
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

INVESTIGATING INTRA-ABSTRACTION POLICIES FOR
NON-EXACT ABSTRACTION ALGORITHMS

Anonymous authors
Paper under double-blind review

ABSTRACT

One weakness of Monte Carlo Tree Search (MCTS) is its sample efficiency which
can be addressed by building and using state and/or action abstractions in parallel
to the tree search such that information can be shared among nodes of the same
layer. The primary usage of abstractions for MCTS is to enhance the Upper Confi-
dence Bound (UCB) value during the tree policy by aggregating visits and returns
of an abstract node. However, this direct usage of abstractions does not take the
case into account where multiple actions with the same parent might be in the
same abstract node, as these would then all have the same UCB value, thus requir-
ing a tiebreak rule. In state-of-the-art abstraction algorithms such as pruned On
the Go Abstractions (pruned OGA), this case has not been noticed, and a random
tiebreak rule was implicitly chosen. In this paper, we propose and empirically
evaluate several alternative intra-abstraction policies, several of which outperform
the random policy across a majority of environments and parameter settings.

1 INTRODUCTION

A plethora of important problems can be viewed as sequential decision-making tasks such as au-
tonomous driving (Liu et al., 2021), energy grid optimization (Sogabe et al., 2018), financial port-
folio management (Birge, 2007), or playing video games (Silver et al., 2016). Though arguably
state-of-the-art on such decision-making tasks is achieved using machine learning (ML) as demon-
strated by DeepMind with their AlphaGo agent for Go (Silver et al., 2016) or OpenAI Five for Dota
2 (Berner et al., 2019), there is still a demand for general domain-knowledge independent, on-the-
go-applicable planning methods, properties which ML-based approaches usually lack but which are
satisfied by Monte Carlo Tree Search (Browne et al., 2012) (MCTS), the method of interest for
this paper. For example, Game Studios rarely implement ML agents as they have to be costly re-
trained whenever the game and its rules and updated. Though not within the scope of this paper,
improvements to MCTS might also potentially translate to ML-based methods that use MCTS as
their underlying search.

One research area to improve MCTS is using abstractions that aim at reducing the search space by
grouping states and actions in the current MCTS search tree to enable an intra-layer information flow
(Jiang et al., 2014; Anand et al., 2015; 2016), by averaging the visits and returns of all abstract action
nodes in the same abstract node used for the Upper Confidence Bounds (UCB) formula in the tree
policy. Inevitably, there are action nodes with the same parent state and same abstract node, which
results in multiple actions having the exact same UCB value during the tree policy. Without giving
this case special treatment, state-of-the-art algorithms like pruned On the Go Abstractions (pruned
OGA) (Anand et al., 2016) simply perform tiebreaking exactly as in the non-abstracted case. In the
case of pruned OGA, this is done randomly.

In this paper, we aim to tackle exactly this problem by proposing and evaluating several random-
policy alternatives, several of which significantly enhance OGA’s performance across a variety of
environments and parameter settings. The contributions of this paper can be summarized as follows:

• We propose the Alternating State And State-Action Pair Abstractions (ASASAP)
framework, which generalizes the abstractions built by most MCTS-based abstraction al-
gorithms, including Automatic State abstractions (AS), Abstractions of State-Action Pairs
(ASAP), and OGA.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• We empirically show that the case of having multiple abstracted actions with the same
parent is not an edge case and occurs frequently.

• We propose and evaluate seven intra-abstraction policies as alternatives to the ran-
dom policy, namely: UCT, FIRST, GREEDY, MOST VISITS, LEAST VISITS,
LEAST OUTCOMES, and RANDOM GREEDY. The former, UCT, performs best over-
all, is a parameter-free drop-in improvement to OGA, as it performs either equally well or
better across a wide range of parameters and problem settings. Furthermore, it causes only
a negligible runtime overhead (see Tab. 4).

The paper is structured as follows. Firstly, in Section 2, we lay the theoretical groundwork for this
paper. In particular, we define the ASASAP framework, which helps us introduce and classify other
abstraction frameworks such as ASAP or AS from the literature. Next, in Section 3, we reiterate the
intra-abstraction policy problem, describe seven alternatives, and illustrate on a concrete game tree
how one of these modifications, using UCT as the intra-abstraction policy, can provably improve
the performance. We then describe our experiment setup in Section 4. The experimental results
are presented and discussed in Section 5, where we first measure the number of times an intra-
abstraction policy has to be queried in the first place, followed by a thorough analysis of all proposed
intra-abstraction policies with a focus on UCT. At the end, in Section 6, we briefly summarise our
findings and provide an outlook for future work.

2 FOUNDATIONS OF NON-LEARNED DOMAIN-INDEPENDENT ABSTRACTIONS

Problem model and optimization objective: We use finite MDPs (Sutton & Barto, 2018) as the
model for sequential, perfect-information decision-making tasks. Here, ∆(X) denotes the probabil-
ity simplex of a finite, non-empty set X and P(X) denotes the power set of X .

Definition: An MDP is a 6-tuple (S, µ0,A,P, R, T) where the components are as follows:

• S ̸= ∅ is the finite set of states, T ⊆ S is the (possibly empty) set of terminal states, and
µ0 ∈ ∆(S) is the probability distribution for the initial state.

• A : S 7→ A maps each state s to the available actions ∅ ≠ A(s) ⊆ A at state s where
|A| < ∞.

• P : S × A 7→ ∆(S) is the stochastic transition function where we use P(s′| s, a) to denote
the probability of transitioning from s ∈ S to s′ ∈ S after taking action a ∈ A(s) in s.

• R : S ×A 7→ R is the reward function.

From hereon, let M = (S, µ0,A,P, R, T) be an MDP. Using the same notation as Anand et al.
(2015), we also define P := {(s, a) | s ∈ S, a ∈ A(s)} as the set of all state-action pairs. The goal
is to find an agent π that we model as a mapping from states to action distributions π : S 7→ ∆(A)
such that π maximizes the expected episode’s return, where the (discounted) return for of episode
s0, a0, r0, . . . , sn, an, rn, sn+1 with sn+1 ∈ T is given by γ0r0 + . . .+ γnrn.

Abstraction frameworks Next, we will define a general abstraction framework that includes most
of the here-presented abstraction algorithms and captures their core working principle. We bluntly
call this framework Alternating State And State-Action-Pair Abstractions (ASASAP) whose purpose
is to unify parts of the abstraction zoo. The idea of ASASAP is to alternately construct a state
abstraction from a state-action-pair abstraction and vice versa. For our purposes, we simply define
state and action abstractions as equivalence relations (equivalently partitions) of the state or action
space. In the supplementary materials in Section A.3, we show a concrete example of how an ASAP
abstraction (a special case of ASASAP) is built.

Definition: We call the equivalence relation H ⊆ P × P induced by some n ∈ N, some
initial state equivalence relation E0 ⊆ S × S, mappings f : P(S × S) 7→ P(P × P) and
g : P(P × P) 7→ P(S × S) to equivalence relations an ASASAPf,g,n,E0

abstraction if it is of the
form

H = Hn, (1)
Hi+1 = f(Ei) ∀i, (2)
Ei+1 = g(Hi+1) ∀i. (3)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

If additionally H is invariant to any number of additional applications of f and g, then we call it
converged.

Next, we will present some concrete instances of ASASAP from the literature. Firstly, Jiang et al.
(2014) used- and Givan et al. (2003) proposed AS-UCT (the name was given by Anand et al. (2015)),
which defines gAS(Hi+1) as grouping states if and only if they have identical legal actions and they
are pairwise equivalent:

(s1, s2) ∈ g(Hi+1) ⇐⇒ A(s1) = A(s2) ∧
∀a1 ∈ A(s1) : ((s1, a1), (s2, a1)) ∈ Hi+1.

(4)

And any state-action-pair (s1, a1), (s2, a2) is equivalent i.e. ((s1, a1), (s2, a2)) ∈ fAS(Ei) if and
only if the state-action pairs have similar immediate rewards and transition distributions:

|R(s1, a1)−R(s2, a2)| ≤ εa

and F :=
∑
x∈X

∣∣∣∣∑
s′∈x

P(s′| s1, a1)− P(s′| s2, a2)
∣∣∣∣ ≤ εt,

(5)

where X are the equivalence classes of Ei and εt, εa ≥ 0. In general, for εt, εa > 0, fAS(Ei) is not an
equivalence relation because transitivity is not guaranteed. Hence, any abstraction algorithms using
these need to slightly modify fAS(Ei) to obtain an equivalence relation. The reason for allowing εa
and εt to be greater than 0, is to find more correct abstractions at the cost of potentially abstracting
state-action-pairs or states that do not have the same value. The experiments of this paper confirm
that this can be beneficial.

To allow for the detection of more symmetries, Anand et al. (2015) proposed ASAP abstractions
that are based on Ravindran & Barto (2004) homomorphism condition that does not require there
to be a 1-to-1 action match but only a mapping of actions to each other, concretely gASAP(Hi+1) is
defined as

(s1, s2) ∈ gASAP(Hi+1) ⇐⇒
∀a1 ∈ A(s1)∃a2 ∈ A(s2) : ((s1, a1), (s2, a2)) ∈ Hi+1

∀a2 ∈ A(s2)∃a1 ∈ A(s1) : ((s1, a1), (s2, a2)) ∈ Hi+1.

(6)

The action abstraction fASAP is the same as the previously defined fAS using εt = εe = 0, however,
as we will later see there is nothing that would prevent us from choosing epsilon values greater than
zero here.

Abstractions for search: Constructing ASAP or AS abstractions until convergence for an entire
MDP is oftentimes infeasible, and such a computation would significantly hamper the runtime.
Hence, ASAP-UCT (Anand et al., 2015), AS-UCT (Anand et al., 2015; Jiang et al., 2014), and
OGA-UCT (Anand et al., 2016) build their ASASAP abstraction on the local-layered MDP rooted
at the state sd where the decision has to be made.

Definition: The state space of the layered MDP of M is S × {0, . . . , h} where h ∈ N is the horizon
and if (s, n) is a successor state of (s′, n′), then n = n′+1 and any initial state has n = 0. Additional
terminal states are S ×{h}. The local-layered MDP rooted at sd is the layered MDP of M but with
its states, actions, and possible state-action-pair-successors restricted to those present in the current
search graph.

In local-layered MDPs, a converged ASAP or AS abstraction can be efficiently computed with dy-
namic programming, where one requires only the abstraction of the previous layer to compute the
abstractions for the next. In ASAP-UCT and AS-UCT, an ASAP/AS-like abstraction is built in reg-
ular intervals on the current MCTS (for details on MCTS, see Section A.10) search graph using an
initial state equivalence relation that groups all terminal states of the same layer, groups all non-
fully-expanded nodes of the same layer, and puts all remaining nodes in their own abstract node
of size one. The abstraction built by ASAP/AS-UCT differs only from the ASAP/AS abstraction
in that non-fully-expanded nodes are never grouped with fully-expanded nodes. This non-grouping
condition also applies to OGA (Anand et al., 2016). For the later experiments, we will also experi-
ment with grouping partially explored state nodes as in ASAP-UCT, but for OGA. We refer to this
parameter as PG ∈ {0, 1} where 0 refers to no partial grouping.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Unlike ASAP-UCT and AS-UCT, the successor of ASAP-UCT, OGA-UCT, does not compute its
respective abstraction from the ground up but rather attempts to approximate the ASAP abstraction
by rebuilding only parts of its current abstraction. More concretely, OGA-UCT tests every K-th Q
node visit if the abstraction needs to be updated (e.g., new successors were sampled that invalidate
a previous abstraction). If so, the parent’s abstraction is recursively updated too.

A core weakness of ASAP abstractions is their exactness, which causes them to not be able to deal
with stochasticity well. Hence, Anand et al. (2016) directly proposed pruned OGA as an improve-
ment to OGA-UCT, which is the same as OGA-UCT except that for the abstraction construction
step for each state-action pair with n successors with respective probabilities p1, . . . , pn only those
with pi > α ·max{p1, . . . , pn}, α ∈ [0, 1] are considered. Also in this paper, we consider (εa, εt)-
OGA (Schmöcker et al., 2025) which is equivalent to OGA-UCT except that one allows for εa, εt to
be greater than 0. Since this does not induce an equivalence relation, the abstraction construction
process has to be slightly modified as detailed by Schmöcker et al. (2025).

Abstraction usage: Thus far, we have only discussed how to build abstractions but not how to
use them. The key mechanism that all here-presented MCTS-based abstraction methods use (e.g.
AS-UCT, ASAP-UCT, OGA-UCT) is only to modify the tree policy by enhancing the UCB value.
The UCB value for an action is enhanced by using the aggregated visits and returns of all actions
that are part of the same abstract action (i.e. equivalence class). In particular, state abstractions are
not used at this stage. These are only needed as an intermediate step to find action abstractions.
Only AS-UCT differs slightly from this approach as it only aggregates the statistics of actions that
additionally have the same abstract parent. This is because AS-UCT was originally intended as a
state only abstraction which is why it did not decouple action and state abstractions.

The intra-abstraction policies that we will later propose only affect the abstraction usage component
of an abstraction algorithm. They do not modify the abstraction-building process itself.

Other automatic abstraction algorithms: A different abstraction paradigm is PARSS by Hostetler
et al. (2015) that initially groups all successors of each state-action pair. As the search progresses,
this coarse abstraction is refined by repeatedly splitting abstract nodes in half. Another technique
is to build, but then fully abandon an abstraction mid-search, a method coined Elastic MCTS by
Xu et al. (2023). Though not fully domain-independent, another approach is given by Sokota et al.
(2021), who group states based on a domain-specific distance function, and the maximal grouping
distance shrinks as the search progresses. While also not in scope of this paper, research effort on
abstractions is also dedicated to continuous and/or partially observable problems (Hoerger et al.,
2024), and learning-based methods, such as learning and planning on abstract models (Ozair et al.,
2021; Kwak et al., 2024; Chitnis et al., 2020), or building abstractions that rely on learned functions
(e.g. a value function) (Fu et al., 2023). Research effort has also been dedicated towards automatic
abstractions of the transition function, which on an abstract level can be described as pruning certain
successors from the transition function (Sokota et al., 2021; Yoon et al., 2008; 2007; Saisubramanian
et al., 2017).

3 METHOD

Intra-abstraction policies: A consequence of ASAP’s key idea to decouple state and action abstrac-
tions is that two state-action pairs may be abstracted even when they have the same parent. This,
however, leads to the thus-far overlooked problem that any two abstract Q nodes with the same par-
ent will have an identical UCB value (see Section A.10) as they have the same number of aggregated
visits and returns. Hence, a tiebreaking rule is needed, which we refer to as an intra-abstraction
policy. Anand et al. (2016) implicitly chose a random intra-abstraction policy. While this random
policy causes no harm when the abstractions are lossless, when dealing with lossy abstractions (i.e.,
those where states or actions could be abstracted even when they do not have the same value under
optimal play) a random policy can be detrimental to performance as we will show in the experiment
section 5.

We propose a number of alternative intra-abstraction policies to choose an action within the selected
abstract node. The intra-abstraction policy can be split into two phases. One for the decision policy
(i.e. for the final decision at the root node) and one for the tree policy.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We separate the to-be-proposed methods into four groups. The first group encompasses the implic-
itly used methods from the literature. The second group includes policies that focus on exploration,
the third group focuses on exploitation, and the fourth group is a mix of both.

1. RANDOM: Randomly choose an action with uniform probability for both the decision and tree
policy. This is the one used by Anand et al. (2015)

2. FIRST: Simply choose the first encountered ground action for both the decision and tree pol-
icy. Though we do not believe that this method would perform well, this is one of the standard
tiebreaking rules for MCTS and might be accidentally implicitly used in an abstraction algorithm.

3. RANDOM GREEDY: Choose the action randomly during the tree policy and greedily during
the decision policy. We include this method as an ablation to pin down the influence of simply being
greedy in the decision policy.

4. LEAST VISITS: Choose the action with the least number of visits with a random tiebreak if two
actions have the same number of visits. Greedy policy as the decision policy. This policy is closest
to RANDOM except that visits are distributed perfectly evenly.

5. LEAST OUTCOMES: Choose the action with the minimal probability sum of all thus-far sam-
pled successors. Greedy policy as the decision policy. The idea is to allow the detection of any
faulty abstractions as soon as possible.

6. GREEDY: Choose the action with the highest Q value.

7. MOST VISITS: Choose the action with the most visits. Greedy policy is the decision policy.
The idea behind this policy is to increase the search depth, because when the abstraction does not
change, the action that wins the first tiebreak will always be chosen, as it will be the only one
receiving visits. However, this may come at the cost of exploration.

8. UCT: Choose the action whose ground visits and values maximize the UCB value (see Section
A.10) using the same exploration constant as the UCB selection for the abstract action. Greedy
policy is the decision policy.

All policies use a random tiebreak e.g., when two ground actions have the same number of visits
when using the LEAST VISITS policy.

Case study RANDOM vs UCT: Next, we are going to study the theoretical properties of the RAN-
DOM versus the UCT intra abstraction policy. Firstly, given arbitrary abstractions, no guarantees
that go beyond those of any OGA-based methods can be made, as one can always construct abstrac-
tions such that intra-abstraction policies would never be queried. However, if we assume a special
case of abstractions, which are those that only group state-action pairs with the same parent node,
then guarantees can be made. Firstly, RANDOM in combination with an arbitrary same-parent
state-action pair abstraction is not guaranteed to converge to the optimal action. An example where
RANDOM fails to find the optimal action is given in Fig. 1. In contrast, using UCT will always
converge to the optimal action. Concretely, assume a decision has to be made at state sd.

Theorem 1: Let E be a same-parent state-action pair abstraction of the local-layered MDP rooted
at sd. Consider MCTS that uses the aggregated abstract visits and returns of E for the UCB value
calculation for any state-action pair in combination with the UCT intra-abstraction policy. This
MCTS version’s ratio of root node visits of the optimal action(s) to the number of iterations will
converge in probability to 1.

The proof of this theorem is provided in the supplementary materials in Section A.1. A direct con-
sequence of this theorem is that pruned OGA’s or (εa, εt)-OGA’s root visits will also, in probability,
converge to the optimal action(s) if they were slightly modified to only group state-action pairs with
the same parent. This is because eventually their abstractions will converge since all the MDP’s
state-action pairs will be visited and all their outcomes will be sampled almost surely, which allows
only to apply Theorem 1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 1: Assume that MCTS with the visualized fixed action abstraction is run on the following
deterministic depth-1 game tree. This abstraction would also be discovered by (0.1, 0)-OGA since
when all four actions are played at least K times, (0.1, 0)-OGA will have abstracted actions 1,2, and
3,4. While the visits will converge to choosing the abstract node with actions 3 and 4 for both the
RANDOM and UCT intra-abstraction policy, RANDOM will distribute its visits uniformly amongst
3 and 4, resulting in an average payoff of 1.05. This shows that with RANDOM, convergence to the
optimal action is in general not guaranteed. In contrast, the UCT intra-abstraction policy guarantees
convergence to the average payoff of 1.1 by converging to action 4.

4 EXPERIMENT SETUP

In this section, we describe the general experiment setup. Any deviations from this setup will be
explicitly mentioned.

Parameters: Originally, OGA-UCT (Anand et al., 2016) used the absolute value of the abstract
Q value as the exploration constant. However, this technique has been improved by the dynamic,
scale-independent exploration factor global-std 1. The global-std exploration constant has the form
C · σ where σ is the standard deviation of the Q values of all nodes in the search tree and C ∈ R+

is some fixed parameter. Furthermore, we always use K = 3 as the recency counter, which was
proposed by Anand et al. (2016).

Problem models: For this paper, we ran our experiments on a variety of MDPs, all of which are
either from the International Probabilistic Planning Conference (Grzes et al., 2014) or are commonly
used in the abstraction algorithm literature (Anand et al., 2015; 2016; Hostetler et al., 2015; Yoon
et al., 2008; Jiang et al., 2014). All models were chosen such that they are not simultaneously
sparse reward and deterministic, as in that case any intra-abstraction policy for the here-considered
abstraction algorithm would have no effect at all. We ran all of our experiments on the finite-horizon
versions of the considered MDPs with a default horizon of 50 steps and a discount factor γ = 1. If
the reader is not familiar with any of the domains we used for the experiments, we provide a brief
description for each MDP in the supplementary materials in Section A.12.

Evaluation: Each data point that we denote in the remaining sections of this paper (e.g. agent re-
turns) is the average of at least 2000 runs. Whenever we denote a confidence interval for a data point,
then this is always a confidence interval with a confidence level of 99% which is ≈ 2.33 times the
standard error. Furthermore, we use a borda-like ranking system to quantify agents’ performances;
in particular, we use pairings and relative improvement scores. For details, see supplementary Sec-
tion A.6.

Reproducibility: For reproducibility, we released our implementation (Authors, 2025). Our code
was compiled with g++ version 13.1.0 using the -O3 flag (i.e. aggressive optimization).

5 EXPERIMENTS

Why intra-abstraction policies are needed: For the first set of experiments, we validate that the
case where intra-abstraction policies are required, i.e., two actions with the same parent but the same
abstract node, is not an edge case but occurs frequently. Tab. 1 in the supplementary materials lists
these statistics, showing that even for the least coarse abstraction setting, i.e., εt = εa = 0 and no
partial grouping, there are a number of cases where an intra-abstraction policy has to be queried.

Comparison of all intra-abstraction policies: Next, we tested which of the intra-abstraction poli-
cies performs best overall by determining which policy the best-performing parameter combination

1Citation excluded for double anonymous review process

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 2: The pairings and relative improvement score for all iteration budgets combined of the best
performing parameter-combination of each intra-abstraction policy are shown.

uses. In particular, we ran experiments with all intra-abstraction policies on pruned OGA, (εa, εt)-
OGA, and RANDOM-OGA (OGA with random abstractions, see A.7, to test the behavior of the
intra-abstraction policies on yet another abstraction type). For each abstraction algorithm, we var-
ied PG ∈ {Yes,No}. For (εa, εt)-OGA, we tested εa ∈ {0,∞}, εt ∈ {0, 0.2, 0.4, 0.8, 1.2, 1.6},
for pruned OGA we used α ∈ {0, 0.1, 0.2, 0.5, 0.75, 1.0}, and for RANDOM-OGA we used
pabs ∈ {0.1, 0.2, 0.5, 1.0}. Each parameter combination was run with 100, 200, 500, and 1000
iterations using C = 2. The bar chart in Fig. 2 shows the pairings and relative improvement scores
for the parameter combination with the highest scores for each intra-abstraction policy for all it-
eration budgets combined. The scores for each individual iteration budget are visualized in the
supplementary materials in Fig. 5. The following key observations can be made.

1) First and foremost, the RANDOM intra abstraction policy that has thus far been implicitly used
in the literature is always decisively beaten by at least one other strategy. Additionally, the FIRST
strategy, which one might accidentally use when no proper tiebreaking is implemented, is even
worse. This shows that choosing a suitable intra-abstraction policy is an important aspect when
designing an abstraction algorithm.

2) Secondly, it is UCT that consistently performs either best or second best in both scores across all
budgets, while all other methods fluctuate in their performance, which might be caused due to the
few tasks they are calculated over (just a little over 10 environments). The overall best performing
parameter-combination was (0,∞)-OGA using PG = no and UCT as the intra-abstraction policy
(this achieved the values 0.592 and 0.147 in the all-budgets bar chart). The overall best RANDOM-
using strategy in terms of the rel. improvement score was pruned OGA with α = 0.75,PG = no and
pruned OGA with α = 0.5,PG = no for the pairings score (these correspond to the values 0.535
and 0.102 in the all-budgets bar chart).

3) For the remaining strategies, it is difficult to identify trends that are certainly beyond noise.
However, given that RANDOM GREEDY only slightly improves over RANDOM in the pairings
score shows that, though the intra-abstraction policy at decision time has a considerable performance
impact, the tree-policy intra-abstraction policy is equally as important as shown by the performance
improvement of UCT.

In sum, the choice of an intra-abstraction policy can have a great impact on performance, which we
further consolidate in the next subsection. While the best intra-abstraction policy depends on the
concrete iteration budget - model setting, a consistent gain over RANDOM can be gained by simply
replacing it with the UCT strategy. In the supplementary materials Section A.4, we show that this
drop-in replacement improvement also holds when the abstractions themselves are fixed and one has
to find a strategy that can best deal with these abstractions.

Parameter-optimized performances: Next, we compared RANDOM versus the UCT intra ab-
straction policy in the parameter-optimized setting, where we optimized both agents over the same
set of parameters in addition to varying the exploration constant in C ∈ {0.5, 1, 2, 4, 8, 16} and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

including additional domain-specific εa values that are listed in Tab. 3 in the supplementary mate-
rials. For feasibility reasons, we restricted ourselves to UCT instead of additionally including all
other intra-abstraction policies. Fig. 3 shows the performance graphs for each environment. The
following observations can be made.

1) In every environment UCT either clearly performs better than RANDOM with at least one iter-
ation budget (in Crossing Traffic, Earth Observation, Manufacturer, Navigation, SysAdmin, Skill
Teaching, Sailing Wind and Tamarisk) or performs on par (in Academic Advising, Game of Life,
Cooperative Recon, Saving, Traffic, and Triangle Tireworld).

2) The performance gains can be explained by the fact that UCT performs better (relative to RAN-
DOM), the coarser the abstraction, as shown in the supplementary materials Section A.9. The en-
vironments where performance is gained over RANDOM are those that satisfy the following crite-
ria. Firstly, using coarse abstractions is either on par with OGA-UCT or even better. Secondly, the
coarseness needs to introduce actual abstraction errors which for example, is rarely the case in Game
of Life. Lastly, the intra-abstraction policy needs to be queried in the first place, which explains why
there is no gain for Navigation at higher iteration budgets.

In summary, using intra-abstraction policies is a valuable tool to improve peak performances across
a wide range of environments, especially when the peak performance without intra-abstraction poli-
cies has been reached with a coarse abstraction.

6 LIMITATIONS AND FUTURE WORK

In this paper, we first generalized the ASAP and AS frameworks to ASASAP. We then brought at-
tention to the intra-abstraction policy problem and showed that this is not an edge case. To relieve
this issue, we proposed several intra-abstraction policies as an alternative to the random policy that
is implicitly used in standard OGA. While some of them were only marginally better than RAN-
DOM, like MIN VISITS and RANDOM GREEDY, we found that UCT-OGA performs best and
consistently, performing either on par or clearly outperforming standard OGA across a variety of
parameter settings and environments. Consequently, we believe that UCT should be used as the
standard intra-abstraction policy for MCTS-based abstraction methods instead of the random policy.

Firstly, limitations of OGA also directly translate to OGA enhanced with an intra-abstraction policy.
In particular, for any performance gains to appear in the first place, the environment must contain
state-action pairs with the same Q value. Furthermore, for any abstractions to be detected in the
first place, the search graph must be a directed acyclic graph to ensure that there are state-action
pairs with the same successors, a necessary condition for any abstractions (unless εt = 2). Another
intra-abstraction policy-specific limitation is that these are only useful for non-exact abstractions. In
particular, if only state-action pairs with the same optimal Q value are abstracted then which one the
intra-abstraction policy chooses makes no difference.

From a different viewpoint, intra-abstraction policies can be seen as some special form of operating
in hierarchical abstractions, where one iteratively selects actions from different layers of abstractions
until a ground action is reached. In the case of intra-abstraction policies, the hierarchy consists of
two abstractions: the standard ASAP abstraction, followed by a trivial one where every node is
assigned to its own abstract node. We believe that choosing an intra-abstraction policy that itself just
selects an abstract action from a finer abstraction could be worth investigating.

Whenever the intra-abstraction policies resulted in ties, these were always resolved randomly. Even
though any gains here would be even more marginal, one could probably find further optimiza-
tions by setting up a tiebreak hierarchy, e.g., if UCT results in a tie, then these are resolved by
MOST VISITS.

Furthermore, on a more general level, it might be worth investigating if the progress in search ab-
stractions can be translated to machine learning methods that are built on these searches, such as
AlphaZero (Silver et al., 2017).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Academic Advising (b) Crossing Traffic (c) Earth Observation

(d) Game of Life (e) Manufacturer (f) Navigation

(g) Cooperative Recon (h) SysAdmin (i) Saving

(j) Skill Teaching (k) Sailing Wind (l) Tamarisk

(m) Traffic (m) Triangle Tireworld

Figure 3: The performance graphs of in dependence of the MCTS iteration count of the parameter
optimized versions of pruned OGA, (εa, εt)-OGA, and RANDOM-OGA combined with the UCT or
RANDOM intra-abstraction policy.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

In our experiment setup, we have a subsection called Reproducibility in which we provide a down-
load link to the full codebase used for this project as well as compilation details. The codebase
contains an elaborate README detailing the steps to reproduce the experiments.

REFERENCES

Ankit Anand, Aditya Grover, Mausam, and Parag Singla. ASAP-UCT: Abstraction of State-Action
Pairs in UCT. In Qiang Yang and Michael J. Wooldridge (eds.), Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Ar-
gentina, July 25-31, 2015, pp. 1509–1515. AAAI Press, 2015. URL http://ijcai.org/
Abstract/15/216.

Ankit Anand, Ritesh Noothigattu, Mausam, and Parag Singla. OGA-UCT: on-the-go abstractions
in UCT. In Proceedings of the Twenty-Sixth International Conference on International Confer-
ence on Automated Planning and Scheduling, ICAPS’16, pp. 29–37. AAAI Press, 2016. ISBN
1577357574.

Anonymous Authors. IntraAbstractionPolicies, 2025. The link has been removed for double blind
review purposes.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Christopher Hesse, Rafal Józefowicz,
Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto,
Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya
Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with Large Scale Deep Reinforcement
Learning. CoRR, abs/1912.06680, 2019. URL http://arxiv.org/abs/1912.06680.

John R. Birge. Chapter 20 Optimization Methods in Dynamic Portfolio Management. In John R.
Birge and Vadim Linetsky (eds.), Financial Engineering, volume 15 of Handbooks in Opera-
tions Research and Management Science, pp. 845–865. Elsevier, 2007. doi: https://doi.org/10.
1016/S0927-0507(07)15020-9. URL https://www.sciencedirect.com/science/
article/pii/S0927050707150209.

Cameron Browne, Edward Jack Powley, Daniel Whitehouse, Simon M. Lucas, Peter I. Cowling,
Philipp Rohlfshagen, Stephen Tavener, Diego Perez Liebana, Spyridon Samothrakis, and Simon
Colton. A Survey of Monte Carlo Tree Search Methods. IEEE Trans. Comput. Intell. AI Games, 4
(1):1–43, 2012. doi: 10.1109/TCIAIG.2012.2186810. URL https://doi.org/10.1109/
TCIAIG.2012.2186810.

Rohan Chitnis, Tom Silver, Beomjoon Kim, Leslie Pack Kaelbling, and Tomás Lozano-Pérez.
Camps: Learning context-specific abstractions for efficient planning in factored mdps. In Jens
Kober, Fabio Ramos, and Claire J. Tomlin (eds.), 4th Conference on Robot Learning, CoRL 2020,
16-18 November 2020, Virtual Event / Cambridge, MA, USA, volume 155 of Proceedings of Ma-
chine Learning Research, pp. 64–79. PMLR, 2020. URL https://proceedings.mlr.
press/v155/chitnis21a.html.

Gabriel Van Eyck and Martin Müller. Revisiting Move Groups in Monte-Carlo Tree Search.
In H. Jaap van den Herik and Aske Plaat (eds.), Advances in Computer Games - 13th In-
ternational Conference, ACG 2011, Tilburg, The Netherlands, November 20-22, 2011, Re-
vised Selected Papers, volume 7168 of Lecture Notes in Computer Science, pp. 13–23.
Springer, 2011. doi: 10.1007/978-3-642-31866-5\ 2. URL https://doi.org/10.1007/
978-3-642-31866-5_2.

Yangqing Fu, Ming Sun, Buqing Nie, and Yue Gao. Accelerating monte carlo tree
search with probability tree state abstraction. In Alice Oh, Tristan Naumann, Amir
Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neu-
ral Information Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
bf89c9fcd0ef605571a03666f6a6a44d-Abstract-Conference.html.

10

http://ijcai.org/Abstract/15/216
http://ijcai.org/Abstract/15/216
http://arxiv.org/abs/1912.06680
https://www.sciencedirect.com/science/article/pii/S0927050707150209
https://www.sciencedirect.com/science/article/pii/S0927050707150209
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1109/TCIAIG.2012.2186810
https://proceedings.mlr.press/v155/chitnis21a.html
https://proceedings.mlr.press/v155/chitnis21a.html
https://doi.org/10.1007/978-3-642-31866-5_2
https://doi.org/10.1007/978-3-642-31866-5_2
http://papers.nips.cc/paper_files/paper/2023/hash/bf89c9fcd0ef605571a03666f6a6a44d-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/bf89c9fcd0ef605571a03666f6a6a44d-Abstract-Conference.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Martin Gardner. The fantastic combinations of John Conway’s new solitaire game ’life’. Scien-
tific American, 223(4):120–123, October 1970. doi: 10.1038/scientificamerican1070-120. URL
https://www.jstor.org/stable/24927642.

Robert Givan, Thomas L. Dean, and Matthew Greig. Equivalence notions and model minimization in
Markov decision processes. Artif. Intell., 147(1-2):163–223, 2003. doi: 10.1016/S0004-3702(02)
00376-4. URL https://doi.org/10.1016/S0004-3702(02)00376-4.

Marek Grzes, Jesse Hoey, and Scott Sanner. International Probabilistic Planning Competition (IPPC)
2014. In Proceedings of the International Conference on Automated Planning and Scheduling
(ICAPS), 2014.

Marcus Hoerger, Hanna Kurniawati, Dirk P. Kroese, and Nan Ye. Adaptive discretization using
voronoi trees for continuous pomdps. Int. J. Robotics Res., 43(9):1283–1298, 2024. doi: 10.
1177/02783649231188984. URL https://doi.org/10.1177/02783649231188984.

Jesse Hostetler, Alan Fern, and Thomas G. Dietterich. Progressive Abstraction Refinement for
Sparse Sampling. In Marina Meila and Tom Heskes (eds.), Proceedings of the Thirty-First
Conference on Uncertainty in Artificial Intelligence, UAI 2015, July 12-16, 2015, Amsterdam,
The Netherlands, pp. 365–374. AUAI Press, 2015. URL http://auai.org/uai2015/
proceedings/papers/81.pdf.

Nan Jiang, Satinder Singh, and Richard L. Lewis. Improving UCT planning via approximate ho-
momorphisms. In Ana L. C. Bazzan, Michael N. Huhns, Alessio Lomuscio, and Paul Scerri
(eds.), International conference on Autonomous Agents and Multi-Agent Systems, AAMAS ’14,
Paris, France, May 5-9, 2014, pp. 1289–1296. IFAAMAS/ACM, 2014. URL http://dl.
acm.org/citation.cfm?id=2617453.

Levente Kocsis and Csaba Szepesvári. Bandit Based Monte-Carlo Planning. In Johannes Fürnkranz,
Tobias Scheffer, and Myra Spiliopoulou (eds.), Machine Learning: ECML 2006, 17th Euro-
pean Conference on Machine Learning, Berlin, Germany, September 18-22, 2006, Proceed-
ings, volume 4212 of Lecture Notes in Computer Science, pp. 282–293. Springer, 2006. doi:
10.1007/11871842\ 29. URL https://doi.org/10.1007/11871842_29.

Yunhyeok Kwak, Inwoo Hwang, Dooyoung Kim, Sanghack Lee, and Byoung-Tak Zhang. Efficient
monte carlo tree search via on-the-fly state-conditioned action abstraction. In Negar Kiyavash and
Joris M. Mooij (eds.), Uncertainty in Artificial Intelligence, 15-19 July 2024, Universitat Pompeu
Fabra, Barcelona, Spain, volume 244 of Proceedings of Machine Learning Research, pp. 2076–
2093. PMLR, 2024. URL https://proceedings.mlr.press/v244/kwak24a.html.

Qi Liu, Xueyuan Li, Shihua Yuan, and Zirui Li. Decision-Making Technology for Autonomous
Vehicles: Learning-Based Methods, Applications and Future Outlook. In 24th IEEE International
Intelligent Transportation Systems Conference, ITSC 2021, Indianapolis, IN, USA, September
19-22, 2021, pp. 30–37. IEEE, 2021. doi: 10.1109/ITSC48978.2021.9564580. URL https:
//doi.org/10.1109/ITSC48978.2021.9564580.

Sherjil Ozair, Yazhe Li, Ali Razavi, Ioannis Antonoglou, Aäron van den Oord, and Oriol Vinyals.
Vector quantized models for planning. In Marina Meila and Tong Zhang (eds.), Proceedings of
the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, volume 139 of Proceedings of Machine Learning Research, pp. 8302–8313. PMLR, 2021.
URL http://proceedings.mlr.press/v139/ozair21a.html.

B. Ravindran and A. G. Barto. Approximate Homomorphisms: A Framework for Non-Exact Min-
imization in Markov Decision Processes. In Proc. Int. Conf. Knowl.-Based Comput. Syst., pp.
1–10, 2004.

S. Saisubramanian, S. Zilberstein, and P. Shenoy. Optimizing Electric Vehicle Charging Through
Determinization. In ICAPS Workshop on Scheduling and Planning Applications, 2017.

Scott Sanner and Sungwook Yoon. International Probabilistic Planning Competition (IPPC) 2011.
In Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS),
2011.

11

https://www.jstor.org/stable/24927642
https://doi.org/10.1016/S0004-3702(02)00376-4
https://doi.org/10.1177/02783649231188984
http://auai.org/uai2015/proceedings/papers/81.pdf
http://auai.org/uai2015/proceedings/papers/81.pdf
http://dl.acm.org/citation.cfm?id=2617453
http://dl.acm.org/citation.cfm?id=2617453
https://doi.org/10.1007/11871842_29
https://proceedings.mlr.press/v244/kwak24a.html
https://doi.org/10.1109/ITSC48978.2021.9564580
https://doi.org/10.1109/ITSC48978.2021.9564580
http://proceedings.mlr.press/v139/ozair21a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Robin Schmöcker, Lennart Kampmann, and Alexander Dockhorn. Time-critical and confidence-
based abstraction dropping methods. In 2025 IEEE Conference on Games (CoG), pp. 1–8, 2025.
doi: 10.1109/CoG64752.2025.11114261.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lilli-
crap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering
the game of Go with deep neural networks and tree search. Nat., 529(7587):484–489, 2016. doi:
10.1038/NATURE16961. URL https://doi.org/10.1038/nature16961.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy P. Lillicrap, Karen
Simonyan, and Demis Hassabis. Mastering Chess and Shogi by Self-Play with a General Rein-
forcement Learning Algorithm. CoRR, abs/1712.01815, 2017. URL http://arxiv.org/
abs/1712.01815.

Tomah Sogabe, Dinesh Bahadur Malla, Shota Takayama, Seiichi Shin, Katsuyoshi Sakamoto,
Koichi Yamaguchi, Thakur Praveen Singh, Masaru Sogabe, Tomohiro Hirata, and Yoshitaka
Okada. Smart Grid Optimization by Deep Reinforcement Learning over Discrete and Continuous
Action Space. In 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC)
(A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC), pp. 3794–3796,
2018. doi: 10.1109/PVSC.2018.8547862.

Samuel Sokota, Caleb Ho, Zaheen Farraz Ahmad, and J. Zico Kolter. Monte Carlo Tree
Search With Iteratively Refining State Abstractions. In Marc’Aurelio Ranzato, Alina Beygelz-
imer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems 34: Annual Conference on Neural Informa-
tion Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 18698–
18709, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
9b0ead00a217ea2c12e06a72eec4923f-Abstract.html.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
2nd edition, 2018.

R. Vanderbei. Optimal Sailing Strategies. Technical report, University of Princeton, Statistics and
Operations Research Program, 1996.

Linjie Xu, Alexander Dockhorn, and Diego Perez-Liebana. Elastic Monte Carlo Tree Search. IEEE
Transactions on Games, 15(4):527–537, 2023. doi: 10.1109/TG.2023.3282351.

Sung Wook Yoon, Alan Fern, and Robert Givan. FF-Replan: A Baseline for Probabilistic Plan-
ning. In Mark S. Boddy, Maria Fox, and Sylvie Thiébaux (eds.), Proceedings of the Seven-
teenth International Conference on Automated Planning and Scheduling, ICAPS 2007, Prov-
idence, Rhode Island, USA, September 22-26, 2007, pp. 352. AAAI, 2007. URL http:
//www.aaai.org/Library/ICAPS/2007/icaps07-045.php.

Sung Wook Yoon, Alan Fern, Robert Givan, and Subbarao Kambhampati. Probabilistic Planning
via Determinization in Hindsight. In Dieter Fox and Carla P. Gomes (eds.), Proceedings of the
Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July
13-17, 2008, pp. 1010–1016. AAAI Press, 2008. URL http://www.aaai.org/Library/
AAAI/2008/aaai08-160.php.

Håkan L. S. Younes, Michael L. Littman, David Weissman, and John Asmuth. The First Probabilistic
Track of the International Planning Competition. J. Artif. Intell. Res., 24:851–887, 2005. doi:
10.1613/JAIR.1880. URL https://doi.org/10.1613/jair.1880.

12

https://doi.org/10.1038/nature16961
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
https://proceedings.neurips.cc/paper/2021/hash/9b0ead00a217ea2c12e06a72eec4923f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/9b0ead00a217ea2c12e06a72eec4923f-Abstract.html
http://www.aaai.org/Library/ICAPS/2007/icaps07-045.php
http://www.aaai.org/Library/ICAPS/2007/icaps07-045.php
http://www.aaai.org/Library/AAAI/2008/aaai08-160.php
http://www.aaai.org/Library/AAAI/2008/aaai08-160.php
https://doi.org/10.1613/jair.1880

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A SUPPLEMENTARY MATERIALS

A.1 PROOF OF THEOREM 1

Running the abstraction-using UCB MCTS variant on the local-layered MDP Ml rooted at sd and the
UCT intra-abstraction policy is equivalent to running standard MCTS on a move group MDP of Ml
(Eyck & Müller, 2011) where the move groups are the abstract actions. A move group MDP splits
the original MDP’s actions into two phases: the first is to select a move group (which is a subset of
the available actions at the corresponding state), and then select an action within that move group that
has the transition dynamics of the original MDP. The move-group selection action is deterministic
and yields a reward of 0. Consequently, the Q∗ values of the original actions in the move group MDP
have the same value as in the original MDP and therefore both MDPs have identical optimal policies
(when using a discount of γ = 1 and excluding the move group actions). Since standard MCTS
(using UCB) converges in probability to the optimal action (Kocsis & Szepesvári, 2006) on the
move-group MDP, the same must hold for the here-considered abstraction-using MCTS variant.

A.2 INTRA-ABSTRACTION POLICY QUERY STATISTICS

Table 1: Statistics of the ratio of tree policy calls where two actions of the same parent were part of
the same abstract node to show that intra-abstraction policies are not an edge case. A ratio of 1.00
means that an intra abstraction policy was always required, while a ratio of 0.00 means that it was
never required. The statistics were gathered with (0, εt)-OGA using the RANDOM intra abstraction
policy, 1000 iterations, and C = 4. The results were averaged from 100 episodes each.

Domain εt = 0 εt = 0.8 εt = 1.6
NO-PG PG NO-PG PG NO-PG PG

Academic Advising 0.02 0.21 0.02 0.29 0.64 0.74
Cooperative Recon 0.30 0.33 0.33 0.32 0.28 0.32

Crossing Traffic 0.88 0.93 0.92 0.92 0.89 0.94
Earth Observation 0.00 0.00 0.27 0.27 0.27 0.27

Game of Life 0.00 0.00 0.52 0.84 0.84 0.82
Manufacturer 0.00 0.00 0.05 0.07 0.11 0.13

Navigation 0.00 0.00 0.01 0.02 0.02 0.13
Racetrack 0.17 0.51 0.17 0.51 0.17 0.51

Sailing Wind 0.00 0.02 0.00 0.06 0.05 0.13
Saving 0.00 0.00 0.00 0.01 0.01 0.01

Skills Teaching 0.01 0.03 0.11 0.11 0.13 0.20
SysAdmin 0.01 0.05 0.23 0.30 0.31 0.38
Tamarisk 0.00 0.01 0.26 0.34 0.40 0.44

Traffic 0.08 0.13 0.52 0.77 0.47 0.79
Triangle Tireworld 0.32 0.47 0.28 0.40 0.33 0.48

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.3 ASAP ABSTRACTION EXAMPLE

Figure 4: A showcase of how the ASAP abstraction framework, which itself is a special case of
ASASAP abstractions, would detect equivalences in the following 5-state MDP. Each node repre-
sents a state, and arrows represent deterministic actions with the same immediate reward of 0. The
dotted ovals represent abstractions. Initially, in (a), all states and state-action pairs are in their own
singleton abstract node. Then, in (b) the next state-action pair abstraction is constructed (the appli-
cation of function f from Section 2) from this initial state abstraction, which groups the actions of
nodes 3 and 4 because they have the same immediate reward and the same transition distribution.
From this state-action pair abstraction the next state abstraction is constructed in (c), (the application
of function g from Section 2) which groups nodes 3 and 4 because they have the same set of abstract
state-action pairs. Then again, in (d) the next state-action pair abstraction is constructed which also
groups the actions from nodes 1 and 2 because they have the same abstract successor. Then a state
abstraction is constructed again in (e), which groups states 1 and 2. Then further applications of f
or g would have no effect, hence this abstraction is converged.

A.4 PERFORMANCES ON FIXED ABSTRACTIONS

Next, it will be tested how well each intra-abstraction policy can generalize across different abstrac-
tion types. To do this, we reanalyzed the results of the main-part experiment section and built the
pairings and relative improvement score when moving all parameters except the intra-abstraction to
the set of tasks (i.e. a task now includes, for example, the εt or α values). Tab. 2 shows both the rela-
tive improvement and pairings score for these results. Importantly, this shows that when confronted
with an arbitrary abstraction, both FIRST and RANDOM perform worst by far, while UCT is by far
the best policy.

Table 2: The relative improvement and pairings scores for each intra-abstraction policy, when for
the score calculation all parameters except the intra-abstraction policy are part of the task set.

Intra-abs policy Rel. improv. score

UCT 0.074
GREEDY 0.046

RANDOM GREEDY 0.040
LEAST OUTCOMES 0.038

LEAST VISITS 0.038
MOST VISITS −0.034

FIRST −0.100
RANDOM −0.101

Intra-abs policy Pairings score

UCT 0.394
GREEDY 0.206

RANDOM GREEDY 0.102
LEAST VISITS 0.097

LEAST OUTCOMES 0.077
MOST VISITS −0.145

RANDOM −0.363
FIRST −0.368

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.5 DOMAIN-SPECIFIC εA VALUES

Table 3: A list of the environment-specific εa values that were used for the experiments. All domains
that are not explicitly listed here use the default values εa ∈ {0, 1, 2,∞}. The values were chosen
to be equal to rewards (except 0 and ∞) that occur in these environments.

Environment εa values
Academic Advising 0, ∞
Cooperative Recon 0, 0.5, 1.0, ∞
Crossing Traffic 0, ∞
Manufacturer 0, 10, 20, ∞
Skill Teaching 0, 2, 3, ∞
Tamarisk 0, 0.5, 1.0, ∞
Default 0, 1, 2, ∞

A.6 DEFINITION OF THE RELATIVE IMPROVEMENT AND PAIRINGS SCORE

In the main experimental section, we evaluated the intra-abstraction policies with respect to the
relative improvement and pairings score, which are formalized here. While the pairings score is
calculated by summing over the number of tasks where some agent performed better than another,
the relative improvement score also takes the percentage of the improvement into account; however,
it is prone to outliers. Hence, we considered both scores to paint the full picture.

Concretely, let {π1, . . . , πn} be n agents (e.g., concrete parameter settings) where each agent was
evaluated on m tasks (e.g. a given MCTS iteration budget and an environment or a given abstraction
in case of the experiments in Section A.4) where pi,k ∈ R denotes the performance of agent πi on
the k-th task.

Definition: The pairings score matrix M ∈ Rn×n is defined as

Mi,j =
1

m− 1

∑
1≤k≤m

sgn(pi,k − pj,k) (7)

where sgn is the signum function. The pairings score si ≤ i ≤ n is given by

si =
1

n− 1

∑
1≤l≤n,l ̸=i

Mi,l. (8)

Definition The relative improvement matrix M ∈ Rn×n is defined as

Mi,j =
1

m− 1

∑
1≤k≤m

pi,k − pj,k
max(|pi,j |, |pj,k|)

(9)

and the relative improvement score si ≤ i ≤ n is given by

si =
1

n− 1

∑
1≤l≤n,l ̸=i

Mi,l. (10)

A.7 RANDOM-OGA

OGA that uses random abstractions is called RANDOM-OGA and functions as follows. Whenever
a Q node Q is visited for the K-th time and its current abstract node consists only of itself, then
with the probability pabs ∈ [0, 1], Q’s abstract node is changed with uniform probability to any of the
abstract nodes of the same depth. Initially, at creation, any Q node is its own abstract node. Note that
RANDOM-OGA does not abstract states, as it is only state-action pair abstractions that influence
the agent’s decision-making through the modified UCB formula.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(a) 100 iterations (b) 200 iterations

(c) 500 iterations (d) 1000 iterations

(e) All budgets

Figure 5: For each iteration budget and the combination of all iteration budgets, the pairings and
relative improvement score for the best performing parameter-combination of each intra-abstraction
policy are shown.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.8 PAIRINGS AND RELATIVE IMPROVEMENT SCORES FOR EACH INDIVIDUAL ITERATION
BUDGET:

A.9 ABLATION: PERFORMANCES WITH VARYING ABSTRACTION COARSENESSES

Lastly, we conducted an ablation on the efficiency of UCT and RANDOM as the intra-abstraction
policy in dependence on the coarseness of the abstraction. Concretely, we reanalyzed the pairings
and relative improvement scores from the experiment section that were created over all parameter
combinations. Fig. 6 shows the scores of several abstractions with varying coarsenesses and the
highest pairings/relative improvement score that UCT and RANDOM could achieve in that setting.
The results are pretty clear: The coarser the abstraction, the greater the performance gap between
UCT and RANDOM. Interestingly, using UCT can change the location of the performance peaks by
enabling coarser abstractions: In (εa, εt) the peak is obtained at εt = 0.4 instead of εt = 0.2, and in
pruned OGA the peak is obtained at α = 1 instead of α = 0.75.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(a) Relative improvement score on (εa, εt)-
OGA abstractions.

(b) Pairings score on (εa, εt)-OGA abstrac-
tions.

(c) Relative improvement score on pruned
OGA abstractions.

(d) Pairings score on pruned OGA abstrac-
tions.

(f) Relative improvement score on
RANDOM-OGA abstractions.

(e) Pairings score on RANDOM-OGA ab-
stractions.

Figure 6: For RANDOM-OGA, pruned OGA, and (εa, εt)-OGA, these figures show the parameter
combinations using UCT and RANDOM as the intra-abstraction policies and the respective abstrac-
tion parameter (e.g. α = 1 that achieved the highest pairings or relative improvement score from the
main-part experiment section.

A.10 MONTE CARLO TREE SEARCH

All here-presented abstraction algorithms rely on Monte Carlo Tree Search (MCTS) which we are
going to describe now. Let M be a finite-horizon MDP. On a high level, MCTS repeatedly samples
trajectories starting at some state s0 ∈ S where a decision has to be made until a stopping criterion is
met. The final decision is then chosen as the action at s0 with the highest average return. In contrast
to a pure Monte Carlo search, MCTS improves subsequent trajectories by building a tree (or, in our

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

case, a directed acyclic graph) from a subset of the states encountered in the last iterations, which
is then exploited. In contrast to pure Monte Carlo search, MCTS is guaranteed to converge to the
optimal action.

An MCTS directed acyclic graph is made of two components. Firstly, the state nodes, that represent
states and Q nodes that represent state action pairs. Each state node, saves only its children which
are a set of Q nodes. Q nodes save both its children which are state nodes and the number of and the
sum of the returns of all trajectories that were sampled starting at the Q node.

Initially, the MCTS search graph consists only of a single state node representing s0. Until the
iteration budget is exhausted, the following steps are repeated.

1. Selection phase: Starting at the root node, MCTS first selects a Q node according to the
so-called tree policy, which may use the nodes’ statistics, and then samples one of the Q
node’s successor states. If either a terminal state node, a state node with at least one non-
visited action (partially expanded), or a new Q node successor state is sampled that is not
represented by another node of the same layer, the selection phase ends.
A commonly used tree policy (and the one we used) that is synonymously used with
MCTS is Upper Confidence Trees (UCT) (Kocsis & Szepesvári, 2006), which selects an
action that maximizes the Upper Confidence Bound (UCB) value. Let s ∈ S and Va, Na

with a ∈ N be the return sum and visits and of the Q nodes of the node representing s. The
UCB value of any action a is then given by

UCB(a) =
Va

Na︸︷︷︸
Q term

+λ

√√√√√√ log

(∑
a′∈A(s)

Na′

)
Na︸ ︷︷ ︸

Exploration term

. (11)

The exploration term quantifies how much the Q term could be improved if this Q node was
fully exploited and is controlled by the exploration constant λ ∈ R ∪ {∞}. If one chose
λ = 0, the UCT selection policy becomes the greedy policy and for λ = ∞, the selection
policy becomes a uniform policy over the visits. In case of equality, some tiebreak rule has
to be selected, which is typically a random tiebreak. From here, will use MCTS and UCT
(MCTS with UCB selection formula) synonymously.

2. Expansion: Unless the selection phases ended in a terminal state node, the search directed
acyclic graph is expanded by a single node. In case the selection phase ended in a partially
expanded state node, then one unexpanded action is selected (e.g. randomly, or according
to some rule), the corresponding Q node is created and added as a child and one successor
state of that Q node is sampled and added as a child to the new Q node. If the selection phase
ended because a new successor of a Q node was sampled, then a state node representing
this new state is added as a child to that Q node.

3. Rollout/Simulation phase: Starting at the state srollout of the newly added state node
of the expansion phase (or at a terminal state node reached by the selection phase), actions
according to the rollout policy are repeatedly selected and applied to srollout until a terminal
state is reached. All states encountered during this phase are not added to the search graph.

4. Backpropagation: In this phase, the statistics of all Q nodes that were part of the last sam-
pled trajectory that corresponds to a path in the search graph are updated by incrementing
their visit count and adding the trajectory’s return (of the trajectory starting at the respective
Q node) to their return sum statistic.

A.11 RUNTIME MEASUREMENTS

Tab. 4 lists the average decision-making times for each environment of the UCT intra-abstraction
policy compared to RANDOM for 100 and 2000 iterations on states sampled from a distribution
induced by random walks. This shows that while UCT adds only a minor overhead, despite hav-
ing to execute more UCB evaluations. In particular, we are using highly optimized environment
implementations that could be the runtime bottleneck in more complex environments.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 4: Average decision-making times of MCTS using either the UCT or RANDOM intra-
abstraction policy in milliseconds for 100 and 2000 iterations using εt = 0.8. This data was ob-
tained using an Intel(R) Core(TM) i5-9600K CPU @ 3.70GHz. The data shows a median runtime
overhead of ≈0.6% for 100 iterations and ≈2% for 2000 iterations.

Domain UCT-100 RANDOM-100 UCT-2000 RANDOM-2000
Academic Advising 2.10 1.98 109.12 100.90
Cooperative Recon 3.67 3.62 182.63 179.36
Crossing Traffic 2.33 2.32 346.46 343.24
Earth Observation 7.38 7.35 288.69 290.51
Game of Life 3.50 3.54 149.85 140.11
Manufacturer 10.05 10.04 271.58 267.35
Navigation 2.29 2.20 61.59 57.69
Sailing Wind 2.11 2.12 144.28 142.40
Saving 1.34 1.37 70.02 68.03
Skills Teaching 3.55 3.52 179.40 175.79
SysAdmin 1.56 1.51 101.27 114.00
Tamarisk 2.81 3.06 126.52 117.40
Traffic 3.62 3.57 114.41 112.90
Triangle Tireworld 4.01 3.65 119.80 108.21

A.12 PROBLEM DESCRIPTIONS

We will provide a brief description of each of the IPPC problems used for the experiments.

• Academic Advising: The Academic Advising domain was used for the IPPC 2014 (Grzes
et al., 2014). The agent is a student whose goal is to pass certain academic classes. For-
mally, the state is an element in {P,NP,NT}n (representing for each course whether it
has been passed, not been passed, or not been taken), and the agent’s action is to choose a
course to take. The course outcome depends on the states of the prerequisite courses. The
episode ends when all courses are passed, and while not all mandatory courses, a subset of
all courses, are passed, the agent incurs a constant penalty per step.

• CooperativeRecon: This domain models a robot having to prove the existence of life on
a foreign planet. The robot is modeled as moving on a 2-dimensional grid which contains
a number of objects of interest and a base. If the agent is at an object of interest, it can
survey the object for the existence of water and life. The probability of a positive result of
the latter is dependent on whether water has been detected. If life has been detected, the
agent may photograph the object of interest which is the only way to gain a reward. Each
detector may break on usage making it either unusable or decreasing its chance of working.
The detectors can be repaired at the base.

• Crossing Traffic: Crossing traffic is a grid-based navigation problem where the agent has
to maneuver through lanes of traffic. Obstacles can move only on the x-axis from right to
left. Obstacles spawn randomly on the right end of the grid except for the first and last row
of the grid and on collision with the agent, render the agent unable to move, thus making
the current episode impossible to be solved. Starting at the top left of the grid, the goal is
to reach the bottom left grid cell in as few steps as possible without getting hit.

• EarthObservation: EarthObservation was a test problem for the IPPC 2018 which models
a satellite orbiting earth. Formally, each state is a position on a 2-dimensional grid, repre-
senting the satellite’s longitudinal position and the latitude the camera is aimed at as well
as weather levels for some designated cells. At each step, the weather levels stochastically
change independent of the agent’s actions which are to idle, to take a photo of the current
position, or increment/decrement the current cells y-position (i.e. shifting the camera fo-
cus). A reward is obtained if one of the designated cells is photographed with an amount
depending on the cell’s current weather condition.

• Game of Life: The original game of life by John Conway (Gardner, 1970) is a cellu-
lar automaton and modified into a stochastic MDP as a test problem for the International
Probabilistic Planning Competition (Sanner & Yoon, 2011) by introducing noise to the

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

deterministic state transition, setting the current number of alive cells as the reward, and al-
lowing the agent to choose one cell which will contain a living cell with a high probability.
States are elements in {0, 1}n×n describing whether there is an alive cell at each cell on a
grid. To reduce the action space that scales quadratically which the grid length, we allow
only a subset of the original actions, which is to specify one alive cell that is prevented
from dying.

• Manufacturer: In this domain, the agent manages a manufacturing company. The agent’s
ultimate goal is to sell goods to customers. However, to sell a good, the agent has to first
produce the good, which may require building factories and acquiring the necessary goods
required for production. Additional difficulty comes from the fact that the goods’ price
levels vary stochastically.

• Navigation: Navigation was a test problem for the International Probabilistic Planning
Competition 2011 (Sanner & Yoon, 2011). The goal is to move a robot on an n ×m grid
from (n, 1) to (n,m) in the least number of steps. The robot may move to any of the four
adjacent tiles, however, each tile is assigned a unique probability with which the robot is
reset back to (n, 1). At each step, except the one where the goal is reached, the agent
incurs a constant negative reward, making the objective to reach the goal state as quickly
as possible.
Saving: Saving is introduced by Hostetler et al. (2015), where the agent aims to maximize
accumulated wealth over time. At each step, the agent can choose one of three actions:
Invest, Borrow, or Save. Borrow provides an immediate reward of 2 but imposes a penalty
of -3 after n time steps. Once this action is taken, it cannot be repeated until the delayed
penalty is applied. Save yields an immediate reward of 1 with no further consequences.
Invest offers no immediate reward but enables the agent to take the Sell action within the
next m time steps. The agent cannot invest again until either the Sell action is executed
or m steps have elapsed. If Sell is chosen, then the agent receives a reward equal to the
current price level that changes stochastically and independently of the agent’s actions.

• Sailing Wind: Originally proposed by Robert Vanderbei (Vanderbei, 1996), the goal of
Sailing Wind is to move a ship that starts at (1, 1) on an n× n grid to (n, n) with minimal
cost. There is no consistent use of a transition and reward function throughout the literature.
There may just be two available actions (down, right) (Jiang et al., 2014) or up to seven
(each adjacent cell except the one facing a stochastic wind direction) (Anand et al., 2015).
The cost of each action is dependent on the current wind direction which stochastically
changes its direction at each step independent of the player’s actions.

• SysAdmin: Used as a test problem for the IPPC 2011, a SysAdmin instance is a graph
(describing a network topology) with n ∈ N vertices. The state space is {0, 1}n (describing
which machines are currently operating) and the action space is {1, . . . , n} (describing with
machine to reboot). At each step, the reward is dependent on the machines that are currently
working, a reboot causes the rebooted machine to have a high chance of working in the next
step. Machines can randomly fail at each step, however this probability is increased when
a neighbor fails.

• Tamarisk: Tamarisk is yet another problem from the IPPC 2014 (Grzes et al., 2014) which
models the expansion of an invasive plant in a river system. The river system is modelled
as a chain of reaches where each reach contains a number of slots that may be unoccupied,
occupied by a native plant, or occupied by the invasive Tamarisk plant. Both plant types
spread stochastically to neighboring states with a higher probability of spreading down-
stream. At each time step, the agent chooses an action for one reach, which are doing
nothing, eradicating Tamarisk, or restoring a native plant. The action chosen at a reach is
applied to all slots in that reach. Except for the do-nothing action, all actions can randomly
fail. The agent has to balance the action’s costs with the penalties incurred for existing
Tamarisk plants.

• Triangle Tireworld: Tireworld was proposed as a test problem for the IPPC 2004 (Younes
et al., 2005). In the original goal-based version, the agent is a car that traverses a graph. At
each step, the car may move to an adjacent node, change its tire, or load a tire. The goal
is to reach a designated goal node. At each step, the car’s tire may randomly break. If the
car isn’t carrying a spare tire, the goal can no longer be reached. Otherwise, if available, a

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

spare tire (at most one can be carried) must be used to replace the current tire. Some nodes
contain spare tires, which when the agent visits them, can be picked up.

• Skills Teaching: This domain models a student-teacher interaction, where the agent plays
the role of the teacher. There is a fixed number of skills that form a directed graph of
prerequisites. The student possesses one of three levels of sufficiency at each skill. The
agent is rewarded for each skill being at the highest sufficiency and punished for each skill
at the lowest sufficiency level. At each, step the agent may choose a skill for which to pose
a question to the student or give the student a direct hint. The student can increase their
sufficiency at that skill for correctly answering a question and lose sufficiency for answering
wrong. The probability of getting a question right is dependent on the sufficiency of the
skill’s prerequisite. A hint can elevate the student to the medium sufficiency level directly
but only if all prerequisites are at the highest sufficiency.

• Traffic: This problem models a traffic system in which the agent is tasked with control-
ling/advancing intersections with the goal of minimizing congestion. The traffic system is
modeled as a directed graph and each vertex is either empty or occupied. Occupancy flows
along the graph’s edges except for some designated intersection edges where the flow is de-
pendent on the intersection’s state. The only stochasticity of this MDP arises in the form of
cars spawning randomly at the designated perimeter vertices. The agent receives a reward
equal to the negative number of occupied vertices that have one predecessor vertex that is
also occupied.
Constrictor is played on an n times n grid. Players take turns moving to any of the neigh-
boring (4-neighborhood) grid cells that neither moves the player out of bounds nor hits any
cell that has already been visited by any of the two players. The game ends when one player
has nowhere left to move.

22

	Introduction
	Foundations of non-learned domain-independent abstractions
	Method
	Experiment setup
	Experiments
	Limitations and Future Work
	Reproducibility statement
	Supplementary materials
	Proof of Theorem 1
	Intra-abstraction policy query statistics
	ASAP abstraction example
	Performances on fixed abstractions
	Domain-specific a values
	Definition of the relative improvement and pairings score
	RANDOM-OGA
	Pairings and relative improvement scores for each individual iteration budget:
	Ablation: Performances with varying abstraction coarsenesses
	Monte Carlo Tree Search
	Runtime measurements
	Problem descriptions

