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Abstract

Transformer-based language models have become the de facto standard in natural language
processing. However, they underperform in the tabular data domain compared to traditional
tree-based methods. We posit that current models fail to achieve the full potential of
language models due to (i) heterogeneity of tabular data; and (ii) challenges faced by the
model in interpreting numerical values. Based on this hypothesis, we propose the Tabular
Domain Transformer (TDTransformer) framework. TDTransformer has distinct embedding
processes for different types of columns. The alignment layers for different column-types
transform these embeddings to a common space. Besides, TDTransformer adapts piece-wise
linear encoding for numerical values for better performance. We test the proposed method
on 76 real-world tabular classification datasets from the OpenML benchmark. Extensive
experiments indicate that TDTransformer improves the state-of-the-art methods.

1 Introduction

Deep learning methods have achieved state-of-the-art (SOTA) performance in various areas including vision
(Rombach et al., |2022; He et al.l |2022} Zou et al.l 2024} \Jiang et al., 2024), language (Radford et al.l [2019;
Touvron et al.l [2023]), and multimodal processing (Radford et al., |2021; [Liu et al.l [2023). Even though
deep learning methods have shown great potential in many domains, their performance for tabular data
has so far been unimpressive. This has led to the question as to whether deep learning is a fundamentally
superior approach for tabular data (Shwartz-Ziv & Armonl [2022; (Grinsztajn et al., |2022; [Borisov et al.,
2022 McElfresh et al., [2024). Experimental benchmarks (Grinsztajn et al.| (2022); [Borisov et al.| (2022) have
shown the broad superiority of tree-based methods over deep learning. Among deep learning methods, the
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generalization of transformer-based architectures (Vaswani et al., 2017)) to tabular data has shown some
promise — however, they continue to lag tree-based methods such as XGBoost (Chen & Guestrinl, 2016)).

The broad-based success of transformers in learning high-dimensional representations, especially in NLP,
is evidence of their potential. A natural question arises as to what makes transformer-based architectures
underperform tree-based methods. Based on prior studies, we posit that this phenomenon is a result of (i)
difficulty in learning irregular patterns of the target function owing to data heterogeneity (Shwartz-Ziv &
Armon), 2022} Mathov et al., [2022; Borisov et al.l 2023; [Yan et al., [2023} |Chen et al.l [2024a), and (ii) the
challenges faced by the model in interpreting numerical features (Gorishniy et al., [2021} 2022]).

On the one hand, spectral analysis of neural networks indicates that neural networks tend to learn the
low-frequency components of a function in lieu of relatively high-frequency components (Rahaman et al.l
2019; Xu et al.| [2019; Beyazit et al.| [2024). Owing to the different types of columns, the feature spaces in the
tabular data domain are generally heterogeneous. On the other hand, numerical reasoning is known to be a
formidable challenge for language models (Lu et al., 2022; |Lee et al.| |2023; |Shen et al., [2023; [Testolin) [2024;
Ahn et al., [2024).

We propose a framework named Tabular Domain Transformer (TDTransformer) that overcomes the
aforementioned obstacles in the way of achieving the full potential of transformer-based architectures.
TDTransformer embeds different types of table columns using different approaches to obtain the hidden
representations. For each column type, we use an alignment layer to map the hidden representation to a
common embedding space. Alignment layers for different column types are independent of one another.
This design is inspired by multimodal models such as CLIP (Radford et al., 2021 where one alignment
layer transforms the hidden dimension of the image branch d; to a dimension d, v; : d; — d. The other
one transforms the hidden dimension of the text branch d; to d, ¥; : di — d. To enhance the model’s
understanding of numerical values, we use a piecewise linear encoding (PLE) that directly maps scalars to
high-dimensional embeddings. Compared to conventional tokenization and embedding, PLE introduces an
inductive bias that is beneficial to the training process. Our use of the PLE is inspired by the pioneering work
of |Gorishniy et al.| (2022)). We adapt PLE such that the hidden representation is close to the conventional
hidden representation of transformer-based architectures. We combine hidden representations as the input to
the backbone model. The pipeline of the training process is the pre-training model followed by fine-tuning.

We examine the performance of TDTransformer on the standard tabular data benchmark OpenML El Extensive
experiments on more than 70 tabular data sets show the superiority of TDTransformer. In summary, the
main contributions of this work are as follows:

e To avoid the performance degradation caused by the heterogeneous nature of tabular data, we design
different embedding approaches to obtain the hidden representations of columns. Alignment layers
are applied to hidden representations to ensure that embeddings for different types of columns are in
the same embedding space.

e We adapt the piece-wise linear encoding to improve the representation of numerical values so that the
model can interpret them well. These encoded representations are combined with those of categorical
and binary columns and then input to the backbone model.

e We propose a column-type dependent corruption for pre-training. We also propose a column-type-
aware positional encoding that further boosts the performance of TDTransformer.

2 Related Work

Tabular deep learning A key line of work in tabular deep learning focuses on the use of graph learning to
enhance the understanding of relations among columns. An auxiliary knowledge graph is used to regularize
a multilayer perceptron (Ruiz et all 2024). |Chen et al.| (2024b) utilizes a hypergraph to capture tabular
structures. With the development of large-scale foundational models, researches have emerged on adapting
foundation models in the tabular data domain. [Zhang et al. (2023) uses parameter-efficient fine-tuning to

1OpenML benchmark: https://www.openml.org/
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adapt the pre-trained LLaMA 2 model to the tabular domain. |Zhu et al.|(2024) converts tables to formats
that are consistent with the pre-training data (e.g. markdown format). The converted input data are directly
fed to the pre-trained LLaMA 2 model (Touvron et al.l|2023). [Deng et al.| (2024)) treat tables as images and
utilize the multimodal capability of GPT-4 (Achiam et al.| [2023]) and Gemini (Team et al.,|2023). [Hegselmann
et al.| (2023)) serializes column names and values into a natural language string. Input strings are used for
fine-tuning pre-trained large language models.

To tackle the feasibility of transformer architectures for processing heterogeneous tabular data, TABBIE
(lida et al. 2021) proposes the pre-training objective of detecting corrupted cells, and the architecture
combining row and column transformers to enhance contextualization across tables. TAPAS (Herzig et al.,
2020) combines BERT encoder (Devlin) [2018) with table-structure-related embeddings. TABERT (Yin et al.,
2020) jointly learns natural language sentences and tabular data. Besides, both self-attention and vertical
self-attention are applied to enhance the understanding of table structure. TUTA (Wang et al., [2021b)) utilizes
tree-based attention and position embedding to capture spatial and hierarchical information within tables.
These works focus on help language models understand the structured tabular data. For different types of
columns, an embedding process similar to the embedding of natural language word tokens is applied. Without
using specialized embeddings for different types of columns or merely replying on the column type embedding
makes it challenging to tackle the heterogeneity issue within tables.

Numerical reasoning Large language models mainly focus on NLP and code generation. However, their
application to numerical reasoning has turned out to be less successful (Lewkowycz et al., [2022; Imani
et al.l 2023} |Ahn et al., 2024; Romera-Paredes et al., 2024). This difficulty arises for multiple reasons: (i)
numerical reasoning might require intricate intermediate steps internally. Language models map scalars to
high-dimensional embeddings. The intermediate steps with high dimensional embeddings turn out to be
intractable; (ii) there is no built-in mechanism within transformer-based architectures to perform mathematical
operations; (iii) numerical values are continuous, whereas transformer-based architectures are inherently
designed for (discrete) word toens; (iv) there are repeated patterns in tokenized numerical values, and each
token holds equal significance (while omitting unimportant tokens).

Geva et al.| (2020) enhances numerical reasoning by adding automatically generated synthetic numerical
data to the pre-training process. |Lee et al.| (2023) incorprates ideas from chain-of-thought (Wei et al.| 2022,
with intermediate step results. [Shen et al.| (2023) focuses on data format modification to the boost model’s
understanding of numerical values. McLeish et al.| (2024) helps models track the position of each digit by
adding an embedding that encodes its relative position. These works focus on enhancing the understanding
of numerical values from the language perspective. In the tabular data domain, however, the distribution of
numerical values might be more important than the values themselves. Besides, due to the limitation of the
sequence length in transformer-based architectures, treating numerical values as tokens can severely limit the
context length of embeddings of other types of columns when numerical values contain a large number of
digits.

3 TDTransformer: Tabular Data Transformer Framework

Task formulation Tabular data are denoted as D = {(x;,v:)}",, z € X, y € Y. The dataset is split into 3
disjoint subsets D = Dirain U Dyal U Diest. Y = {0, 1} for the binary classification task, Y = {1,...,C} for the
multiclass classification task. The supervised training process maximizes the likelihood of the correct label y:

max Po(ylx,0) . (1)

Figure [1] shows the proposed framework. Input data are relational tables that have a unique column given a
column name. We use different embedding processes for different types of columns. Alignment layers are
used to transform embeddings to the same embedding space. We combine embeddings as the input to the
backbone model. The training pipeline consists of pre-training and fine-tuning steps.
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Figure 1: The TDTransformer framework: (a) Input data D = {(x;,y;)}" ;. @ consists of column name
and column cells. The lower part shows a toy example of converting a relational table into the input
embedding for LM encoder. (b) Embeddings of three types of columns (categorical, numerical, and binary).
(c) Concatenation of the three types of embeddings, which is fed into the backbone model.

3.1 Column Embeddings

The TDTransformer framework uses distinct embedding processes for categorical, numerical, and binary
columns. These processes are illustrated in Figure [1| (b) and discussed in detail below:

Embedding Categorical Columns For categorical columns, we concatenate column names and cor-
responding cell values to form natural language sentences. The concatenated sentence is tokenized and
embedded to obtain hidden representations for the categorical columns denoted by E3t:

E® = [Ey,...,E.,] € RF="d  E, = [e([T%) @he e([Ti5, R (2)

Ccat 1:mq 1:mo

where d is the dimension of hidden representations. kca; = ZCC‘“(

[Tl )]‘ + ‘[Tce“ @) ’) is the total number

my (i 1:mo
of tokens. mj (i) is the number of tokens for i-th categorical column name. mgq(i) is the number of tokens for
cell values in i-th categorical column. After embedding, we use a linear transformation layer ¢t : R4 — R,

Embedding Numerical Columns We adapt the PLE in |Gorishniy et al.| (2022) for transformer-based
architectures. Specifically, we use the PLE function fpe : R — R to obtain the hidden representation for
numerical columns:

fole(w) = [€1,..., &))" € R%te 3)
717 T < bt—l
gi = 1) x > bt (4)
ERGE b <a <y
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Here, the bins {bt}filf are obtained based on the g-quantiles of the numerical value range while the original
PLE work requires labels for fitting decision trees. dpie is the number of quantiles. We summarize differences
for the numerical value embedding in Table[I] The conventional tokenization and embedding in language
models can map a scalar to a sequence of embeddings if there are multiple digits in the scalar. On the
contrary, PLE always maps a scalar to one embedding. Non-Parametric fitting using PLE is capable of
precisely determining the boundaries separating numerical values based on the dependence of numerical values
on target labels (Mohanty & Fahnestock, 2021; Thielmann et al., |2025). Our method relies on the distribution
of cell values and not conditions on labels. Besides, due to the layer normalization (LN) (Ba, 2016) within
the embedding layer, co-domain of [—1, 1] for our adapted PLE function is closer to the embedding than that
of [0,1].

Table 1: Summary of the differences among methods obtaining embeddings of numerical values. Embedding
of a numerical value is essentially a high-dimensional vector v.

Not require Fixed
Method Vi Tange labels sequence length
Tokenization + Embedding  (—o00, 00) v X
PLE (Gorishniy et al., |2022]) [0, 1] X v
PLE (Ours) [-1, 1] v v

We use a linear transformation layer ¢™™ : RP'® — R? to convert the high-dimensional representations
fole(z) € RP' to the same embedding space as that of categorical column embeddings.

Our PLE function does not require training to convert numerical values to high dimensional vectors R — R9le,
The hidden representation for numerical columns is obtained by the Hadamard product of the averaged
column-name embedding and numerical-value embeddings:

E™™ = B4 © 6™ (foe(@1), -+ fote (@, ))) € RO (5)
1 ml(z)

ot = Br Bo Bis oo 30 e[, ) 0 M (6)
j=1

Here, M is the attention mask to exclude padding token embeddings, ® is the Hadamard product. For
notational conciseness we ignore the notation of column types in the expressions of word tokens of column
names and cell values. For example, we use the same notation [Tff;;l ( i)] in Equations [2| and @ The notation
[Tf:%l( i)] denotes the word tokens for numerical column names in the former, whereas it denotes the word
tokens for categorical column names in the latter.

Embedding Binary columns We convert cell values (e.g. True vs False and 0 vs 1) in binary columns
to binary values z; € {0,1}. Similar to numerical columns, the column-name embedding for each binary
column is averaged. The hidden representation for binary columns is obtained by the Hadamard product of
the averaged column name embedding and binary values as follows:

Ebin = Elgclfll O] (X(ld)T) € Rcbi"Xda where x = [xh s 7xcbin]T : (7)

Similar to the embedding of column names for numerical columns EZ4™, EPI is averaged to ensure a constant
sequence length cpi,. We use a linear transformation layer ¢*" : d — d to ensure the embeddings of binary

columns are the same as those of categorical columns and numerical columns.

3.2 Feature Combination

Figure |l (¢) shows the combination of features for three types of columns. We prepend [CLS] embedding to
the concatenated hidden representations. As in the classic transformer model (Vaswani et al., [2017)), we add
the sinusoidal positional encoding P to the concatenated hidden representation:

E = [6([CLS]), Ebin’ Enum’ Ecat} +P , (8)
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where
P(; 2i) = sin(j/10000*/7) , (9a)

P j2i+1) = cos(j/10000%/%) . (9b)

Here, j is the position index and i is the hidden dimension index. Only E has a flexible sequence length.
EP™ and E™™ have a fixed sequence length. The sequence length for EP™ or E™™ is equal to the number
of binary columns or numerical columns. Given a fixed context length limit, TDTransformer can process
larger tables (without truncation) as compared to language models that do tokenization and embedding for
all types of columns.

In language models, positional encoding or positional embedding are added to the embedding in element-
wise fagshion. In tabular data domains, however, table columns have the permutation invariance property
that prevents positinal encodings from improving performance (Huang et all |2020). In TDTransformer,
although the hidden representations for the binary columns (EP™ € R) and that for the numerical columns
(Erum ¢ R?), there is indeed an ordering in E®*, because it is essentially the embedding of a natural language
sentence. Therefore, we propose a column-type aware (CTA) position encoding for TDTransformer. CTA
only adds positional encoding to E¢4*. The overall embedding E is computed as follows:

= [e([CLS]), EP™  E™™ E“] + [0+ coum) xds PJ - (10)

3.3 Training Pipeline

After combining column embeddings, E is fed to the backbone model, which is constructed using the gated
transformer proposed in Wang & Sun| (2022). We also test the performance using RoOBERTa (Liu, 2019) as
the backbone model (see Appendix). [CLS] embedding is used for the prediction. The training pipeline,
similar to the classic pre-training fine-tuning paradigm, consists of two steps: the first step is to pre-train the
model. The second step is to fine-tune the model that is initialized with pre-trained weights. Pre-training is
widely used in tabular deep learning to boost model performance (Yin et al., 2020; [lida et al., 2021} |[Somepalli
et al., [2021; Rubachev et al., |2022; Wang & Sun, [2022; Muller et al., 2023} |Zhu et al.| [2023). Corruption is
used to generate negative samples. The corruption method conditions on column types, because random
permutation only occurs within the same type of column. We do not apply permutations for binary columns.

After the contextualization in LM encoder F(-), we obtain the resulting embedding E =F (E). We use the
[CLS] embedding in E as shown in Figure[1f (¢). The [CLS] embedding used for the prediction is denoted as
z. Given a table row z;, there is a hidden representation z;.

Before the pre-training process, the weights of the backbone model are randomly initialized. The pre-training
process uses contrastive loss. Specifically, we examine two types of pre-training losses: self-supervised
contrastive loss (e.g., Chen et al| (2020)); [Tian et al. (2020); Wang et al.| (2021al)) and supervised contrastive
loss (e.g., Khosla et al. (2020)); Jaiswal et al.| (2020); |[Le-Khac et al.| (2020))). The contrastive loss function
encourages the model to generate close embeddings for positive pairs. The self-supervised pre-training focuses
on the category-level discrimination while self-supervised pre-training pays attention to the instance-level
discrimination.

The self-supervised contrastive loss (SSCL) is computed as follows:

KSSCL Zlog eXp Z Zl/T) (11)
2 B T )

where 7 is the temperature, Z = {i}!,, z; is the hidden representation for i-th table row, and z; is the
hidden representation of the corrupted i-th table row.
The supervised contrastive loss (SCL) utilizes labels in the pre-training dataset and is computed as follows:

L5 =N ( log Y DT (12)

ieT kEP( Z]GI exp(z ZJ/T)
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where P(i) == {p|lyp, = v:}. SCL is found to be a powerful pre-training tool. For example, it can achieve
in-context learning in decision-making problems (Lee et al., 2024) and learn data with long-tailed distributions
(Li et all 2022).

Table 2: Performance comparison for the binary classification task. In addition to the averaged performance,
we select a subset of 76 tables for detailed comparison. S U S,um contains tables including numerical columns.
~ is the positive ratio.

Method SUSuum v <0.2 02<~v<0.8 5 >0.8 Avg
’ Acc Auc Acc Auc Acc Auc Acc Auc Acc Auc
XGBoost 85.06 0.83 91.88 0.87 78.44  0.82 95.10 0.73 84.97 0.83
CatBoost 86.27  0.86 91.90 0.87 80.66  0.87 94.51  0.87 86.12  0.87
SCARF 77.27  0.73 83.84 0.72 73.64 0.78 72.10 0.55 77.81  0.74
SwitchTab 74.32  0.78 79.67  0.80 69.89  0.78 89.05 0.74 75.03  0.78
SubTab 71.94 0.74 75.44  0.74 69.79 0.75 72.59  0.68 72.30  0.75
TransTab 84.83  0.81 91.20 0.83 79.74  0.82 95.45  0.83 85.39  0.82
Vanilla MLP 79.50  0.61 84.46  0.68 74.03  0.56 86.84  0.45 79.23  0.60
SAINT 86.16  0.85 84.24  0.85 86.92 0.86 86.25  0.79 85.77 0.85
FT-Transformer 85.63 0.84 90.50 0.87 80.96  0.83 95.49  0.80 85.74  0.85
TabM 86.71  0.81 86.67 0.78 86.23  0.83 91.03  0.90 86.69  0.81
Mambular 87.42 0.88 87.56  0.86 86.25 0.88 97.81 1.00 87.51 0.88
TDTransformer 87.56 0.87 91.67 0.87 83.94 0.88 95.40 0.96 87.79 0.88

TDTransformer (CTA Pos) 87.19  0.87 91.70  0.87 83.30  0.87 95.59  0.94 87.48  0.87

Table 3: Performance comparison for the multiclass classification task. In addition to the averaged performance,
we select a subset of 76 tables for detailed comparison. S U Syum contains tables including numerical columns.
|D| is the dataset size, € is the number of classes.

Method S USmum |D| < 2000 |D| > 2000 ¢<10 ¢c>10 Avg
i Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
XGBoost 72.56  0.60 65.77  0.56 82.20 0.71 79.32  0.64 7112 0.69 76.45  0.66
CatBoost 73.03  0.59 66.68  0.56 81.97  0.70 79.32  0.63 71.59  0.69 76.61  0.65
SCARF 62.39  0.52 57.58  0.44 69.51  0.61 67.75  0.53 60.82  0.59 65.32  0.55
SwitchTab 56.92  0.45 57.56  0.45 62.29  0.52 64.93  0.50 52.65  0.49 60.63  0.50
SubTab 55.22  0.45 55.98 0.44 60.77  0.52 60.99  0.48 55.57  0.53 59.09  0.50
TransTab 70.22  0.53 70.38  0.53 69.96  0.52 7179 0.49 66.98  0.63 70.11  0.54
Vanilla MLP 56.23  0.35 4343  0.20 65.85  0.46 66.89  0.38 4148 0.35 58.00 0.37
SAINT 63.63  0.61 64.95  0.60 70.97 0.71 65.55  0.64 75.03  0.74 68.87  0.67
FT-Transformer 73.20  0.61 73.71  0.65 7891 0.68 81.62 0.67 68.67  0.67 77.09  0.67
TabM 76.53  0.62 77.34  0.63 80.53  0.69 80.84 0.63 76.77 0.75 79.41 0.67
Mambular 75.92 0.63 76.81  0.68 81.41 0.70 81.73 0.67 76.22  0.74 79.80  0.69
TDTransformer 76.30 0.63 78.68 0.69 81.06  0.70 80.89  0.65 79.00 0.77 80.23 0.70

TDTransformer (CTA Pos) 76.70 0.63 78.94 0.69 81.36  0.70 81.07 0.65 79.47 0.77 80.51 0.70

The model weight after the pre-training process is used as the initialized weight for the fine-tuning process.
A prediction head is added to predict the probability as shown in Figure[I] The fine-tuning process is in a
supervised fashion. For the binary classification task, we use the binary cross entropy loss. The multiclass
classification task employs the cross entropy loss.

4 Experiments and Results

4.1 Experiments

Baseline methods XGboost (Chen & Guestrin, [2016)) is an end-to-end tree boosting system. It uses a
sparsity-aware algorithm and weighted quantile sketch. Compared to XGBoost, CatBoost (Prokhorenkova,
et al., |2018; [Dorogush et al., |2018) has the inherent capability to process categorical features without
relying on one-hot encoding. Besides, it introduces ordered boosting to avoid target leakage. SubTab (Ucar
et all] |2021) divides input features into multiple subsets to perform multiview representation learning. Scarf
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(Bahri et al. |2022) uses vanilla self-supervised contrastive learning to improve classification accuracy in
the fully-supervised learning setting. SwitchTab (Wu et al., [2024]) uses an asymmetric encoder-decoder
framework to decouple mutual and salient features, which can address the issue of lacking dependencies
between samples. FT-Transformer (Gorishniy et al., 2021) adapts the transformer architecture for the tabular
domain. The embeddings of numerical columns are obtained by the linear transformation whereas categorical
columns utilize the lookup table for embeddings. SAINT (Somepalli et al.l |2021) uses row-wise attention and
column-wise attention to enhance the embedding process. TabM (Gorishniy et al., |2024) improves tabular
multilayer perceptron (MLP) by parameter-efficient ensembling. Mambular (Thielmann et al. [2024) adapts
the Mamba architecture (Gu & Daol [2023)) for the tabular domain.

Datasets We use 76 real-world tabular classification datasets in the standard OpenML benchmark (which
are manually curated for effective benchmarking). The train/validation/test splits is 72%/8%/20% for each
OpenML dataset. We use accuracy as the metric to measure the performance for all classification data sets.
Additionally, we use the area under the curve (AUC) to evaluate binary classification and the F1 score t
evaluate multiclass classification. The details of the tables are given in Appendix Section [A74]

Experimental details TDTransformer uses pre-trained BERT tokenizer (Devlin, |2018]) and Adam optimizer
(Kingmal/, [2014]) without weight decay. The hidden dimension is 512 and model depth is 12. The number of
quantiles for PLE is 64. In both the pre-training and fine-tuning process, we use an early stopping strategy
(Yao et all 2007) with a patience of 10. The maximum number of training epochs is 200 with batch size of
128. The corruption parameter of pre-training process is set to 0.5. When there are empty cells in a column,
we replace empty cells with the most common values in that column. We conducted all epxeriments using a
single A40 Tensor Core GPU and EPYC 7232P CPU.

4.2 Results

Table [2] summarizes the performance comparison for the binary classification task. SSCL is used in the
pre-training process. We denote categorical columns as S¢at, binary columns as Sy, and numerical columns
as Spum- We use the notation S for generic table columns, & C (Syum U Seat U Spin). Note that S can be (). In
addition to select subsets of tabular data based on column types, we use the positive ratio to make a selection.
The positive ratio =y is the ratio of positive samples to the entire number of samples. The comparison of
computational costs is reported in Appendix Section Overall, both TDTransformers exhibit better
performance (with or without CTA positional encoding).

The performance comparison for the multiclass classification task is shown in Table 3] We use the dataset
size |D| and the number of classes € to select subsets of tabular data. For nearly all selected subsets,
TDTransformer (with or without CTA positional encoding) shows a pronounced performance gain compared
to baseline methods. For the subset of |D| > 2000, XGBoost has the best performance. We examine datasets
where our proposed framework has a relatively large performance gap compared to XGBoost. We find a
remarkable gap appearing in the table Au4-2500 (Details regarding all tables are listed in Appendix). In
this table, both column names and categorical columns lack semantics. Column names are V1, ..., V100.
Categorical columns contain cell values of v1, v2, ... Vk, k € NT. Lacking semantics is detrimental to the
performance of language models. Hence, XGBoost outperforms TDTransformer by a relatively large margin.

Figure [2] shows the comparison between TDTransformer and baseline methods. Scatter points are the
performance on individual dataset. Transformer-based baselines fall short remarkably compared to tree-based
methods. Even though the TDTransformer model has a transformer-based architecture, it achieves better
performance than all baselines.

4.3 Ablation Study

Pre-training We compare the performance of pre-training using SSCL and SCL. Both pre-training processes
use the classic positional encoding as shown in Equation [§] The performance comparison is shown in Figure
Using SCL as shown in Equation there is a small accuracy decrease in the binary classification task.
The performance has a larger drop in the multiclass classification task. Overall, TDTransformer has better
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Figure 2: Performance comparison: The left axis shows the scale for (average) performance. The right axis
shows the scale for the performance on individual datasets. (a) Test accuracy for the binary classification
task. (b) AUC score for the binary classification task. (c) Test accuracy for the multiclass classification
task. (d) F1 score for the multiclass classification task. TDTransformer outperforms baselines with greater
improvements achieved for multiclass classification.

performance using SSCL compared to SCL. Out of the tabular data domain, a similar observation is reported
that self-supervised pre-training without label information learns more effective representation than supervised
pre-training when transferring to downstream tasks (Chen et al 2020} [He et all [2020; [Chen & He| [2021).

a 50 100 b 05 1.0 € 50 100 d 0.5 1.0

0.8 1.0 0.6
Accuracy Auc Accuracy F1 score

Figure 3: The performance comparison between SSCL and SCL pre-training. The upper axis shows the scale
for the performance on individual datasets while the lower axis shows the scale for the averaged performance.
(a) Test accuracy for the binary classification task. (b) Auc score for the binary classification task. (c) Test
accuracy for the multiclass classification task. (d) F1 score for the multiclass classification task.
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Positional encoding Attention mechanism (Vaswani et alJ 2017) computes the pair-wise relation between
the query and key. There is no inherent order of the sequence. Positional encoding or learnable positional
embedding are added to help model track the order. However, tables have the inherent property of permutation
invariance, which is contradictory to the order of the word token sequence. [Huang et al.| (2020)) compares the
transformer with positional encoding and without positional encoding. In their framework, no positional
encoding leads to better performance. We compare the performance without positional encoding, with
positional encoding and with CTA positional encoding.

Table 4: Performance comparison between different positional encoding methods. Positional encoding and
CTA positional encoding have similar performance while no positional encoding can lead to a pronounced
performance drop.

Task Metric ~ w/o positional encoding w/ positional encoding w/ CTA positional encoding
Binar Accuracy 88.07 87.79 87.48
Y Auc 0.87 0.88 0.87
. Accuracy 74.78 80.23 80.51
Multiclass =gy 0.63 0.70 0.70

Batch size In SSCL, the number of negative pairs is related to the batch size. In SCL, batch size determines
the number of negative and positive pairs. We use the same batch size in the pre-training and fine-tuning
processes. Different batch sizes {128, 64,32} are examined to analyze the effect of batch size.

Table [5| shows the effect of batch size in the binary classification task. Overall, the effect of batch size is small.
The average accuracy variation is within 0.2%. Table [6] exhibits the effect of batch size in the multiclass
classification task. When decreasing the batch size, both accuracy and F1 score decrease.

Table 5: The effect of batch size Nps on the performance of TDTransformer in the binary classification task.
SSCL is used in the pre-training process. The fine-tuning process is in a supervised fashion.

Method S UShum v <0.2 02<v<0.8 v >0.8 Avg
cetho Acc  Auc Acc  Auc Acc Auc Acc  Auc Acc  Auc
TDTransformer (Nps = 128) 87.56 0.87 91.67 0.87 83.94 0.88 95.40 0.96 87.79 0.88
TDTransformer (Nps = 64) 87.61 0.82 91.22 0.79 84.44 0.85 95.54 0.94 87.88 0.83

TDTransformer (Nps = 32) 87.70 0.86 91.56 0.86 84.37 087 95.54 0.94 87.99 0.88

Table 6: The effect of batch size Nps on the performance of TDTransformer in the multiclass classification
task. SSCL is used in the pre-training process. The fine-tuning process is in a supervised fashion.

S U Snum ID| < 2000 |D| > 2000 €< 10 ¢>10 Avg

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

TDTransformer (N, = 128) 76.30 0.63 78.68 0.69 81.06 0.70 80.89 0.65 79.00 0.77 80.23  0.70
TDTransformer (Nps = 64)  75.78  0.62 78.54 0.68 80.58  0.69 80.33 0.64 79.00 0.77 79.86  0.69
TDTransformer (Nps = 32)  76.16 0.62 78.97 0.68 79.40  0.66 79.43 0.61 78.90 0.77 79.24  0.67

Method

Table [] summarized the averaged performance for the binary and multiclass classification tasks. For the
binary classification task, the performance difference among different encoding methods is small. There is a
remarkable performance difference (5.45% drop in accuracy) for the multiclass classification task. Using no
positional encoding pronouncedly degrades the performance. For tables that do not have numerical columns
or binary columns, CTA positional encoding is the same as the traditional positional encoding. In the
more challenging multiclass classification task, we observe the performance gain when using CTA positional
encoding.

We examine the distribution of [CLS] embeddings by using t-SNE (Van der Maaten & Hinton, 2008) to
compute the first two main components. Figure[d]shows the distribution of embeddings of table rows. Different
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Figure 4: Effect of positional encoding on tabular representation learning. We assign the same color for
instances with the same label. There are only categorical columns in Kropt and Splice tables, positional
encoding and CTA positional encoding yield the same result. Using positional encoding greatly enhances
representation learning.

classes are marked in distinct colors. Using positional encoding or CTA positional encoding pronouncedly
improves the separation of different classes.

5 Discussion and Conclusion

Our results advocate a rethink of the power of language models in the tabular data domain. A direct way
of applying language models to the tabular data domain is to represent tables using sequences of word
tokens. However, the heterogeneity property of tables hinders models from learning effective representations
(Shwartz-Ziv & Armon| 2022; Mathov et al., 2022; Borisov et al., 2023; [Yan et al. 2023; |Chen et al.|
2024a)). TDTransformer explicitly uses distinct embedding processes for different types of columns. Owing
to the difference in embedding processes, the embedding spaces of different types of columns are different.
Specifically, TDTransformer uses PLE to encode the statistical information of numerical columns in high-
dimensional vectors while maintaining the continuity of numerical values in the co-domain of PLE function.
Alignment layers are used to convert embeddings of different types of columns to a common embedding space.
TDTransformer utilizes the good semantic understanding of language models. Some baseline methods with
transformer-based architectures use one-hot encoded representation for categorical columns, which inherently
loses semantic information. Those baselines lag behind tree-based methods. We find that language models
might have unfavorable performance when a table has categorical columns that lack semantics. In addition, we
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find that positional encoding is important for the TDTransformer framework. The embeddings of numerical
and binary columns are essentially column-wise, while those of categorical columns are token-wise. Based on
this observation, we propose CTA positional encoding, which can boost the performance of TDTransformer.

The goal of the TDTransformer method is to convert tabular data to the embedding space of the traditional
language models designed for NLP. Hence, this method can be readily generalized to various language encoders
by replacing the language encoder in the TDTrasnformer framework with distinct encoders.

Overall, TDTransformer is able to to overcome the incapability of classical transformer-based architectures in
interpreting heterogeneous data and to enhance the ability of the model to interpret numerical values.

We release our code in https://github.com/Zhenhan-Huang/TDTransformer,

6 Limitation

We use constant hyperparameters across 76 real-world tabular classification datasets. When obtaining the
performance of baseline methods, we also use constant hyperparameters. Implementation details can be
found in Appendix Section While our method demonstrates strong performance, it does not leverage
the advantages of automated tuning techniques. As a result, the reported performance might not reflect
the full potential of the proposed method. Existing works have shown that hyperparameter optimization
(Kadra et al., [2021a3b)) can greatly boost the performance of deep learning architecture on the tabular data
domain. We leave the study of the effect of dataset-dependent hyperparameters on the performance of the
TDTransformer method in our future work.

7 Broader Impact

In this work, we propose a way to help language models understand tabular data through the proposed
embedding process, which paves the road for tabular operations through artificial intelligence automation.
Different from tabular deep learning works using ordinal encoding or one-hot encoding, the TDTransformer
framework utilizes word token embedding of both column names and cell contents to enhance the understanding
of semantics within tables, which helps language models to understand tables based on the semantic level.
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