
PERFECT:
Prompt-free and Efficient Language Model Fine-Tuning

Anonymous ACL submission

Abstract

Current methods for few-shot fine-tuning of001
pretrained masked language model (PLM) require002
carefully engineered prompts and verbalizers003
for each new task, to convert examples into a004
cloze-format that the PLM can score. In this work,005
we propose PERFECT, a simple and efficient006
method for few-shot fine-tuning of PLMs without007
relying on any such handcrafting, which is highly008
effective given as few as 32 data points. PERFECT009
makes two key design choices: First, we show010
that manually engineered task prompts can be011
replaced with task-specific adapters that enable012
sample-efficient fine-tuning and reduce memory013
and storage costs by roughly factors of 5 and 100,014
respectively. Second, instead of using handcrafted015
verbalizers, we learn a new multi-token label em-016
bedding during fine-tuning which are not tied to017
the model vocabulary and which allow us to avoid018
complex auto-regressive decoding. These embed-019
dings are not only learnable from limited data but020
also enable nearly 100x faster training and infer-021
ence. Experiments on a wide range of few shot022
NLP tasks demonstrate that PERFECT, while be-023
ing simple and efficient, also outperforms existing024
state-of-the-art few-shot learning methods.1025

1 Introduction026

Recent methods for few-shot language model027

tuning obtain impressive performance but require028

careful engineering of prompts and verbalizers to029

convert inputs to a cloze-format (Taylor, 1953) that030

can be scored with pre-trained language models031

(PLMs) (Radford et al., 2018; Radford et al.; Brown032

et al., 2020; Schick and Schütze, 2021a,b). For033

example, as Figure 1 shows, a sentiment classifier can034

be designed by inserting the input text x in a prompt035

template “x It was [MASK]” where verbalizers (e.g.,036

‘great’ and ‘terrible’) are substituted for the [MASK]037

to score target task labels (‘positive’ or ‘negative’).038

In this paper, we show that such engineering is039

not needed for few-shot learning and instead can040

1We will release our code publicly to facilitate future work.

[CLS] The restaurant had excellent foods. It was [MASK] [SEP]

Pretrained Language Model

Input Pattern

MLM Head
 terrible

great
Verbalizers

positive

negative

Labels

Figure 1: Existing few-shot fine-tuning methods require
manual engineering to reduce new tasks to masked lan-
guage modeling. PERFECT does not rely on any handcraft-
ing, removing both patterns and verbalizers (see Figure 3).

be replaced with simple methods for data-efficient 041

fine-tuning with as few as 32 end-task examples. 042

More specifically, we propose PERFECT, a 043

Prompt-free and Efficient paRadigm for FEw-shot 044

Cloze-based fine-Tuning. To remove handcrafted 045

patterns, PERFECT uses task-specific adapter layers 046

(Houlsby et al., 2019) (§3.1). Freezing the underlying 047

PLM with millions or billions of parameters (Liu 048

et al., 2019; Raffel et al., 2020), and only tuning 049

adapters with very few new parameters saves on 050

memory and storage costs (§4.2), while allowing very 051

sample-efficient tuning (§4). It also stabilizes the 052

training by increasing the worst-case performance and 053

decreasing variance across the choice of examples in 054

the few shot training sets (§4.3). 055

To remove handcrafted verbalizers (with variable 056

token lengths), we introduce a new multi-token 057

fixed-length classifier scheme that learns task label 058

embeddings which are independent from the language 059

model vocabulary during fine-tuning (§3.2). We 060

show (§4) that this approach is sample efficient 061

and outperforms carefully engineered verbalizers 062

from random initialization (§4). It also allows us 063

to avoid previously used expensive auto-regressive 064

decoding schemes (Schick and Schütze, 2021b), by 065

leveraging prototypical networks (Snell et al., 2017) 066

over multiple tokens. Overall, these changes enable 067

up to 100x faster learning and inference (§4.2). 068

Overall, PERFECT has several advantages: It 069

avoids engineering patterns and verbalizers for each 070

1

new task, which can be cumbersome. Recent work071

has shown that even some intentionally irrelevant072

or misleading prompts can perform as well as more073

interpretable ones (Webson and Pavlick, 2021).074

Unlike the zero-shot or extreme few-shot case, where075

prompting might be essential, we argue in this paper076

that all you need is tens of training examples to avoid077

these challenges by adopting PERFECT or a similar078

data-efficient learning method. Experiments on a079

wide variety of NLP tasks demonstrate that PERFECT080

outperforms state-of-the-art prompt-based methods081

while being significantly more efficient in inference082

and training time, storage, and memory usage (§4.2).083

To the best of our knowledge, we are the first to084

propose a few-shot learning method with PLMs that085

successfully removes all per-task manual engineering.086

2 Background087

Problem formulation: We consider a general088

problem of fine-tuning language models in a few-shot089

setting, on a small training set with K unique classes090

and N examples per class, such that the total number091

of examples is |D|=N×K. Let D=∪K
k=1Dk be the092

given training set, where Dk={(xi
k,y

i
k)}Ni=1 shows093

the set of examples labeled with class k and yik ∈Y094

is the corresponding label, where |Y| = K. We095

additionally assume access to a development set with096

the same size as the training data. Note that larger val-097

idation sets can grant a substantial advantage (Perez098

et al., 2021), and thus it is important to use a limited099

validation size to be in line with the goal of few-shot100

learning. Unless specified otherwise, in this work, we101

use 16 training examples (N =16) and a validation102

set with 16 examples, for a total of 32-shot learning.103

2.1 Adapters104

Recent work has shown that fine-tuning all param-105

eters of PLMs with a large number of parameters106

in low-resource datasets can lead to a sub-optimal107

solution (Peters et al., 2019; Dodge et al., 2020). As108

shown in Figure 2, Rebuffi et al. (2018) and Houlsby109

et al. (2019) suggest an efficient alternative, by110

inserting small task-specific modules called adapters111

within layers of a PLMs. They then only train the112

newly added adapters and layer normalization, while113

fixing the remaining parameters of a PLM.114

Each layer of a transformer model is composed115

of two primary modules: a) an attention block,116

and b) a feed-forward block, where both modules117

are followed by a skip connection. As depicted in118

Figure 2, adapters are normally inserted after each119

of these blocks before the skip connection.120

Feed forward down
projection

Nonlinearity

Adapter Layer

Multi-head attention

Adapter

+

Transformer Layer

Layer norm

Feed forward

Adapter

+
Layer norm

Feed forward

up projection

+

Figure 2: Left: Adapter integration in a PLM. Right: An
adapter architecture. Adapters are usually inserted after the
feed-forward and self-attention modules. During training,
we only optimize the green components

Adapters are bottleneck architectures. By keeping 121

input and output dimensions the same, they introduce 122

no additional architectural changes. Each adapter, 123

A(.) ∈ RH , consists of a down-projection, D(.) ∈ 124

RH×B, a non-linearity, such as GeLU (Hendrycks and 125

Gimpel, 2016), and an up-projection U(.)∈RB×H , 126

where H is the dimension of input hidden states x, 127

and B is the bottleneck size. Formally defined as: 128

A(x)=U(GeLU(D(x)))+x, (1) 129130

2.2 Prompt-based Fine-tuning 131

Standard Fine-tuning: In standard fine-tuning 132

with PLMs (Devlin et al., 2019), first a special [CLS] 133

token is appended to the input x, and then the PLM 134

maps it to a sequence of hidden representations 135

h = (h1, ... ,hS) with hi ∈ RH , where H is the 136

hidden dimension, and S is the maximum sequence 137

length. Then, a classifier, softmax(WTh[CLS]), using 138

the embedding of the classification token (h[CLS]), 139

is trained end-to-end for each downstream task. The 140

main drawback of this approach is the discrepancy 141

between the pre-training and fine-tuning phases since 142

PLMs have been trained to predict mask tokens in a 143

masked language modeling task (Devlin et al., 2019). 144

Prompt-based tuning: To address this discrepancy, 145

prompt-based fine-tuning (Schick and Schütze, 146

2021a,b; Gao et al., 2021) formulates tasks in a cloze- 147

format (Taylor, 1953). This way, the model can predict 148

targets with a masked language modeling (MLM) 149

objective. For example, as shown in Figure 1, for a 150

sentiment classification task, inputs are converted to: 151

xprompt = [CLS] x . It was︸ ︷︷ ︸
pattern

[MASK] . [SEP] 152

2

Then, the PLM determines which verbalizer (e.g.,153

‘great’ and ‘terrible’) is the most likely substitute for154

the mask in the xprompt. This subsequently determines155

the score of targets (‘positive’ or ‘negative’). In detail:156

Training strategy: Let M :Y→V be a mapping157

from target labels to individual words in a PLM’s158

vocabulary. We refer to this mapping as verbalizers.159

Then the input is converted to xprompt = T (x) by160

appending a pattern and a mask token to x so that it161

has the format of a masked language modeling input.162

Then, the classification task is converted to a MLM163

objective (Tam et al., 2021; Schick and Schütze,164

2021a), and the PLM computes the probability of the165

label y as:166

p(y|x)=p([MASK]=M(y)|xprompt)167

=
exp(W T

M(y)h[MASK])∑
v′∈Vexp(W

T
v′h[MASK])

, (2)168

where h[MASK] is the last hidden representation of the169

mask, and Wv shows the output embedding of the170

PLM for each verbalizer v∈V. For many tasks, ver-171

balizers have multiple tokens. Schick and Schütze172

(2021b) extended (2) to multiple mask tokens by173

adding the maximum number of mask tokens M174

needed to express the outputs (verbalizers) for a task.175

In that case, Schick and Schütze (2021b) computes the176

probability of each class as the summation of the log177

probabilities of each token in the corresponding verbal-178

izer, and then they add a hinge loss to ensure a margin179

between the correct verbalizer and the incorrect ones.180

Inference strategy: During inference, the model181

needs to select which verbalizer to use in the given182

context. Schick and Schütze (2021b) predicts the183

verbalizer tokens in an autoregressive fashion. They184

first trim the number of mask tokens from M to each185

candidate verbalizer’s token length, and compute the186

probability of each mask token. They then choose187

the predicted token with the highest probability and188

replace the corresponding mask token. Conditioning189

on this new token, the probabilities of the remaining190

mask positions are recomputed. They repeat this191

autoregressive decoding until they fill all mask192

positions. This inference strategy is very slow, as the193

number of forward passes increases with the number194

of classes and the number of verbalizer’s tokens.195

This formulation obtained impressive few-shot196

performance with PLMs. However, the success of this197

approach heavily relies on engineering handcrafted198

patterns and verbalizers. Coming up with suitable199

verbalizers and patterns can be difficult (Mishra et al.,200

MASK1CLS

Multi-head Attention

Adapter

+

PL
M

 L
ay

er

Layer norm

Feed forward

+
Layer norm

Embedding Layer

SEPTOK1

Adapter

MASK

Embedding1

Hinge Loss

D
es

ire
d

La
be

ls
Es

tim
at

ed

La
be

ls

TOKN MASKM

MASK

EmbeddingM

WM

Label Embedding

W1

Input Masks

Figure 3: We remove handcrafted patterns and verbalizers.
We replace patterns using task-specific adapters and design
label embeddings for the classes. We only train the green
blocks (the label embeddings, adapters, and layer norms).

2021). Additionally, the performance is sensitive to 201

the wording of patterns (Zhao et al., 2021; Perez et al., 202

2021; Schick and Schütze, 2021a; Jiang et al., 2020) or 203

to the chosen verbalizers (Webson and Pavlick, 2021). 204

In addition, handcrafted verbalizers cause problems 205

for efficient training: a) they require updating the 206

PLM embedding layer, causing large memory 207

overhead; b) fine-tuning PLMs also requires a very 208

small learning rate (usually 10−5), which slows 209

down tuning the parameters of the verbalizers; 210

c) modeling verbalizers as one of the tokens of 211

the PLM vocabulary (perhaps unintentionally) 212

impacts the input representation during tuning; d) 213

verbalizers have variable token lengths, complicating 214

the implementation in a vectorized format, thereby 215

making it challenging to efficiently fine-tune PLMs. 216

3 Method 217

We propose PERFECT, a verbalizer and patterns-free 218

few-shot learning method. We design PERFECT to 219

be close to the pre-training phase, similar to the PET 220

family of models (Schick and Schütze, 2021b; Gao 221

et al., 2021), while replacing handcrafted patterns and 222

3

verbalizers with new components that are designed223

to describe the task and learn the labels. As shown224

in Figure 3, we first convert each input xinput to its225

masked language modeling (MLM) input containing226

M mask tokens [MASK]2 with no added patterns,227

denoted as xmasked = T ′
(xinput).3 PERFECT then228

trains a classifier per-token and optimizes the average229

multi-class hinge loss over each mask position.230

Three main components play a role in the success231

of PERFECT: a) a pattern-free task description, where232

we use task-specific adapters to efficiently tell the233

model about the given task, replacing previously234

manually engineered patterns (§3.1), b) multi-token235

label-embedding as an efficient mechanism to learn236

the label representations, removing manually designed237

verbalizers (§3.2). c) an efficient inference strategy238

building on top of the idea of prototypical networks239

(Snell et al., 2017) (§??), which replaces prior240

iterative autoregressive decoding methods (Schick241

and Schütze, 2021b).242

As shown in Figure 3, we fix the underlying PLM243

model and only optimize the new parameters that244

we add (green boxes). This includes the task-specific245

adapters to adapt the representations for a given task246

and the multi-token label representations. We detail247

each of these components below.248

3.1 Pattern-Free Task Description249

We use task-specific adapter layers to provide250

the model with learned, implicit task descriptions.251

Adapters additionally bring multiple other benefits:252

a) fine-tuning all weights of PLMs with millions or253

billions of parameters is sample-inefficient, and can254

be unstable in low-resource settings (Dodge et al.,255

2020); adapters allow sample-efficient fine-tuning, by256

keeping the underlying PLM fixed, b) adapters reduce257

the storage and memory footprints (§4.2), c) they258

also increase stability and performance (§4), making259

them an excellent choice for few-shot fine-tuning.260

To our knowledge, this is the first approach for using261

task-specific adapters to effectively and efficiently262

remove patterns in few-shot learning. Experimental263

results in §4 show its effectiveness compared to264

handcrafted patterns and soft prompts (Li and Liang,265

2021; Lester et al., 2021).266

2We discuss the general case with inserting multiple masks;
for some datasets this improves performance (§4.3.1).

3We insert mask tokens after the input string in single-
sentence benchmarks, and after the first sentence in the case
of sentence-pair datasets and encode both sentences as a single
input, which we found to perform the best (Appendix C).

3.2 Multi-Token Label Embeddings 267

We freeze the weights of the PLM’s embedding 268

layer and introduce a separate label embedding 269

L∈RK×M×H , which is a multi-token label represen- 270

tation where M is the number of tokens representing 271

each label, K indicates the number of classes, H is 272

the input hidden dimension. Using a fixed number of 273

tokens M for each label, versus variable-token length 274

verbalizers used in prior work (Schick and Schütze, 275

2021a,b) substantially simplifies the implementation 276

and accelerates the training (§4.2). 277

3.3 Training PERFECT 278

As shown in Figure 3, we optimize label embeddings 279

so that the PLM predicts the correct label, and 280

optimize adapters to adapt the PLM for the given task. 281

For label embeddings, PERFECT trains a classifier 282

per token and optimizes the average multi-class 283

hinge loss over all mask positions. Given xmasked, 284

let h[MASK]i be the embedding of its i-th mask token 285

from the last layer of the PLM encoder. Additionally, 286

let f(.) : RH → RK be a per-token classifier that 287

computes the predictions by multiplying the mask 288

token embedding with its corresponding label 289

embedding. Formally defined as: 290

ti=f(h[MASK]i)=LT
i h[MASK]i, (3) 291

292

where Li ∈ RK×H shows the label embedding for 293

the i-th mask position. Then, for each mask position, 294

we optimize a multi-class hinge loss between their 295

scores ti and labels. Formally defined as: 296

L(x,y,i)=
∑K

k=1,k≠ymax(0,m−tiy+tik)

K
, (4) 297298

where tik shows the k-th element of ti, representing 299

the score corresponding to class k, and m is the 300

margin, which we fix to the default value of m=1. 301

Then, the final loss is computed by averaging the loss 302

over all mask tokens and training samples: 303

L=
1

M |D|
∑

(x,y)∈D

M∑
i=1

L(x,y,i) (5) 304
305

3.4 Inference with PERFECT 306

During evaluation, instead of relying on the prior 307

iterative autoregressive decoding schemes (Schick 308

and Schütze, 2021b), we classify a query point by 309

finding the nearest class prototype to the mask token 310

embeddings: 311

y=argmax
y∈Y

max
i∈{1,...,M}

(
exp−d(hq

i ,ciy)
)
, (6) 312313

where d is squared euclidean distance,4 hq
i indicates 314

the embedding of the i-th mask position for the 315

4We also tried with cosine similarity but found a slight
improvement with squared Euclidean distance (Snell et al., 2017).

4

query sample q, and ciy ∈ RD is the prototype316

representation of the i-th mask token with class label317

y, i.e., the mean embedding of i-th mask position in318

all training samples with label y:319

ciy=
1

|Dy|
∑
b∈Dy

hb
i , (7)320

321

where hb
i shows the embedding of i-th mask position322

for training sample b, and Dy is the training instances323

with class y. This strategy closely follows prototypical324

networks (Snell et al., 2017), but applied across325

multiple tokens. We choose this form of inference326

because prototypical networks are known to be327

sample efficient and robust (Snell et al., 2017),328

and because it substantially speeds up evaluation329

compared to prior methods (§4.2).330

4 Experiments331

We conduct extensive experiments on a variety of332

NLP datasets to evaluate the performance of PERFECT333

and compare it with state-of-the-art few-shot learning.334

Datasets: We consider 7 tasks and 12 datasets: 1)335

the sentiment analysis datasets SST-2 (Socher et al.,336

2013), SST-5 (Socher et al., 2013), MR (Pang and337

Lee, 2005), and CR (Hu and Liu, 2004), 2) the338

subjectivity classification dataset SUBJ (Pang and339

Lee, 2004), 3) the question classification dataset340

TREC (Voorhees and Tice, 2000), 4) the natural341

language inference datasets CB (De Marneffe et al.,342

2019) and RTE (Wang et al., 2019a), 5) the question343

answering dataset QNLI (Rajpurkar et al., 2016), 6)344

the word sense disambiguation dataset WiC (Pilehvar345

and Camacho-Collados, 2019), 7) the paraphrase346

detection datasets MRPC (Dolan and Brockett, 2005)347

and QQP.5 See datasets statistics in Appendix A.348

For MR, CR, SST-5, SUBJ, and TREC, we test on349

the original test sets, while for other datasets, since test350

sets are not publicly available, we test on the original351

validation set. We sample 16 instances per label from352

the training set to form training and validation sets.353

Baselines We compare with the state-of-the-art354

few-shot learning of PET and fine-tuning:355

PET (Schick and Schütze, 2021a,b) is the state-356

of-the-art few-shot learning method that employs357

carefully crafted verbalizers and patterns. We report358

the best (PET-best) and average (PET-average) results359

among all patterns and verbalizers.6360

5https://quoradata.quora.com/
6For a controlled study, we use the MLM variant shown in

(2), which has been shown to perform the best (Tam et al., 2021).

FINETUNE The standard fine-tuning (Devlin et al., 361

2019), with adding a classifier on top of the [CLS] 362

token and fine-tuning all parameters. 363

Our method We study the performance of 364

PERFECT and perform an extensive ablation study 365

to show the effectiveness of our design choices: 366

PERFECT-rand We randomly initialize the label 367

embeddingL from a normal distributionN (0,σ)with 368

σ=10−4 (chosen based on validation performance, 369

see Appendix D) without relying on any handcrafted 370

patterns and verbalizers. As an ablation, we study 371

the following two variants: 372

PERFECT-init We initialize the label embedding 373

with the token embeddings of manually designed 374

verbalizers in the PLM’s vocabulary to study the 375

impact of engineered verbalizers. 376

PERFECT-prompt We compare using adapters 377

versus soft prompt-tuning with removing adapters and 378

appending trainable continuous prompt embeddings 379

to the input (Lester et al., 2021). Then, we only tune 380

the soft prompt and the label embedding. 381

Experimental details: We use the RoBERTa large 382

model (Liu et al., 2019) (355M parameters) as the un- 383

derlying PLM for all methods. We use the Hugging- 384

Face PyTorch implementation (Wolf et al., 2020). For 385

the baselines, we used the carefully manually designed 386

patterns and verbalizers in Gao et al. (2021), Min et al. 387

(2021), and Schick and Schütze (2021b) (usually 5 388

different options per datasets; see Appendix B). 389

We evaluate all methods using 5 different random 390

samples to create the training/validation sets and 4 391

different random seeds for training. Therefore, for 392

PET-average, we report the results on 20 x 5 (number 393

of patterns and verbalizers) = 100 runs, while for 394

PET-best and our method, we report the results over 395

20 runs. The variance in few-shot learning methods is 396

usually high (Perez et al., 2021; Zhao et al., 2021; Lu 397

et al., 2021). Therefore, we report average, worst-case 398

performance, and standard deviation across all runs, 399

where the last two values can be important for 400

risk-sensitive applications (Asri et al., 2016). 401

4.1 Experimental Results 402

Table 1 shows the performance of all methods. 403

PERFECT obtains state-of-the-art results, improving 404

the performance compared to PET-average by +1.1 405

and +4.6 points for single-sentence and sentence-pair 406

datasets respectively. It even outperforms PET-best, 407

where we report the best performance of PET across 408

multiple manually engineered patterns and verbalizers. 409

5

https://quoradata.quora.com/

Method SST-2 CR MR SST-5 Subj TREC Avg

Single-Sentence Benchmarks

FINETUNE 81.4/70.0/4.0 80.1/72.9/4.1 77.7/66.8/4.6 39.2/34.3/2.5 90.2/84.1/1.8 87.6/75.8/3.7 76.0/67.3/3.4

PET-Average 89.7/81.0/2.4 88.4/68.8/3.0 85.9/79.0/2.1 45.9/40.3/2.4 88.1/79.6/2.4 85.0/70.6/4.5 80.5/69.9/2.8

PET-Best 89.1/81.0/2.6 88.8/85.8/1.9 86.4/82.0/1.6 46.0/41.2/2.4 88.7/84.6/1.8 85.8/70.6/4.4 80.8/74.2/2.4

PERFECT-rand 90.7/88.2/1.2 90.0/85.5/1.4 86.3/81.4/1.6 42.7/35.1/2.9 89.1/82.8/2.1 90.6/81.6/3.2 81.6/75.8/2.1

Ablation

PERFECT-init 90.9/87.6/1.5 89.7/87.4/1.2 85.4/75.8/3.3 42.8/35.9/3.5 87.6/81.6/2.8 90.4/86.6/1.8 81.1/75.8/2.4

PERFECT-prompt 70.6/56.0/8.3 71.0/55.8/8.2 66.6/49.6/7.3 32.2/26.5/3.2 82.7/69.6/3.9 79.6/66.8/6.5 67.1/54.0/6.2

Method CB RTE QNLI MRPC QQP WiC Avg

Sentence-Pair Benchmarks

FINETUNE 72.9/67.9/2.5 56.8/50.2/3.5 62.7/51.4/7.0 70.1/62.7/4.7 65.0/59.8/3.6 52.4/46.1/3.7 63.3/56.4/4.2

PET-Average 86.9/73.2/5.1 60.1/49.5/4.7 66.5/55.7/6.2 62.1/38.2/6.8 63.4/44.7/7.9 51.0/46.1/2.6 65.0/51.2/5.6

PET-Best 90.0/78.6/3.9 62.3/51.3/4.5 70.5/57.9/6.4 63.4/49.3/6.5 70.7/55.2/5.8 51.6/47.2/2.3 68.1/56.6/4.9

PERFECT-rand 90.3/83.9/3.5 60.4/53.1/4.7 74.1/60.3/4.6 67.8/54.7/5.7 71.2/64.2/3.5 53.8/47.0/3.0 69.6/60.5/4.2

Ablation

PERFECT-init 87.9/75.0/4.9 60.7/52.7/4.5 72.8/56.7/6.8 65.9/56.6/6.0 71.1/65.6/3.5 51.7/46.6/2.8 68.4/58.9/4.8

PERFECT-prompt 73.0/62.5/6.1 56.9/50.7/4.1 55.4/50.2/4.6 60.0/51.5/5.8 54.3/46.2/5.6 51.3/46.7/2.8 58.5/51.3/4.8

Table 1: Performance of all methods on single-sentence and sentence-pair benchmarks. We report average/worst-case
accuracy/standard deviation. PERFECT obtains the state-of-the-art results. Bold fonts indicate the best results.

Moreover, PERFECT improves the minimum perfor-410

mance and reduces standard deviation substantially.411

Finally, PERFECT is also significantly more efficient:412

reducing the training and inference time, memory413

usage, and storage costs (see §4.2).414

PET-best improves the results over PET-average415

showing that PET is unstable to the choice of patterns416

and verbalizers; this difference is more highlighted417

for sentence-pair benchmarks. This can be because418

the position of the mask highly impacts the results,419

and patterns used in sentence-pair datasets in Schick420

and Schütze (2021b) well leverages this by putting421

the mask in multiple locations (see Appendix B).422

As an ablation, even if we initialize the label423

embedding with handcrafted verbalizers, PER-424

FECT-init consistently obtains lower performance,425

demonstrating that PERFECT is able to obtain state-of-426

the-art performance with learning from pure random427

initialization. We argue that initializing randomly428

close to zero (with low variance σ=10−4), as done429

in our case, slightly improves performance, which430

perhaps is not satisfied when initializing from the431

manually engineered verbalizers (see Appendix D).432

As a second ablation, when learning patterns433

with optimizing soft prompts in PERFECT-prompt,434

we observe high sensitivity to learning rate, as also435

confirmed in Li and Liang (2021) and Mahabadi 436

et al. (2021a). We experimented with multiple 437

learning rates but performance consistently lags 438

behind PERFECT-rand. This can be explained 439

by the low flexibility of such methods as all the 440

information regarding specifying patterns needs to be 441

contained in the prefixes. As a result, the method only 442

allows limited interaction with the rest of the model 443

parameters, and obtaining good performance requires 444

very large models (Lester et al., 2021). In addition, 445

increasing the sequence length leads to memory 446

overhead (Mahabadi et al., 2021a), and the number 447

of prompt tokens is capped by the number of tokens 448

that can fit in the maximum input length, which can 449

be a limitation for tasks requiring large contexts. 450

4.2 Efficiency Evaluation 451

In this section, we compare the efficiency of PERFECT 452

with the state-of-the-art few-shot learning method, 453

PET. To this end, we train all methods for ten epochs 454

on the 500-sampled QNLI dataset. We select the 455

largest batch size for each method that fits a fixed 456

budget of the GPU memory (40 GB). 457

Due to the auto-regressive inference strategy of 458

PET (Schick and Schütze, 2021b), every prior work 459

implemented it with a batch size of 1 (Perez et al., 460

6

Metric PET PERFECT ∆%

Trained params (M) 355.41 3.28 -99.08%
Peak memory (GB) 20.93 16.34 -21.93%
Training time (min) 23.42 0.65 -97.22%

+ PET in batch 0.94 0.65 -30.85%
Inference time (min) 9.57 0.31 -96.76%

Table 2: Percentage of trained parameters, average peak
memory, training, and inference time. ∆% is the relative
difference with respect to PET. Lower is better.

2021; Schick and Schütze, 2021b; Tam et al., 2021).461

Additionally, since PET deals with verbalizers of462

variable lengths, it is hard to implement their training463

phase in a batch mode. We specifically choose QNLI464

to have verbalizers of the same length and enable465

batching for comparison purposes (referred to as PET466

in batch). However, verbalizers are still not of the467

fixed-length for most other tasks, and this speed-up468

does not apply generally to PET.469

In Table 2, we report the percentage of trained470

parameters, memory usage of each method, training,471

and inference time. PERFECT reduces the number472

of trained parameters, and therefore the storage473

requirement, by 99.08%. It additionally reduces474

the memory requirement by 21.93% compared to475

PET. PERFECT speeds up training substantially, by476

97.22% relative to the original PET’s implementation,477

and 30.85% to our implementation of PET. This is478

because adapter-based tuning saves on memory and479

allows training with larger batch sizes. On the other480

hand, PERFECT is significantly faster during inference481

time (96.76% less inference time relative to PET).482

Overall, given the size of PLMs with millions and483

billions of parameters (Liu et al., 2019; Raffel et al.,484

2020), efficient few-shot learning methods are of485

paramount importance for practical applications. PER-486

FECT not only outperforms the state-of-the-art in terms487

of accuracy and stability (Table 1), but also is signifi-488

cantly more efficient in runtime, storage, and memory.489

4.3 Analysis490

Can task-specific adapters replace manually491

engineered patterns? PERFECT is a pattern-free492

approach and employs adapters to provide the PLMs493

with task descriptions implicitly. In this section, we494

study the contribution of replacing manual patterns495

with adapters in isolation without considering our496

other contributions in representing labels, training,497

and inference. In PET (Schick and Schütze, 2021a,b),498

we replace the handcrafted patterns with task-specific499

adapters (Pattern-Free) while keeping the verbalizers500

Dataset PET-Average Pattern-Free

SST-2 89.7/81.0/2.4 90.5/87.8/1.2
CR 88.4/68.8/3.0 89.8/87.0/1.4
MR 85.9/79.0/2.1 86.4/83.0/1.8
SST-5 45.9/40.3/2.4 44.8/40.0/2.4
SUBJ 88.1/79.6/2.4 85.3/74.7/3.8
TREC 85.0/70.6/4.5 87.9/84.6/1.8
CB 86.9/73.2/5.1 93.0/89.3/1.9
RTE 60.1/49.5/4.7 63.7/56.3/4.1
QNLI 66.5/55.7/6.2 71.3/65.8/2.5
MRPC 62.1/38.2/6.8 66.0/54.4/5.6
QQP 63.4/44.7/7.9 71.8/64.3/3.7
WiC 51.0/46.1/2.6 53.7/50.3/2.0

Avg 72.8/60.6/4.2 75.4/69.8/2.7

Table 3: Average performance of PET with five different
patterns vs. Pattern-Free that replaces handcrafted patterns
with task-specific adapters. We report the average/worst-
case performance/and the standard deviation.

and the training and inference intact7 and train it 501

with a similar setup as in §4. Table 3 shows the 502

results. While PET is very sensitive to the choice of 503

prompts, adapters provide an efficient alternative to 504

learn patterns robustly by improving the performance 505

(average and worst-case) and reducing the standard 506

deviation. This finding demonstrates that task-specific 507

adapters can effectively replace manually engineered 508

prompts. Additionally, they also save on the training 509

budget by at least 1/number of patterns (normally 510

1/5) by not requiring running the method for different 511

choices of patterns, and by freezing most parameters, 512

this saves on memory and offers additional speed-up. 513

4.3.1 Ablation Study 514

Impact of Removing Adapters To study the 515

impact of adapters in learning patterns, we remove 516

adapters, while keeping the label embedding. 517

Handcrafted patterns are not included and we 518

tune all parameters of the model. Table 4 shows 519

the results. Adding adapters for learning patterns 520

contributes to the performance by improving the 521

average performance, and making the model robust by 522

improving the minimum performance and reducing 523

the standard deviation. This is because training PLMs 524

with millions of parameters is sample-inefficient 525

and unstable on resource-limited datasets (Dodge 526

et al., 2020; Zhang et al., 2020). However, by using 527

adapters, we substantially reduce the number of 528

trainable parameters, allowing the model to be better 529

7Since we don’t have patterns, in the case of multiple sets of
verbalizers, we use the first set of verbalizers as a random choice.

7

Dataset PERFECT -Adapters

SST-2 90.7/88.2/1.2 88.2/81.9/2.3
CR 90.0/85.5/1.4 89.2/83.1/1.7
MR 86.3/81.4/1.6 82.5/78.2/2.5
SST-5 42.7/35.1/2.9 40.6/33.6/3.3
SUBJ 89.1/82.8/2.1 89.7/85.0/1.9
TREC 90.6/81.6/3.2 89.8/74.2/4.3
CB 90.3/83.9/3.5 89.6/83.9/2.8
RTE 60.4/53.1/4.7 61.7/53.8/5.1
QNLI 74.1/60.3/4.6 73.2/56.3/5.8
MRPC 67.8/54.7/5.7 68.0/54.2/6.1
QQP 71.2/64.2/3.5 71.0/62.0/3.7
WiC 53.8/47.0/3.0 52.5/46.9/3.0

Avg 75.6/68.1/3.1 74.7/66.1/3.5

Table 4: Performance of PERFECT w/o adapters, -Adapters.
We report the average performance/worst-case perfor-
mance/and the standard deviation.

tuned in a few-shot setting.530

Impact of the number of masks In Table 1, to531

compare our design with PET in isolation, we fixed532

the number of mask tokens as the maximum number533

inserted by PET. In table 5, we study the impact of534

varying the number of inserted mask tokens for a535

random selection of six tasks. For most tasks, having536

two mask tokens performs the best, while for MR and537

RTE, having one, and for MRPC, inserting ten masks538

improves the results substantially. The number of539

required masks might be correlated with the difficulty540

of tasks. PERFECT is designed to be general, enabling541

having multiple mask tokens.542

5 Related Work543

Adapter Layers: Mahabadi et al. (2021b) and544

Üstün et al. (2020) proposed to generate adapters’545

weights using hypernetworks (Ha et al., 2017), where546

Mahabadi et al. (2021b) proposed to share a small547

hypernetwork to generate conditional adapter weights548

efficiently for each transformer layer and task. Ma-549

habadi et al. (2021a) proposed compacter layers by550

building on top of ideas of parameterized hyper-551

complex layers (Zhang et al., 2021) and low-rank552

methods (Li et al., 2018; Aghajanyan et al., 2021), as553

an efficient fine-tuning method for PLMs. We are554

the first to employ adapters to replace handcrafted555

patterns for few-shot learning.556

Few-shot Learning with PLMs: Researchers con-557

tinuously tried to address the challenges of manually558

engineered patterns and verbalizers: a) Learning the559

Datasets 1 2 5 10
CR 90.1 90.2 89.0 87.8
MR 86.9 86.1 85.4 85.6
MRPC 67.4 68.2 70.1 72.3
QNLI 73.7 73.9 73.0 65.1
RTE 60.0 57.3 56.2 56.0
TREC 90.0 90.9 88.9 88.8

Avg 78.0 77.8 77.1 75.9

Table 5: Test performance for the varying number of mask
tokens. Bold fonts indicate the best results in each row.

patterns in a continuous space (Li and Liang, 2021; 560

Qin and Eisner, 2021; Lester et al., 2021), while freez- 561

ing PLM for efficiency, has the problem that, in most 562

cases, such an approach only works with very large 563

scale PLMs (Lester et al., 2021), and lags behind full 564

fine-tuning in a general setting, while being inefficient 565

and not as effective compared to adapters (Mahabadi 566

et al., 2021a). b) Optimizing patterns in a discrete 567

space (Shin et al., 2020; Jiang et al., 2020; Gao et al., 568

2021) has the problem that such methods are com- 569

putationally costly. c) Automatically finding verbal- 570

izers in a discrete way (Schick et al., 2020; Schick 571

and Schütze, 2021a) is computationally expensive and 572

does not perform as well as manually designed ones. 573

d) Removing manually designed patterns (Logan IV 574

et al., 2021) substantially lags behind the expert- 575

designed ones. Our proposed method, PERFECT, does 576

not rely on any handcrafted patterns and verbalizers. 577

6 Conclusion 578

We proposed PERFECT, a simple and efficient method 579

for few-shot learning with pre-trained language 580

models without relying on handcrafted patterns 581

and verbalizers. PERFECT employs task-specific 582

adapters to learn task descriptions implicitly, replacing 583

previous handcrafted patterns, and a continuous 584

multi-token label embedding to represent the output 585

classes. Through extensive experiments over 12 NLP 586

benchmarks, we demonstrate that PERFECT, despite 587

being far simpler and more efficient than recent 588

few-shot learning methods, produces state-of-the-art 589

results. Overall, the simplicity and effectiveness of 590

PERFECT make it a promising approach for few-shot 591

learning with PLMs. 592

References 593

Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. 594
2021. Intrinsic dimensionality explains the effectiveness 595

8

of language model fine-tuning. ACL.596

Hiba Asri, Hajar Mousannif, Hassan Al Moatassime,597
and Thomas Noel. 2016. Using machine learning598
algorithms for breast cancer risk prediction and599
diagnosis. Procedia Computer Science.600

Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro, and601
Danilo Giampiccolo. 2006. The second pascal recognis-602
ing textual entailment challenge. Second PASCAL Chal-603
lenges Workshop on Recognising Textual Entailment.604

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo605
Giampiccolo, and Bernardo Magnini. 2009. The fifth606
pascal recognizing textual entailment challenge. In TAC.607

Tom Brown, Benjamin Mann, Nick Ryder, Melanie608
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind609
Neelakantan, Pranav Shyam, Girish Sastry, Amanda610
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen611
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,612
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris613
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott614
Gray, Benjamin Chess, Jack Clark, Christopher Berner,615
Sam McCandlish, Alec Radford, Ilya Sutskever, and616
Dario Amodei. 2020. Language models are few-shot617
learners. In NeurIPS.618

Ido Dagan, Oren Glickman, and Bernardo Magnini. 2005.619
The pascal recognising textual entailment challenge. In620
Machine Learning Challenges Workshop.621

Marie-Catherine De Marneffe, Mandy Simons, and622
Judith Tonhauser. 2019. The commitmentbank:623
Investigating projection in naturally occurring discourse.624
In proceedings of Sinn und Bedeutung.625

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and626
Kristina Toutanova. 2019. BERT: Pre-training of deep627
bidirectional transformers for language understanding.628
In NAACL.629

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali630
Farhadi, Hannaneh Hajishirzi, and Noah Smith. 2020.631
Fine-tuning pretrained language models: Weight632
initializations, data orders, and early stopping. arXiv633
preprint arXiv:2002.06305.634

William B Dolan and Chris Brockett. 2005. Automatically635
constructing a corpus of sentential paraphrases. In IWP.636

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021. Making637
pre-trained language models better few-shot learners.638
ACL.639

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and640
Bill Dolan. 2007. The third PASCAL recognizing tex-641
tual entailment challenge. In ACL-PASCAL Workshop642
on Textual Entailment and Paraphrasing.643

David Ha, Andrew Dai, and Quoc V. Le. 2017. Hypernet-644
works. In ICLR.645

Dan Hendrycks and Kevin Gimpel. 2016. Gaussian error646
linear units (gelus). arXiv preprint arXiv:1606.08415.647

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 648
Bruna Morrone, Quentin De Laroussilhe, Andrea 649
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. 650
Parameter-efficient transfer learning for nlp. In ICML. 651

Minqing Hu and Bing Liu. 2004. Mining and summarizing 652
customer reviews. In SIGKDD. 653

Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham 654
Neubig. 2020. How can we know what language 655
models know? TACL. 656

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. 657
The power of scale for parameter-efficient prompt 658
tuning. EMNLP. 659

Quentin Lhoest, Albert Villanova del Moral, Patrick 660
von Platen, Thomas Wolf, Mario Šaško, Yacine 661
Jernite, Abhishek Thakur, Lewis Tunstall, Suraj Patil, 662
Mariama Drame, Julien Chaumond, Julien Plu, Joe 663
Davison, Simon Brandeis, Victor Sanh, Teven Le 664
Scao, Kevin Canwen Xu, Nicolas Patry, Steven Liu, 665
Angelina McMillan-Major, Philipp Schmid, Sylvain 666
Gugger, Nathan Raw, Sylvain Lesage, Anton Lozhkov, 667
Matthew Carrigan, Théo Matussière, Leandro von 668
Werra, Lysandre Debut, Stas Bekman, and Clément 669
Delangue. 2021a. huggingface/datasets: 1.15.1. 670

Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, 671
Abhishek Thakur, Patrick von Platen, Suraj Patil, 672
Julien Chaumond, Mariama Drame, Julien Plu, Lewis 673
Tunstall, Joe Davison, Mario Šaško, Gunjan Chhablani, 674
Bhavitvya Malik, Simon Brandeis, Teven Le Scao, 675
Victor Sanh, Canwen Xu, Nicolas Patry, Angelina 676
McMillan-Major, Philipp Schmid, Sylvain Gugger, 677
Clément Delangue, Théo Matussière, Lysandre Debut, 678
Stas Bekman, Pierric Cistac, Thibault Goehringer, 679
Victor Mustar, François Lagunas, Alexander Rush, and 680
Thomas Wolf. 2021b. Datasets: A community library 681
for natural language processing. In EMNLP. 682

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason 683
Yosinski. 2018. Measuring the intrinsic dimension of 684
objective landscapes. In ICLR. 685

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: 686
Optimizing continuous prompts for generation. arXiv 687
preprint arXiv:2101.00190. 688

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar 689
Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke 690
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A 691
robustly optimized bert pretraining approach. arXiv 692
preprint arXiv:1907.11692. 693

Robert L Logan IV, Ivana Balažević, Eric Wallace, Fabio 694
Petroni, Sameer Singh, and Sebastian Riedel. 2021. 695
Cutting down on prompts and parameters: Simple 696
few-shot learning with language models. arXiv preprint 697
arXiv:2106.13353. 698

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, 699
and Pontus Stenetorp. 2021. Fantastically ordered 700
prompts and where to find them: Overcoming 701
few-shot prompt order sensitivity. arXiv preprint 702
arXiv:2104.08786. 703

9

https://doi.org/10.5281/zenodo.5639822

Rabeeh Karimi Mahabadi, James Henderson, and704
Sebastian Ruder. 2021a. Compacter: Efficient low-rank705
hypercomplex adapter layers. In NeurIPS.706

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa707
Dehghani, and James Henderson. 2021b. Parameter-708
efficient multi-task fine-tuning for transformers via709
shared hypernetworks. In ACL.710

George A Miller. 1995. Wordnet: a lexical database for711
english. Communications of the ACM.712

Sewon Min, Mike Lewis, Hannaneh Hajishirzi, and Luke713
Zettlemoyer. 2021. Noisy channel language model714
prompting for few-shot text classification. arXiv715
preprint arXiv:2108.04106.716

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and717
Hannaneh Hajishirzi. 2021. Cross-task generalization718
via natural language crowdsourcing instructions.719

Bo Pang and Lillian Lee. 2004. A sentimental education:720
sentiment analysis using subjectivity summarization721
based on minimum cuts. In ACL.722

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting723
class relationships for sentiment categorization with724
respect to rating scales. In ACL.725

Ethan Perez, Douwe Kiela, and Kyunghyun Cho. 2021.726
True few-shot learning with language models. NeurIPS.727

Matthew E Peters, Sebastian Ruder, and Noah A Smith.728
2019. To tune or not to tune? adapting pretrained729
representations to diverse tasks. In RepL4NLP.730

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rückĺe, Cho731
Kyunghyun, and Iryna Gurevych. 2021. AdapterFusion:732
Non-destructive task composition for transfer learning.733
In EACL.734

Mohammad Taher Pilehvar and Jose Camacho-Collados.735
2019. Wic: the word-in-context dataset for evaluating736
context-sensitive meaning representations. In NAACL.737

Guanghui Qin and Jason Eisner. 2021. Learning how to ask:738
Querying lms with mixtures of soft prompts. In NAACL.739

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya740
Sutskever. 2018. Improving language understanding741
by generative pre-training.742

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,743
Dario Amodei, and Ilya Sutskever. Language models744
are unsupervised multitask learners.745

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine746
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei747
Li, and Peter J Liu. 2020. Exploring the limits of transfer748
learning with a unified text-to-text transformer. JMLR.749

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and750
Percy Liang. 2016. Squad: 100,000+ questions for751
machine comprehension of text. In EMNLP.752

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea753
Vedaldi. 2018. Efficient parametrization of multi-754
domain deep neural networks. In CVPR.755

Timo Schick, Helmut Schmid, and Hinrich Schütze. 2020. 756
Automatically identifying words that can serve as labels 757
for few-shot text classification. In COLING. 758

Timo Schick and Hinrich Schütze. 2021a. Exploiting 759
cloze-questions for few-shot text classification and 760
natural language inference. In EACL. 761

Timo Schick and Hinrich Schütze. 2021b. It’s not just size 762
that matters: Small language models are also few-shot 763
learners. In NAACL. 764

Karin Kipper Schuler. 2005. Verbnet: A broad-coverage, 765
comprehensive verb lexicon. PhD Thesis. 766

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric 767
Wallace, and Sameer Singh. 2020. Eliciting knowledge 768
from language models using automatically generated 769
prompts. In EMNLP. 770

Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Pro- 771
totypical networks for few-shot learning. In NeurIPS. 772

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, 773
Christopher D Manning, Andrew Y Ng, and Christopher 774
Potts. 2013. Recursive deep models for semantic 775
compositionality over a sentiment treebank. In EMNLP. 776

Derek Tam, Rakesh R Menon, Mohit Bansal, Shashank 777
Srivastava, and Colin Raffel. 2021. Improving and 778
simplifying pattern exploiting training. arXiv preprint 779
arXiv:2103.11955. 780

Wilson L Taylor. 1953. “cloze procedure”: A new tool for 781
measuring readability. Journalism quarterly. 782

Ahmet Üstün, Arianna Bisazza, Gosse Bouma, and Gertjan 783
van Noord. 2020. Udapter: Language adaptation for 784
truly universal dependency parsing. In EMNLP. 785

Ellen M Voorhees and Dawn M Tice. 2000. Building a 786
question answering test collection. In SIGIR. 787

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman- 788
preet Singh, Julian Michael, Felix Hill, Omer Levy, 789
and Samuel R Bowman. 2019a. Superglue: a stickier 790
benchmark for general-purpose language understanding 791
systems. In NeurIPS. 792

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, 793
Omer Levy, and Samuel R. Bowman. 2019b. GLUE: A 794
multi-task benchmark and analysis platform for natural 795
language understanding. In ICLR. 796

Albert Webson and Ellie Pavlick. 2021. Do prompt-based 797
models really understand the meaning of their prompts? 798
arXiv preprint arXiv:2109.01247. 799

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 800
Chaumond, Clement Delangue, Anthony Moi, Pierric 801
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 802
Joe Davison, Sam Shleifer, Patrick von Platen, Clara 803
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le 804
Scao, Sylvain Gugger, Mariama Drame, Quentin 805
Lhoest, and Alexander M. Rush. 2020. Transformers: 806
State-of-the-art natural language processing. In 807
EMNLP: System Demonstrations. 808

10

http://arxiv.org/abs/2104.08773
http://arxiv.org/abs/2104.08773
http://arxiv.org/abs/2104.08773

Aston Zhang, Yi Tay, SHUAI Zhang, Alvin Chan,809
Anh Tuan Luu, Siu Hui, and Jie Fu. 2021. Beyond fully-810
connected layers with quaternions: Parameterization811
of hypercomplex multiplications with 1/n parameters.812
In ICLR.813

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q Wein-814
berger, and Yoav Artzi. 2020. Revisiting few-sample815
bert fine-tuning. In ICLR.816

Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, and817
Sameer Singh. 2021. Calibrate before use: Improving818
few-shot performance of language models. ICML.819

11

Dataset Task #Train #Test K

Single-Sentence Benchmarks

MR Sentiment analysis 8662 2000 2
CR Sentiment analysis 1774 2000 2
SST-2 Sentiment analysis 6920 872 2
SST-5 Sentiment analysis 8544 2210 5
SUBJ Subjectivity classification 8000 2000 2
TREC Question classification 5452 500 6

Sentence-Pair Benchmarks

CB Natural language inference 250 56 3
RTE Natural language inference 2490 277 2
WiC Word sense disambiguation 5428 638 2
MRPC Paraphrase detection 3668 408 2
QNLI Question answering 104743 5463 2
QQP Paraphrase detection 363846 40430 2

Table 6: Statistics of datasets used in this work. We sample
N×|Y| instances (with multiple seeds) from the original
training set to form the few-shot training and validation
sets. The test column shows the size of the test set.

A Experimental Details820

Datasets Table 6 shows the stastistics of the821

datasets used. We download SST-2, MR, CR, SST-5,822

and SUBJ from Gao et al. (2021), while the rest of823

the datasets are downloaded from the HuggingFace824

Datasets library (Lhoest et al., 2021b,a). RTE, CB,825

WiC datasets are from SuperGLUE benchmark (Wang826

et al., 2019a), while QQP, MRPC and QNLI are from827

GLUE benchmark (Wang et al., 2019b) with Creative828

Commons license (CC BY 4.0). RTE (Wang et al.,829

2019a) is a combination of data from RTE1 (Dagan830

et al., 2005), RTE2 (Bar-Haim et al., 2006), RTE3 (Gi-831

ampiccolo et al., 2007), and RTE5 (Bentivogli et al.,832

2009). For WiC (Pilehvar and Camacho-Collados,833

2019) sentences are selected from VerbNet (Schuler,834

2005), WordNet (Miller, 1995), and Wiktionary.835

Computing infrastructure We run all the exper-836

iments on one NVIDIA A100 with 40G of memory.837

Training hyper-parameters We set the maximum838

sequence length based on the recommended values839

in the HuggingFace repository (Wolf et al., 2020)840

and prior work (Min et al., 2021; Schick and Schütze,841

2021b), i.e., we set it to 256 for SUBJ, CR, CB, RTE,842

and WiC, and 128 for other datasets. For all methods,843

we use a batch size of 32. For FINETUNE and PET,844

we use the default learning rate of 10−5, while for845

our method, as required by adapter-based methods846

(Mahabadi et al., 2021a), we set the learning rate to847

a higher value of 10−4.8 Through all experiments, 848

we fix the adapter bottleneck size to 64. Following 849

Pfeiffer et al. (2021), we experimented with keeping 850

one of the adapters in each layer for better training 851

efficiency and found keeping the adapter after the 852

feed-forward module in each layer to perform the best. 853

For tuning label embedding, we use the learning rate 854

of {10−1,10−2,10−3,10−4,10−5} and choose the 855

one obtaining the highest validation performance. For 856

PERFECT-prompt, we tune the continuous prompt 857

for learning rate of {10−1,10−2,10−3}.9Following 858

Lester et al. (2021), for PERFECT-prompt, we set 859

the number of prompt tokens to 20, and initialize 860

them with a random subset of the top 5000 token’s 861

embedding of the PLM. We train all methods for 862

6000 steps. Based on our results, this is sufficient to 863

allow the models to converge. We save a checkpoint 864

every 100 steps for all methods and report the results 865

for the hyper-parameters performing the best on the 866

validation set for each task. 867

B Choice of Patterns and Verbalizers 868

For SST-2, MR, CR, SST-5, and TREC, we used 869

4 different patterns and verbalizers from Gao et al. 870

(2021). For CB, WiC, RTE datasets, we used the 871

designed patterns and verbalizers in Schick and 872

Schütze (2021b). For QQP, MRPC, and QNLI, we 873

wrote the patterns and verbalizers inspired by the ones 874

in Schick and Schütze (2021b). The used patterns 875

and verbalizers are as follows: 876

• For sentiment analysis tasks (MR, CR, SST-2, 877

SST-5), given a sentence s: 878

s A <MASK> one.
879

s It was <MASK>.
880

s All in all <MASK>.
881

s A <MASK> piece.
882

with "great" as a verbalizer for positive, "terrible" 883

for negative. In case of SST-5 with five labels, 884

we expand it to "great", "good", "okay", "bad", 885

and "terrible". 886

8We have also tried to tune the baselines with the learning
rate of 10−4 but it performed worst.

9We also tried tuning prompts with learning rates of
{10−4,10−5} but it performed worst, as also observed in prior
work (Mahabadi et al., 2021a; Min et al., 2021).

12

• For SUBJ, given a sentence s:887

s This is <MASK>.
888

s It’s all <MASK>.
889

s It’s <MASK>.
890

s Is it <MASK>?
891

with "subjective" and "objective" as verbalizers.892

• For TREC, given a question q, the task is to893

classify the type of it:894

q <MASK>:
895

q Q:<MASK>:
896

q why<MASK>?
897

q Answer: <MASK>.
898

with "Description", "Entity", "Expression",899

"Human", "Location", "Number" as verbalizers900

for question types of "Description", "Entity",901

"Abbreviation", "Human", "Location", and902

"Numeric".903

• For entailment task (RTE) given a premise p904

and hypothesis h:905

"h" ? | <MASK>, "p"
906

h? | <MASK>, p
907

"h" ? | <MASK>. p
908

with "Yes" as a verbalizer for entailment, "No"909

for contradiction.910

p question: h True or False? answer: <MASK>
911

with "true" as a verbalizer for entailment, "false"912

for contradiction.913

• For entailment task (CB) given a premise p and914

a hypothesis h:915

"h" ? | <MASK>, "p"
916

h? | <MASK>, p
917

"h" ? | <MASK>. p
918

with "Yes" as a verbalizer for entailment, "No" 919

for contradiction, "Maybe" for neutral. 920

p question: h true, false or neither? answer:
<MASK>

921

with "true" as a verbalizer for entailment, "false" 922

for contradiction, "neither" for neutral. 923

• For QNLI, given a sentence s and question q: 924

s. Question: q? Answer: <MASK>.
925

with "Yes" or "true" as verbalizers for entailment 926

and "No" or "false" for not entailment. 927

s. Based on the previous sentence, q? <MASK>.
928

with "Yes" or "true" as verbalizers for entailment 929

and "No" or "false" for not entailment. 930

Based on the following sentence, q?<MASK>.s
931

with "Yes" and "No" as verbalizers for 932

entailment and not entailment respectively. 933

• For QQP, given two questions q1 and q2: 934

Do q1 and q2 have the same meaning?<MASK>.
935

with "Yes" or "true" as verbalizers for duplicate 936

and "No" or "false" for not duplicate. 937

q1. Based on the previous question, q2?
<MASK>.

938

with "Yes" or "true" as verbalizers for duplicate 939

and "No" or "false" for not duplicate. 940

Based on the following question, q1?<MASK>.q2
941

with "Yes" and "No" as verbalizers for duplicate 942

and not duplicate respectively. 943

13

• For MRPC, given two sentences s1 and s2:944

Do s1 and s2 have the same meaning?<MASK>.
945

with "Yes" or "true" as verbalizers for equivalent946

and "No" or "false" for not equivalent.947

s1. Based on the previous sentence, s2?
<MASK>.

948

with "Yes" or "true" as verbalizers for equivalent949

and "No" or "false" for not equivalent.950

Based on the following sentence,
s1?<MASK>.s2

951

with "Yes" and "No" as verbalizers for equivalent952

and not equivalent respectively.953

• For WiC, given two sentences s1 and s2 and a954

word w, the task is to classify whether w is used955

in the same sense.956

"s1" / "s2". Similar sense of "w"? <MASK>.
957

s1 s2 Does w have the same meaning in both
sentences? <MASK>

958

With "No" and "Yes" as verbalizers for False,959

and True.960

w . Sense (1) (a) "s1" (<MASK>) "s2"
961

With "2" and "b" as verbalizers for False, and962

True.963

C Impact of the Position964

of Masks in Sentence-pair Datasets965

We evaluate the impact of the position of mask tokens966

in sentence-pair benchmarks. Given two sentences s1967

and s2, we consider the following four locations for968

inserting mask tokens, where in the case of encoding969

as two sentences, input parts to the encoder are970

separated with |:971

1. s1 s2 <MASK>972

2. s1 <MASK> s2973

3. s1 | <MASK> s2974

4. s1 | s2<MASK>975

Datasets 1 2 3 4
CB 89.8 91.6 88.9 86.5
RTE 69.1 69.1 64.5 65.3
QNLI 72.0 83.3 77.7 73.1
MRPC 71.6 69.5 66.4 72.0
QQP 79.2 82.8 72.5 70.2
WiC 60.3 59.5 60.2 59.5

Avg 73.7 76.0 71.7 71.1

Table 7: Validation performance for sentence-pair
benchmarks for different locations of mask tokens. Bold
fonts indicate the best results in each row.

Datasets 10−2 10−3 10−4 10−5

CB 90.0/82.5 92.2/85.0 91.6/87.5 91.6/87.5

MRPC 69.8/56.2 70.8/56.2 69.5/56.2 70.8/56.2

QNLI 83.3/71.9 82.7/71.9 83.3/71.9 83.1/68.8

QQP 82.8/78.1 82.7/75.0 82.8/75.0 83.0/75.0

RTE 69.8/62.5 69.2/59.4 69.1/62.5 68.3/62.5

WiC 62.2/50.0 59.7/46.9 59.5/53.1 58.9/50.0

Avg 76.3/66.9 76.2/65.7 76.0/67.7 76.0/66.7

Total Avg 71.6 71.0 71.8 71.3

Table 8: Validation performance for different values of
σ. We show mean performance/worst-case performance
across 20 runs. The last row shows the average of mean
performance/worst-case performance.

Table 7 shows how the position of masks impact 976

the results. As demonstrated, pattern 2, inserting 977

mask tokens between the two sentences and encoding 978

both as a single sentence obtains the highest 979

validation performance. We use this choice in all the 980

experiments when removing handcrafted patterns. 981

D Impact of Initialization 982

We initialize the label embedding matrix with random 983

initialization from a normal distribution N (0,σ). In 984

table 8, we show the development results for different 985

values of σ. We choose the σ obtaining the highest 986

performance on average over average and worst case 987

performance, i.e., σ=10−4. 988

14

