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ABSTRACT

Robotic manipulation, owing to its multi-modal nature, often faces significant
training ambiguity, necessitating explicit instructions to clearly delineate the ma-
nipulation details in tasks. In this work, we highlight that vision instruction is nat-
urally more comprehensible to recent robotic policies than the commonly adopted
text instruction, as these policies are born with some vision understanding abil-
ity like human infants. Building on this premise and drawing inspiration from
cognitive science, we introduce the robotic imagery paradigm, which realizes
large-scale robotic data pre-training without text annotations. Additionally, we
propose the robotic gaze strategy that emulates the human eye gaze mechanism,
thereby guiding subsequent actions and focusing the attention of the policy on
the manipulated object. Leveraging these innovations, we develop VIRT, a fully
Transformer-based policy. We design comprehensive tasks using both a physical
robot and simulated environments to assess the efficacy of VIRT. The results in-
dicate that VIRT can complete very competitive tasks like “opening the lid of a
tightly sealed bottle”, and the proposed techniques boost the success rates of the
baseline policy on diverse challenging tasks from nearly 0% to more than 65%.

1 INTRODUCTION

“Seeing comes before words.” – John Berger

In robotic manipulation, a policy is trained to manipulate objects according to environment obser-
vations and task requirements Billard & Kragic (2019). The key insight that supports this work
is existing robotic policies are akin to human infants, who are born with visual perception and
reasoning abilities but do not comprehend natural language according to previous cognitive science
literature Colombo & Mitchell (2009). Specifically, visual signal serves as the primary information
source of recent robotic policies, and the backbones of these policies are pre-trained with large-scale
image datasets before the robotic data based training He et al. (2016); Oquab et al. (2024). There-
fore, the policies begin with a basic visual understanding capability like human infants. By contrast,
natural language inputs are rarely incorporated into the process of pre-training these backbones,
suggesting the lack of natural language knowledge in these policies. Moreover, bridging this knowl-
edge gap demands extensive image-text alignment training Radford et al. (2021), which is typically
impractical for developing real-time robotic policies.

Given these thoughts, we can deduce that the currently common practice of utilizing natural lan-
guage to instruct policies about task requirements (e.g., what task to do or which object to manipu-
late) is unsuitable Zitkovich et al. (2023); Kim et al. (2024b). To address this problem, we introduce
the concept of vision instruction, which involves using images to guide policies. In this work, we
concern the two main training settings in robotic manipulation learning, i.e., task-unspecified pre-
training Mees et al. (2024) and task-specified training Kim et al. (2024a). The optimization objective
of the former one is to derive a policy with general manipulation knowledge, which can then be used
as the initial model for downstream tasks. Differently, the latter setting focuses on creating a policy
model that can effectively control a robot to complete specific tasks. This work focuses on exploring
how vision instruction can be leveraged to enhance these two training settings through replacing the
original inappropriate text instructions.

Existing task-unspecified pre-training methodologies predominantly utilize task-aware training data,
which means the task content of each manipulation trajectory is known and often represented as
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(c) Complete real-robot and simulated tasks 

(a) Robotic Imagery Pre-training (RIP)

(b) Robotic Gaze Strategy (RG)

VIRTCurrent 
Observation

Vision 
Instruction

Imaginary Trajectory

VIRTCurrent 
Observation

Vision 
Instruction

Predicted Trajectory

Figure 1: In this work, we first adopt the proposed robotic imagery pre-training paradigm to pre-train
VIRT based on large-scale robotic manipulation data. Then, we fine-tune the pre-trained policy on
specific downstream tasks with the robotic gaze strategy. After these two phases of training, VIRT
is able to complete diverse challenging tasks in both real-robot and simulated environments.

language based task descriptions O’Neill et al. (2024). Nonetheless, as discussed before, without
sufficient image-text pair pre-training, policy networks fail to really understand these descriptions.
Besides, some literature indicates that a large volume of network parameters is crucial for language
understanding Achiam et al. (2023); Liu et al. (2024), whereas robotic policies often have limited
parameters due to real-time deployment constraints. Last but not least, not all data is labeled with
task descriptions, which hinders the scaling up of pre-training. To handle these limitations, we
design a novel pre-training paradigm termed robotic imagery pre-training (RIP). This approach is
inspired by the motor imagery mechanism in cognitive science, which demonstrates that imagining
actions in human brains without execution shares similar cortex with actually performing these
actions, and just practicing these actions in mind results in significant positive performance transfer
to real operations Decety (1996). Inspired by this mechanism, our proposed RIP utilizes visual
observations from the initial and final frames of manipulation trajectories to train a policy network
to mentally imagine the entire trajectory. This process, depicted in Fig. 1 (a), eliminates the need for
task descriptions and facilitates the scalability of pre-training across diverse data sources.

In task-specified training, a key challenge is the ambiguity in manipulation trajectories. For in-
stance, in a table-clearing task with multiple objects, the policy must determine which object to
grasp first. To handle this problem, vision instruction should assist in scheduling manipulation
procedures. Drawing inspiration from the gaze anchoring hypothesis Land & Hayhoe (2001) in
cognitive science, we propose a robotic gaze (RG) strategy, as illustrated in Fig. 1 (b). Specifically,
the gaze anchoring hypothesis believes that eye gaze is seeking out objects for future use and set-
ting up the operations to perform. To replicate this mechanism, we employ a lightweight detector
Wang et al. (2024) to recognize the object to manipulate at each action step. Afterwards, we crop
out the recognized object region from the image and enlarge it. The enlarged image region is fed to
the policy, guiding it in object manipulation. Notably, the enlarging image operation is non-trivial,
because robotic manipulation requires clear perception of object details. However, enhancing the
resolution of the entire image incurs a high computational cost. By contrast, resizing only the target
object region is much more efficient. This design of enlarging the concerned region in an image
mirrors human vision, where the eye perceives a small, focused area with sharp clarity while the
surrounding regions remain blurred Stewart et al. (2020).

By integrating the aforementioned techniques, we develop a fully Transformer-based policy, namely
Vision Instructed Robotic Transformer (VIRT) . VIRT utilizes image observations, historical tra-
jectories, and vision instructions to control a robot for dexterous manipulations with a rapid response
speed. We evaluate VIRT based on extensive real-robot and simulated tasks. For real-robot exper-
iments, we devise a task of pouring blueberries into a juicer cup to verify the multi-object manipu-
lation ability, a task of opening the lid of a tightly sealed bottle to validate the bimanual dexterous
manipulation precision, and a task of cleaning the plates on a table according to the online instructed
order to evaluate the instruction following capability. In simulated experiments, we build a real-time
human hand pose acquisition system to teleoperate robotic hands in Isaac Gym Makoviychuk et al.
(2021) and design several tasks of transporting and stacking color blocks following task instructions
to further analyze the characteristics of VIRT. All the experiments demonstrate the strong effec-
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tiveness of the proposed techniques, indicating superior performance compared to recent popular
methods like ACT Fu et al. (2024b) and Diffusion Policy Chi et al. (2023).

2 RELATED WORK

2.1 DEMONSTRATION LEARNING BASED ROBOTIC MANIPULATION

Robotic manipulation, defined as the capacity for robots to interact with and modify their surround-
ings, has advanced markedly due to the integration of machine learning techniques Fang et al.
(2019). Among existing methodologies, demonstration learning (also known as imitation learn-
ing or behavior cloning) has garnered significant attention for its training efficiency Zhao et al.
(2023). Demonstration learning enables robots to acquire complex manipulation skills by observing
human demonstrations, thereby bypassing the need for explicit programming of every action. The
fundamental premise of demonstration learning is that a human teacher performs a task while the
robot records the relevant data, such as sensory inputs, actions, and corresponding outcomes. This
recorded data is subsequently used to train models that allow the robot to replicate the demonstrated
behavior in similar situations Florence et al. (2022).

After continuous efforts paid by the research community, many advanced demonstration learning
based policies have been developed, and they can be broadly categorized into two groups, i.e., ex-
plicit policies Fu et al. (2024b) and implicit policies Chi et al. (2023). Among them, explicit policies
directly map environment observations to actions, and the policy output is supervised with human
demonstration trajectories by computing regression losses Fu et al. (2024a). In contrast, implicit
policies define the distributions of actions with energy-based models, where predicting the next ac-
tion is framed as identifying the manipulation trajectory with minimal energy Chi et al. (2024). This
modeling approach allows for the natural representation of multi-modal distributions of manipula-
tion trajectories, as multiple actions can simultaneously be assigned low energies. Consequently,
some studies suggest implicit policies are more advantageous for robotic manipulation learning Flo-
rence et al. (2022). Nevertheless, we contend that explicit policies offer faster response speeds due
to their simplicity, which is crucial for robotic manipulation. In addition, the iterative decoding
mechanism inherent in Transformer models is similar to the denoising process in implicit policies,
and thus can also handle the multi-modal ambiguity in robotic manipulation to some extent. Hence,
in this work, we develop a fully Transformer-based policy adopting the explicit prediction paradigm.

2.2 ROBOTIC PRE-TRAINING

Recent advancements in natural language processing and computer vision demonstrate the efficacy
of first pre-training models on large-scale data and then fine-tuning them for specific downstream
applications Achiam et al. (2023); Wang et al. (2023b). Drawing inspirations from these successes,
the robotic learning community begins to explore pre-training paradigms to enhance robotic ma-
nipulation capabilities. The principal idea behind robotic pre-training is to first expose the robotic
policy to a wide range of tasks and environments, allowing it to learn generalizable representations
for diverse robotic tasks Brohan et al. (2022). Subsequently, a fine-tuning phase on specific manip-
ulation tasks is conducted, utilizing the previously gained prior knowledge to enhance performance
and efficiency Zitkovich et al. (2023).

Pre-training a policy requires a substantial amount of data Fang et al. (2020). However, robotic ma-
nipulation data is expensive to collect. To mitigate this issue, some methods generate data through
simulated environments based on the traditional force closure estimation algorithms Wang et al.
(2023a). However, significant discrepancies in appearance and motion dynamics between simulated
and real-robot data limit the effectiveness of pre-trained policies. Some efforts employ large lan-
guage models to generate grasp positions for objects in 2D images Vuong et al. (2023), but this
approach is constrained by its two-dimensional output, whereas robotic manipulation occurs in a
three-dimensional space. Recently, collaborative efforts among various institutions have led to the
creation of large-scale datasets by merging existing data sources O’Neill et al. (2024) or collecting
new data across diverse scenarios Khazatsky et al. (2024). Thanks to these datasets, a handful of
promising pre-trained policies are derived Kim et al. (2024b). Nevertheless, robotic manipulation
trajectories remain highly ambiguous if without appropriate task instructions as prompt. Existing
pre-training algorithms predominantly use text instructions to inform the policy, which restricts the
pre-training effectiveness, as previously noted.
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2.3 ROBOTIC INSTRUCTION

Robotic manipulation learning is intrinsically a long-sequence autoregressive problem, often involv-
ing thousands of action steps within a short duration Chen et al. (2024). Therefore, a basic challenge
in manipulation lies in the ability of a policy to determine the appropriate actions based on the cur-
rent observation. This problem is especially serious if the task to perform involves multi-object
manipulation or there are many potential operation steps Shi et al. (2023). To alleviate this problem,
instructions are demanded to guide policies with task-specific information. In previous works, the
instructions are mostly represented as natural language Brohan et al. (2022); Zitkovich et al. (2023),
which is difficult to understand for policies as previously discussed. Alternatively, some researchers
have also explored voice instructions Shi et al. (2024), but voice information similarly poses learning
difficulties. By contrast, images are more readily comprehensible for policy networks, as the com-
monly adopted backbones of these networks are already pre-trained on extensive image datasets He
et al. (2016). This pre-existing visual understanding in robotic policies is akin to the innate vision
comprehension in human infants. Despite the potential of visual instructions, their applications re-
main unexplored in the context of task-unspecified pre-training and task-specified training of robotic
manipulation. Existing studies on visual instructions have primarily focused on goal images within
game-based reinforcement learning Yuan et al. (2024) and navigation Majumdar et al. (2022). This
work aims to bridge the gap in exploring visual instructions for robotic manipulation.

3 METHOD

3.1 PROBLEM FORMULATION

Robotic manipulation learning is inherently a long-sequence auto-regressive prediction problem and
can be formalized as a Markov Decision Process defined by M = (S,A,P). Here, S denotes the
set of all possible environmental states, A represents the set of possible actions by the policy, and
P indicates the transition probability distribution for transitioning to the next state given the current
state and action. At a given timestamp t, with the environment in state st ∈ S, the corresponding
observation ot of a policy π is typically a function of st, denoted as ot = f(st). This observation ot
is then used to determine the next action with respect to at ∼ π(ot), where at ∈ A. Upon executing
the action at, the environment state transitions according to st+1 ∼ P(st+1 | st, at).
To train π, we manually collect a set of demonstration data D = {(ŝit, ôit, âit) | i ∈ {1, . . . , N}, t ∈
{0, . . . , Ti}}, where N is the number of demonstrations and Ti denotes the length of the ith trajec-
tory. Ideally, we expect the actions predicted by the policy π to change environment states following
the dynamics observed in D, which means that st+1 should be akin to ŝt+1 given similar initial
states st and ŝt. Nevertheless, directly computing the loss between st+1 and ŝt+1 is infeasible due
to the non-differentiable nature of environment states. Consequently, existing methods approximate
this process through computing the loss between the predicted action at and ground truth action ât.

3.2 VIRT POLICY

In this work, we parametrize the policy π with the proposed fully Transformer-based model VIRT,
which primarily consists of 12 encoders and 3 decoders. As depicted in Fig. 2, the training of VIRT
includes two phases, task-unspecified pre-training and task-specified training. In the pre-training
phase, a vast collection of robotic manipulation videos, along with corresponding proprioception
data, is employed to pre-train a task-agnostic policy. For a sequence of T timesteps, the observations
at the first and last timestamp, denoted as o1 and oT , are input to the policy for predicting the
manipulation actions of the entire sequence {a1, a2, . . . , aT }. After this phase, the pre-trained policy
learns rich general manipulation knowledge, and the parameters of the encoders and decoders in the
pre-trained policy are utilized to initialize the policy weights in subsequent task-specific training.

During the task-specific training phase, we adopt the action chunking protocol Zhao et al. (2023)
to control the robot. Specifically, at the timestamp t, a step of image observation It and k steps of
historical prioperception measurements {pt−k+1, pt−k+2, . . . , pt} (e.g., the rotation angles, angular
velocities, and torques of robot joints) are input to π to regress the subsequent n steps of actions
{at+1, at+2, . . . , at+n} (named as an action chunk), corresponding Laplacian uncertainty values
Li et al. (2022) {σt+1, σt+2, . . . , σt+n}, and current status s. Among the attributes, {at+i}ni=1

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Robotic Imagery Pre-training

Robotic Gaze
Video Data

Action 1

Vision 
Observation

Gaze 
Region

Encoders Decoders

Vision Tokens

Encoders Decoders

Proprioception

Vision Tokens

Query Chunk
Actions

Frame 1

Frame 2

Frame 𝑇

Frame 1

Frame 𝑇
Action 𝑇

Detector

Linear

Patch 
Split

Patch 
Split

Action Head

Uncertainty

Status

Uncern Head

Status Head

Query Chunk
Proprioception Linear

Figure 2: The overall pipeline of the proposed techniques, including robotic imagery pre-training
and robotic gaze. In robotic imagery pre-training, the VIRT model is pre-trained with numerous ma-
nipulation data. Then, the weight of the pre-trained encoders and decoders is employed to initialize
the model in the task-specified training phase, and the robotic gaze is applied to this phase.

are the action chunk to perform. After completing the execution of the current action chunk, the
policy π updates its observations and predicts the next n actions. {σt+i}ni=1 represent the prediction
uncertainties of {at+i}ni=1 and are learned by minimizing the following loss:

La =
1

n

n∑
i=1

(

√
2|at+i − ât+i|

σt+i
+ log σt+i), (1)

where {ât+i}ni=1 denote the action labels collected by human demonstration. According to the for-
mulation in Eq. 1, we can observe that the learned uncertainties {σt+i}ni=1 exhibit higher values
for more ambiguous action segments. Consequently, larger {σt+i}ni=1 values result in a smaller
penalization for the discrepancies between predicted actions {at+i}ni=1 and demonstrated actions
{ât+i}ni=1. This property of {σt+i}ni=1 enables π to concentrate on more deterministic action seg-
ments, which are pivotal for successful manipulation. In addition, the predicted attribute s is a one-
hot vector indicating the current stage of manipulation in which the policy π is engaged. Specifically,
for a long-term manipulation task, the trajectory is manually segmented into multiple stages, with
each stage focusing on a specific object for π. Once the attribute s signifies the completion of the
current stage, the detector, as depicted in Fig. 2, directs π to focus on the object corresponding to
the next stage. Further details on this strategy are provided in Section 3.4.

3.3 ROBOTIC IMAGERY PRE-TRAINING

The RIP paradigm enables large-scale robotic manipulation pre-training without the demand for task
description annotations. In this paradigm, we provide the first and last timestamps of observations
in a manipulation segment to π and train π to imagine the actions within this segment. Formally, as
defined before, the observations and demonstration actions are denoted as {ot}Tt=1 (ot is the same
as ôt during training) and {ât}Tt=1 over a data sequence with T timestamps. The observations o1
and oT serve as the input to π, where o1 is the current observation and oT represents the vision
instruction. Each ot consists of two parts, the image component It and prioperception information
pt. As shown in Fig. 2, the images I0 and IT are split into uniform patches and then transformed
into vision tokens by Transformer encoders. Similarly, po and pt are encoded as tokens by a linear
projection layer. These tokens, along with n action queries, are input to the Transformer decoders to
produce n actions {at}Tt=1. The policy weights are updated by computing the L1 loss between the
predicted actions {at}Tt=1 and demonstration actions {ât}Tt=1.

As RIP eliminates the need for task-specific priors or manual annotations, it is widely applicable
to diverse robotic manipulation data. In this work, we pre-train π with Droid Khazatsky et al.
(2024), which is a large-scale in-the-wild robotic manipulation dataset with 76k trajectories. Droid
is selected due to its extensive diversity and inherent complexity, as many tasks within Droid are
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difficult to describe linguistically and lack task description annotations. Although previous works
have attempted to pre-train policies using this dataset, they find that incorporating Droid into their
pre-training paradigms harms the downstream performances Kim et al. (2024b), which implies the
great challenge behind this dataset posed by its huge task diversity and ambiguity. By contrast, RIP
only utilize vision observations and manipulation trajectories to pre-train policis, avoiding relying
on any task-specific prior. This characteristic makes RIP easier to handle the challenges posed by
ambiguous task content, thereby yielding highly effective pre-trained policy weights.

3.4 ROBOTIC GAZE

Due to the need of considering interations between multiple objects and avoiding collisions, a huge
receptive field is critical for policy design in robotic manipulation. Therefore, Transformers are ad-
vantageous due to their global receptive field. However, this comes at the cost of reduced sensitivity
to image details, which is also crucial for robotic manipulation Carion et al. (2020). In addition, this
problem is uneasy to address by simply enlarging the whole image, because doubling the width and
height of an image results in 4× of tokens, which means 16× increase in computational complex-
ity. To address this problem, we draw inspiration from the human visual system. It is found that
the fovea centralis in a human eye contains cells that differ from those in other regions Willmer &
Wright (1945). This difference makes eyes can only perceive a small region very clearly, but it helps
maintain a good balance between the processing burden of brain cortex and observation resolution.
Interestingly, this biological trait closely resembles the functionality needed in Transformers. Thus,
we design the RG algorithm to emulate this gaze mechanism,

Specifically, we employ a lightweight detector like YOLOv10 Wang et al. (2024) to recognize ob-
jects of interest. The mature state of 2D object detection allows for the easy acquisition of detectors
that meet various application demands. Detectors like YOLOv10 can run at speeds exceeding 100
frames per second on an RTX4090 GPU, resulting in minimal inference latency. However, a detec-
tor locates all concerned objects, our aim is for the policy π to concentrate on a single crucial region
for manipulation at any given moment, akin to the human eye gaze mechanism. To bridge this gap,
we divide a manipulation task into multiple stages, each corresponding to a specific object of focus.
As described in Section 3.2, the policy π is trained to predict a one-hot vector s that classifies the
current manipulation stage. With this information, the corresponding region in It to concentrate on
at the timestamp t is obtained, and this region is the vision instruction. Then, we zoom in this vision
instruction to the same resolution as It. In this way, the vision instruction is concatenated with It
into a single batch for input into the encoders, enhancing inference efficiency and enabling π to
perceive object details more clearly. Importantly, directing π to focus on a single object at a time
does not preclude the robot from manipulating multiple objects simultaneously. Similar to human
behavior, where the eyes can only gaze at one object while handling multiple, the robot can perform
concurrent operations on several objects.

In addition, as discussed in Sec. 1, this RG strategy also imitates the gaze anchoring hypothesis in
cognitive science, as the vision instruction produced by RG prompts π about which object to manip-
ulate before the actions start. It helps scheduling the operation procedures in a task. Benefiting from
this effect, RG significantly mitigates the optimization challenges inherent in long-term manipula-
tion tasks by offering π continuous feedback on task progress. Our experimental results suggest that
a naive baseline policy without RG struggles to learn to perform challenging long-term tasks, while
the policy with RG achieves high success rates.

3.5 POLICY DETAILS

In task-unspecified pre-training, the encoders of the VIRT model are initialized using the weights
of DINOv2 encoders Oquab et al. (2024), and the other components are initialized randomly. The
optimization objective of this phase is solely the L1 loss between the predicted action trajectories
{at}Tt=1 and corresponding labels {ât}Tt=1 obtained through teleoperation. During task-specified
training, the encoders and decoders of VIRT are initialized from the RIP pre-trained VIRT policy,
with the remaining modules initialized randomly, and the detector is frozen. The loss for status
prediction is a standard cross-entropy loss, denoted as Ls, contributing to a total loss function as
L = La + 100Ls. The model parameters are updated using the AdamW optimizer Loshchilov
(2017) in both training phases. The learning rate is set to 1e−5. No data augmentation is employed.
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(a) The Cobot Magic Robot (b) Robot Teleoperation
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Figure 3: Illustrations of the Cobot Magic robot and how it is teleoperated. The robot has two master
arms and two puppet arms. When collecting demonstration data, the puppet arms imitate the actions
of the master arms. In inference, the policy directly control the movements of the puppet arms.

(a) Hand Pose based Arm Control (b) Hand Pose based Gripper Control

Figure 4: Illustrations of how we teleoperate the robot in Isaac Gym. Specifically, a real-time hand
pose acquisition system is built to map the human hand pose to the joint rotations of the robot. We
utilze the orientation and translation of the palm to control the end of the robot arm and employ the
distance between the thumb and index finger to determine the opening or closing of the gripper.

4 EXPERIMENTS

This section seeks to address the following questions: (1) Does RIP pre-training substantially en-
hance task success rates? (2) Does RG effectively improve scheduling and detail perception capa-
bilities? (3) Can VIRT achieve greater precision in manipulations compared to previous policies?

4.1 EXPERIMENT PLATFORMS

Real-robot platform. We conduct experiments using the Cobot Magic robot Agilex (2024) to verify
the effectiveness of VIRT. As shown in Fig. 3 (a), the robot is integrated with four robotic arms, i.e.,
two master arms and two puppet arms. During the process of collecting the demonstration data D,
we manually control the master arms, and the puppet arms imitate the actions of the master arms
in real time. After the policy π is trained on D, it directly controls the puppet arms during the
inference stage. Three cameras are installed on the robot, which are the right camera, front camera,
and left camera, respectively. These cameras provide different observation views for π. Besides
images captured by cameras, the prioperception information, including the rotation angles, angular
velocities, and driving torques of various joints in this robot, is also available.

Simulation platform. In this work, we design simulated manipulation tasks based on Isaac Gym
Makoviychuk et al. (2021), which supports GPU-based efficient physics simulation. A Franka Panda
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Figure 5: Illustrations of the three designed real-robot tasks, which include Pour Blueberries, Open
the Lid, and Clean the Table.

step2.png

Place the box in the container.

(a) Move a Single Box (b) Transport the Specified Box

Place the purple box in the container.

(c) Stack the Specified Boxes

First Place the red box in the
container and then stack the blue box
above the red box.

Figure 6: Illustrations of the three designed simulation tasks, which include Move a Single Box,
Transport the Specified Box, and Stack the Specified Boxes.

robotic arm is deployed in each simulation environment to manipulate objects, with four cameras
strategically positioned to observe the scene from various angles, including three peripheral views
and one hand view. Unlike previous approaches that rely on manually crafted script rules for gen-
erating manipulation demonstrations Zhao et al. (2023), we build a real-time hand pose acquisition
system to teleoperate the simulated robotic arm, which better mimics the real demonstration data
distribution. Specifically, a Leap Motion Controller Ultraleap (2013), which is a binocular infrared
camera, is adopted to estimate the hand translation and orientation. This estimation is based on
traditional algorithms such as stereo depth inference Blake & Wilson (2011). Then, as shown in
Fig. 3 (b), we map the translation and orientation of the hand palm to the robot arm end-effector
position using pre-defined rules, and the joint rotation angles of the robot arm are derived based on
inverse kinematics Kucuk & Bingul (2006). The opening or closing of the robot gripper is controlled
by the distance between the thumb and index finger of the human hand for teleoperation.

4.2 TASK DESIGN

To fully evaluate the effectiveness of our proposed techniques, we design three real-robot tasks and
three simulated tasks based on the aforementioned experiment platforms.
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Table 1: Performance comparison with previous policies in real-robot tasks.
Policy PB success ↑ PB completion ↑ OL success ↑ OL completion ↑ CT success ↑ CT completion ↑ Speed ↑

ConvMLP (n = 1) 0.00 0.00 0.00 0.00 0.00 0.00 18.69
ConvMLP (n = 10) 0.00 0.02 0.00 0.06 0.00 0.05 17.54

Diffusion Policy 0.00 0.03 0.00 0.05 0.00 0.04 27.32
ACT 0.00 0.12 0.01 0.28 0.00 0.07 43.48

VIRT 0.42 0.60 0.71 0.82 0.37 0.55 39.22

Table 2: Performance comparison with previous policies in simulated tasks.
Policy MS success ↑ MS completion ↑ TS success ↑ TS completion ↑ SS success ↑ SS completion ↑

ConvMLP (n = 1) 0.00 0.00 0.00 0.00 0.00 0.00
ConvMLP (n = 10) 0.11 0.11 0.08 0.08 0.00 0.02

Diffusion Policy 0.07 0.07 0.03 0.03 0.00 0.00
ACT 0.90 0.90 0.12 0.12 0.02 0.11

VIRT 0.92 0.92 0.69 0.69 0.65 0.76

Real-robot tasks. The real-robot tasks are designed for analyzing the capabilities of VIRT from
different perspectives. As depicted in Fig. 5, the three tasks are named as Pour Blueberries, Open
the Lid, and Clean the Table, respectively. We collect 100 demonstrations of data for every task.

In the Pour Blueberries task, the robot needs to remove the juicer cup from the juicer and place it
on the table. Then, the robot picks up the plate containing blueberries and pours all blueberries into
the juicer cup. Finally, the plate is returned back to the table. This task is to measure the long-term
multi-object manipulation ability of policies, and diverse kinds of actions are required in this task.

For the Open the Lid task, the robot uses a robotic hand to hold a bottle with a tightly screwed lid.
The another hand first needs to grasp the lid. After a series of twists, the robot gradually unscrews
and removes the lid from the bottle. This task tests the dexterous manipulation capability of policies.

Within the Clean the Table task, three plates of different colors and a small cabinet are positioned
on a table. The robot is required to move the plates onto the cabinet in a color order that is ran-
domly specified during test. The orders are different among various trials. This task is to verify the
instruction following performance of policies.

Simulation tasks. The three real-robot tasks are quite challenging and some policies could get
zero success rates. To analyze these policies more sufficiently, we devise three simulation tasks of
varying difficulty levels, namely Move a Single Box, Transport the Specified Box, and Stack the
Specified Boxes. The three tasks are visualized in Fig. 6. We collect 50 demonstrations for the first
task due to its lower difficulty and 100 demonstrations for each of the other two tasks.

In Move a Single Box, the robot needs to transports the sole box on a table in a container. For Trans-
port the Specified Box, five different colors of boxes are randomly located on a table, and the robot
should move the box described by a random instruction to the container. Different from Transport
the Specified Box, two boxes are specified in Stack the Specified Boxes, and the robot is expected
to move the first box in the container and then stack the second box on the first box. Therefore, both
Transport the Specified Box and Stack the Specified Boxes test the instruction following ability, and
Stack the Specified Boxes demands better long-term operation and precise manipulation capabilities.

Evaluation metrics. The success rate of whether completing a task is the primary metric adopted by
previous works Chi et al. (2023). Nevertheless, for the tasks requiring multiple steps of operations,
this metric does not reflect the completion ratio when a policy does not fullfill a task. To bridge
this gap, we design a new metric named the completion score. For a given task comprising k steps,
the policy earns a score of i/k if it completes up to the ith step. Four of the designed tasks contain
multi-step manipulation, and they are Pour Blueberries, Open the Lid, Clean the Table, and Stack
the Specified Boxes. Refer to Appendix A.1 for details of how the steps are defined. In the following
experiments, we test each policy on every task for 100 times and report the average results.

4.3 COMPARISON WITH PREVIOUS POLICIES

In this section, we compare VIRT with existing mainstream policies, including ConvMLP Zhang
et al. (2018), Diffusion Policy Chi et al. (2023), and ACT Zhao et al. (2023). Among them, Con-
vMLP is the most commonly adopted baseline, which first extracts image feature using convolu-
tional neural network (CNN) and then regresses actions based on the extracted feature. However,
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Table 3: Ablation study on the proposed techniques.
RG enlarge RIP uncern TS success ↑ TS completion ↑ SS success ↑ SS completion ↑ OL success ↑ OL completition ↑

0.11 0.11 0.05 0.14 0.00 0.31
✓ 0.32 0.32 0.24 0.50 0.26 0.48
✓ ✓ 0.47 0.47 0.41 0.61 0.39 0.55
✓ ✓ ✓ 0.64 0.64 0.53 0.72 0.45 0.65
✓ ✓ ✓ ✓ 0.69 0.69 0.65 0.75 0.71 0.82

our experiments suggest that the manipulation performance of ConvMLP is poor. Our analysis
reveals that this is because the popular implementation of ConvMLP only supports predicting an
action chunk with the size of 1 (n = 1), resulting in inconsistent action sequences between different
predictions. To address this problem, we improve its implementation to support n = 10. In the
following, we report the results of ConvMLP with both n = 1 and n = 10. Different from Con-
vMLP, Diffusion policy decodes the action chunk through iterative denoising. ACT consists of a
CNN backbone, encoders, and decoders. Its basic architecture is similar to VIRT and can be treated
as a baseline. For the tasks needing to follow manipulation orders randomly generated in test, we
encode the text describing the manipulation order as tokens using the CLIP text encoder Radford
et al. (2021) and add the encoded tokens to the feature of the compared policies.

We compare VIRT with these policies using the designed real-robot tasks (PB: Pour Blueberries, OL:
Open the Lid, CT: Clean the Table) and simulation tasks (MS: Move a Single Box, TS: Transport
the Specified Box, SS: Stack the Specified Boxes) and report the results in Table 1 and Table 2. The
inference speeds of these policies, which are test using a RTX4090 GPU, are also presented. We
can observe that VIRT outperforms the compared polices by large margins, and the inference speeds
are also promising thanks to its efficient implementation. Besides the improvments brought by
our proposed techniques, we further investigate potential performance constraints in the compared
policies. For ConvMLP and Diffusion Policy, a critical problem is that their network heads for
predicting actions are implemented based on fully connected layers, the computation burdens of
which are quite heavy. To alleviate this problem, ConvMLP and Diffusion Policy have to compress
the image feature into smaller embedding. For example, Diffusion Policy compresses image feature
as keypoint embedding using the SpatialSoftmax module Finn et al. (2016), and this compression
causes the policy cannot receive sufficient observation information for manipulation. Differently, the
problem of ACT is its weakness in handling the ambiguity in manipulation. For example, according
to the results in Table 2, ACT achieves similar performance with VIRT in the Move a Single Box
task, where there is only a sole box in the environment. However, when we test ACT in the Transport
the Specified Box task, its results become much poorer due to the increasing ambiguity.

4.4 ABLATION STUDY

We perform an ablation study of the proposed techniques using the Transport the Specified Box
(TS), Stack the Specified Boxes (SS), and Open the Lid (OL) tasks. In these tasks, TS and SS test
the instruction following and multi-step operation capabilities of policies, and OL mainly verifies the
dexterous manipulation precision. The results are presented in Table 3. Our findings indicate that the
baseline policy, when not incorporating the proposed techniques, achieves similar performance to the
results of ACT reported in Table 1 and Table 2. Then, by incorporating the developed techniques,
the manipulation performances of VIRT are boosted significantly through addressing the unclear
observation, and deficient feature, and trajectory ambiguity problems.

5 CONCLUSION

In this work, we have demonstrated vision observations are more suitable for serving as manipulation
instructions than text descriptions. Afterwards, inspired from the human biological mechanisms, we
have proposed the RIP and RG strategies for applying vision instruction to the task-unspecified pre-
training and task-specified training in robotic manupulation learing. Based on these two strategies, a
fully Transformer-based policy VIRT has been developed. To evaluate the effectiveness of VIRT, we
have designed three real-robot tasks using the Cobot Magic robot and three simulated tasks based on
Isaac Gym. These six tasks test the manipulation capabilities of policies from different perspectives.
Our sufficient experiments suggest that VIRT have surpassed the performances of compared popular
policies by large margins and all the developed techniques are effective.
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A APPENDIX

A.1 STEP DEFINITIONS IN TASKS

In this work, we define a new metric, the completion score, to reflect the task completion ratio when
a policy fails to fulfill the whole task. In our six devised tasks, four of them include multiple steps
of operations, and the tasks are Pour Blueberries, Open the Lid, Clean the Table, and Stack the
Specified Boxes. All these tasks include three operation steps, and we explain how the three steps
are defined in these tasks as follows:

Pour Blueberries: The first step is taking the juicer cup off the juicer and placing the juicer on the
table successfully. The second step is picking up the plate containing blueberries. The third step is
pouring blueberries into the cup successfully.

Open the Lid: The first step is that the robotic hand for screwing the bottle lid grasps the lid
correctly. The second step is the robotic hand screws the lid in the correct motion. The third step is
the lid takes the lid from the bottle successfully.

Clean the Table: As there are three plates in various colors on the table, the ith step is moving the
ith specified plate on the cabinet successfully.

A.2 MANIPULATION VIDEOS

We have provided videos recording the process of the VIRT policy controls robots to complete the
six designed tasks, and the video files can be found in Supplementary Material.

A.3 CODE

We provide the source code as the file “VIRT code.zip” in Supplementary Material. The code, data,
and pre-trained policy weight will be publicly available soon.
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