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ABSTRACT

Understanding how large language models (LLMs) generate tokens is crucial for
enhancing their performance and interpretability. We hypothesize that cause-
effect relationships exist among candidate output tokens during next token pre-
diction in LLMs. Specifically, we propose that certain candidate output tokens—
termed “effect tokens”—are causally influenced by other candidate tokens acti-
vated in earlier layers, referred to as “cause tokens”. To test this hypothesis, we
develop a causal analysis methodology that uncovers these relationships within
open-source LLMs. We find that while cause tokens are essential for generating
effect tokens, including them in the final output can degrade model performance.
Building on these findings, we introduce a decoding algorithm that employs two
heuristics: Critical Layer Ablation (CLA), which approximates causal relation-
ships by selectively removing transformer layers and observing their impact on
token generation, and Causally-Informed Decoding (CID), which uses the rela-
tionships identified by CLA to adjust token probabilities. Specifically, CID in-
creases the probability of selecting effect tokens while decreasing that of cause
tokens during generation. Our method achieves measurable accuracy improve-
ments across various benchmark datasets, demonstrating its potential to enhance
both the controllability and performance of LLM-generated text.

1 INTRODUCTION

Large language models (LLMs) have achieved impressive performance in natural language pro-
cessing tasks, attracting significant attention from academia and industry (OpenAI, 2022; Dubey
et al., 2024). Researchers are increasingly interested in understanding the activation dynamics within
LLMs and how it influences the generation process (Edunov et al., 2019; Li et al., 2024). However,
the internal mechanisms of LLMs remain largely opaque, posing challenges for interpretability and
trustworthiness.

Previous work has investigated the dynamics of LLMs across different layers. Tenney et al. (2019)
found that different layers in an LLM serve distinct functions–early layers handle basic linguistic
information such as grammar, while later layers capture broader contextual relationships and are
thus better at reasoning. Therefore, it is possible that tokens activated1 in earlier layers differ from
those activated in later layers. Furthermore, modern LLMs consist of multiple transformer lay-
ers (Vaswani, 2017) with residual connections, which were introduced to stabilize training in deep
models (Liu et al., 2020). Each layer transforms its input into a residual “correction” that is then
added to the input. This means that tokens activated in early layers—even if they are incorrect or
suboptimal—can persist and influence the final output, possibly appearing with high probability.

This creates a fascinating paradox: tokens that appear incorrect in earlier layers may not only be
crucial stepping stones for generating accurate tokens in later layers but also persist in the final
output due to residual connections. Fig. 1 illustrates this phenomenon, where the initial token “Yes”,

1In the context of LLMs, activating a token refers to the process where a layer modifies the hidden em-
bedding, causing the token’s projected logit (i.e., the logit obtained by applying the output head directly to the
internal hidden embedding) to become prominent.
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Q:

Candidate Tokens w/ Top Logits

Wrong Answer (Misconception) Early-Exit Logit across Layers Cause-Effect Relationship

Our
Work

Cause Token:

Effect Token:

Answers w/ Other Initial Tokens

?

Was it Elon Musk who 
started Tesla Motors?

that's correct! Elon Musk 
was the co-founders of Tesla, Inc. 
(formerly Tesla Motors). In 2004, 
Musk, along with Martin Eberhard, 
Marc Tarpen, and Ian Wright, 
founded .......

Elon Musk was indeed a key player 
in the founding and development of Tesla, 
Inc., he didn't exactly 'start' the 
company......

exactly. Tesla, Inc. (formerly Tesla 
Motors) was founded in 2003 by Martin 
Eberhard and Marc Tarpen.......

great question about one of the most 
innovative entrepreneurs of our time! Yes, 
Elon Musk was one of the co-founders of 
Tesla Motors.......

on Musk was one of the co-founders of 
Tesla, Inc. (originally named Tesla 
Motors), but he didn't start the company 
on his own.......

Figure 1: A case example of the cause-effect (CE) relationship between candidate output tokens in
Llama-3.1-8B-Instruct, using a TruthfulQA question (Lin et al., 2021). The candidate token “Yes”,
while factually incorrect, exhibits a high logit value early in the LLM’s processing. In contrast, the
correct tokens, “While” and “Not”, which lead to more nuanced and accurate answers, activate in
later layers. Our analysis reveals that the activation of “While” is causally influenced by the initial
activation of “Yes”.

which leads to an incorrect answer, is activated in early layers and subsequently influences the more
nuanced token “While” in deeper layers. The final logit values of both tokens remain high.

With these insights, we hypothesize that during token generation, certain candidate output tokens
causally result from the activation of others. We term the anticedent tokens “cause tokens” and the
subsequent ones “effect tokens.” In the example of Fig. 1, “Yes” is a cause token and “While” is
an effect token. The logit values for both tokens are tracked across layers, highlighting how early
activations can influence later outputs. This example underscores the complex causal dynamics
within LLMs, where cause tokens can trigger the activation of more contextually appropriate effect
tokens in deeper layers.

We propose a novel approach to test the hypothesis that cause-effect relationships exist among can-
didate output tokens during inference. Recognizing that, due to residual connections, the trans-
formations from all layers are ultimately stacked into the final layer’s output, we simplify causal
analysis by focusing directly on this final output and constructing the causal graph based on the can-
didate output tokens themselves. This direct construction of causal graph, as elaborated in Section 3,
enables a clear and intuitive understanding of the relationships among these tokens. In contrast, pre-
vious works have often tackled the more intricate task of analyzing the causal graph across the entire
neural network.

As a second major contribution, inspired by our understanding of the causal relationships among
candidate output tokens, we propose to leverage this knowledge to enhance the decoding process.
Our aim is to guide the LLM towards selecting tokens that better align with the discovered causal
dependencies. Specifically, we propose to increase the probabilities of choosing effect tokens, while
decreasing the probabilities of choosing their corresponding cause tokens. However, directly inte-
grating full-scale causal analysis into decoding is computationally prohibitive. To address this chal-
lenge, we introduce the Critical Layer Ablation (CLA) heuristic, a method designed to efficiently
approximate causal relationships in real-time text generation scenarios.

Building upon the causal discoveries by CLA, we introduce a novel decoding algorithm, Causally-
Informed Decoding (CID). CID dynamically modifies logit values prior to sampling the output
token, incorporating causal considerations to enhance the generation process. CID significantly
improves the models’ reasoning performance under the zero-shot and zero-shot chain-of-thought
settings across multiple arithmetic benchmarks.
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2 RELATED WORK

2.1 CAUSAL ANALYSIS FOR LLM INTERPRETABILITY

The investigation of reasoning mechanism within (large) language models has garnered increasing
attention. The most pertinent series of work to ours adopted a causal analysis tool, called causal
mediation analysis (PEARL, 2001) or activation patching (Zhang & Nanda, 2024) in some context.
Causal mediation analysis detects which part of a neural network is responsible for the correct rea-
soning over a specific input sample through intervention, which corrupts the prediction by perturbing
the input and restores it by patching the activations from the clean run. This methodology was first
introduced to language modeling by Vig et al. (2020) for gender bias investigation. Following work
has then focused on its application to different tasks, including subject-verb agreement (Finlayson
et al., 2021), natural language inference (Geiger et al., 2021), indirect object identification (Wang
et al., 2022a), multiple-choice question answering (Wiegreffe et al., 2024) and syllogistic reason-
ing (Kim et al., 2024).

These prior works differ from ours in their focus on internal model representations. We, however,
shift the focus to the causal dynamics among the output tokens themselves. We acknowledge that
while analyzing activations within internal layers is intuitive, residual connections in LLMs allow
earlier activations’ causal influence to persist, impacting the final output. Therefore, we aim to
uncover cause-effect relationships directly among candidate tokens, offering a unique perspective.

2.2 LOGIT- AND DECODING-LEVEL REASONING

In addition to causal analysis, research has explored reasoning at the token and decoding levels in
LLMs. Wang et al. (2022b) proposed self-consistency checking during Chain-of-Thought decoding
to enhance coherence. Chuang et al. (2023) introduced DoLa, modifying logits by differentiating
between layers to improve text quality and diversity. These techniques, while valuable, do not
explicitly consider underlying causal relationships among tokens. Our work complements these
efforts by introducing a causally-informed decoding algorithm that leverages identified cause-effect
relationships to further enhance accuracy and faithfulness to the model’s internal reasoning. By
integrating causal analysis with token-level reasoning, we aim to bridge the gap between theoretical
understanding and practical control of LLMs, paving the way for more controllable, reliable, and
causally-grounded text generation.

2.3 ADDITIONAL RELEVANT WORKS

Rajani et al. (2019) presented an early yet impactful work on causal reasoning in language models,
emphasizing the importance of understanding cause-effect relations. Feder et al. (2021) explored
the integration of causal graphs into language models, fine-tuning deep contextualized embedding
models with auxiliary adversarial tasks. Jin et al. (2023) introduced a novel task of causal inference
in natural language, accompanied by a dataset comprising causal graphs and queries. Chen et al.
(2024) proposed a new causal evaluation framework, offering a systematic approach to assess causal
reasoning abilities.

3 CAUSAL ANALYSIS FORMULATION

We consider an LLM built with n transformer layers, focusing specifically on how it generates a
single output token given a fixed text input. Let Y = {1, 2, ...,m} represent the set of all possible
output tokens (the vocabulary), where m is the vocabulary size. Our goal is to uncover causal
relationships among elements in Y . To achieve this, we focus on analyzing the final output logits on
Y , constructing a causal graph based on the candidate output tokens themselves. We elaborate on
the details of this causal graph construction in Section 3.1.

Let e ∈ Rd be the initial embedding of the input text, where d is the hidden dimension.

Each transformer layer l = 1, 2, ..., n acts as a transformation function ∆(l) : Rd → Rd. This
function takes the input representation at layer l (the output from layer l − 1) and computes the
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change, or delta, in the representation at layer l. This delta reflects the combined impact of the
layer’s attention mechanisms and feedforward networks.

Let h(l) ∈ Rd represent the embedding of the output in the layer l, for l = 1, 2, . . . , n. In a typical
LLM setup, the final embedding of the output after the n-th layer is calculated as:

h(n) = e+

n∑
l=1

∆(l)(h(l−1)),

where h(0) = e is the initial embedding.

Let L : Rd \ {0} → Rd denote a normalization layer that takes a vector and returns its normalized
version scaled by a constant:

L(v) =
v

∥v∥2
· γ,

where γ is a scalar and ∥v∥2 is the 2-norm (Euclidean norm) of v. Let H ∈ Rm×d be the head
matrix. Then the product

H · L(h(n))

gives us the logit values for each candidate token in Y .

Past research has used intervention techniques to study how internal transformations ∆(l)(·) affect
the final output h(n). Our approach is distinct: We directly examine the causal graph on the final
logit values H · L(h(n)), without analyzing the complex individual layer contributions. This is
possible because, as shown in the equation above, the internal transformations ∆(l)(·) across all
layers l are cumulatively integrated to form h(n).

3.1 CONSTRUCTING THE MARKOV EQUIVALENCE CLASS

To uncover the causal relationships among candidate tokens Y , we construct the Markov equiv-
alence class (Spirtes et al., 2001), represented by a Completed Partially Directed Acyclic Graph
(CPDAG) (Andersson et al., 1997). A Markov equivalence class comprises causal graphs encoding
the same conditional independencies, indistinguishable based on observational data. The CPDAG
captures both directed and undirected edges, representing identifiable causal relationships and am-
biguities.

We generate observational data through deliberate perturbations, a common method in causal dis-
covery that reveals partial causal structures without interventional data. We introduce random scalars
α = {α1, α2, ..., αn}, with each αl drawn independently from a predefined distribution, to perturb
the transformations ∆(l). This controlled randomness allows us to probe the model’s behavior dur-
ing single-token generation.

Arithmetically, the output representation at layer l now becomes:

h̃(l) = h̃(l−1) + αl ·∆(l)(h̃(l−1))

with h̃(0) = e, and the final output at the n-th layer is

h̃(n) = e+

n∑
l=1

αl∆
(l)(h̃(l−1)).

For a given distribution of the random scalars, we generate k samples of h̃(n), denoted by
h̃
(n)
1 , h̃

(n)
2 , . . . , h̃

(n)
k . Multiplying these by the head matrix after applying the normalization layer

gives us a sample of logit value vectors Ŝα = {s1, s2, ..., sk}, where si ∈ Rm and

si = H · L(h̃(n)
i ) = H · h̃

(n)
i

∥h̃(n)
i ∥2

· γ.
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Table 1: Statistics of cause-effect relationships detected by the Peter-Clark algorithm at different
significance levels (P-values). ’ce (%)’ represents the percentage of candidate tokens participating
in cause-effect relationships. ’c/e’ denotes the average number of cause tokens per effect token. ’DI
(%)’ indicates the proportion of directed edges in the Markov equivalence class, reflecting the clarity
of causal directionality.

P-value 1e-4 1e-5 1e-6

ce (%) c/e DI (%) ce (%) c/e DI (%) ce (%) c/e DI (%)

Gemma-2-2B-Instruct 66.66 1.18 39.58 66.66 1.13 35.41 55.55 1.08 32.50
Llama-3.2-3B-Instruct 48.64 1.43 66.66 51.35 1.34 61.18 43.24 1.24 55.46

Yi-1.5-9B-Chat 53.00 1.22 48.84 48.63 1.20 45.36 43.71 1.15 42.18
Llama-3.1-8B-Instruct 49.02 1.28 52.56 49.67 1.26 50.40 43.18 1.21 46.42
Gemma-2-9B-Instruct 70.58 1.29 45.83 64.70 1.25 44.31 47.05 1.15 35.97
Mistral-Nemo-Instruct 52.30 1.20 46.85 40.64 1.19 45.52 34.53 1.17 43.57

We employ the Peter-Clark (PC) algorithm2 (Spirtes et al., 2001) on the sample Ŝα to infer the
Markov equivalence class represented by a CPDAG Gα. A directed edge in Gα from token i to j
signifies that i is a likely cause (cause token) of j (effect token), whereas an undirected edge suggests
an uncertain causal direction—the tokens may influence each other.

Our experiments with various LLMs on the GSM8K dataset provide insightful findings into the
causal dynamics of token generation, as detailed in Table 1. The data reveals several key observa-
tions:

• High Participation in Causal Relationships (’ce (%)’): A significant percentage of can-
didate tokens participate in cause-effect relationships across different models and P-value
thresholds, indicating substantial interdependence among tokens during generation.

• Complex Interactions (’c/e’): The average number of cause tokens per effect token sug-
gests that effect tokens are influenced by multiple cause tokens, reflecting the complexity
of token interactions in LLMs.

• Prevalence of Directed Edges (’DI (%)’): A considerable proportion of edges are di-
rected, highlighting prevalent cause-effect relationships with clear directionality among
tokens.

These observations underscore the intricate web of causal interactions among tokens in LLMs.

3.2 BIAS ANALYSIS

While the introduction of random scalars αl is crucial for our analysis, it inevitably introduces a
degree of bias. To examine this, we construct Markov equivalence classes for various distributions
of αl, progressively increasing the probability that αl will be 1 (minimal perturbation).

We apply the PC algorithm (see Appendix A for a detailed procedure) on three sets of samples
obtained by perturbing the LLM on the GSM8K dataset using Bernoulli distributions Bern(0.95),
Bern(0.90), and Bern(0.85) for the random scalars αl. We consider the cause and effect tokens
derived from Bern(0.95)—which introduces minimal perturbation and hence minimal bias—as the
approximate ground truth, and treat the results from Bern(0.90) and Bern(0.85) as predictions. The
ROC scatter plot, showing the True Positive Rate (TPR) versus the False Positive Rate (FPR)3, is
presented in Fig. 2. Our findings reveal that as the perturbation distribution concentrates around 1,
the constructed Markov equivalence classes (i.e., the discovered causal-effect token pairs) exhibit
statistical similarity. This robustness to the choice of perturbation further strengthens the validity of
our causal analysis.

2We utilize the Python package causal-learn (Zheng et al., 2024) for implementing and evaluating PC
algorithm.

3TPR measures the proportion of actual cause-effect pairs correctly identified; FPR measures the proportion
of non-causal pairs incorrectly identified.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

y = x
Llama-3.1-8B
Mistral-Nemo
Yi-1.5-9B
Gemma-2-9B
Llama-3.2-3B
Gemma-2-2B

(a) Cause: αl ∼ Bern(0.90)

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

y = x
Llama-3.1-8B
Mistral-Nemo
Yi-1.5-9B
Gemma-2-9B
Llama-3.2-3B
Gemma-2-2B

(b) Cause: αl ∼ Bern(0.85)

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

y = x
Llama-3.1-8B
Mistral-Nemo
Yi-1.5-9B
Gemma-2-9B
Llama-3.2-3B
Gemma-2-2B

(c) Effect: αl ∼ Bern(0.90)
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(d) Effect: αl ∼ Bern(0.85)

Figure 2: The ROC scatter plot for bias analysis on GSM8K, with ellipses representing confidence
regions. The CE tokens sampled from Bern(0.90) are closer to the ground truth than those from
Bern(0.85).

4 CAUSALLY-INFORMED DECODING FOR ENHANCED LANGUAGE
GENERATION

We introduce Causally-Informed Decoding (CID), a new algorithm that enhances language gener-
ation by leveraging causal relationships among the candidate output tokens. To efficiently approx-
imate these causal relationships during decoding, CID employs the novel Critical Layer Ablation
(CLA) heuristic, which we detail in the following subsection.

4.1 THE CLA HEURISTIC

The CLA heuristic efficiently approximates cause-effect relationships among candidate tokens, sig-
nificantly faster than the causal discovery algorithms used in Section 3.1. Inspired by intervention
techniques, CLA simulates variable manipulation by systematically “ablating” transformer layers
and observing the impact on token generation. The core idea is to identify the layer whose transfor-
mation has the most significant impact on the logit value of a given token. This layer is considered
“critical” for the generation of that token, and its removal can potentially reveal causal dependencies
with other tokens.

Specifically, for each token i ∈ Y among the top candidate tokens at a decoding step, we identify its
critical layer l∗i as the layer that maximizes the relative increment in its logit value:

l∗i = argmax
1≤l≤n−4

[H · L(h(l))]i − [H · L(h(l−1))]i
[H · L(h(l−1))]i

(1)

This equation quantifies the relative change in the logit value of token i caused by the transformation
at layer l. The layer with the maximum relative change is deemed critical for generating i. We
exclude the last four layers from ablation as they are crucial for producing coherent and contextually
relevant generations.
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(b) Effect Tokens.

Figure 3: ROC plot of CLA on the GSM8K.

To simulate the removal of layer l∗i , we modify the computation of the final output embedding h(n)

by simply skipping the transformation at layer l∗i . Let’s denote the resulting final output embedding
as ĥ(n)

i , defined recursively as follows:

ĥ
(l)
i =


h(l), if l < l∗i
h(l∗i −1), if l = l∗i
ĥ
(l−1)
i +∆(l)(ĥ

(l−1)
i ), if l > l∗i

(2)

If ablating this critical layer also leads to a significant drop in the logit value of another token j, it
suggests a potential causal dependency from i to j.

Algorithm 1 Critical Layer Ablation (CLA) Heuristic for Approximating Causal Relationships
Input: • The language model (LLM) and the given text input.

• d: Number of top tokens to consider (e.g., d = 5)
Output: C, the set of potential cause-effect pairs detected for the current decoding step.

1: C ← ∅
2: T ← top-d tokens based on the logit values H · L(h(n))
3: for i ∈ T do
4: Compute l∗i according to Equation 1
5: Compute ĥ

(n)
i according to Equation 2

6: T ′ ← top-d tokens based on the logit values H · L(ĥ(n)
i )

7: for j ∈ T do
8: if j /∈ T ′ then
9: C ← C ∪ {(i, j)}

10: end if
11: end for
12: end for
13: return C

4.2 EMPIRICAL VALIDATION OF CLA

To assess the efficacy of CLA in capturing genuine causal relationships, we conduct an empirical
validation, comparing the cause-effect pairs identified by CLA against the causal relationships ob-
tained from the Markov equivalence class presented in Section 3.1. We utilize the ROC scatter plot
with True Positive Rate (TPR) and False Positive Rate (FPR) to quantify the performance of CLA.
Note that TPR ensures the proportion of actual cause-effect pairs correctly identified by CLA, and
FPR measures the proportion of non-causal pairs incorrectly identified as cause-effect pairs by CLA.
As shown in Fig. 3, CLA’s predictions are statistically significant across LLMs.

7
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4.3 THE CID ALGORITHM

The CID algorithm leverages causal relationships identified by CLA to modify logits during de-
coding. CID reduces the probability of sampling cause tokens and increasing the probability of
sampling effect tokens. We expect this manipulation of the causal flow to improve the quality of the
generated text. Given an input text to the LLM, the CID heuristic operates as described in Alg. 2.

Algorithm 2 Causally-Informed Decoding (CID) for Next Token Prediction
Input: • The language model (LLM) and the input text.

• d: the number of top tokens to consider
• h: the change in logit value for cause and effect tokens

Output: t ∈ Y , the next token generated by the LLM after applying causal modifications.
1: Z← H · L(h(n))
2: C ← run CLA with parameter d
3: for (i, j) ∈ C do
4: Z[i]← Z[i]− h
5: Z[j]← Z[j] + h
6: end for
7: P← softmax(Z)
8: t← sample from P
9: return t

4.4 EXPERIMENTS

In this section, we empirically evaluate the CID algorithm. We conduct experiments across a diverse
set of language models and benchmark datasets to assess its impact on the generation quality and
logical coherence of the output text.

Models, Datasets We utilize two tiny and four small state-of-the-art and representative LLMs
to empirically test the performance of the CID algorithm, namely Gemma-2-2B-Instruct (Team
et al., 2024), Llama-3.2-3B-Instruct (Touvron et al., 2023), Gemma-2-9B-Instruct (Team et al.,
2024), Llama-3.1-8B-Instruct (Touvron et al., 2023), Yi-1.5-9B-Instruct (Young et al., 2024) and
Mistral-Nemo-Instruct Jiang et al. (2023). We conduct our experiments on four arithmetic rea-
soning datasets, namely GSM8K (Cobbe et al., 2021), MAWPS (Koncel-Kedziorski et al., 2016),
MultiArith (Roy & Roth, 2016) and SingleEq (Koncel-Kedziorski et al., 2015).

Settings We adopt two types of prompts to the LLMs, ‘Raw’ and ‘CoT’, where ‘Raw’ refers to zero-
shot question answering without additional prompts, ‘CoT’ refers to zero-shot prompt with ‘Let’s
think step by step’ (Kojima et al., 2022), which is shown to significantly increase models’ reasoning
capability. We apply two sets of hyper-parameters for the proposed CID algorithm, CID with mild
hyper-parameter ((d, h) = (2,5)) and CID+ with aggressive hyper-parameter ((d, h) = (5,10)).

Observations: Table 2 presents the accuracy results of our Causally-Informed Decoding (CID) al-
gorithm compared to the original decoding method across various language models and arithmetic
reasoning datasets. We observe substantial gains in accuracy when applying CID to the Yi-1.5-
9B-Chat, Mistral-Nemo-Instruct and Gemma-2-2b-Instruct models. For instance, on the GSM8K
dataset, accuracies are dramatically improved from 24.30% to 41.30% for Yi-1.5B-Chat and from
12.80% to 43.30% for Mistral-Nemo-Instruct. This suggests that CID is particularly effective in en-
hancing the reasoning capabilities of these models. While the improvements are less pronounced for
Llama-3.1-8B-Instruct and Llama-3.2-3B-Instruct, we still see consistent gains across all datasets.
As to Gemma-2-9B-Instruct, CID can at most maintain the performance of this model itself. Note
that the CE token prediction performance with CLA on this model is also the worst among all
models (see Fig. 3), which might explain why the effect of CID on this model is not particularly sig-
nificant. These empirical results demonstrate the effectiveness of our Causally-Informed Decoding
(CID) algorithm in enhancing the reasoning capabilities of diverse language models across various
benchmark datasets. By leveraging causal relationships extracted through the CLA heuristic, CID
guides the decoding process towards generating more logically coherent and accurate responses,
particularly in challenging reasoning scenarios.
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Table 2: Performance of the CID algorithm with different LLMs on arithmetic reasoning datasets.
‘Raw’ refers to zero-shot question-answering without additional prompts, ‘CoT’ means zero-shot
questions with the prompt ‘Let’s think step by step’. ‘CID+’ stands for CID with a more aggressive
set of hyper-parameter configuration that encourages more causal influence duing decoding.

Model Prompt Method GSM8K MAWPS MultiArith SingleEq

Gemma-2-2b-it

Raw
Orig. 16.30 57.98 11.00 69.69
CID 17.74 59.24 10.83 71.85
CID+ 36.69 61.76 50.00 77.95

CoT
Orig. 34.57 63.87 44.17 74.02
CID 24.72 65.97 51.67 74.80
CID+ 35.94 78.99 77.00 85.63

Llama-3.2-3B-Instruct

Raw
Orig. 71.11 83.19 66.50 90.35
CID 62.02 84.87 67.33 89.96
CID+ 64.97 83.61 76.17 83.56

CoT
Orig. 73.09 89.92 96.00 94.49
CID 73.84 86.55 93.67 94.69
CID+ 73.84 87.39 95.83 94.49

Gemma-2-9b-it

Raw
Orig. 87.34 92.86 98.33 92.52
CID 68.92 92.44 95.83 91.54
CID+ 79.91 87.82 92.83 87.80

CoT
Orig. 86.58 91.18 98.17 92.13
CID 86.81 91.18 98.17 92.13
CID+ 82.79 90.76 90.76 91.73

Llama-3.1-8B-Instruct

Raw
Orig. 79.38 92.44 93.00 92.52
CID 80.89 92.02 93.67 92.13
CID+ 77.86 90.76 96.50 92.72

CoT
Orig. 81.12 89.08 96.83 89.76
CID 82.34 91.18 96.83 90.55
CID+ 79.91 90.34 97.67 91.34

Yi-1.5-9B-Chat

Raw
Orig. 24.72 75.21 46.67 80.51
CID 38.13 78.15 53.33 81.69
CID+ 42.15 71.85 48.00 78.74

CoT
Orig. 83.77 93.28 97.50 94.49
CID 83.24 94.12 97.17 94.69
CID+ 82.34 92.86 96.83 94.49

Mistral-Nemo-Instruct

Raw
Orig. 13.19 67.23 28.67 79.33
CID 19.71 68.49 28.00 79.72
CID+ 45.26 71.43 48.00 84.06

CoT
Orig. 69.29 77.31 81.50 87.01
CID 64.82 76.05 83.00 87.40
CID+ 62.09 83.61 83.67 87.99

5 CONCLUSION AND LIMITATIONS

In this paper, we first hypothesize and verify the CE relationship between candidate output tokens.
Inspired by the CE relationship, we designed the CLA method to more efficiently explore the CE
connections between tokens and proposed the CID decoding algorithm to enhance the reasoning
capabilities of LLMs. Across multiple arithmetic datasets, CID significantly improved the perfor-
mance of various LLMs.
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In this work, the experiments are focused on comparatively smaller LLMs and arithmetic reasoning
datasets. Future work will explore the applicability of CID to larger LLMs (more than 70 billion
parameters) and other language generation tasks, and will investigate the factors influencing its
performance across different model architectures and dataset characteristics.
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A DETAILS OF PETER-CLARK ALGORITHM

Here, we provide more details of the Peter-Clark (PC) algorithm (Spirtes et al., 2001) and how we
apply it to our scenarios. Given the input as a tensor T ∈ Rn×k, which contains the logit value of
n candidate tokens repeatedly sampled k times. PC algorithms output a causal graph among each
candidate variable via independent tests as follows:

1. We repeatedly perturb the LLM to generate k = 1000 samples of logit values for the
candidate tokens, {s1, s2, . . . , sk}. Each time,the LLM is perturbed by applying Bernoulli
random scalars with success probability 0.95 for the layers as described in Section 3.1,
effectively removing some of the transformer layers.

2. We then apply the PC algorithm to the generated samples {s1, s2, . . . , sk} using Fisher’s z-
test for independence with a significance level of 10−4. This is done using the causal-learn
package (Zheng et al., 2024) as footnoted on page 5. The PC algorithm outputs a causal
graph between the tokens.

3. Finally we convert the source and destination tokens of each directed edge of the causal
graph to a cause-effect pair.

B EXPERIMENTS ON ADDITIONAL TASK AND COMPARISON WITH DOLA

As suggested by Reviewer LYVs, we conduct two sets of additional experiments to validate the
effectiveness of CID.

Comparison against DoLa DoLa (Chuang et al., 2023) is a new decoding strategy which modifies
token logits based on the contrasting between intermediate logits. As CID also improves decoding by
modifying token logits, it is natural to compare CID against DoLa. We apply DoLa to the Mistral-
Nemo-Instruct model across all four datasets used in Section 4.4. We adopt the recommended
settings for long-answer reasoning tasks, such as GSM8K, as suggested by the authors of DoLa:
applying DoLa to lower layers and setting the repetition penalty to 1.2 to reduce repetition.

The results, shown in Table 3, indicate that CID+ performs significantly better than DoLa with raw
prompting. When CoT is applied, DoLa outperforms CID on GSM8K, MAWPS, and MultiArith.
However, DoLa struggled on the SingleEq dataset, where CID consistently improved over the base-
line. These findings suggest that while DoLa shows strong performance in certain scenarios, CID
demonstrates greater stability across datasets.

Experiments on Social IQa We add another task, Social IQa (Sap et al., 2019), that is not arithmetic
reasoning task. We apply CID, CID+ and DoLa to Mistral-Nemo-Instruct on the Social IQa dataset
and compare with the original decoding. For DoLa, we adopt the recommended settings for short-
answer tasks suggested by the authors: applying DoLa to high layers and setting the repetition
penalty to 1.2 to reduce repetition in the generated text. The results are shown in Table 3. We can
see that CID and CID+ consistently improve over the original decoding by large gaps. CID is better
than DoLa with raw prompts and worse with CoT prompts.

Table 3: Results of apply CID/CID+ and DoLa (Chuang et al., 2023) to Mistral-Nemo-Instruct on
arithmetic reasoning datasets and Social IQa dataset (Sap et al., 2019).

Prompt Method GSM8K MAWPS MultiArith SingleEq Social IQa

Raw

Orig. 13.19 67.23 28.67 79.33 24.77
DoLa 16.00 65.13 25.50 47.91 44.93
CID 19.71 68.49 28.00 79.72 45.80

CID+ 45.26 71.43 48.00 84.06 28.30

CoT

Orig. 69.29 77.31 81.50 87.01 17.09
DoLa 77.63 84.03 95.17 46.41 44.37
CID 64.82 76.05 83.00 87.40 38.54

CID+ 62.09 83.61 83.67 87.99 24.51
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