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ABSTRACT

Diffusion models, a type of generative model, have demonstrated great poten-
tial for synthesizing highly detailed images. By integrating with GAN, advanced
diffusion models like DDGAN (Xiao et al., 2022) could approach real-time per-
formance for expansive practical applications. While DDGAN has effectively
addressed the challenges of generative modeling, namely producing high-quality
samples, covering different data modes, and achieving faster sampling, it re-
mains susceptible to performance drops caused by datasets that are corrupted
with outlier samples. This work introduces a robust training technique based on
semi-unbalanced optimal transport to mitigate the impact of outliers effectively.
Through comprehensive evaluations, we demonstrate that our robust diffusion
GAN (RDGAN) outperforms vanilla DDGAN in terms of the aforementioned
generative modeling criteria, i.e., image quality, mode coverage of distribution,
and inference speed, and exhibits improved robustness when dealing with both
clean and corrupted datasets.

1 INTRODUCTION

Despite their relatively recent introduction, diffusion models have experienced rapid growth and
garnered significant attention in the research community. These models effectively reverse the dif-
fusion process from Gaussian random noise inputs into clean, high-quality images. The models
have found utility across diverse data domains, with their most remarkable successes being in the
realm of image generation. Notably, diffusion models outperform state-of-the-art generative adver-
sarial networks (GANs) in terms of the quality of generated content on various datasets, as shown in
(Dhariwal & Nichol, 2021; Saharia et al., 2022). Furthermore, they exhibit superior mode coverage,
as discovered by (Song et al., 2021b; Huang et al., 2021; Kingma et al., 2021), and offer adaptabil-
ity in handling a wide range of conditional inputs, including semantic maps, text, representations,
and images, as highlighted in the work of (Rombach et al., 2022; Meng et al., 2021; Wang et al.,
2022). This flexibility has led to their application in various areas, such as text-to-image generation,
image-to-image translation, image inpainting, image restoration, and more. Recent advancements
in text-to-image generative models, based on diffusion techniques as proposed by (Ramesh et al.,
2022; Saharia et al., 2022), have enabled the generation of highly realistic images from textual in-
puts. Furthermore, personalized text-to-image diffusion models, such as (Ruiz et al., 2022; Le et al.,
2023), have found extensive applications in various real-world scenarios.

Nonetheless, despite their immense potential, diffusion models are hindered by a significant weak-
ness: their slow computational speed. This limitation prevents their widespread adoption, contrast-
ing them with GANs. The foundational Denoising Diffusion Probabilistic Models (DDPMs) by
(Ho et al., 2020) require a thousand sampling steps to attain the desired output quality, resulting in
minutes of computation for a single image generation. Although several techniques have been de-
vised to reduce inference time (Song et al., 2021a; Lu et al., 2022; Zhang & Chen, 2022), primarily
through the reduction of sampling steps, they still take seconds to generate a 32×32 image—roughly
100 times slower than GANs. Diffusion GAN (DDGAN), as introduced by (Xiao et al., 2022), has
effectively tackled the challenge of modeling complex multimodal distributions, particularly when
dealing with large step sizes, through the utilization of generative adversarial networks. This innova-
tive approach has led to a significant reduction in the number of denoising steps required, typically
just a few (e.g., 2 or 4). Consequently, inference times have been drastically reduced to mere frac-
tions of a second.
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In practice, datasets collected unintentionally inevitably contain outliers during the data collection
process. These outliers can significantly harm the performance of generative models. However,
because of the dataset’s large scale, removing these outlier samples can be a daunting and time-
consuming task. As a result, there is a strong demand for developing robust generative models that
can counteract the negative effects of noisy datasets. While DDGAN has succeeded in striking a
good balance among three crucial aspects of generative models—mode coverage, high-resolution
synthesis, and fast sampling—we have observed a notable decline in DDGAN’s performance when
it encounters noisy data containing outliers. This limitation hinders its practical application. Given
that DDGAN comprises multiple GAN models between two consecutive timesteps, we delve into
the evolution of GANs to find a solution to the noise problem. Before the diffusion era, Gener-
ative Adversarial Networks (GANs) were the dominant generative model type extensively studied
and utilized in real-world applications. Simultaneously, the application of Optimal Transport theory
(Villani, 2008), specifically Wasserstein distance, played a pivotal role in addressing key issues in
generative models. This included enhancing diversity (Arjovsky et al., 2017; Gulrajani et al., 2017),
improving convergence (Sanjabi et al., 2018), and ensuring stability (Miyato et al., 2018) in GANs.
To address the challenge posed by noisy datasets, several research efforts have incorporated Unbal-
anced Optimal Transport formulations (Chizat et al., 2018b) into the GAN, successfully reducing
the impact of outliers in image synthesis (Balaji et al., 2020; Choi et al., 2023; Nietert et al., 2022).

Inspired by the Unbalanced Optimal Transport theory (Chizat et al., 2018b), we introduced RDGAN,
which relies on semi-unbalanced optimal transport, as a solution to the noisy dataset problem. Our
approach reformulates the adversarial training process between two consecutive diffusion timesteps
based on the semi-unbalanced optimal transport formulation, thereby relaxing the strict marginal
constraints. Through extensive experiments, we demonstrate that our proposed method, RDGAN,
not only maintains a good Fréchet Inception Distance (FID) score (Heusel et al., 2017), a key metric
for assessing image quality, but also achieves rapid training convergence compared to the standard
DDGAN. Furthermore, we successfully mitigate the impact of corrupted samples present in noisy
training datasets. In summary, our research has led to several noteworthy contributions:

• Enhanced Robustness: Firstly, we’ve identified a key limitation of DDGAN when con-
fronted with noisy datasets that include outliers. To overcome this challenge, we’ve intro-
duced Robust Diffusion GAN (RDGAN), a novel approach that demonstrates remarkable
resilience under the presence of outliers.

• Superior Image Generation: Not only robust to outliers, RDGAN also generates images
at higher quality compared to the baseline DDGAN on either clean or corrupted datasets,
which is consistently confirmed via extensive experiments with both FID (Fréchet Inception
Distance) and Recall metrics.

• Improved Training Convergence: Expanding upon its image generation capabilities,
RDGAN also introduces substantial enhancements in training stability, surpassing its pre-
decessor, DDGAN. This heightened stability serves to optimize the training pipeline, ren-
dering it both more dependable and operationally efficient.

2 BACKGROUND

2.1 DIFFUSION MODELS

Diffusion models that rely on the diffusion process often take empirically thousand steps to diffuse
the original data to become a neat approximation of Gaussian noise. Let’s use x0 to denote the
true data, and xt denotes that datum after t steps of rescaling data and adding Gaussian noise. The
probability distributions of xt conditioned on xt−1 and x0 has the form

q(xt|xt−1) = N (
√

1− βtxt−1, βtI) (1)

q(xt|x0) = N (xt;
√
αtx0, (1− αt)I) (2)

where αt = 1 − βt, ᾱt =
∏t

s=1 αs, and βt ∈ (0, 1) is set to be relatively small, either through a
learnable schedule or as a fixed value at each time step in the forward process. Given that the diffu-
sion process introduces relatively minor noise with each step, we can estimate the reverse process,
denoted as q(xt−1|xt), by using a Gaussian process, specifically, q(xt−1|xt, x0), which in turn could
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be learned through a parameterized function pθ(xt−1|xt). Following (Ho et al., 2020), pθ(xt−1|xt)
is commonly parameterized as:

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t), σ
2
t I), (3)

where µθ(xt, t) and σ2
t represent the mean and variance of parameterized denoising model, respec-

tively. The learning objective is to minimize the Kullback-Leibler (KL) divergence between the true
denoising distribution q(xt−1|xt) and the denoising distribution parameterized by pθ(xt−1|xt).

Unlike traditional diffusion methods, DDGAN (Xiao et al., 2022) allows for larger denoising step
sizes to speed up the sampling process by incorporating generative adversarial networks (GANs).
DDGAN introduces a discriminator, denoted as Dϕ, and optimizes both the generator and discrimi-
nator in an adversarial training fashion. The objective of DDGAN can be expressed as follows:

min
ϕ

max
θ

∑
t≥1

Eq(xt)

{
Eq(xt−1|xt)

[
− log

(
Dϕ(xt−1,xt, t)

)]
+

Epθ(xt−1|xt)

[
log

(
Dϕ(xt−1,xt, t)

)]}
, (4)

In equation 13, fake samples are generated from a conditional generator pθ(xt−1|xt). Due to the
use of large step sizes, the distribution q(xt−1|xt) is no longer Gaussian. DDGAN addresses this by
implicitly modeling this complex multimodal distribution using a generator Gθ(xt, z, t), where z is
a D-dimensional latent variable drawn from a standard Gaussian distribution N (0, I). Specifically,
DDGAN first generates an unperturbed sample x′

0 through the generator Gθ(xt, z, t) and obtains
the corresponding perturbed sample x′

t−1 using q(xt−1|xt, x0). Simultaneously, the discriminator
evaluates both real pairs Dϕ(xt−1, xt, t) and fake pairs Dϕ(x

′
t−1, xt, t) to guide the training process.

2.2 UNBALANCED OPTIMAL TRANSPORT

In this section, we provide some background on optimal transport (OT), its unbalanced formulation
(UOT), and their applications.

Optimal Transport: Let µ and ν be two probability measures in the set of probability measures
P(X ) for space X , the OT distance between µ and ν is defined as

OT(µ, ν) = min
π∈Π(µ,ν)

∫
c(x, y)dπ(x, y), (5)

where c : X × X → [0,∞) is a cost function, Π(µ, ν) is the set of joint probability measures on
X × X which has µ and ν as marginal probability measures. The dual form of OT is

OT(µ, ν) = sup
u(x)+v(y)≤c(x,y)

[ ∫
X
u(x)dµ(x) +

∫
X
v(y)dν(y)

]
(6)

Denote vc(y) = infy∈X
{
c(x, y) = v(y)

}
to be the c-transform of v, then the dual formulation of

OT could be written in the following form

OT(µ, ν) = sup
v

[ ∫
X
vc(x)dµ(x) +

∫
X
v(y)dν(y)

]
.

Unbalanced Optimal Transport: Another version of OT introduced by (Chizat et al., 2018b) is
Unbalanced Optimal Transport (UOT) formulated as follows

UOT(µ, ν) = min
π∈M(X×X )

∫
c(x, y)dπ(x, y) + DΨ1(π1∥µ) + DΨ2(π2∥ν), (7)

where M(X × X ) denotes the set of joint non-negative measures on X × X ; π is an element of
M(X × X ), its marginal measures corresponding to µ and ν are π1 and π2, respectively; the DΨi

are often set as the Csiszár-divergence, i.e., Kullback-Leibler divergence, χ2 divergence. In contrast
to OT, the UOT does not require hard constraints on the marginal distributions, thus allowing more
flexibility to adapt to different situations. The formulation equation 7 has been applied to unbalanced
measures to find developmental trajectories of cells (Schiebinger et al., 2019). Another application
of UOT is robust optimal transport in cases when data are corrupted with outliers (Balaji et al., 2020)
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or when mini-batch samples (K.Fatras et al., 2021; Nguyen et al., 2022) are biased representation of
the data distribution. Similar to the OT, solving the UOT again could be done through its dual form
(Chizat et al., 2018b; Gallouët et al., 2021; Vacher & Vialard, 2022)

UOT(µ, ν) = sup
u(x)+v(y)≤c(x,y)

[∫
X
−Ψ∗

1(−u(x))dµ(x) +

∫
X
−Ψ∗

2(−v(y))dν(y)

]
, (8)

where u, v ∈ C(X ) in which C denotes a set of continuous functions over its domain; Ψ∗
1 and Ψ∗

2
are the convex conjugate functions of Ψ1 and Ψ2, respectively. If both function Ψ∗

1 and Ψ∗
2 are

non-decreasing and differentiable, we could next remove the condition u(x) + v(y) ≤ c(x, y) by
the c-transform for function v to obtain the semi-dual UOT form (Vacher & Vialard, 2022):

UOT(µ, ν) = sup
v∈C(X )

[ ∫
X
−Ψ∗

1

(
− vc(x)

)
dµ(x) +

∫
X
−Ψ∗

2

(
− v(y)

)
dν(y)

]
. (9)

3 METHOD

In this section, we introduce our method, starting with Denoising Diffusion GAN (DDGAN) (Xiao
et al., 2022), a hybrid approach that combines elements of GAN and Denoising Diffusion Proba-
bilistic Models. The diffusion process employed in DDGAN helps preventing mode collapse and
smoothes the data distribution, reducing the likelihood of overfitting by the discriminator. This re-
sults in improved training stability and mode coverage. However, DDGAN is susceptible to outlier
samples in noisy datasets, an issue that has been illustrated through a simple toy experiment in Fig-
ure 2. The top-left subfigure in Figure 2 highlights how DDGAN, when trained on noisy datasets,
inadvertently generates outlier samples. Remarkably, this challenge has remained unaddressed by
prior research efforts.

3.1 SEMI DUAL UOT IN AVERSARIAL TRAINING

In the GAN problem, we can parametrize the generative network Gθ : X → X as follows:

Gθ(x) ∈ arg
y∈X

inf
[
c(x, y)− v(y)

]
⇔ vc(x) = c

(
x,Gθ(x)

)
− v

(
Gθ(x)

)
(10)

and discriminative network Dϕ = v. Therefore, Equation 9 can be written as following:

UOT(µ, ν) = sup
Dϕ

[ ∫
X
Ψ∗

1

(
−
[
c
(
x,Gθ(x)

)
−Dϕ

(
Gθ(x)

)])
dµ(x) +

∫
X
Ψ∗

2

(
−Dϕ(y)

)
dν(y)

]
.

(11)

= inf
Dϕ

[ ∫
X
Ψ∗

1

(
− inf

Gθ

[
c
(
x,Gθ(x)

)
−Dϕ

(
Gθ(x)

)])
dµ(x) +

∫
X
Ψ∗

2

(
−Dϕ(y)

)
dν(y)

]
.

(12)

3.2 ROBUST DIFFUSION GAN

DDGAN training involves matching the conditional GAN generator pθ(xt−1|xt) and q(xt−1|xt)
using an adversarial loss that minimizes a divergence Dadv per denoising step.

min
θ

∑
t≥1

Eq(xt) [Dadv (q (xt−1 | xt) ∥pθ (xt−1 | xt))] . (13)

Dadv can take the form of Wasserstein distance, Jensen-Shannon divergence, or an f-divergence,
depending on the specific adversarial training setup. Equation 13 can be reformulated as a more
general optimal transport problem:

min
θ

∑
t≥1

Eq(xt) [OT (q (xt−1 | xt) , pθ (xt−1 | xt))] . (14)

As discussed in Section 2.2, Unbalanced Optimal Transport (UOT), introduced by (Chizat et al.,
2018a), offers an alternative version of OT that doesn’t necessitate rigid constraints on marginal
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distributions. Consequently, it presents a viable approach for addressing noisy datasets containing
outliers. Our approach, RDGAN, differs from the OT-based DDGAN approach, which requires
strict marginal constraints and is susceptible to outliers. Instead, we propose to formulate the corre-
sponding UOT training objective for DDGAN, hence the name RDGAN:

min
θ

∑
t≥1

Eq(xt) [UOT (q (xt−1 | xt) , pθ (xt−1 | xt))] . (15)

As RDGAN uses the same network Gθ and Dϕ as DDGAN, directly substitute the semi dual UOT
formula 12 into the DDGAN training objective Equation 4, we obtain the Training Algorithm 1:

Algorithm 1: Training Algorithm RDGAN
Input: The data distribution pdata. Non-decreasing, differentiable, convex function pair
(Ψ∗

1,Ψ
∗
2). Generator network Gθ and the discriminator network Dϕ. Total training iteration

number K. Batch size B.
for k = 0, 1, 2, . . . ,K do

Sample x0 ∼ pdata, z ∼ N (0, Id), t ∼ [1 : T ].
Sample xt ∼ p(·|x0), x̂0 = Gθ(xt, z, t), x̂t−1 ∼ p(·|x̂0, xt).

LD =
1

B
Ψ∗

1

(
− c (xt, x̂0) +Dϕ (x̂t−1, xt, t)

)
+

1

B
Ψ∗

2

(
−Dϕ (xt−1, xt, t)

)
.

Update ϕ to minimize the loss LD.

LG =
1

B

(
c (xt, x̂0)−Dϕ (x̂t−1, xt, t)

)
.

Update θ to minimize the loss LG.
end

4 EXPERIMENT

In this section, we first show that RDGAN not only maintains but also improves three critical gen-
erative modeling criteria: fast sampling, high-fidelity generation, and mode coverage, all while en-
suring stable and fast training convergence. Then we carry out extensive experiments across various
noisy dataset settings, demonstrating the heightened robustness of our RDGAN method to outliers.
Finally, we conduct ablation studies, focusing on the selection of Ψ∗

1, Ψ∗
2 and the stable performance

of RDGAN even when the ratio of outlier increases. For the experiment, we use the L2 distance as
our cost function: c(x, y) = 1

τ ||x − y||22 with the hyperparameter τ . Details of all experiments and
evaluations can be found in Appendix A.

4.1 THREE KEY EVALUATION CRITERIA FOR GENERATIVE MODELS

We assessed the performance of our RDGAN technique on two distinct datasets: CIFAR-10 (32×32)
(Krizhevsky, 2012), and STL-10 (64 × 64) (Coates et al., 2011) for image synthesis tasks. To
gauge the effectiveness of our approach, we utilized two widely recognized metrics, namely FID
(Heusel et al., 2017) and Recall (Kynkäänniemi et al., 2019). As shown in Table 1, RDGAN attains
a notably lower FID score of 3.53, in contrast to the baseline method DDGAN, which registers
a FID score of 3.75. Furthermore, the recall score for RDGAN remains stable at 0.56, closely
approximating DDGAN’s recall score of 0.57. Turning our attention to the STL-10 dataset, Table
2 illustrates a substantial improvement in FID for RDGAN compared to DDGAN. Specifically,
RDGAN achieves a remarkable FID score of 16.20, approximately 5 points lower than DDGAN’s
score of 21.79. Additionally, our method secures a higher recall score of 0.44, surpassing DDGAN’s
score of 0.40. In summary, our proposed RDGAN method outperforms the baseline DDGAN in
high-fidelity image generation. In Figure 3, we demonstrate that RDGAN converges much faster
than DDGAN. By epoch 400, RDGAN achieves an FID of less than 20, while DDGAN’s FID
remains above 100. For a visual representation of our results, please refer to Figure 1. Furthermore,
the recall score of RDGAN is either better or equal to that of DDGAN, indicating that our method
exhibits robust mode coverage. For a fair comparison, the architecture and hyperparameters used to
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train RDGAN and DDGAN are identical. The sole distinction lies in our semi-dual UOT objective
function, ensuring that the fast sampling time of DDGAN is preserved in RDGAN.

Model FID↓ Recall↑ NFE↓
Our 3.53 0.56 4
WaveDiff (Phung et al., 2023) 4.01 0.55 4
DDGAN (Xiao et al., 2022) 3.75 0.57 4

DDPM (Ho et al., 2020) 3.21 0.57 1000
DDIM (Song et al., 2021a) 4.67 0.53 50
Recovery EBM (Gao et al., 2021) 9.58 - 180

StyleGAN2 (Karras et al., 2020b) 8.32 0.41 1
NVAE (Vahdat & Kautz, 2020) 23.5 0.51 1

Table 1: Quantitative results on CIFAR-10 32× 32

(a) STL-10 (b) CIFAR-10

Figure 1: Qualitative results of RDGAN on 2 datasets STL-10 and CIFAR-10.

Model FID↓ Recall↑
Our 16.20 0.44
DDGAN (Xiao et al., 2022) 21.79 0.40

TransGAN (Jiang et al., 2021) 18.28 -
SNGAN (Miyato et al., 2018) 40.1 -
StyGAN2+ADA (Karras et al., 2020a) 13.72 0.36
StyGAN2+Aug(Karras et al., 2020a) 12.97 0.39

Table 2: Quantitative performance of RDGAN on
STL-10 64× 64. RDGAN surpasses DDGAN at both
metric FID and Recall. StyGAN is StyleGAN.

Table 3: Comparison of the train-
ing convergence on STL-10 between
DDGAN and RDGAN

4.2 ROBUSTNESS GENERATION

To demonstrate the effectiveness of our RDGAN method on noisy datasets, we initially compare
the generated density obtained by training RDGAN and DDGAN techniques with the ground truth
target density on a toy dataset. As illustrated in Figure 2, we visually observe that RDGAN ex-
clusively generates new data points that align with the clean mode on the right, whereas DDGAN
produces outlier data scattered between the two modes. This experiment highlights the vulnerabil-
ity of DDGAN to outliers and underscores the superior reliability of our RDGAN method in noisy
training datasets.
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Figure 2: Outlier Robustness on Toy Dataset with 5% outliers. The toy dataset is a mixture
of two gaussians N (1, 0.1) (clean dataset), N (−1, 0.05) (outlier dataset) with the mixture rate is
(0.95, 0.05). In the first row, subplots compare target and generated densities between DDGAN and
RDGAN. Left: DDGAN; Right: RDGAN. The second row showcases partial timestep RDGAN
results. From left to right, semi dual UOT loss is applied to the first 1, 2, 3 timesteps, and then to all
timesteps.

Figure 3: From left to right is corresponding to CE+FT, CE+MT and CE+CH dataset. Top:
DDGAN, Bottom: RDGAN. For the dataset CI+MT, please refer to the second column Figure 4.
The red boxes indicate the synthesized outliers among the clean synthesized samples.

Furthermore, we conducted experiments with RDGAN on various high-dimensional datasets per-
turbed with diverse noise types, mirroring real-world applications to validate its robustness in han-
dling noisy datasets. As shown in Table 4, we trained both RDGAN and DDGAN in scenarios
where there is a 5% outlier presence in noisy datasets. Since the resolution of clean and outlier
datasets might be different, we rescaled the clean and outlier datasets to the same resolution, with
CI+MI at 32×32 resolution and the other three datasets (CE+FT, CE+MT, and CE+CH) at 64×64.
The results in Table 4 demonstrate that RDGAN significantly outperforms DDGAN across all noisy
datasets. For instance, on the CI+MT dataset, RDGAN surpasses DDGAN by more than 4 points
in the FID score. Our technique proves effective with various outlier datasets, as evidenced by
CE+FT, CE+MT, and CE+CH, where we keep the same clean dataset and change the outlier dataset.
We observe that both FT and MT, despite being grayscale and visually distinct from CE, perform
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CI+MT CE+FT CE+MT CE+CH

RDGAN 4.42 7.89 9.29 7.86
DDGAN 8.81 10.68 12.95 9.83

Table 4: We performed a FID comparison between DDGAN and RDGAN on four noisy datasets. In
the table, we use abbreviated dataset names: CI (CIFAR-10 32× 32), CE (CelebHQ 64× 64), MT
(MNIST-10 28× 28), FT (FASHION MNIST 28× 28), and CH (LSUN CHURCH 64× 64). Each
noisy dataset includes a 5% outlier perturbation. For example, CI+MI represents CIFAR-10 with a
5% MNIST outlier where the outlier images are scaled to have the same size as the clean data.

well with our method, with an FID gap of around 3 points when compared with the corresponding
DDGAN model. Notably, even though the CH dataset comprises RGB images and bears great sim-
ilarity to CE, our RDGAN effectively learns to automatically eliminate outliers, achieving a 2-point
lower FID score than DDGAN. This demonstrates RDGAN’s capability to discriminate between
two datasets in the same RGB domain, which has not previously been reported by other robust gen-
erative works (Balaji et al., 2020; Le et al., 2021; Choi et al., 2023). For the qualitative result of the
experiment in Table 4 , refer to the Figure 3.

4.3 ABLATION STUDIES

4.3.1 CHOICE OF Ψ∗
1 AND Ψ∗

2

Given that we set DΨi
as Csiszár-divergences, commonly used functions like KL and χ2 were tested

as choices for Ψ1 and Ψ2 in RDGAN. However, using KL as Ψi led to infinite loss during RDGAN
training, even with meticulous hyperparameter tuning, likely due to the exponential convex conju-
gate form of KL (refer to Appendix B). For χ2 as Ψi, the first row of Table 5 reveals that RDGAN
with χ2 achieved an FID score of 5.04, outperforming DDGAN’s FID of 8.81 on CIFAR-10 with
5% outlier MNIST. While RDGAN with χ2 excels with noisy datasets containing outliers, its perfor-
mance lags behind DDGAN on clean datasets. Inspired by prior works such as (Miyato et al., 2018;
Xiao et al., 2022), which employ the softplus function instead of other divergences, we conducted
RDGAN experiments with Ψ∗

i = Softplus. Interestingly, this approach proved highly effective,
surpassing both DDGAN and RDGAN with χ2 on both clean and noisy datasets.

Figure 4: From left to right is corresponding to 3%, 5%, 7% and 10% MNIST outlier in noisy
CIFAR-10 dataset. The first row is the DDGAN and the second row is the RDGAN. The red boxes
indicate the synthesized outliers among the clean synthesized samples.
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Ψ∗
1 Ψ∗

2 FID (clean) ↓ FID (5%) ↓
χ2 χ2 3.93 5.04

softplus softplus 3.53 4.82
None None 3.75 8.81

Table 5: The choice of Ψ∗
1 and Ψ∗

2. The FID (clean) and FID (5%) are computed FID on clean
CIFAR-10 and CIFAR10 with 5% MNIST outlier. The last row in the table is the DDGAN

Outlier Ratio FID

Perturbed DDGAN RDGAN DDGAN RDGAN

3% 3.2% 0.2% 4.76 3.89
5% 4.1% 1.7% 8.81 4.82
7% 6.9% 2.3% 9.55 5.17
10% 9.8% 3.8% 14.77 6.09

Table 6: Synthesized Outlier Ratios (Left) and FID Scores
(Right) for DDGAN and RDGAN. Rows indicate outlier
percentages in noisy training data (3%, 5%, 7%, and 10%)
from top to bottom.

Figure 5: We plot the FID compari-
son between RDGAN and DDGAN
on CIFAR-10 data perturbed by
MNIST.

4.3.2 PERTURBATION RATIO

As shown in Table 6 and Figure 5, RDGAN consistently maintains strong performance even as
the outlier percentage in noisy datasets increases. While the perturbed ratio in the training dataset
escalates from 3% to 10%, RDGAN’s FID only increases by around 2 points. In contrast, DDGAN’s
FID increases by more than 10 points, and the synthesized outlier ratio of RDGAN rises from 0.2%
to 3.8% compared to DDGAN’s increase from 3.2% to 9.8%.

4.3.3 PARTIAL TIMESTEP RDGAN

As DDGAN comprises multiple diffusion steps which are trained with adversarial networks, and
RDGAN introduces the semi-dual UOT loss in place of the traditional GAN loss, a natural ques-
tion arises: How well does RDGAN perform when only partially applying the proposed loss
within the DDGAN framework? Referring to Figure 2, it becomes evident that the performance
of RDGAN with partial timesteps falls behind that of RDGAN with all timesteps, referred to simply
as “RDGAN” in other sections of this paper. This discrepancy may be attributed to the fact that
RDGAN has demonstrated the ability to either maintain or surpass DDGAN performance on both
clean and perturbed images, making full-timestep RDGAN the superior choice over partial-timestep
RDGAN.

5 CONCLUSION

In this paper, we have highlighted the limitations of the DDGAN model when faced with noisy
datasets containing outliers. To address this issue, we have introduced the RDGAN technique, which
incorporates Semi Dual Unbalanced Optimal Transport into the DDGAN framework. RDGAN has
demonstrated the ability to either maintain or enhance performance across all three critical genera-
tive modeling criteria: mode coverage, high-fidelity generation, and fast sampling, all while ensuring
rapid training convergence. Additionally, our paper showcases that RDGAN significantly outper-
forms DDGAN on noisy training datasets with various settings, making it a promising approach for
real-world noisy datasets. Moreover, our work is complementary to other DDGAN improvement
techniques, such as WaveDiff (Phung et al., 2023), suggesting potential for future investigations into
combining these approaches to create an even more robust generative framework.
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