present experiments that
investigate the effects of deforming MNIST. We deliberately distort MNIST images, preserving the
identifiability of the original digits (Figure 3) while making the formerly black pixels more entropic.
In alignment with our hypothesis, we observe a reduction in our ability to prune an untrained network
but not a trained network when the dataset complexity is increased.

Figure 4 demonstrates that MIPP performs at least as well as the baselines, regardless of whether PaI
or PaT. Additionally, Figure 5 shows that our method exhibits greater resistance to layer collapse.

6.3 OTHER MODELS ON CIFAR10/100 AND TINYIMAGENET

In Figure 4, it is clear that MIPP performs at least as well as baselines, whether PaI or PaT, on most
models when CIFAR10, CIFAR100, or TinyImageNet are acting as input. When PaI ResNet18 and
ResNet34 at high sparsities MIPP outperforms baselines by over 15%. However, our method is more
computationally demanding than PaI competitors, as shown in Appendix H. We observe similarly
impressive results when pruning a VGG19 trained on CIFAR100. These results demonstrate that
certain global pruning objectives can be used to PaI or PaT. In Figure 5 it is clear that MIPP is
consistently the most resistant to layer collapse for all model dataset combinations.

In Figure 6, we observe that MIPP selects highly regularized layer-wise PRs depending on the
network structure, particularly under PaI. Notably, for both ResNet34 and 50 MIPP exhibits both
inter-block and intra-block patterns. This can be explained by these networks respective structures
as shown in Appendix E. This is significant because recent works Pham et al. (2024); Frankle and
Carbin (2019) suggest that discovering optimal layer-wise PRs is the sole aspect of PaI that improves
performance. In contrast, baseline methods exhibit critical limitations: ProsPr and Grasp tend to
induce layer collapse predominantly in the deeper layers, contrasting with other PaI methods which
may exhibit collapse in either the initial or final layers. In comparison, PaT baselines generally yield
stable layer-wise PR selections. For detailed comparisons, see Appendix G.2.

7 CONCLUSION

In this paper, we have introduced MIPP, an activation-based pruning method that can be applied both
before and after training. The core principle of MIPP is to remove neurons or filters from layers if
they do not transfer entropy to the subsequent layer. Consequently, MIPP preserves MI between
the activations of adjacent layers and, therefore, between the data and masks. We have presented a
comprehensive performance evaluation of MIPP considering a variety of datasets and models. Our
experimental evaluation has demonstrated the effectiveness of MIPP in pruning trained and untrained
models of increasing complexity.
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A NOTATION

Table 1: Summary of Notational Conventions.

Type Notation
Loss function l
The function describing layer l fl
The function describing layer l once masked and re-trained hl
A vector of activations associated with layer l xn

l
RV describing the activations of node i in layer l Xi

l
Set of RVs describing all activations in layer l (one realization being xn

l ) Xl

Image vector xn
0

Set of pixel RVs describing input data (one realization would be an image xn
0 ) X0

RV describing different datasets (one realization would be an dataset such as MNIST or X0) D
The mask vector used for layer l mn

l
The set of masks established for all layers in a model M0

The RV describing the different masks established for different data (one realization: M0) M
Set of RVs describing pruned activations in layer l X ′

l
RV describing different pruned activations in layer l occurring due to different datasets (realization:X ′

l ) D′
l

Weight matrix Wm×n

Bias vector bm

Activation function a

B ALGORITHMS

In this section, we present not only the overall MIPP algorithm but also TERC with MI ordering
algorithm, which maintains MI between adjacent layers in a network.

Algorithm 1 MIPP.
Input: Activations of all layers: Xl. Output: M0 (a desirable set of node
masks).

1: Initialize empty set of masks: M0 = ∅.
2: for l ∈ [1, L] do
3: X ′

l−1 = Algorithm 2(Xl−1,Xl)
4: for i ∈ [0, n] do

5: mn
l−1(i) =

{
1 if Xi

l−1 ∈ X ′
l−1,

0 otherwise.
6: end for
7: M0 = M0 ∪mn

l−1
8: end for
9: return M0

C PROOF OF THEOREM 1

In this section, we prove Theorem 1. We assume, through the injection of some randomness, that our
values of I(X ′

L−1;XL) are not infinite, for a more detailed discussion of this please refer to Appendix
I. To begin, we remind the reader that we aim to preserve MI between layers such that:

I(X ′
L−1;XL) = I(XL−1;XL), (2)

which, given the relationship I(X;Y ) = supf
(
E[f(X | Y ]− logE[ef(X)]

)
, becomes:

sup
g

(
E[g(XL−1) | XL]− logE[eg(XL−1)]

)
=sup

f

(
E[f(X ′

L−1) | XL]− logE[ef(X
′
L−1)]

)
. (3)
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Algorithm 2 TERC with MI ordering.
Input: Activations of layers L and L − 1: XL and XL−1. Output: X ′

L−1 (a desirable subset of
nodes).

1: Initialize X ′
L−1 = sortdesc

(
XL−1, I(X

i
L−1;XL)

)
2: for Xi

L−1 ∈ XL−1 do
3: if I(X ′

L−1\Xi
L−1;XL) = I(XL−1;XL) then

4: X ′
L−1 = X ′

L−1\Xi
L−1

5: end if
6: end for
7: return X ′

L−1

However, we know that there exists a function g such that g(XL−1) = XL. Therefore, we can rewrite
the above such that:

(
E[XL | XL]− logE[eXL ]

)
=sup

f

(
E[f(X ′

L−1) | XL]− logE[ef(X
′
L−1)]

)
,

XL − logE[eXL ] = sup
f

(
E[f(X ′

L−1) | XL]− logE[ef(X
′
L−1)]

)
.

(4)

The only circumstances under which Equation 3 holds is if f(X ′
L−1) = XL, thereby proving Theorem

1.

D PROOF OF THEOREM 2

In this section, we prove Theorem 2. To begin, we present axioms that will be used throughout the
proof.

• Firstly, we apply TERC to bijectively preserve MI between activations in layers such that
I(X ′

l−1;Xl) = I(Xl−1;Xl). Given that Xl = f(Xl−1), this implies that from the pruned
upstream layer we should be able to perfectly reconstruct the original layer I(Xl;X ′

l−1) =
H(Xl−1) Westphal et al. (2024).

• With probability one can we recover the mask if we have access to the masked activations
p(m|X ′

l−1) = 1.

• With probability one can we recover the masked activations if we have access to the full
activations p(X ′

l−1|Xl−1) = 1.

• We assume that all the information in the data is discrete (to overcome the problem described
in Saxe et al. (2019) and included in the first layer of the activations I(X0;X1) = H(X0).
Finally, for this proof, we also assume a network with one set of activations to prune.

To begin, we remind the reader that D is a distribution from which we sample input data. Therefore,
an instance of D can be written as the input data to our NN, written X0. Meanwhile, M is a RV
whose realizations are the sets of masks derived using a pruning method, denoted M0. We use these
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observations to complete the proof.

I(D;M) =
∑

X0∈D,M0∈M
p(X0,M0) log

(
p(X0,M0)

p(X0) p(M0)

)
(5)

(substituting in p(X1|X0,M0) = 1 we obtain)

=
∑

X0∈D,M0∈M
p(X0,M0) log

(
p(X0,M0,X1)

p(X0) p(M0)

)
(6)

(substituting in p(X ′
1|X0,M0,X1) = 1 we obtain)

=
∑

X0∈D,M0∈M
p(X0,M0) log

(
p(X0,M0,X1,X ′

1)

p(X0) p(M0)

)
(7)

=
∑

X0∈D,M0∈M
p(X0,M0) log

(
p(M0|X0,X1,X ′

1)p(X0,X1,X ′
1)

p(X0) p(M0)

)
(8)

(because p(M0|X1,X ′
1) = 1 we obtain) (9)

=
∑

X0∈D,M0∈M
p(X0,M0) log

(
p(X0,X1,X ′

1)

p(X0) p(M0)

)
(10)

=
∑

X0∈D,M0∈M
p(X0,M0) log

(
p(X ′

1|X0,X1)p(X0,X1)

p(X0) p(M0)

)
(11)

(because p(X ′
1|X0,X1) = 1 we obtain)

=
∑

X0∈D,M0∈M
p(X0,M0) log

(
p(X0,X1)

p(X0) p(M0)

)
(12)

=
∑

X0∈D,M0∈M
p(X0,M0) log

(
p(X1|X0)p(X0)

p(X0) p(M0)

)
(13)

(because p(X1|X0) = 1 we obtain)

=
∑

X0∈D,M0∈M
p(X0,M0) log

(
1

p(M0)

)
(14)

= H(M). (15)

As previously pointed out, an instance of our masking variable M is a single set of masks M0. It is
clearly possible to derive this mask from X ′

1; therefore, we obtain M0 = f(X ′
1) and H(M) ≤ H(D′

1)
(where D′

1 is the RV from which X ′
1 is sampled).

We can then write:

H(M) ≤ H(D′
1) (16)

≤ −
∑

X ′
1∈D′

1

p(X ′
1) log p(X ′

1) (17)

(because of TERC’s bijective MI preservation we can sub in p(X1|X ′
1) = 1)

≤ −
∑

X ′
1∈D′

1

p(X ′
1,X1) log p(X ′

1,X1) (18)

≤ −
∑

X ′
1∈D′

1

p(X ′
1|X1)p(X1) log p(X ′

1|X1)p(X1) (19)

(by repeating the process above but inserting p(X0|X1) = 1)
≤ H(D). (20)

We have proven that, if pruning using a method that bijectively preserves MI between pruned and
unpruned activations, the upper bound on I(D;M) can be expressed as I(D;M) ≥ H(D).
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Table 2: Comparison of training parameters across datasets.

Dataset MNIST CIFAR10 CIFAR100 TinyImageNet
Solver SGD (0.9, 1e-4) SGD (0.9, 5e-4) SGD (0.9, 5e-4) SGD (0.9, 5e-4)
Batch Size 256 256 256 256
LR 1e-2, [30,60], #90 1e-1, [100,150], #200 1e-1, [100,150], #200 1e-1, [150,200], #250
LR (re-
train)

1e-2, [30], #60 1e-2, [60,90], #120 1e-2, [60,90], #120 1e-2, [100,150], #200

0.4% Pix Rem 7.0% Pix Rem 54.0% Pix Rem 0.6% Pix Rem 5.9% Pix Rem 64.7% Pix Rem

0.9% Pix Rem 18.9% Pix Rem 47.6% Pix Rem 0.6% Pix Rem 11.2% Pix Rem 37.2% Pix Rem

9.1% Pix Rem 20.0% Pix Rem 57.1% Pix Rem 0.6% Pix Rem 9.6% Pix Rem 29.1% Pix Rem

0.7% Pix Rem 15.3% Pix Rem 61.5% Pix Rem 1.3% Pix Rem 13.8% Pix Rem 29.4% Pix Rem

a) Pixels selected - PaT LeNet5 MNIST b) Pixels selected - PaI LeNet5 MNIST

c) Pixels selected - PaT ResNet20 CIFAR10 d) Pixels selected - PaI ResNet20 CIFAR10

e) Pixels selected - PaT ResNet18 CIFAR10 f) Pixels selected - PaI ResNet18 CIFAR10

g) Pixels selected - PaT VGG11 CIFAR10 h) Pixels selected - PaI VGG11 CIFAR10

Selected Pixels

Figure 7: Visual representation of the features selected using MIPP at different sparsities on different
models and datasets (blue implies selected).

E RESNET STRUCTURE

In this section, we present Figure 10, which illustrates the structure of some of the ResNets investi-
gated explaining the per-layer pruning ratios discovered in Figure 9.
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Figure 8: Normalized accuracy of MIPP vs best of the rest when pixel selection occurs.

F FURTHER EXPERIMENTAL SETTINGS

F.1 I(D;M) VS TOP-1 ACC

In this section, we explain the experimental settings for the results achieved in Figure 2 a). In these
simple introductory experiments, we aimed to provide empirical evidence validating the results of
Kumar et al. (2024) in different settings. To achieve this, we used synthetic data to generate a mask
for which we could calculate I(D;M), and then applied this mask to all layers of the network. We
would then train this network (controlling for the initialized weight matrices) and present the final
accuracy seen in the figure.

Data. In this case, to simplify the process of deriving our masks M0, our synthetic data was an
N -dimensional vector of Bernoulli distributions. Of these N Bernoulli distributions, half were
described by ∼ Bernoulli(0.5), while the other half were described by ∼ Bernoulli(0.999999). We
denote this vector as dN . To generate masks with high MI with the data, they should accurately
reflect the patterns in the input data. For instance, if we are generating a set of masks with perfect MI
with the data, and the informative Bernoulli distributions occupy the first 25 positions, then our mask
will have its first 25 positions set to prune. Meanwhile, if the informative Bernoulli distributions
appeared once in every other array element, we may repeat this with the positions we mask. What
matters for perfect MI is that the masks are a perfect function of the distribution vector, represented
as M0 = f(dN ). In our case, this function is simply a 1-to-1 mapping. To reduce MI, we simply
add randomness. For instance, if we aimed to reduce the MI by half, we would have only have half
our masking vector be dependent on the data, while the rest is random. Finally, for these experiments,
the target (i.e., y) is a simple sum of all the inputs.

The output data we were trying to predict was a sum of the inputs.

Models. For our simple feed-forward neural network (NN), we used 50 inputs and 3 hidden
layers, each containing 50 nodes. In contrast, our convolutional neural network (ConvNet) had one
convolutional layer with 1 input channel, 8 output channels, and a kernel size of 3. We then flattened
the output and fed it into a linear network with 384 units.

F.2 WHAT PAI METHODS MAXIMIZE I(D;M)?

In this section, we explain the experimental settings for the results reported in Figure 2 b). The goal
of these experiments is to show that for a simple synthetic network characterized by redundancies,
MIPP establishes masks that have a greater MI with the data. We employed a simple MLP composed
of 10 hidden nodes, with input data that was also a vector of dimension 10, where, similarly to in
Appendix F.1, this vector was made of samples from Bernoulli distributions, half of which were
informative (∼ Bernoulli(0.5)) while the other half (∼ Bernoulli(0.999999)) were not. The network
takes this input vector of zeroes and ones and converts them from a binary value to a decimal one.
In this case, a perfect network will have a weight matrix that has powers of two along the diagonal.
We then use multiple PaI methods to establish pruning masks. To calculate I(D;M), we use the
methods described in Covert et al. (2020) with a small network of two hidden layers with 50 nodes
and BCE loss.
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Figure 9: Layer-wise pruning ratios. Normalized by division of the average PR achieved for that run.

We observe that only MIPP can define pruning masks that are data-dependent. This is due to the
following reasons: firstly, the network performs perfectly and there is no loss, so the derivative-based
metrics are zero; and, secondly, the activations give perfectly redundant information, masking them
would have the exact same effect on the loss (assuming you use a cross entropy loss and not MSE).
Under such conditions, static ranking methods produce results that resemble randomness.
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Figure 10: ResNet34 and ResNet50 structures: the architectural elements of the network explain the
periodicity of the per-layer PRs derived using our method.
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Figure 11: Pruning times across architectures for all experimental runs. Error bars show 95% confi-
dence intervals. MIPP demonstrates competitive timing with other pruning-after-training methods,
particularly for narrower architectures.

F.3 DATA AUGMENTATION TECHNIQUES

For the CIFAR-10 dataset, we applied standard data augmentation techniques, which included random
cropping with padding and random horizontal flipping. These augmentations are commonly used to
enhance model generalization by introducing variations in the training data. In the case of CIFAR-100,
we employed additional augmentation methods beyond the standard techniques. Specifically, we used
mixup (Zhang et al., 2018), which creates virtual training examples by combining pairs of images and
their labels, and cutout (DeVries and Taylor, 2017), which randomly masks out square regions of an
image to simulate occlusion and encourage the network to focus on more distributed features. These
advanced techniques were included to further enhance performance due to the increased complexity
of the CIFAR-100 dataset. For TinyImageNet, we again adopted a standard suite of transforms.
The transformations included RandomResizedCrop with a scale range of 0.8 to 1.0, which crops
and resizes images more variably than standard cropping, alongside random horizontal flipping. To
further diversify the training data, we introduced ColorJitter to perturb brightness, contrast, saturation,
and hue, as well as small random rotations of up to 10 degrees. The images were then normalized
using TinyImageNet-specific statistics. Additionally, we applied RandomErasing (similar to cutout)
with a probability of 0.5 to randomly mask small regions of the image, further encouraging robust
feature learning.
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Figure 12: Pruning times for high-sparsity scenarios ( >92% of neurons removed). MIPP’s relative
performance improves in high-sparsity regimes due to reduced node comparison costs.

F.4 HYPERPARAMETERS

F.4.1 VISION TRAINING AND RE-TRAINING

Table 2 contains a comparison of the training parameters used for the vision training and retraining
across datasets.

F.4.2 PRUNING

As explained in the main paper, our method involves masking features and re-training a layer to check
if the loss decreases below the original level. For the re-training steps once the mask has been applied
we use 100 epochs with 20 batches of activations with early stopping. At the start of our algorithm,
we also rank the features based of their MI. For this calculation, we again use the same layer for 5
epochs with the same 20 activations. We use our method to prune all linear and convolutional layers.
We prune the batch-normalization nodes associated with nodes in linear/convolutional layers, while
skip connections in ResNets remain unaffected. We note that the batch-normalization layer can be
considered as part of the function fl−1 and therefore retrained to form hl−1. Consequently, MIPP
considers batch-normalization layers to greater effect than other pruning methods. For OTO and IMP,
we used 10 iterations with 20 retraining epochs. The learning rates are reported in Table 2.

G FURTHER EXPERIMENTS

G.1 FEATURE SELECTION EXPERIMENTS

In this section, we investigate MIPP’s ability to select features. In particular, we examine the pixels it
identifies from the MNIST and CIFAR10 datasets. MIPP selects features in the exact same manner
it selects nodes, i.e., by verifying whether entropy is transferred from the pixels to the nodes of the
first layer. In order to do this, we extract the first layer and rank the pixels based on their impact on
reconstructing the activations of the next layer, from least to most significant. We then sequentially
evaluate the pixels in this order, testing whether retraining the layer with each pixel masked results in
a loss that is lower than or equal to the loss obtained using all the pixels.

In Figure 7, we observe a clear preference for selecting central pixels over those located at the
periphery, which are generally less informative. In panels (a) and (b) of Figure 7, we present results
that align with previous research on MNIST pixel importance Covert et al. (2020). These studies
have demonstrated that the most informative pixels are typically concentrated in the center of the
images, with a slight bias toward the right side. Additionally, an intuitive selection pattern is evident
in the CIFAR-10 dataset. When pixel selection is performed after training, the selected pixels exhibit
a high degree of uniformity. In contrast, when selection occurs at initialization, regular patterns still
emerge, although the spacing between selected pixels is less consistent.

In Figure 8, we present the average accuracy achieved when we prune models using MIPP and our
baselines. Unlike the experiment reported in the main body of the paper, we have also used MIPP
to select pixels. In both figures, we observe that MIPP outperforms the baselines. This is because,
unlike any of the baselines, the features are selected in a manner that is dependent on the pruned
model. MIPP can compress both features and the underlying model simultaneously such that the
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results are compatible, preventing ML practitioners from having to use different methods for feature
and model compression. Often, combining compressed input and compressed models can lead to
performance degradation.

G.2 LAYER WISE PRUNING RATIOS ESTABLISHED USING OTHER METHODS

In the main paper, we present the per-layer PRs obtained by MIPP. In Figure 6, we present these
results for the other methods taken into consideration.

H COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we analyze the computational complexity and runtime of MIPP, which consists of two
distinct stages: (1) mutual information (MI)-based node ordering and (2) entropy-conserving node
pruning.

H.1 THEORETICAL COMPLEXITY

The first stage involves evaluating nodes in a given layer by sequentially masking all but one node,
performing brief layer-wise retraining, and measuring each node’s contribution to reconstructing
subsequent activations. This MI-ordering phase exhibits a complexity of O(n), where n is the number
of nodes in the layer, as each node requires individual evaluation followed by pairwise comparison.

The second stage consists in removing nodes that do not transfer significant entropy to the next layer.
his phase has an effective complexity of O(k), where k denotes the number of nodes retained after
pruning. Since nodes with minimal impact can be identified without requiring full retraining, the
process remains computationally efficient.

Combining both stages, the per-layer complexity of MIPP is O(nk). For a network of depth d
with comparable layer widths, the total complexity becomes O(d(nk)). This scaling makes MIPP
competitive among pruning-after-training (PaT) methods while remaining more computationally
intensive than pruning-at-initialization (PaI) approaches.

H.2 EMPIRICAL PERFORMANCE

Figure 11 demonstrates MIPP’s empirical runtime characteristics. The non-linear relationship
between network width and pruning time is evident, with particularly favorable scaling for narrower
architectures like ResNet-20 compared to wider networks like VGG-19. This aligns with our
theoretical complexity analysis, where the n2 term dominates for layers with many nodes.

Notably, MIPP’s computational cost scales advantageously with pruning severity. As shown in
Figure 12, when pruning to ultra-high sparsity levels (removing >92% of neurons), MIPP’s relative
performance improves compared to moderate sparsity scenarios (Figure 11). This occurs because
high-sparsity pruning reduces both the n2 ordering cost (fewer nodes to compare) and the k retention
cost simultaneously.

While MIPP’s absolute runtime exceeds standard PaI methods (as visible in both subfigures), it
provides unique advantages for edge deployment: the method produces compact models with greater
on-device learning capacity than conventional PaI approaches. This makes MIPP particularly valuable
for applications requiring continuous edge learning, such as autonomous systems or IoT devices,
where the computational cost is justified by the resulting model quality and adaptability.

I DISCUSSION OF RESULTS IN SAXE ET AL. (2019)

In theory, the mutual information I(X l;X l−1) between adjacent layers of a neural network is infinite,
as demonstrated by Saxe et al. (2019). This occurs because there exists an exact deterministic
mapping from layer X l−1 to X l in an idealized noise-free network. The deterministic nature of
this transformation would imply zero conditional entropy H(X l|X l−1) = 0, leading to unbounded
mutual information I(X l;X l−1) → ∞.
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However, in practice we estimate this quantity using the method from Covert et al. (2020), which
yields a finite, approximate lower bound rather than the theoretical infinite value. This approximation
arises from two fundamental limitations. First, the estimator only becomes exact when implemented
with a binary cross-entropy loss LBCE, which is impossible to achieve in our continuous activation
setting where X l ∈ Rd. Second, all practical training pipelines introduce various sources of
randomness - including stochastic initialization, dropout with rate pdrop, mini-batch sampling Bt ⊂ D,
and label smoothing α - that broaden the conditional distribution p(X l|X l−1) from a Dirac delta
δf(x) to one with finite entropy H(X l|X l−1) > 0.

Consequently, the mutual information values we report are empirically measurable, i.e., practical
quantities that satisfy 0 < Î(X l;X l−1) < ∞ under real-world training conditions, rather than the
idealized I(X l;X l−1) → ∞ that would emerge from a perfect deterministic mapping f : X l−1 →
X l (note that in the paper we refer to the MI with randomness as I(X;Y ) rather than Î(X;Y ) for
clarity of presentation). This distinction is crucial for a correct interpretation of our results.

J HOW DOES I(M ;D) RELATE TO GENERALIZATION?

Through Figure 2 b) and Theorem 2 we have demonstrated that the application of MIPP results
in higher values of I(M ;D). However, Kumar et al. related this quantity to train, not test, loss.
This leaves a gap between our method that aims to raise I(M ;D) and the metric we use to measure
performance: test-time accuracy.3

To address this gap, we note that Kumar et al.’s theorem can be interpreted as follows: for a fixed
training loss below the noise level, increasing the effective parameter count (including I(M ;D))
allows one to achieve the same training loss with a smoother function. Function smoothness, as
measured by the Lipschitz constant, has been shown to be directly related to generalization bounds
in numerous contexts. For instance, Bartlett et al. (2017) and Neyshabur et al. (2017) demonstrated
that generalization bounds can be expressed in terms of the product of layer spectral norms rather
than parameter count. The Lipschitz constant is upwardly bounded by the product of layer-wise
spectral norms. Therefore, smaller Lipschitz constants should enhance generalizability in deep nets
according to Neyshabur et al. (2017) and Bartlett et al. (2017), provided we control for both margins
and structural capacity.

However, even with preserved margins, the relationship between I(M ;D) and generalization remains
nuanced, as the theoretical frameworks of Bartlett et al. (2017) and Neyshabur et al. (2017) do not
consider the following: increasing I(M ;D) could harm generalization if our masks overfit to noise
rather than capturing meaningful structure. This concern aligns with the line of work initiated by Xu
and Raginsky (2017), which demonstrated that generalization error can be bounded by the MI between
the final hypothesis h and data generating processes D. Given that our mask M can be recovered
from our final weights W , it is possible to relate these two quantities via a data processing inequality
I(W ;D) ≥ I(M ;D). However, this bound is vacuous as the final weights can carry vastly more
entropy than the masks. This creates an apparent tension: while Kumar et al.’s framework suggests
higher I(M ;D) enables smoother interpolation, Xu and Raginsky (2017) warn that excessive I(h;D)
indicates memorization of training data specifics. We believe MIPP resolves this tension due to the
constraints of structural pruning. While the masks increase I(M ;D) to capture meaningful patterns,
they also reduce the effective capacity of the network, preventing the growth of I(W ;D) that would
lead to overfitting.

K TRAINING TIMES ACROSS HETEROGENEOUS GPU RESOURCES

Training durations for the evaluated models varied considerably due to the heterogeneous GPU
configurations within the HPC cluster, which included nodes equipped with GPUs ranging from
NVIDIA P100 (16 GB, Pascal) to A100 (80 GB, Ampere). For the following datasets, the observed
wall-clock time per epoch spanned the following ranges:

• MNIST (28×28): LeNet-5: ~10–60 seconds per epoch.
3Note that the results in Figure 2 b) are computed on toy models, as obtaining unbiased estimates of I(M ;D)

for larger networks would require generating prohibitively large numbers of pruning masks.
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• CIFAR-10 (32×32):
– VGG11: ~2–5 minutes per epoch
– ResNet20: ~1.5–4 minutes per epoch
– ResNet56: ~3–6 minutes per epoch
– ResNet18: ~4–8 minutes per epoch
– ResNet34: ~5–10 minutes per epoch

• CIFAR-100 (32×32):
– ResNet50: ~6–18 minutes per epoch
– VGG16: ~8–14 minutes per epoch
– VGG19: ~9–16 minutes per epoch

• Tiny ImageNet (64×64):
– ResNet20: ~4–12 minutes per epoch

These variations reflect both the computational complexity of the models and the diversity of GPU
hardware used during training.
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