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ABSTRACT

One weakness of Monte Carlo Tree Search (MCTS) is its sample efficiency which
can be addressed by building and using state and/or action abstractions in parallel
to the tree search such that information can be shared among nodes of the same
layer. The primary usage of abstractions for MCTS is to enhance the Upper Confi-
dence Bound (UCB) value during the tree policy by aggregating visits and returns
of an abstract node. However, this direct usage of abstractions does not take the
case into account where multiple actions with the same parent might be in the
same abstract node, as these would then all have the same UCB value, thus requir-
ing a tiebreak rule. In state-of-the-art abstraction algorithms such as pruned On
the Go Abstractions (pruned OGA), this case has not been noticed, and a random
tiebreak rule was implicitly chosen. In this paper, we propose and empirically
evaluate several alternative intra-abstraction policies, several of which outperform
the random policy across a majority of environments and parameter settings.

1 INTRODUCTION

A plethora of important problems can be viewed as sequential decision-making tasks such as au-
tonomous driving (Liu et al., 2021), energy grid optimization (Sogabe et al., 2018), financial port-
folio management (Birge, 2007), or playing video games (Silver et al., 2016). Though arguably
state-of-the-art on such decision-making tasks is achieved using machine learning (ML) as demon-
strated by DeepMind with their AlphaGo agent for Go (Silver et al., 2016) or OpenAI Five for Dota
2 (Berner et al., 2019), there is still a demand for general domain-knowledge independent, on-the-
go-applicable planning methods, properties which ML-based approaches usually lack but which are
satisfied by Monte Carlo Tree Search (Browne et al., 2012) (MCTS), the method of interest for
this paper. For example, Game Studios rarely implement ML agents as they have to be costly re-
trained whenever the game and its rules and updated. Though not within the scope of this paper,
improvements to MCTS might also potentially translate to ML-based methods that use MCTS as
their underlying search.

One research area to improve MCTS is using abstractions that aim at reducing the search space by
grouping states and actions in the current MCTS search tree to enable an intra-layer information flow
(Jiang et al., 2014; Anand et al., 2015; 2016), by averaging the visits and returns of all abstract action
nodes in the same abstract node used for the Upper Confidence Bounds (UCB) formula in the tree
policy. Inevitably, there are action nodes with the same parent state and same abstract node, which
results in multiple actions having the exact same UCB value during the tree policy. Without giving
this case special treatment, state-of-the-art algorithms like pruned On the Go Abstractions (pruned
OGA) (Anand et al., 2016) simply perform tiebreaking exactly as in the non-abstracted case. In the
case of pruned OGA, this is done randomly.

In this paper, we aim to tackle exactly this problem by proposing and evaluating several random-
policy alternatives, several of which significantly enhance OGA’s performance across a variety of
environments and parameter settings. The contributions of this paper can be summarized as follows:

• We propose the Alternating State And State-Action Pair Abstractions (ASASAP)
framework, which generalizes the abstractions built by most MCTS-based abstraction al-
gorithms, including Automatic State abstractions (AS), Abstractions of State-Action Pairs
(ASAP), and OGA.
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• We empirically show that the case of having multiple abstracted actions with the same
parent is not an edge case and occurs frequently.

• We propose and evaluate seven intra-abstraction policies as alternatives to the ran-
dom policy, namely: UCT, FIRST, GREEDY, MOST VISITS, LEAST VISITS,
LEAST OUTCOMES, and RANDOM GREEDY. The former, UCT, performs best over-
all, is a parameter-free drop-in improvement to OGA, as it performs either equally well or
better across a wide range of parameters and problem settings. Furthermore, it causes only
a negligible runtime overhead (see Tab. 4).

The paper is structured as follows. Firstly, in Section 2, we lay the theoretical groundwork for this
paper. In particular, we define the ASASAP framework, which helps us introduce and classify other
abstraction frameworks such as ASAP or AS from the literature. Next, in Section 3, we reiterate the
intra-abstraction policy problem, describe seven alternatives, and illustrate on a concrete game tree
how one of these modifications, using UCT as the intra-abstraction policy, can provably improve
the performance. We then describe our experiment setup in Section 4. The experimental results
are presented and discussed in Section 5, where we first measure the number of times an intra-
abstraction policy has to be queried in the first place, followed by a thorough analysis of all proposed
intra-abstraction policies with a focus on UCT. At the end, in Section 6, we briefly summarise our
findings and provide an outlook for future work.

2 FOUNDATIONS OF NON-LEARNED DOMAIN-INDEPENDENT ABSTRACTIONS

Problem model and optimization objective: We use finite MDPs (Sutton & Barto, 2018) as the
model for sequential, perfect-information decision-making tasks. Here, ∆(X) denotes the probabil-
ity simplex of a finite, non-empty set X and P(X) denotes the power set of X .

Definition: An MDP is a 6-tuple (S, µ0,A,P, R, T ) where the components are as follows:

• S ̸= ∅ is the finite set of states, T ⊆ S is the (possibly empty) set of terminal states, and
µ0 ∈ ∆(S) is the probability distribution for the initial state.

• A : S 7→ A maps each state s to the available actions ∅ ≠ A(s) ⊆ A at state s where
|A| < ∞.

• P : S × A 7→ ∆(S) is the stochastic transition function where we use P(s′| s, a) to denote
the probability of transitioning from s ∈ S to s′ ∈ S after taking action a ∈ A(s) in s.

• R : S ×A 7→ R is the reward function.

From hereon, let M = (S, µ0,A,P, R, T ) be an MDP. Using the same notation as Anand et al.
(2015), we also define P := {(s, a) | s ∈ S, a ∈ A(s)} as the set of all state-action pairs. The goal
is to find an agent π that we model as a mapping from states to action distributions π : S 7→ ∆(A)
such that π maximizes the expected episode’s return, where the (discounted) return for of episode
s0, a0, r0, . . . , sn, an, rn, sn+1 with sn+1 ∈ T is given by γ0r0 + . . .+ γnrn.

Abstraction frameworks Next, we will define a general abstraction framework that includes most
of the here-presented abstraction algorithms and captures their core working principle. We bluntly
call this framework Alternating State And State-Action-Pair Abstractions (ASASAP) whose purpose
is to unify parts of the abstraction zoo. The idea of ASASAP is to alternately construct a state
abstraction from a state-action-pair abstraction and vice versa. For our purposes, we simply define
state and action abstractions as equivalence relations (equivalently partitions) of the state or action
space. In the supplementary materials in Section A.3, we show a concrete example of how an ASAP
abstraction (a special case of ASASAP) is built.

Definition: We call the equivalence relation H ⊆ P × P induced by some n ∈ N, some
initial state equivalence relation E0 ⊆ S × S, mappings f : P(S × S) 7→ P(P × P ) and
g : P(P × P ) 7→ P(S × S) to equivalence relations an ASASAPf,g,n,E0

abstraction if it is of the
form

H = Hn, (1)
Hi+1 = f(Ei) ∀i, (2)
Ei+1 = g(Hi+1) ∀i. (3)
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If additionally H is invariant to any number of additional applications of f and g, then we call it
converged.

Next, we will present some concrete instances of ASASAP from the literature. Firstly, Jiang et al.
(2014) used- and Givan et al. (2003) proposed AS-UCT (the name was given by Anand et al. (2015)),
which defines gAS(Hi+1) as grouping states if and only if they have identical legal actions and they
are pairwise equivalent:

(s1, s2) ∈ g(Hi+1) ⇐⇒ A(s1) = A(s2) ∧
∀a1 ∈ A(s1) : ((s1, a1), (s2, a1)) ∈ Hi+1.

(4)

And any state-action-pair (s1, a1), (s2, a2) is equivalent i.e. ((s1, a1), (s2, a2)) ∈ fAS(Ei) if and
only if the state-action pairs have similar immediate rewards and transition distributions:

|R(s1, a1)−R(s2, a2)| ≤ εa

and F :=
∑
x∈X

∣∣∣∣∑
s′∈x

P(s′| s1, a1)− P(s′| s2, a2)
∣∣∣∣ ≤ εt,

(5)

where X are the equivalence classes of Ei and εt, εa ≥ 0. In general, for εt, εa > 0, fAS(Ei) is not an
equivalence relation because transitivity is not guaranteed. Hence, any abstraction algorithms using
these need to slightly modify fAS(Ei) to obtain an equivalence relation. The reason for allowing εa
and εt to be greater than 0, is to find more correct abstractions at the cost of potentially abstracting
state-action-pairs or states that do not have the same value. The experiments of this paper confirm
that this can be beneficial.

To allow for the detection of more symmetries, Anand et al. (2015) proposed ASAP abstractions
that are based on Ravindran & Barto (2004) homomorphism condition that does not require there
to be a 1-to-1 action match but only a mapping of actions to each other, concretely gASAP(Hi+1) is
defined as

(s1, s2) ∈ gASAP(Hi+1) ⇐⇒
∀a1 ∈ A(s1)∃a2 ∈ A(s2) : ((s1, a1), (s2, a2)) ∈ Hi+1

∀a2 ∈ A(s2)∃a1 ∈ A(s1) : ((s1, a1), (s2, a2)) ∈ Hi+1.

(6)

The action abstraction fASAP is the same as the previously defined fAS using εt = εe = 0, however,
as we will later see there is nothing that would prevent us from choosing epsilon values greater than
zero here.

Abstractions for search: Constructing ASAP or AS abstractions until convergence for an entire
MDP is oftentimes infeasible, and such a computation would significantly hamper the runtime.
Hence, ASAP-UCT (Anand et al., 2015), AS-UCT (Anand et al., 2015; Jiang et al., 2014), and
OGA-UCT (Anand et al., 2016) build their ASASAP abstraction on the local-layered MDP rooted
at the state sd where the decision has to be made.

Definition: The state space of the layered MDP of M is S × {0, . . . , h} where h ∈ N is the horizon
and if (s, n) is a successor state of (s′, n′), then n = n′+1 and any initial state has n = 0. Additional
terminal states are S ×{h}. The local-layered MDP rooted at sd is the layered MDP of M but with
its states, actions, and possible state-action-pair-successors restricted to those present in the current
search graph.

In local-layered MDPs, a converged ASAP or AS abstraction can be efficiently computed with dy-
namic programming, where one requires only the abstraction of the previous layer to compute the
abstractions for the next. In ASAP-UCT and AS-UCT, an ASAP/AS-like abstraction is built in reg-
ular intervals on the current MCTS (for details on MCTS, see Section A.10) search graph using an
initial state equivalence relation that groups all terminal states of the same layer, groups all non-
fully-expanded nodes of the same layer, and puts all remaining nodes in their own abstract node
of size one. The abstraction built by ASAP/AS-UCT differs only from the ASAP/AS abstraction
in that non-fully-expanded nodes are never grouped with fully-expanded nodes. This non-grouping
condition also applies to OGA (Anand et al., 2016). For the later experiments, we will also experi-
ment with grouping partially explored state nodes as in ASAP-UCT, but for OGA. We refer to this
parameter as PG ∈ {0, 1} where 0 refers to no partial grouping.
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Unlike ASAP-UCT and AS-UCT, the successor of ASAP-UCT, OGA-UCT, does not compute its
respective abstraction from the ground up but rather attempts to approximate the ASAP abstraction
by rebuilding only parts of its current abstraction. More concretely, OGA-UCT tests every K-th Q
node visit if the abstraction needs to be updated (e.g., new successors were sampled that invalidate
a previous abstraction). If so, the parent’s abstraction is recursively updated too.

A core weakness of ASAP abstractions is their exactness, which causes them to not be able to deal
with stochasticity well. Hence, Anand et al. (2016) directly proposed pruned OGA as an improve-
ment to OGA-UCT, which is the same as OGA-UCT except that for the abstraction construction
step for each state-action pair with n successors with respective probabilities p1, . . . , pn only those
with pi > α ·max{p1, . . . , pn}, α ∈ [0, 1] are considered. Also in this paper, we consider (εa, εt)-
OGA (Schmöcker et al., 2025) which is equivalent to OGA-UCT except that one allows for εa, εt to
be greater than 0. Since this does not induce an equivalence relation, the abstraction construction
process has to be slightly modified as detailed by Schmöcker et al. (2025).

Abstraction usage: Thus far, we have only discussed how to build abstractions but not how to
use them. The key mechanism that all here-presented MCTS-based abstraction methods use (e.g.
AS-UCT, ASAP-UCT, OGA-UCT) is only to modify the tree policy by enhancing the UCB value.
The UCB value for an action is enhanced by using the aggregated visits and returns of all actions
that are part of the same abstract action (i.e. equivalence class). In particular, state abstractions are
not used at this stage. These are only needed as an intermediate step to find action abstractions.
Only AS-UCT differs slightly from this approach as it only aggregates the statistics of actions that
additionally have the same abstract parent. This is because AS-UCT was originally intended as a
state only abstraction which is why it did not decouple action and state abstractions.

The intra-abstraction policies that we will later propose only affect the abstraction usage component
of an abstraction algorithm. They do not modify the abstraction-building process itself.

Other automatic abstraction algorithms: A different abstraction paradigm is PARSS by Hostetler
et al. (2015) that initially groups all successors of each state-action pair. As the search progresses,
this coarse abstraction is refined by repeatedly splitting abstract nodes in half. Another technique
is to build, but then fully abandon an abstraction mid-search, a method coined Elastic MCTS by
Xu et al. (2023). Though not fully domain-independent, another approach is given by Sokota et al.
(2021), who group states based on a domain-specific distance function, and the maximal grouping
distance shrinks as the search progresses. While also not in scope of this paper, research effort on
abstractions is also dedicated to continuous and/or partially observable problems (Hoerger et al.,
2024), and learning-based methods, such as learning and planning on abstract models (Ozair et al.,
2021; Kwak et al., 2024; Chitnis et al., 2020), or building abstractions that rely on learned functions
(e.g. a value function) (Fu et al., 2023). Research effort has also been dedicated towards automatic
abstractions of the transition function, which on an abstract level can be described as pruning certain
successors from the transition function (Sokota et al., 2021; Yoon et al., 2008; 2007; Saisubramanian
et al., 2017).

3 METHOD

Intra-abstraction policies: A consequence of ASAP’s key idea to decouple state and action abstrac-
tions is that two state-action pairs may be abstracted even when they have the same parent. This,
however, leads to the thus-far overlooked problem that any two abstract Q nodes with the same par-
ent will have an identical UCB value (see Section A.10) as they have the same number of aggregated
visits and returns. Hence, a tiebreaking rule is needed, which we refer to as an intra-abstraction
policy. Anand et al. (2016) implicitly chose a random intra-abstraction policy. While this random
policy causes no harm when the abstractions are lossless, when dealing with lossy abstractions (i.e.,
those where states or actions could be abstracted even when they do not have the same value under
optimal play) a random policy can be detrimental to performance as we will show in the experiment
section 5.

We propose a number of alternative intra-abstraction policies to choose an action within the selected
abstract node. The intra-abstraction policy can be split into two phases. One for the decision policy
(i.e. for the final decision at the root node) and one for the tree policy.
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We separate the to-be-proposed methods into four groups. The first group encompasses the implic-
itly used methods from the literature. The second group includes policies that focus on exploration,
the third group focuses on exploitation, and the fourth group is a mix of both.

1. RANDOM: Randomly choose an action with uniform probability for both the decision and tree
policy. This is the one used by Anand et al. (2015)

2. FIRST: Simply choose the first encountered ground action for both the decision and tree pol-
icy. Though we do not believe that this method would perform well, this is one of the standard
tiebreaking rules for MCTS and might be accidentally implicitly used in an abstraction algorithm.

3. RANDOM GREEDY: Choose the action randomly during the tree policy and greedily during
the decision policy. We include this method as an ablation to pin down the influence of simply being
greedy in the decision policy.

4. LEAST VISITS: Choose the action with the least number of visits with a random tiebreak if two
actions have the same number of visits. Greedy policy as the decision policy. This policy is closest
to RANDOM except that visits are distributed perfectly evenly.

5. LEAST OUTCOMES: Choose the action with the minimal probability sum of all thus-far sam-
pled successors. Greedy policy as the decision policy. The idea is to allow the detection of any
faulty abstractions as soon as possible.

6. GREEDY: Choose the action with the highest Q value.

7. MOST VISITS: Choose the action with the most visits. Greedy policy is the decision policy.
The idea behind this policy is to increase the search depth, because when the abstraction does not
change, the action that wins the first tiebreak will always be chosen, as it will be the only one
receiving visits. However, this may come at the cost of exploration.

8. UCT: Choose the action whose ground visits and values maximize the UCB value (see Section
A.10) using the same exploration constant as the UCB selection for the abstract action. Greedy
policy is the decision policy.

All policies use a random tiebreak e.g., when two ground actions have the same number of visits
when using the LEAST VISITS policy.

Case study RANDOM vs UCT: Next, we are going to study the theoretical properties of the RAN-
DOM versus the UCT intra abstraction policy. Firstly, given arbitrary abstractions, no guarantees
that go beyond those of any OGA-based methods can be made, as one can always construct abstrac-
tions such that intra-abstraction policies would never be queried. However, if we assume a special
case of abstractions, which are those that only group state-action pairs with the same parent node,
then guarantees can be made. Firstly, RANDOM in combination with an arbitrary same-parent
state-action pair abstraction is not guaranteed to converge to the optimal action. An example where
RANDOM fails to find the optimal action is given in Fig. 1. In contrast, using UCT will always
converge to the optimal action. Concretely, assume a decision has to be made at state sd.

Theorem 1: Let E be a same-parent state-action pair abstraction of the local-layered MDP rooted
at sd. Consider MCTS that uses the aggregated abstract visits and returns of E for the UCB value
calculation for any state-action pair in combination with the UCT intra-abstraction policy. This
MCTS version’s ratio of root node visits of the optimal action(s) to the number of iterations will
converge in probability to 1.

The proof of this theorem is provided in the supplementary materials in Section A.1. A direct con-
sequence of this theorem is that pruned OGA’s or (εa, εt)-OGA’s root visits will also, in probability,
converge to the optimal action(s) if they were slightly modified to only group state-action pairs with
the same parent. This is because eventually their abstractions will converge since all the MDP’s
state-action pairs will be visited and all their outcomes will be sampled almost surely, which allows
only to apply Theorem 1.
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Figure 1: Assume that MCTS with the visualized fixed action abstraction is run on the following
deterministic depth-1 game tree. This abstraction would also be discovered by (0.1, 0)-OGA since
when all four actions are played at least K times, (0.1, 0)-OGA will have abstracted actions 1,2, and
3,4. While the visits will converge to choosing the abstract node with actions 3 and 4 for both the
RANDOM and UCT intra-abstraction policy, RANDOM will distribute its visits uniformly amongst
3 and 4, resulting in an average payoff of 1.05. This shows that with RANDOM, convergence to the
optimal action is in general not guaranteed. In contrast, the UCT intra-abstraction policy guarantees
convergence to the average payoff of 1.1 by converging to action 4.

4 EXPERIMENT SETUP

In this section, we describe the general experiment setup. Any deviations from this setup will be
explicitly mentioned.

Parameters: Originally, OGA-UCT (Anand et al., 2016) used the absolute value of the abstract
Q value as the exploration constant. However, this technique has been improved by the dynamic,
scale-independent exploration factor global-std 1. The global-std exploration constant has the form
C · σ where σ is the standard deviation of the Q values of all nodes in the search tree and C ∈ R+

is some fixed parameter. Furthermore, we always use K = 3 as the recency counter, which was
proposed by Anand et al. (2016).

Problem models: For this paper, we ran our experiments on a variety of MDPs, all of which are
either from the International Probabilistic Planning Conference (Grzes et al., 2014) or are commonly
used in the abstraction algorithm literature (Anand et al., 2015; 2016; Hostetler et al., 2015; Yoon
et al., 2008; Jiang et al., 2014). All models were chosen such that they are not simultaneously
sparse reward and deterministic, as in that case any intra-abstraction policy for the here-considered
abstraction algorithm would have no effect at all. We ran all of our experiments on the finite-horizon
versions of the considered MDPs with a default horizon of 50 steps and a discount factor γ = 1. If
the reader is not familiar with any of the domains we used for the experiments, we provide a brief
description for each MDP in the supplementary materials in Section A.12.

Evaluation: Each data point that we denote in the remaining sections of this paper (e.g. agent re-
turns) is the average of at least 2000 runs. Whenever we denote a confidence interval for a data point,
then this is always a confidence interval with a confidence level of 99% which is ≈ 2.33 times the
standard error. Furthermore, we use a borda-like ranking system to quantify agents’ performances;
in particular, we use pairings and relative improvement scores. For details, see supplementary Sec-
tion A.6.

Reproducibility: For reproducibility, we released our implementation (Authors, 2025). Our code
was compiled with g++ version 13.1.0 using the -O3 flag (i.e. aggressive optimization).

5 EXPERIMENTS

Why intra-abstraction policies are needed: For the first set of experiments, we validate that the
case where intra-abstraction policies are required, i.e., two actions with the same parent but the same
abstract node, is not an edge case but occurs frequently. Tab. 1 in the supplementary materials lists
these statistics, showing that even for the least coarse abstraction setting, i.e., εt = εa = 0 and no
partial grouping, there are a number of cases where an intra-abstraction policy has to be queried.

Comparison of all intra-abstraction policies: Next, we tested which of the intra-abstraction poli-
cies performs best overall by determining which policy the best-performing parameter combination

1Citation excluded for double anonymous review process

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 2: The pairings and relative improvement score for all iteration budgets combined of the best
performing parameter-combination of each intra-abstraction policy are shown.

uses. In particular, we ran experiments with all intra-abstraction policies on pruned OGA, (εa, εt)-
OGA, and RANDOM-OGA (OGA with random abstractions, see A.7, to test the behavior of the
intra-abstraction policies on yet another abstraction type). For each abstraction algorithm, we var-
ied PG ∈ {Yes,No}. For (εa, εt)-OGA, we tested εa ∈ {0,∞}, εt ∈ {0, 0.2, 0.4, 0.8, 1.2, 1.6},
for pruned OGA we used α ∈ {0, 0.1, 0.2, 0.5, 0.75, 1.0}, and for RANDOM-OGA we used
pabs ∈ {0.1, 0.2, 0.5, 1.0}. Each parameter combination was run with 100, 200, 500, and 1000
iterations using C = 2. The bar chart in Fig. 2 shows the pairings and relative improvement scores
for the parameter combination with the highest scores for each intra-abstraction policy for all it-
eration budgets combined. The scores for each individual iteration budget are visualized in the
supplementary materials in Fig. 5. The following key observations can be made.

1) First and foremost, the RANDOM intra abstraction policy that has thus far been implicitly used
in the literature is always decisively beaten by at least one other strategy. Additionally, the FIRST
strategy, which one might accidentally use when no proper tiebreaking is implemented, is even
worse. This shows that choosing a suitable intra-abstraction policy is an important aspect when
designing an abstraction algorithm.

2) Secondly, it is UCT that consistently performs either best or second best in both scores across all
budgets, while all other methods fluctuate in their performance, which might be caused due to the
few tasks they are calculated over (just a little over 10 environments). The overall best performing
parameter-combination was (0,∞)-OGA using PG = no and UCT as the intra-abstraction policy
(this achieved the values 0.592 and 0.147 in the all-budgets bar chart). The overall best RANDOM-
using strategy in terms of the rel. improvement score was pruned OGA with α = 0.75,PG = no and
pruned OGA with α = 0.5,PG = no for the pairings score (these correspond to the values 0.535
and 0.102 in the all-budgets bar chart).

3) For the remaining strategies, it is difficult to identify trends that are certainly beyond noise.
However, given that RANDOM GREEDY only slightly improves over RANDOM in the pairings
score shows that, though the intra-abstraction policy at decision time has a considerable performance
impact, the tree-policy intra-abstraction policy is equally as important as shown by the performance
improvement of UCT.

In sum, the choice of an intra-abstraction policy can have a great impact on performance, which we
further consolidate in the next subsection. While the best intra-abstraction policy depends on the
concrete iteration budget - model setting, a consistent gain over RANDOM can be gained by simply
replacing it with the UCT strategy. In the supplementary materials Section A.4, we show that this
drop-in replacement improvement also holds when the abstractions themselves are fixed and one has
to find a strategy that can best deal with these abstractions.

Parameter-optimized performances: Next, we compared RANDOM versus the UCT intra ab-
straction policy in the parameter-optimized setting, where we optimized both agents over the same
set of parameters in addition to varying the exploration constant in C ∈ {0.5, 1, 2, 4, 8, 16} and
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including additional domain-specific εa values that are listed in Tab. 3 in the supplementary mate-
rials. For feasibility reasons, we restricted ourselves to UCT instead of additionally including all
other intra-abstraction policies. Fig. 3 shows the performance graphs for each environment. The
following observations can be made.

1) In every environment UCT either clearly performs better than RANDOM with at least one iter-
ation budget (in Crossing Traffic, Earth Observation, Manufacturer, Navigation, SysAdmin, Skill
Teaching, Sailing Wind and Tamarisk) or performs on par (in Academic Advising, Game of Life,
Cooperative Recon, Saving, Traffic, and Triangle Tireworld).

2) The performance gains can be explained by the fact that UCT performs better (relative to RAN-
DOM), the coarser the abstraction, as shown in the supplementary materials Section A.9. The en-
vironments where performance is gained over RANDOM are those that satisfy the following crite-
ria. Firstly, using coarse abstractions is either on par with OGA-UCT or even better. Secondly, the
coarseness needs to introduce actual abstraction errors which for example, is rarely the case in Game
of Life. Lastly, the intra-abstraction policy needs to be queried in the first place, which explains why
there is no gain for Navigation at higher iteration budgets.

In summary, using intra-abstraction policies is a valuable tool to improve peak performances across
a wide range of environments, especially when the peak performance without intra-abstraction poli-
cies has been reached with a coarse abstraction.

6 LIMITATIONS AND FUTURE WORK

In this paper, we first generalized the ASAP and AS frameworks to ASASAP. We then brought at-
tention to the intra-abstraction policy problem and showed that this is not an edge case. To relieve
this issue, we proposed several intra-abstraction policies as an alternative to the random policy that
is implicitly used in standard OGA. While some of them were only marginally better than RAN-
DOM, like MIN VISITS and RANDOM GREEDY, we found that UCT-OGA performs best and
consistently, performing either on par or clearly outperforming standard OGA across a variety of
parameter settings and environments. Consequently, we believe that UCT should be used as the
standard intra-abstraction policy for MCTS-based abstraction methods instead of the random policy.

Firstly, limitations of OGA also directly translate to OGA enhanced with an intra-abstraction policy.
In particular, for any performance gains to appear in the first place, the environment must contain
state-action pairs with the same Q value. Furthermore, for any abstractions to be detected in the
first place, the search graph must be a directed acyclic graph to ensure that there are state-action
pairs with the same successors, a necessary condition for any abstractions (unless εt = 2). Another
intra-abstraction policy-specific limitation is that these are only useful for non-exact abstractions. In
particular, if only state-action pairs with the same optimal Q value are abstracted then which one the
intra-abstraction policy chooses makes no difference.

From a different viewpoint, intra-abstraction policies can be seen as some special form of operating
in hierarchical abstractions, where one iteratively selects actions from different layers of abstractions
until a ground action is reached. In the case of intra-abstraction policies, the hierarchy consists of
two abstractions: the standard ASAP abstraction, followed by a trivial one where every node is
assigned to its own abstract node. We believe that choosing an intra-abstraction policy that itself just
selects an abstract action from a finer abstraction could be worth investigating.

Whenever the intra-abstraction policies resulted in ties, these were always resolved randomly. Even
though any gains here would be even more marginal, one could probably find further optimiza-
tions by setting up a tiebreak hierarchy, e.g., if UCT results in a tie, then these are resolved by
MOST VISITS.

Furthermore, on a more general level, it might be worth investigating if the progress in search ab-
stractions can be translated to machine learning methods that are built on these searches, such as
AlphaZero (Silver et al., 2017).
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(a) Academic Advising (b) Crossing Traffic (c) Earth Observation

(d) Game of Life (e) Manufacturer (f) Navigation

(g) Cooperative Recon (h) SysAdmin (i) Saving

(j) Skill Teaching (k) Sailing Wind (l) Tamarisk

(m) Traffic (m) Triangle Tireworld

Figure 3: The performance graphs of in dependence of the MCTS iteration count of the parameter
optimized versions of pruned OGA, (εa, εt)-OGA, and RANDOM-OGA combined with the UCT or
RANDOM intra-abstraction policy.
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7 REPRODUCIBILITY STATEMENT

In our experiment setup, we have a subsection called Reproducibility in which we provide a down-
load link to the full codebase used for this project as well as compilation details. The codebase
contains an elaborate README detailing the steps to reproduce the experiments.
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A SUPPLEMENTARY MATERIALS

A.1 PROOF OF THEOREM 1

Running the abstraction-using UCB MCTS variant on the local-layered MDP Ml rooted at sd and the
UCT intra-abstraction policy is equivalent to running standard MCTS on a move group MDP of Ml
(Eyck & Müller, 2011) where the move groups are the abstract actions. A move group MDP splits
the original MDP’s actions into two phases: the first is to select a move group (which is a subset of
the available actions at the corresponding state), and then select an action within that move group that
has the transition dynamics of the original MDP. The move-group selection action is deterministic
and yields a reward of 0. Consequently, the Q∗ values of the original actions in the move group MDP
have the same value as in the original MDP and therefore both MDPs have identical optimal policies
(when using a discount of γ = 1 and excluding the move group actions). Since standard MCTS
(using UCB) converges in probability to the optimal action (Kocsis & Szepesvári, 2006) on the
move-group MDP, the same must hold for the here-considered abstraction-using MCTS variant.

A.2 INTRA-ABSTRACTION POLICY QUERY STATISTICS

Table 1: Statistics of the ratio of tree policy calls where two actions of the same parent were part of
the same abstract node to show that intra-abstraction policies are not an edge case. A ratio of 1.00
means that an intra abstraction policy was always required, while a ratio of 0.00 means that it was
never required. The statistics were gathered with (0, εt)-OGA using the RANDOM intra abstraction
policy, 1000 iterations, and C = 4. The results were averaged from 100 episodes each.

Domain εt = 0 εt = 0.8 εt = 1.6
NO-PG PG NO-PG PG NO-PG PG

Academic Advising 0.02 0.21 0.02 0.29 0.64 0.74
Cooperative Recon 0.30 0.33 0.33 0.32 0.28 0.32

Crossing Traffic 0.88 0.93 0.92 0.92 0.89 0.94
Earth Observation 0.00 0.00 0.27 0.27 0.27 0.27

Game of Life 0.00 0.00 0.52 0.84 0.84 0.82
Manufacturer 0.00 0.00 0.05 0.07 0.11 0.13

Navigation 0.00 0.00 0.01 0.02 0.02 0.13
Racetrack 0.17 0.51 0.17 0.51 0.17 0.51

Sailing Wind 0.00 0.02 0.00 0.06 0.05 0.13
Saving 0.00 0.00 0.00 0.01 0.01 0.01

Skills Teaching 0.01 0.03 0.11 0.11 0.13 0.20
SysAdmin 0.01 0.05 0.23 0.30 0.31 0.38
Tamarisk 0.00 0.01 0.26 0.34 0.40 0.44

Traffic 0.08 0.13 0.52 0.77 0.47 0.79
Triangle Tireworld 0.32 0.47 0.28 0.40 0.33 0.48
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A.3 ASAP ABSTRACTION EXAMPLE

Figure 4: A showcase of how the ASAP abstraction framework, which itself is a special case of
ASASAP abstractions, would detect equivalences in the following 5-state MDP. Each node repre-
sents a state, and arrows represent deterministic actions with the same immediate reward of 0. The
dotted ovals represent abstractions. Initially, in (a), all states and state-action pairs are in their own
singleton abstract node. Then, in (b) the next state-action pair abstraction is constructed (the appli-
cation of function f from Section 2) from this initial state abstraction, which groups the actions of
nodes 3 and 4 because they have the same immediate reward and the same transition distribution.
From this state-action pair abstraction the next state abstraction is constructed in (c), (the application
of function g from Section 2) which groups nodes 3 and 4 because they have the same set of abstract
state-action pairs. Then again, in (d) the next state-action pair abstraction is constructed which also
groups the actions from nodes 1 and 2 because they have the same abstract successor. Then a state
abstraction is constructed again in (e), which groups states 1 and 2. Then further applications of f
or g would have no effect, hence this abstraction is converged.

A.4 PERFORMANCES ON FIXED ABSTRACTIONS

Next, it will be tested how well each intra-abstraction policy can generalize across different abstrac-
tion types. To do this, we reanalyzed the results of the main-part experiment section and built the
pairings and relative improvement score when moving all parameters except the intra-abstraction to
the set of tasks (i.e. a task now includes, for example, the εt or α values). Tab. 2 shows both the rela-
tive improvement and pairings score for these results. Importantly, this shows that when confronted
with an arbitrary abstraction, both FIRST and RANDOM perform worst by far, while UCT is by far
the best policy.

Table 2: The relative improvement and pairings scores for each intra-abstraction policy, when for
the score calculation all parameters except the intra-abstraction policy are part of the task set.

Intra-abs policy Rel. improv. score

UCT 0.074
GREEDY 0.046

RANDOM GREEDY 0.040
LEAST OUTCOMES 0.038

LEAST VISITS 0.038
MOST VISITS −0.034

FIRST −0.100
RANDOM −0.101

Intra-abs policy Pairings score

UCT 0.394
GREEDY 0.206

RANDOM GREEDY 0.102
LEAST VISITS 0.097

LEAST OUTCOMES 0.077
MOST VISITS −0.145

RANDOM −0.363
FIRST −0.368
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A.5 DOMAIN-SPECIFIC εA VALUES

Table 3: A list of the environment-specific εa values that were used for the experiments. All domains
that are not explicitly listed here use the default values εa ∈ {0, 1, 2,∞}. The values were chosen
to be equal to rewards (except 0 and ∞) that occur in these environments.

Environment εa values
Academic Advising 0, ∞
Cooperative Recon 0, 0.5, 1.0, ∞
Crossing Traffic 0, ∞
Manufacturer 0, 10, 20, ∞
Skill Teaching 0, 2, 3, ∞
Tamarisk 0, 0.5, 1.0, ∞
Default 0, 1, 2, ∞

A.6 DEFINITION OF THE RELATIVE IMPROVEMENT AND PAIRINGS SCORE

In the main experimental section, we evaluated the intra-abstraction policies with respect to the
relative improvement and pairings score, which are formalized here. While the pairings score is
calculated by summing over the number of tasks where some agent performed better than another,
the relative improvement score also takes the percentage of the improvement into account; however,
it is prone to outliers. Hence, we considered both scores to paint the full picture.

Concretely, let {π1, . . . , πn} be n agents (e.g., concrete parameter settings) where each agent was
evaluated on m tasks (e.g. a given MCTS iteration budget and an environment or a given abstraction
in case of the experiments in Section A.4) where pi,k ∈ R denotes the performance of agent πi on
the k-th task.

Definition: The pairings score matrix M ∈ Rn×n is defined as

Mi,j =
1

m− 1

∑
1≤k≤m

sgn(pi,k − pj,k) (7)

where sgn is the signum function. The pairings score si ≤ i ≤ n is given by

si =
1

n− 1

∑
1≤l≤n,l ̸=i

Mi,l. (8)

Definition The relative improvement matrix M ∈ Rn×n is defined as

Mi,j =
1

m− 1

∑
1≤k≤m

pi,k − pj,k
max(|pi,j |, |pj,k|)

(9)

and the relative improvement score si ≤ i ≤ n is given by

si =
1

n− 1

∑
1≤l≤n,l ̸=i

Mi,l. (10)

A.7 RANDOM-OGA

OGA that uses random abstractions is called RANDOM-OGA and functions as follows. Whenever
a Q node Q is visited for the K-th time and its current abstract node consists only of itself, then
with the probability pabs ∈ [0, 1], Q’s abstract node is changed with uniform probability to any of the
abstract nodes of the same depth. Initially, at creation, any Q node is its own abstract node. Note that
RANDOM-OGA does not abstract states, as it is only state-action pair abstractions that influence
the agent’s decision-making through the modified UCB formula.
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(a) 100 iterations (b) 200 iterations

(c) 500 iterations (d) 1000 iterations

(e) All budgets

Figure 5: For each iteration budget and the combination of all iteration budgets, the pairings and
relative improvement score for the best performing parameter-combination of each intra-abstraction
policy are shown.
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A.8 PAIRINGS AND RELATIVE IMPROVEMENT SCORES FOR EACH INDIVIDUAL ITERATION
BUDGET:

A.9 ABLATION: PERFORMANCES WITH VARYING ABSTRACTION COARSENESSES

Lastly, we conducted an ablation on the efficiency of UCT and RANDOM as the intra-abstraction
policy in dependence on the coarseness of the abstraction. Concretely, we reanalyzed the pairings
and relative improvement scores from the experiment section that were created over all parameter
combinations. Fig. 6 shows the scores of several abstractions with varying coarsenesses and the
highest pairings/relative improvement score that UCT and RANDOM could achieve in that setting.
The results are pretty clear: The coarser the abstraction, the greater the performance gap between
UCT and RANDOM. Interestingly, using UCT can change the location of the performance peaks by
enabling coarser abstractions: In (εa, εt) the peak is obtained at εt = 0.4 instead of εt = 0.2, and in
pruned OGA the peak is obtained at α = 1 instead of α = 0.75.
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(a) Relative improvement score on (εa, εt)-
OGA abstractions.

(b) Pairings score on (εa, εt)-OGA abstrac-
tions.

(c) Relative improvement score on pruned
OGA abstractions.

(d) Pairings score on pruned OGA abstrac-
tions.

(f) Relative improvement score on
RANDOM-OGA abstractions.

(e) Pairings score on RANDOM-OGA ab-
stractions.

Figure 6: For RANDOM-OGA, pruned OGA, and (εa, εt)-OGA, these figures show the parameter
combinations using UCT and RANDOM as the intra-abstraction policies and the respective abstrac-
tion parameter (e.g. α = 1 that achieved the highest pairings or relative improvement score from the
main-part experiment section.

A.10 MONTE CARLO TREE SEARCH

All here-presented abstraction algorithms rely on Monte Carlo Tree Search (MCTS) which we are
going to describe now. Let M be a finite-horizon MDP. On a high level, MCTS repeatedly samples
trajectories starting at some state s0 ∈ S where a decision has to be made until a stopping criterion is
met. The final decision is then chosen as the action at s0 with the highest average return. In contrast
to a pure Monte Carlo search, MCTS improves subsequent trajectories by building a tree (or, in our
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case, a directed acyclic graph) from a subset of the states encountered in the last iterations, which
is then exploited. In contrast to pure Monte Carlo search, MCTS is guaranteed to converge to the
optimal action.

An MCTS directed acyclic graph is made of two components. Firstly, the state nodes, that represent
states and Q nodes that represent state action pairs. Each state node, saves only its children which
are a set of Q nodes. Q nodes save both its children which are state nodes and the number of and the
sum of the returns of all trajectories that were sampled starting at the Q node.

Initially, the MCTS search graph consists only of a single state node representing s0. Until the
iteration budget is exhausted, the following steps are repeated.

1. Selection phase: Starting at the root node, MCTS first selects a Q node according to the
so-called tree policy, which may use the nodes’ statistics, and then samples one of the Q
node’s successor states. If either a terminal state node, a state node with at least one non-
visited action (partially expanded), or a new Q node successor state is sampled that is not
represented by another node of the same layer, the selection phase ends.
A commonly used tree policy (and the one we used) that is synonymously used with
MCTS is Upper Confidence Trees (UCT) (Kocsis & Szepesvári, 2006), which selects an
action that maximizes the Upper Confidence Bound (UCB) value. Let s ∈ S and Va, Na

with a ∈ N be the return sum and visits and of the Q nodes of the node representing s. The
UCB value of any action a is then given by

UCB(a) =
Va

Na︸︷︷︸
Q term

+λ

√√√√√√ log

( ∑
a′∈A(s)

Na′

)
Na︸ ︷︷ ︸

Exploration term

. (11)

The exploration term quantifies how much the Q term could be improved if this Q node was
fully exploited and is controlled by the exploration constant λ ∈ R ∪ {∞}. If one chose
λ = 0, the UCT selection policy becomes the greedy policy and for λ = ∞, the selection
policy becomes a uniform policy over the visits. In case of equality, some tiebreak rule has
to be selected, which is typically a random tiebreak. From here, will use MCTS and UCT
(MCTS with UCB selection formula) synonymously.

2. Expansion: Unless the selection phases ended in a terminal state node, the search directed
acyclic graph is expanded by a single node. In case the selection phase ended in a partially
expanded state node, then one unexpanded action is selected (e.g. randomly, or according
to some rule), the corresponding Q node is created and added as a child and one successor
state of that Q node is sampled and added as a child to the new Q node. If the selection phase
ended because a new successor of a Q node was sampled, then a state node representing
this new state is added as a child to that Q node.

3. Rollout/Simulation phase: Starting at the state srollout of the newly added state node
of the expansion phase (or at a terminal state node reached by the selection phase), actions
according to the rollout policy are repeatedly selected and applied to srollout until a terminal
state is reached. All states encountered during this phase are not added to the search graph.

4. Backpropagation: In this phase, the statistics of all Q nodes that were part of the last sam-
pled trajectory that corresponds to a path in the search graph are updated by incrementing
their visit count and adding the trajectory’s return (of the trajectory starting at the respective
Q node) to their return sum statistic.

A.11 RUNTIME MEASUREMENTS

Tab. 4 lists the average decision-making times for each environment of the UCT intra-abstraction
policy compared to RANDOM for 100 and 2000 iterations on states sampled from a distribution
induced by random walks. This shows that while UCT adds only a minor overhead, despite hav-
ing to execute more UCB evaluations. In particular, we are using highly optimized environment
implementations that could be the runtime bottleneck in more complex environments.
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Table 4: Average decision-making times of MCTS using either the UCT or RANDOM intra-
abstraction policy in milliseconds for 100 and 2000 iterations using εt = 0.8. This data was ob-
tained using an Intel(R) Core(TM) i5-9600K CPU @ 3.70GHz. The data shows a median runtime
overhead of ≈0.6% for 100 iterations and ≈2% for 2000 iterations.

Domain UCT-100 RANDOM-100 UCT-2000 RANDOM-2000
Academic Advising 2.10 1.98 109.12 100.90
Cooperative Recon 3.67 3.62 182.63 179.36
Crossing Traffic 2.33 2.32 346.46 343.24
Earth Observation 7.38 7.35 288.69 290.51
Game of Life 3.50 3.54 149.85 140.11
Manufacturer 10.05 10.04 271.58 267.35
Navigation 2.29 2.20 61.59 57.69
Sailing Wind 2.11 2.12 144.28 142.40
Saving 1.34 1.37 70.02 68.03
Skills Teaching 3.55 3.52 179.40 175.79
SysAdmin 1.56 1.51 101.27 114.00
Tamarisk 2.81 3.06 126.52 117.40
Traffic 3.62 3.57 114.41 112.90
Triangle Tireworld 4.01 3.65 119.80 108.21

A.12 PROBLEM DESCRIPTIONS

We will provide a brief description of each of the IPPC problems used for the experiments.

• Academic Advising: The Academic Advising domain was used for the IPPC 2014 (Grzes
et al., 2014). The agent is a student whose goal is to pass certain academic classes. For-
mally, the state is an element in {P,NP,NT}n (representing for each course whether it
has been passed, not been passed, or not been taken), and the agent’s action is to choose a
course to take. The course outcome depends on the states of the prerequisite courses. The
episode ends when all courses are passed, and while not all mandatory courses, a subset of
all courses, are passed, the agent incurs a constant penalty per step.

• CooperativeRecon: This domain models a robot having to prove the existence of life on
a foreign planet. The robot is modeled as moving on a 2-dimensional grid which contains
a number of objects of interest and a base. If the agent is at an object of interest, it can
survey the object for the existence of water and life. The probability of a positive result of
the latter is dependent on whether water has been detected. If life has been detected, the
agent may photograph the object of interest which is the only way to gain a reward. Each
detector may break on usage making it either unusable or decreasing its chance of working.
The detectors can be repaired at the base.

• Crossing Traffic: Crossing traffic is a grid-based navigation problem where the agent has
to maneuver through lanes of traffic. Obstacles can move only on the x-axis from right to
left. Obstacles spawn randomly on the right end of the grid except for the first and last row
of the grid and on collision with the agent, render the agent unable to move, thus making
the current episode impossible to be solved. Starting at the top left of the grid, the goal is
to reach the bottom left grid cell in as few steps as possible without getting hit.

• EarthObservation: EarthObservation was a test problem for the IPPC 2018 which models
a satellite orbiting earth. Formally, each state is a position on a 2-dimensional grid, repre-
senting the satellite’s longitudinal position and the latitude the camera is aimed at as well
as weather levels for some designated cells. At each step, the weather levels stochastically
change independent of the agent’s actions which are to idle, to take a photo of the current
position, or increment/decrement the current cells y-position (i.e. shifting the camera fo-
cus). A reward is obtained if one of the designated cells is photographed with an amount
depending on the cell’s current weather condition.

• Game of Life: The original game of life by John Conway (Gardner, 1970) is a cellu-
lar automaton and modified into a stochastic MDP as a test problem for the International
Probabilistic Planning Competition (Sanner & Yoon, 2011) by introducing noise to the
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deterministic state transition, setting the current number of alive cells as the reward, and al-
lowing the agent to choose one cell which will contain a living cell with a high probability.
States are elements in {0, 1}n×n describing whether there is an alive cell at each cell on a
grid. To reduce the action space that scales quadratically which the grid length, we allow
only a subset of the original actions, which is to specify one alive cell that is prevented
from dying.

• Manufacturer: In this domain, the agent manages a manufacturing company. The agent’s
ultimate goal is to sell goods to customers. However, to sell a good, the agent has to first
produce the good, which may require building factories and acquiring the necessary goods
required for production. Additional difficulty comes from the fact that the goods’ price
levels vary stochastically.

• Navigation: Navigation was a test problem for the International Probabilistic Planning
Competition 2011 (Sanner & Yoon, 2011). The goal is to move a robot on an n ×m grid
from (n, 1) to (n,m) in the least number of steps. The robot may move to any of the four
adjacent tiles, however, each tile is assigned a unique probability with which the robot is
reset back to (n, 1). At each step, except the one where the goal is reached, the agent
incurs a constant negative reward, making the objective to reach the goal state as quickly
as possible.
Saving: Saving is introduced by Hostetler et al. (2015), where the agent aims to maximize
accumulated wealth over time. At each step, the agent can choose one of three actions:
Invest, Borrow, or Save. Borrow provides an immediate reward of 2 but imposes a penalty
of -3 after n time steps. Once this action is taken, it cannot be repeated until the delayed
penalty is applied. Save yields an immediate reward of 1 with no further consequences.
Invest offers no immediate reward but enables the agent to take the Sell action within the
next m time steps. The agent cannot invest again until either the Sell action is executed
or m steps have elapsed. If Sell is chosen, then the agent receives a reward equal to the
current price level that changes stochastically and independently of the agent’s actions.

• Sailing Wind: Originally proposed by Robert Vanderbei (Vanderbei, 1996), the goal of
Sailing Wind is to move a ship that starts at (1, 1) on an n× n grid to (n, n) with minimal
cost. There is no consistent use of a transition and reward function throughout the literature.
There may just be two available actions (down, right) (Jiang et al., 2014) or up to seven
(each adjacent cell except the one facing a stochastic wind direction) (Anand et al., 2015).
The cost of each action is dependent on the current wind direction which stochastically
changes its direction at each step independent of the player’s actions.

• SysAdmin: Used as a test problem for the IPPC 2011, a SysAdmin instance is a graph
(describing a network topology) with n ∈ N vertices. The state space is {0, 1}n (describing
which machines are currently operating) and the action space is {1, . . . , n} (describing with
machine to reboot). At each step, the reward is dependent on the machines that are currently
working, a reboot causes the rebooted machine to have a high chance of working in the next
step. Machines can randomly fail at each step, however this probability is increased when
a neighbor fails.

• Tamarisk: Tamarisk is yet another problem from the IPPC 2014 (Grzes et al., 2014) which
models the expansion of an invasive plant in a river system. The river system is modelled
as a chain of reaches where each reach contains a number of slots that may be unoccupied,
occupied by a native plant, or occupied by the invasive Tamarisk plant. Both plant types
spread stochastically to neighboring states with a higher probability of spreading down-
stream. At each time step, the agent chooses an action for one reach, which are doing
nothing, eradicating Tamarisk, or restoring a native plant. The action chosen at a reach is
applied to all slots in that reach. Except for the do-nothing action, all actions can randomly
fail. The agent has to balance the action’s costs with the penalties incurred for existing
Tamarisk plants.

• Triangle Tireworld: Tireworld was proposed as a test problem for the IPPC 2004 (Younes
et al., 2005). In the original goal-based version, the agent is a car that traverses a graph. At
each step, the car may move to an adjacent node, change its tire, or load a tire. The goal
is to reach a designated goal node. At each step, the car’s tire may randomly break. If the
car isn’t carrying a spare tire, the goal can no longer be reached. Otherwise, if available, a
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spare tire (at most one can be carried) must be used to replace the current tire. Some nodes
contain spare tires, which when the agent visits them, can be picked up.

• Skills Teaching: This domain models a student-teacher interaction, where the agent plays
the role of the teacher. There is a fixed number of skills that form a directed graph of
prerequisites. The student possesses one of three levels of sufficiency at each skill. The
agent is rewarded for each skill being at the highest sufficiency and punished for each skill
at the lowest sufficiency level. At each, step the agent may choose a skill for which to pose
a question to the student or give the student a direct hint. The student can increase their
sufficiency at that skill for correctly answering a question and lose sufficiency for answering
wrong. The probability of getting a question right is dependent on the sufficiency of the
skill’s prerequisite. A hint can elevate the student to the medium sufficiency level directly
but only if all prerequisites are at the highest sufficiency.

• Traffic: This problem models a traffic system in which the agent is tasked with control-
ling/advancing intersections with the goal of minimizing congestion. The traffic system is
modeled as a directed graph and each vertex is either empty or occupied. Occupancy flows
along the graph’s edges except for some designated intersection edges where the flow is de-
pendent on the intersection’s state. The only stochasticity of this MDP arises in the form of
cars spawning randomly at the designated perimeter vertices. The agent receives a reward
equal to the negative number of occupied vertices that have one predecessor vertex that is
also occupied.
Constrictor is played on an n times n grid. Players take turns moving to any of the neigh-
boring (4-neighborhood) grid cells that neither moves the player out of bounds nor hits any
cell that has already been visited by any of the two players. The game ends when one player
has nowhere left to move.
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