

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GENDEXHAND: GENERATIVE SIMULATION FOR DEXTEROUS HANDS

Anonymous authors

Paper under double-blind review

ABSTRACT

Data scarcity remains a fundamental bottleneck for embodied intelligence. Existing approaches use large language models (LLMs) to automate gripper-based simulation generation, but they transfer poorly to dexterous manipulation, which demands more specialized environment design. Meanwhile, dexterous manipulation tasks are inherently more difficult due to their higher degrees of freedom. Massively generating feasible and trainable dexterous hand tasks remains an open challenge. To this end, we present **GenDexHand**, a *generative simulation pipeline* that autonomously produces diverse robotic tasks and environments for dexterous manipulation. **GenDexHand** introduces a closed-loop refinement process that adjusts object placements and scales based on vision-language model (VLM) feedback, substantially improving the average quality of generated environments. Each task is further decomposed into sub-tasks to enable sequential reinforcement learning, reducing training time and increasing success rates. Our work provides a viable path toward scalable training of diverse dexterous hand behaviors in embodied intelligence by offering a simulation-based solution to synthetic data generation. Our anonymous website: <https://sites.google.com/view/gendexhand>.

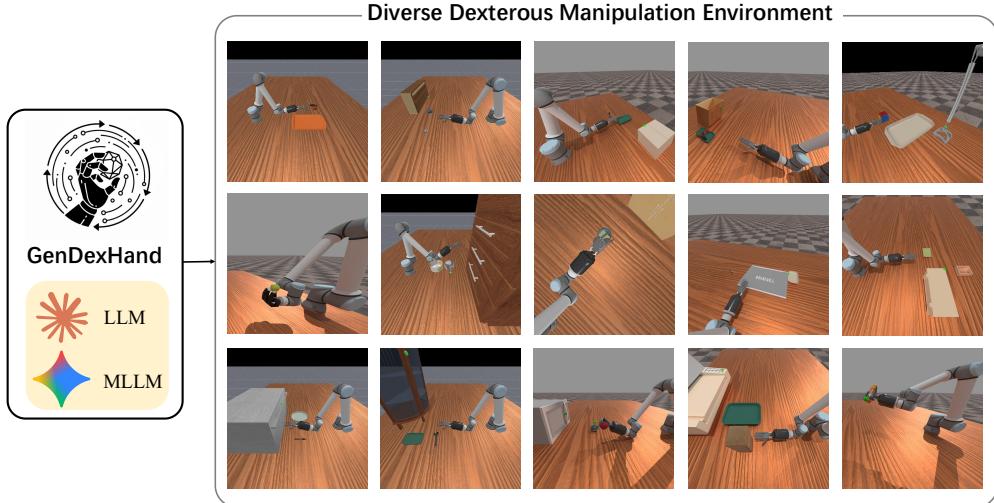
1 INTRODUCTION

A long-term goal of artificial general intelligence lies in the development of embodied agents capable of interacting with the real world under autonomous control. Robot learning at scale is particularly promising, as it holds the potential to endow agents with the breadth of skills and robustness necessary for complex real-world deployment (Intelligence et al., 2025; Black et al., 2024; Liu et al., 2025). Large-scale, high-quality data emerges as a cornerstone for effective robot learning, particularly in manipulation, where diverse datasets drive improvements in policy robustness and generalization (Torne et al., 2024; Lin et al., 2025; Ai et al., 2025). However, constructing complex and diverse simulation environments or collecting data with real-world robotic platforms is both costly and technically challenging, particularly in the case of dexterous hand manipulation tasks (Chen et al., 2022; Lin et al., 2024b). In parallel, foundation models (Anthropic, 2025; OpenAI, 2025; Zhuo et al., 2025; Team, 2023) demonstrate strong capabilities in generating formalized code (Jain et al., 2024; Jimenez et al., 2023), making the controllable synthesis of simulation environments through code generation a promising approach to reducing construction costs. Building on the capability of foundation models, prior studies have made initial progress in generative simulation for robotics, particularly in domains such as robotic grippers and locomotion (Wang et al., 2023; 2024a).

RoboGen (Wang et al., 2023) leverages foundation models to generate diverse tasks, but its environments remain confined to gripper manipulation and locomotion. GenSim (Wang et al., 2024a) and GenSim2 (Hua et al., 2024) narrow the focus further to simpler manipulation regimes—suction and parallel-jaw gripping—with GenSim2 additionally demonstrating sim-to-real transfer. Yet across these approaches, a consistent gap persists: none address the generation of dexterous hand tasks. This omission raises a central research question: why has the generation of dexterous hand tasks been systematically avoided?

Dexterous hands, by virtue of their anatomical structure, possess the capability to execute complex tasks and exhibit greater generalization in manipulation compared to grippers or suction grippers (Ma & Dollar, 2011). However, this potential comes with substantial challenges. To accomplish

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071



072 Figure 1: A showcase of 15 diverse and realistic task scenes automatically generated by GenDex-
073 Hand.

074
075
076 intricate tasks, dexterous hands require precise coordination among multiple fingers, and achieving
077 such coordinated control has long been recognized as one of the primary difficulties in distinguishing
078 dexterous hand manipulation from gripper or suction-based manipulation. A further source of
079 difficulty arises from the high degrees of freedom (DoFs) inherent to dexterous hands. This substantial
080 increase in controllable dimensions expands the exploration space in reinforcement learning and
081 motion planning, necessitating more precise and fine-grained guidance for effective policy learning.
082 Consequently, imposing constraints or structure on the exploration space is critical for improving
083 both the accuracy and efficiency of learning complex dexterous-hand policies.

084 In this work, we introduce GenDexHand, a generative agent for producing dexterous hand simu-
085 lation data and corresponding control policies. The pipeline is structured into three stages: (i) task
086 proposal and environment generation, (ii) multimodal large language model refinement, and (iii)
087 policy generation. In the first stage, the system leverages our robotic asset library and object set to
088 propose feasible tasks and synthesize the corresponding scene configurations, objects, and guidance
089 components such as reward functions or goal poses. In the second stage, the generated environments
090 are iteratively refined with the assistance of multimodal large language models to ensure semantic
091 coherence and physical plausibility. Finally, in the third stage, an LLM determines whether a given
092 task should be addressed through motion planning or reinforcement learning; for reinforcement
093 learning, it specifies which finger joints are required, whereas for motion planning, it identifies the
094 appropriate hand position and joint configuration.

095 To further address the intrinsic difficulty of dexterous hand learning, we decompose long-horizon
096 tasks into a sequence of shorter-horizon subtasks and introduce constraints on the action space for
097 specific task categories. For example, in object rotation tasks, the wrist joint is fixed at its initial pose,
098 thereby reducing the effective action dimension and focusing exploration on finger coordination.
099 This structured generation and refinement process enables the creation of high-quality simulation
100 environments and facilitates the learning of effective policies for dexterous manipulation.

101 Our experiments demonstrate that GenDexHand is capable of robustly generating a diverse set of
102 dexterous hand manipulation tasks (see Figure 1). Compared to directly generating scenes and pol-
103 icy guidance in a single step, our iterative refinement procedure yields policies with an average im-
104 provement of 53.4% on the target tasks. The datasets produced by GenDexHand also exhibit greater
105 diversity than existing dexterous hand datasets, encompassing a broader range of long-horizon and
106 complex tasks.

107 In summary, our work takes a step toward transforming the latent behavioral knowledge embedded in
108 foundation models into dexterous hand data within simulators. By doing so, GenDexHand not only

108 expands the diversity of available dexterous hand data but also lays the groundwork for scaling up
 109 simulation-driven training. In contrast to prior generative simulation approaches, our contributions
 110 can be summarized as follows:
 111

- 112 • We introduce **GenDexHand**, the first generative pipeline specifically targeting dexterous hand
 113 manipulation, a domain largely overlooked in prior generative simulation work.
- 114 • Our framework employs a generator–verifier refinement process, where scenes are rendered, ana-
 115 lyzed by multimodal LLMs, and iteratively corrected to ensure semantic plausibility and physical
 116 consistency.
- 117 • We design policy learning strategies tailored for dexterous hands, including degree-of-freedom
 118 constraints, motion planning integration, and subtask decomposition, which together enable a
 119 53.4% average improvement in task success rate over existing baselines.
 120

121 2 RELATED WORKS

122 2.1 FOUNDATION MODELS FOR ROBOTICS LEARNING

123 With the rapid advancement of language, vision, and multimodal models (OpenAI, 2023; Zhang
 124 et al., 2023)—such as GPT-4o (OpenAI, 2024), GPT-5 (OpenAI, 2025), Claude 4.0 (Anthropic,
 125 2025), and Gemini 2.5 Pro (Team, 2023; Comanici et al., 2025)—remarkable progress has been
 126 achieved in formal code generation (Zhuo et al., 2025; Paul et al., 2024), spatial reasoning (Rajabi &
 127 Kosecka, 2024; Stogiannidis et al., 2025), visual understanding (Zhu et al., 2024; Zhao et al., 2024),
 128 and generalization capabilities in recent years. In our work, such foundation models play a central
 129 role, serving multiple purposes including (but not limited to) task proposal (Wang et al., 2023; Hua
 130 et al., 2024; Katara et al., 2023; Wang et al., 2024a), formalized code generation (Ma et al., 2023; Mu
 131 et al., 2024), validation of simulation environments (Chen et al., 2024), and guidance for learning
 132 robotic trajectories (Ma et al., 2023; Huang et al., 2023). Researchers in embodied intelligence have
 133 also extensively integrated foundation models into various aspects of robotics. These applications
 134 include guiding reinforcement learning and trajectory optimization to obtain robotic motion policies
 135 in simulation (Wang et al., 2024b; Ma et al., 2023; Huang et al., 2023; Venkataraman et al., 2025),
 136 decomposing complex long-horizon tasks into shorter and simpler subtasks (Huang et al., 2023;
 137 Wang et al., 2023; Hua et al., 2024), augmenting data for improved learning efficiency (Yu et al.,
 138 2023), and generating video-based supervision to guide robotic trajectory learning (Jiang et al.,
 139 2025; Zhang et al., 2025; Ye et al., 2025).
 140

142 2.2 GENERATIVE SIMULATION

143 Generative simulation (Wang et al., 2023; Xian et al., 2023; Chen et al., 2024; Yang et al., 2024)
 144 has recently emerged as a promising direction in robotics, leveraging the capabilities of foundation
 145 models to scale up data generation by producing both simulation environments and correspond-
 146 ing policies without task-specific handcrafting (Katara et al., 2023; Nasiriany et al., 2024; Authors,
 147 2024). Owing to the strong generalization ability of foundation models, generative simulation meth-
 148 ods can typically yield data with high diversity. For example, RoboGen (Wang et al., 2023) generates
 149 datasets involving robot locomotion and gripper-based manipulation of articulated and soft-body ob-
 150 jects; GenSim (Wang et al., 2024a) produces pick-and-place data using suction-based manipulation;
 151 and GenSim2 (Hua et al., 2024) extends this line by generating gripper-based manipulation data
 152 and further deploying the learned simulation policies to the real world. These approaches highlight
 153 the potential of generative simulation for creating synthetic data in robotics. However, they have
 154 consistently overlooked the generation of dexterous hand tasks, which involve substantially higher
 155 complexity and degrees of freedom.
 156

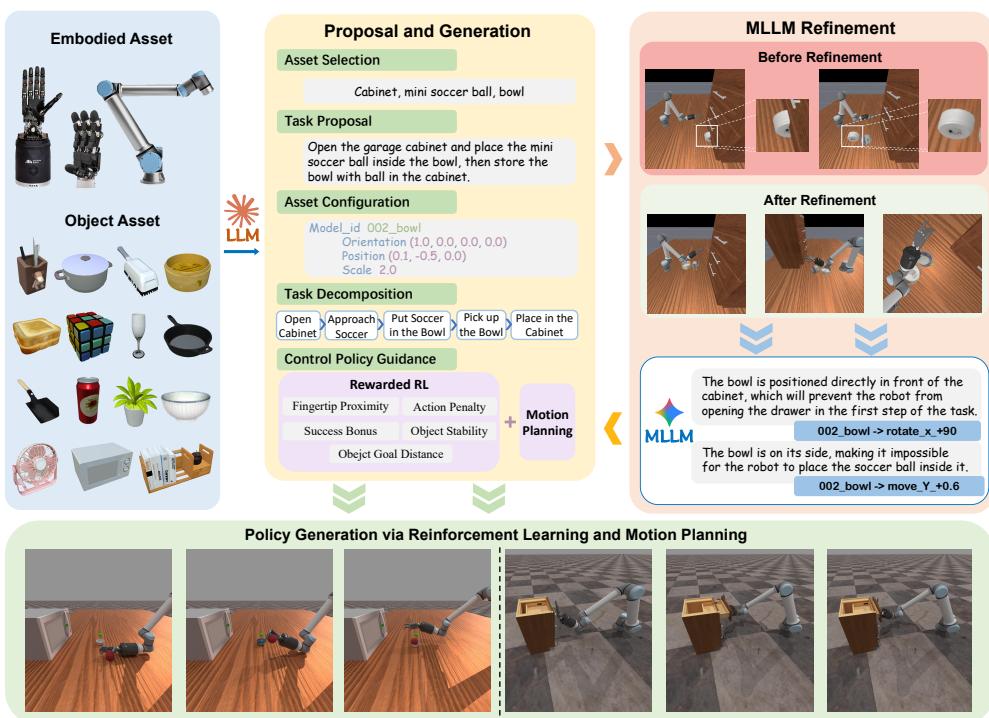
157 2.3 DEXTEROUS HAND MANIPULATION

158 Dexterous hand manipulation has long been recognized as a central challenge in robotics. Recent
 159 years have witnessed significant advances through reinforcement learning (RL) (Qi et al., 2022;
 160 2025; Singh et al., 2024; Anthropic, 2025; Lin et al., 2024b) and imitation learning (IL) (Lin et al.,
 161 2024b; Zhong et al., 2025; Wu et al., 2024). A key limitation of imitation learning is its depen-
 162

162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 dence on demonstration data collected in comparable environments. In contrast, our approach leverages reinforcement learning to complete tasks in automatically generated simulation environments, thereby producing large-scale trajectories that can serve as training data for imitation learning. Consequently, our work emphasizes RL combined with a sampling-based motion planner. In RL-based dexterous hand research, policies are typically trained in simulation before being transferred to the real world (Lin et al., 2024a; Qi et al., 2022). Some approaches rely solely on reward functions designed by humans or language models Ma et al. (2023). With carefully designed reward functions, RL alone has been shown to learn short-horizon tasks, such as in-hand object rotation (Qi et al., 2022; 2025) and grasp-and-place operations (Chen et al., 2022). However, for long-horizon tasks that require extended, collision-free movements, pure RL approaches often face challenges with sample efficiency due to vast exploration spaces and sparse rewards. RL with motionplanning, this hierarchical strategy, has been shown to significantly improve learning efficiency and success rates in complex manipulation scenarios (Yamada et al., 2020).

3 GENDEXHAND

175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 We propose GenDexHand, a generative agent designed to autonomously construct dexterous hand manipulation tasks entirely in simulation. To produce high-quality and diverse tasks, we structure the pipeline into three stages: **propose and generate, multimodal large language model (MLLM) refine, and policy generation**, as summarized in Figure 2. In the first stage, the system leverages robotic assets and object libraries to propose and generate candidate tasks, constructing corresponding simulation environments and defining task objectives. The second stage introduces MLLM refinement, where initially generated tasks are iteratively adjusted to ensure both semantic plausibility and physical consistency. In the final stage, reinforcement learning, motion planning, and related control strategies are employed to generate robot trajectories that successfully solve the refined tasks.



210
 211
 212
 213
 214
 215
 Figure 2: Overview of the GenDexHand pipeline for task generation. The process consists of four stages: Environment Proposal, Environment Creation, MLLM Refinement, and Trajectory Generation. Embodied assets and object assets are first provided to the Generator to produce an environment proposal. The simulator then renders multi-view images of the proposed scene, which are refined using an MLLM. Finally, the refined environment and proposal are combined to generate the resulting dexterous hand trajectory.

216 3.1 PROPOSAL AND GENERATION
217

218 GenDexHand begins by generating a diverse set of task proposals based on the assets and dexterous
 219 hand models available within its internal library. In our design, GenDexHand is provided with object
 220 assets randomly sampled from publicly available repositories such as DexYCB (Chao et al., 2021),
 221 RoboTwin (Mu et al., 2025; Chen et al., 2025), and Partnet-Mobility (Mo et al., 2019). Given this
 222 library and a specified robotic hand model, a large language model (LLM) proposes feasible tasks
 223 grounded in the available objects. We then perform an additional verification step to confirm that all
 224 referenced objects are present. For instance, the LLM might propose “put the apple into the bowl,”
 225 which requires both “apple” and “bowl” to exist in the library. If any required object is missing, the
 226 LLM must retry until a valid task is produced.

227 We use Claude Sonnet 4.0 as our main backend LLM. Using assets randomly sampled from datasets
 228 such as DexYCB, RoboTwin, and Partnet-Mobility—including objects and articulated items like
 229 “laptop,” “printer,” “cabinet,” and “tennis ball”—the LLMs leverage their semantic knowledge of
 230 potential object interactions to propose realistic tasks. Examples in Figure 1 include “put the apple
 231 in the bowl,” “rotate a tennis ball,” and “open a laptop.” These tasks are semantically meaningful
 232 and provide explicit guidance, with each task naturally associated with specific contextual scenes.
 233 For instance, a task such as “open a laptop” is more likely to be situated in an office or on a desk
 234 rather than in a bathroom. Finally, each task proposal is enriched with detailed elements, including
 235 a task name, scene specification, background image, and associated object assets. Details are shown
 236 in Appendix B.1

237 Once task proposals are validated, GenDexHand proceeds to generate the corresponding task environments.
 238 At this stage, several key processes are carried out: (i) object size adjustment, (ii) object
 239 configuration generation, and (iii) scene configuration generation.

240 **Object size adjustment.** Since our objects are sourced from large-scale public datasets, their sizes
 241 exhibit substantial variance. To ensure that the generated tasks are physically plausible, we adjust
 242 object scales relative to the dexterous hand model. For example, the size of a tennis ball is rescaled to
 243 fall within the graspable range of the dexterous hand, thereby preserving the realism and feasibility
 244 of the manipulation tasks.

245 **Object configuration generation.** A plausible task also requires objects to be placed in appropriate
 246 positions and initialized in reasonable states. For example, in the task “place an object inside a
 247 drawer,” the object should initially be positioned outside the cabinet, while the cabinet itself should
 248 begin in a closed state. To achieve this, we leverage large language models to generate object
 249 configurations, which specify both the placement and the state of objects within the scene.

250 **Scene configuration generation.** By combining the previously obtained object configurations, we
 251 obtain an initial scene layout. However, the diversity and realism of tasks can be further enhanced
 252 by introducing variations in backgrounds and fixed structures. At this stage, we again employ large
 253 language models to compose object configurations and augment them with additional scene elements
 254 such as static objects and background images. The resulting output is represented in the form of a
 255 complete scene configuration.

256
257 3.2 MLLM REFINEMENT
258

259 In the previous subsection, we described how tasks can be generated from scratch; however, the
 260 quality of directly generated tasks is often difficult to consistently assure. To improve task fidelity
 261 and obtain high-quality dexterous hand trajectory data, we introduce an additional refinement stage,
 262 where the generated environments are adjusted under the supervision of multimodal large language
 263 models.

264 Once a complete scene configuration file is obtained, it is instantiated in simulation to construct the
 265 task environment. Cameras embedded in the simulator are then used to render multi-view images
 266 of the scene. These rendered images provide critical feedback on whether the generated task aligns
 267 with its real-world counterpart, whether object sizes conform to commonsense physical constraints,
 268 and whether issues such as interpenetration or misplacement occur. Furthermore, aspects such as
 269 lighting, static structures, and background images can also be verified for realism.

270 In our pipeline, we adopt Gemini 2.5 Pro (Comanici et al., 2025) as the multimodal large language
 271 model responsible for both analyzing rendered scenes and providing modification suggestions. Once
 272 issues are identified, Gemini outputs explicit adjustment directives for object size, placement, and
 273 orientation. These directives are then implemented through simple mathematical operations on the
 274 configuration file, ensuring that modifications remain precise and consistent. This design avoids
 275 the pitfalls of relying on language models for numerical computation while maintaining accuracy in
 276 refining scene configurations.

277 By iteratively refining scenes with this process, the system achieves a significantly higher degree of
 278 realism and produces dexterous hand environments that are better aligned with physical and semantic
 279 constraints.

280

281

282 3.3 TRAJECTORY GENERATION

283

284 To bridge the gap between a generated task scene and a successful dexterous manipulation trajectory,
 285 we propose a hierarchical framework orchestrated by a LLM.

286 This framework empowers the LLM to act as a high-level task planner with three key responsibilities:
 287 (i) decomposing long-horizon instructions into a sequence of simpler, actionable subtasks; (ii)
 288 selecting the most appropriate low-level controller—either motion planning or reinforcement learning
 289 (Schulman et al., 2017)—for each subtask; and (iii) dynamically managing the robot’s active
 290 degrees of freedom (DoF) to simplify control.

291

292 For subtasks requiring collision-free, point-to-point motion, such as reaching to an object, we em-
 293 ploy a sampling-based motion planner. Based on the subtask instruction, the LLM generates a target
 294 pose for the end-effector (i.e., the palm’s position and orientation). The motion planner then gen-
 295 erates a feasible trajectory for the robot to reach this target pose while avoiding obstacles in the
 296 environment.

297

298 To address subtasks involving contact-rich, fine-grained manipulation, we utilize reinforcement
 299 learning (RL). We train a dedicated RL policy for each type of dexterous subtask (e.g., grasping,
 300 placing, twisting). The training is conducted within the generated simulation scene, using reward
 301 functions that are autonomously shaped by the LLM to reflect the subtask’s goal, as detailed in
 Appendix B.2.

302

303 This hierarchical design is motivated by several key principles. First, long-horizon tasks challenges
 304 that are difficult to solve with a single end-to-end policy. By decomposing a task like “pick up a
 305 tennis ball and rotate it” into subtasks (“approach,” “grasp,” “rotate”), the LLM allows for tailored
 306 strategies at each stage. Second, the LLM dynamically reduces the high dimensionality of the
 307 control problem by constraining DoFs based on subtask instruction, allowing the RL to focus solely
 308 on the specific joints, which improves both learning efficiency and policy robustness. Finally, our
 309 hybrid use of motion planning and RL leverages the strengths of each paradigm. As shown in
 310 Figure 4, motion planning excels at generating efficient and stable paths for transport and reaching,
 311 while RL is more adept at handling the complex contact dynamics inherent in manipulation.

312

313 By synergistically combining these strategies, our framework effectively tackles long-horizon dex-
 314 terous manipulation tasks. The LLM acts as a high-level scheduler, delegating control to the most
 315 appropriate low-level module, which significantly improves the success rate and robustness of ac-
 316 quiring high-quality trajectories.

317

318

319

320 GenDexHand is designed as an automated agent capable of generating an unbounded number of
 321 dexterous hand manipulation tasks. However, due to computational constraints, it is infeasible to
 322 evaluate an unlimited set of tasks in practice. Instead, we conduct experiments on a representative
 323 subset of tasks. Our experimental study aims to demonstrate two key aspects: (i) the quality of
 324 generated tasks is significantly improved after refinement, while maintaining strong diversity; and
 325 (ii) the proposed methods for obtaining dexterous hand trajectories are both reasonable and effective.

324
325

4.1 EXPERIMENTAL SETUP

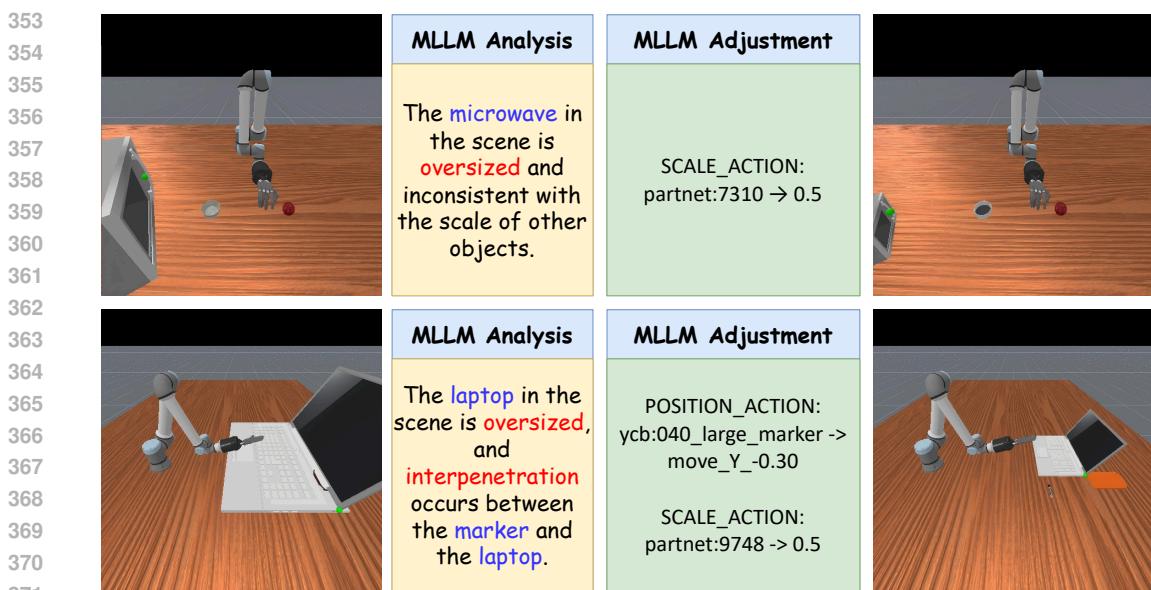
We adopt Sapien as our simulation platform. For task generation, we employ Claude 4 Sonnet as the language model for text-based task specification and Gemini 2.5 Pro as the multimodal large language model for scene validation and refinement; additional implementation details are provided in Appendix B.1. During training, we run 1024 parallel environments, where objects in each environment are subjected to randomized perturbations in both position and orientation. The simulation frequency is set to 120 Hz, while the control frequency is 20 Hz. To ensure a fair comparison between settings with and without subtask decomposition, we fix the episode length at 400 steps (20s) in the case without subtask decomposition. When subtask decomposition is applied, each subtask is limited to 200 steps (10s), resulting in comparable overall horizon lengths across the two settings. Training is conducted for a total of 250 epochs. Further implementation details are provided in Appendix B.2.

336

337 4.2 TASK QUALITY OF GENDEXHAND
338

339 Although large language models exhibit a certain degree of spatial reasoning capability, the inherent
340 noise in 3D object datasets—such as inconsistencies in object scale, orientation, and centroid—often
341 leads to configuration files that produce scenes of uneven quality. To address this issue, we render
342 each generated scene from three different viewpoints and provide the resulting images to a multi-
343 modal large language model for analysis. Based on its feedback, the configuration file is sub-
344 sequently refined to improve scene plausibility.

345 For example, as illustrated in the Figure 3, the microwave in the first scene is disproportionately
346 large relative to the robot hand, bowl, and apple. The multimodal large language model recommends
347 reducing its size to half of the original. In the second scene, the laptop is also incorrectly scaled,
348 and a marker pen intersects with the laptop mesh. The multimodal large language model suggests
349 adjusting the laptop to half of its size and shifting the marker pen by -0.3 meters along the Y-
350 axis. Overall, by iteratively refining configuration files using rendered images and multimodal large
351 language model feedback, we can substantially improve the consistency of generated scenes with
352 real-world semantics and physical plausibility.



372 Figure 3: Two examples of task refinement using MLLM. Modification directives include
373 Scale_Action, formatted as object - scale value, Position_Action, formatted as object - move_[x/y/z]
374 value, and Pose_Action, formatted as object - rotate_[x/y/z] value.

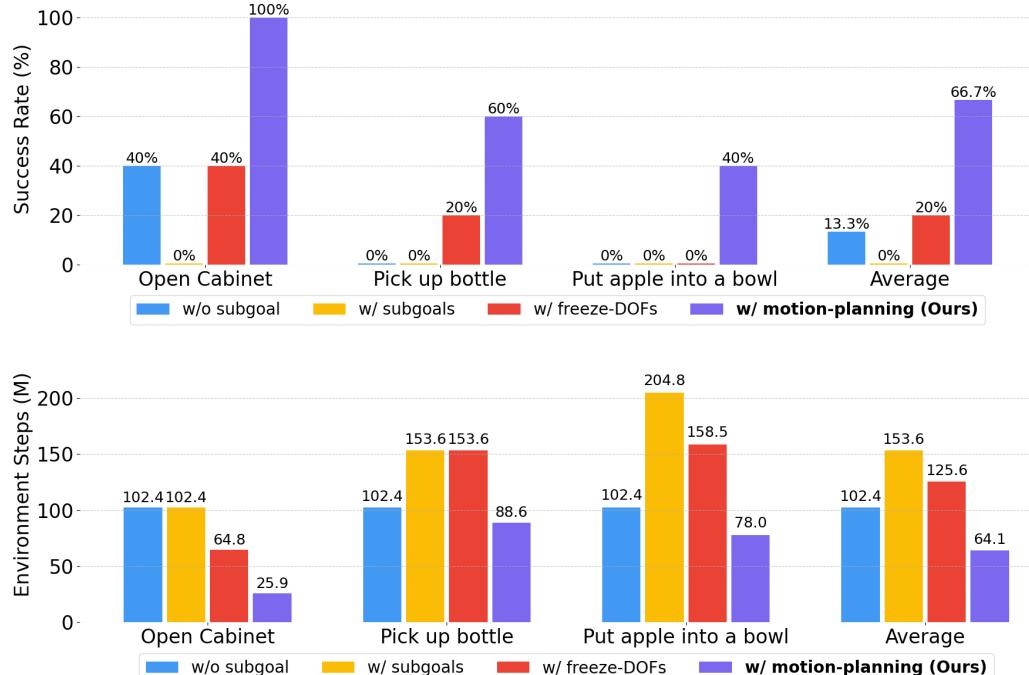
375

376 To evaluate task diversity, we employ a semantic embedding-based approach using three widely
377 adopted pre-trained language model encoders to extract high-dimensional representations of task
descriptions. We then compute pairwise cosine similarities across all task pairs and report the aver-

378
379
380
381 Table 1: Results for text-based task description average cosine similarity.
382
383
384
385

Method	all-MiniLM-L6-v2	all-mpnet-base-v2	all-distilroberta-v1
GenDexHand	0.2880	0.2836	0.3156
RoboGen	0.1906	0.2174	0.1952
RoboTwin	0.3237	0.3589	0.3945
Bi-DexHands	0.2212	0.2110	0.2030
Meta-World	0.5213	0.5335	0.5981

386
387 age cosine similarity as the diversity metric, where lower values indicate higher semantic diversity.
388 As shown in Table 1, GenDexHand achieves competitive diversity scores of 0.2880, 0.2836, and
389 0.3156 across the three encoders. While RoboGen and Bi-DexHands demonstrate slightly su-
390 perior diversity in some metrics, GenDexHand substantially outperforms RoboTwin and Meta-World,
391 with the latter showing significantly higher similarity scores (0.52-0.60), indicating lower task di-
392 versity. These results demonstrate that GenDexHand effectively generates semantically diverse task
393 descriptions, contributing to a rich and varied benchmark for dexterous manipulation evaluation.
394

395 4.3 EFFICIENCY OF POLICY LEARNING
396

420 Figure 4: Bar chart comparing three tasks: “Open Cabinet,” “Pick up Bottle,” and “Put the Apple
421 into Bowl.” The Y-axis denotes the **success rate** \uparrow and the number of **environment steps** \downarrow required
422 to collect 1000 successful trajectories in evaluation. Four methods are evaluated: (i) w/o subgoal,
423 baseline RL without subtask decomposition; (ii) w/ subgoals, RL with tasks decomposed into short-
424 horizon subgoals; (iii) w/ freeze-DOFs, RL with selective freezing of redundant degrees of freedom;
425 and (iv) w/ motion planning (Ours), approaching subtasks using motion planning instead.

426 In this experiment, we evaluate three representative tasks of increasing complexity: Open Cabinet,
427 Pick up Bottle, and Put the Apple into the Bowl. The first task requires only simple coordination be-
428 tween a single finger and arm motion, the second demands cooperation between the four fingers and
429 the thumb, and the last further requires an understanding of interactions between multiple objects.
430

431 As illustrated in Figure 4, the results reveal pronounced differences in policy learning efficiency
432 across these tasks. When relying solely on reward functions and success/failure verification func-
433

432 tions generated directly by a language model, Open Cabinet can be solved with a non-trivial success
 433 rate, provided that the generated functions are accurate and consistent. However, for more complex
 434 tasks such as Pick up Bottle and Put the Apple into the Bowl, this approach fails to achieve mean-
 435 ingful success, underscoring the limitations of direct reward generation for dexterous manipulation.

436 Introducing task decomposition into subtasks leads to marginal improvements but remains insuffi-
 437 cient when all degrees of freedom (DoFs) are left unconstrained. In this setting, the system still
 438 fails to consistently solve complex tasks such as bottle grasping or placing the apple into the bowl.
 439 Once we further restrict the dexterous hand’s action space by freezing redundant DoFs during spe-
 440 cific subtask phases, performance improves, enabling moderate success on tasks like Pick up Bottle.
 441 However, the most significant gains are achieved when integrating motion planning for arm-level
 442 control while leaving finger-level coordination to reinforcement learning. This hybrid approach
 443 not only stabilizes exploration but also yields a substantial average improvement of 53.4% in task
 444 success rate across all evaluated scenarios, highlighting the necessity of combining structured de-
 445 composition and constrained control for robust dexterous hand policy learning.

446 To address this issue, we integrate motion planning to control arm-level trajectories while leaving
 447 fine finger coordination to reinforcement learning. This hybrid approach significantly increases
 448 success rates across tasks, illustrating that constraining exploration through structured control is
 449 essential for efficient and reliable policy learning in dexterous hand settings.

450 In addition to task success rates, we also evaluate the efficiency of trajectory collection, since an
 451 automated pipeline must not only generate tasks but also produce task-solving trajectories at scale.
 452 Our focus lies in efficiently collecting diverse successful trajectories rather than fully training re-
 453inforcement learning models. Accordingly, we measure the number of simulation steps required
 454 to obtain 1000 successful trajectories across the three representative tasks under different methods.
 455 Conversely, if a method fails to produce 1000 successful trajectories, we fall back to completing the
 456 full reinforcement learning training for all subtasks, following the experimental details described in
 457 Section 4.1.

458 As shown in Figure 4, directly applying reinforcement learning without subtask decomposition fails
 459 to efficiently accumulate successful trajectories for complex tasks. Although the introduction of
 460 subtask decomposition allows reinforcement learning to eventually solve more challenging tasks, it
 461 also substantially increases the number of training phases required, resulting in lower overall effi-
 462 ciency. Freezing redundant DoFs during subtasks yields improvements in sample efficiency, yet still
 463 demands more simulation steps than baseline reinforcement learning. In contrast, integrating motion
 464 planning to guide arm-level movements while reserving finger-level coordination for reinforcement
 465 learning dramatically reduces the number of required steps. By eliminating unstable exploration
 466 during approach and movement subtasks, this hybrid strategy enables the rapid collection of large
 467 numbers of successful trajectories, thereby delivering a marked improvement in overall efficiency.

468 5 CONCLUSION AND DISCUSSION

471 In this paper, we introduced GenDexHand, a fully automated pipeline for generating dexterous hand
 472 manipulation tasks in simulation. Unlike previous generative approaches that primarily target low-
 473 DoF manipulators or locomotion, our pipeline focuses on dexterous hands, where data scarcity has
 474 long posed a bottleneck. Because the generation process requires no human intervention during
 475 task synthesis, GenDexHand enables the creation of virtually unlimited dexterous hand data. This
 476 capability is particularly valuable given the inherent scarcity of dexterous hand trajectories and their
 477 importance for scaling imitation learning and other downstream tasks. Despite these contributions,
 478 several limitations remain. First, extending support to a wide variety of dexterous hand embodiments
 479 still requires human expertise, especially in adapting assets and task specifications to different hand
 480 models. Second, while our pipeline can generate diverse and complex tasks, extremely challenging
 481 long-horizon tasks remain difficult to solve effectively, even when combining reinforcement learn-
 482 ing with motion planning. Third, policies trained with reward functions generated by large language
 483 models, though capable of completing tasks, may still exhibit instability or jitter in their motions.
 484 Nevertheless, we expect the impact of these limitations to diminish over time as foundation
 485 models become more powerful and reinforcement learning methods continue to advance. We believe
 GenDexHand represents a significant step toward bridging the gap between generative models and
 dexterous embodied intelligence,

486

6 ETHICS STATEMENT

488 This work does not involve human or animal subjects, nor does it raise privacy, security, or fairness
 489 concerns. All object assets used for simulation were drawn from publicly available datasets
 490 (e.g., DexYCB, Partnet-Mobility) under their respective licenses. Our proposed framework, Gen-
 491 DexHand, focuses exclusively on simulated robotic environments and does not pose direct risks of
 492 harmful real-world deployment. All authors have read and adhered to the ICLR Code of Ethics
 493 throughout the development and writing of this work.

494

495 7 REPRODUCIBILITY STATEMENT

496 We have made extensive efforts to ensure the reproducibility of our work. The core components
 497 of our pipeline, including task proposal, environment generation, refinement, and policy learning,
 498 are described in detail in Section 3. Experimental settings such as simulation parameters, control
 499 frequency, training epochs, and parallel environments are reported in Section 4.1. Appendix B.1,
 500 Appendix B.2, and Appendix B.3 provides additional details on task prompts, configuration formats,
 501 and refinement procedures. Moreover, all datasets used in this work (DexYCB, Partnet-Mobility,
 502 RoboTwin) are publicly available, and our data preprocessing steps are carefully documented in the
 503 supplementary material. Together, these descriptions are intended to provide sufficient information
 504 for reproducing our experiments.

505

506 REFERENCES

507 Bo Ai, Liu Dai, Nico Bohlinger, Dichen Li, Tongzhou Mu, Zhanxin Wu, K Fay, Henrik I Christensen, Jan Peters, and Hao Su. Towards embodiment scaling laws in robot locomotion. *Conference on Robot Learning (CoRL)*, 2025. URL <https://arxiv.org/abs/2505.05753>.

511 Anthropic. Claude 4 (opus 4 & sonnet 4). Model card / blog post by Anthropic, May 2025. Released
 512 May 22, 2025 (Opus 4 & Sonnet 4) – model family includes Claude Opus 4 and Claude Sonnet
 513 4. <https://www.anthropic.com/news/clause-4>.

515 Genesis Authors. Genesis: A generative and universal physics engine for robotics and beyond,
 516 December 2024. URL <https://github.com/Genesis-Embodied-AI/Genesis>.

517 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
 518 Fusai, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke,
 519 Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xiaoyang Shi,
 520 James Tanner, Quan Vuong, Anna Walling, Haohuan Wang, and Ury Zhilinsky. π_0 : A vision-
 521 language-action flow model for general robot control, 2024. URL <https://arxiv.org/abs/2410.24164>.

523 Yu-Wei Chao, Wei Yang, Yu Xiang, Pavlo Molchanov, Ankur Handa, Jonathan Tremblay, Yashraj S.
 524 Narang, Karl Van Wyk, Umar Iqbal, Stan Birchfield, Jan Kautz, and Dieter Fox. Dexycb: A
 525 benchmark for capturing hand grasping of objects, 2021. URL <https://arxiv.org/abs/2104.04631>.

528 Feng Chen, Botian Xu, Pu Hua, Peiqi Duan, Yanchao Yang, Yi Ma, and Huazhe Xu. On the eval-
 529 uation of generative robotic simulations, 2024. URL <https://arxiv.org/abs/2410.08172>.

531 Tianxing Chen, Zanxin Chen, Baijun Chen, Zijian Cai, Yibin Liu, Zixuan Li, Qiwei Liang, Xianliang
 532 Lin, Yiheng Ge, Zhenyu Gu, Weiliang Deng, Yubin Guo, Tian Nian, Xuanbing Xie, Qiangyu
 533 Chen, Kailun Su, Tianling Xu, Guodong Liu, Mengkang Hu, Huan ang Gao, Kaixuan Wang,
 534 Zhixuan Liang, Yusen Qin, Xiaokang Yang, Ping Luo, and Yao Mu. Robotwin 2.0: A scalable
 535 data generator and benchmark with strong domain randomization for robust bimanual robotic
 536 manipulation, 2025. URL <https://arxiv.org/abs/2506.18088>.

537 Yuanpei Chen, Yaodong Yang, Tianhao Wu, Shengjie Wang, Xidong Feng, Jiechuan Jiang,
 538 Zongqing Lu, Stephen Marcus McAleer, Hao Dong, and Song-Chun Zhu. Towards human-
 539 level bimanual dexterous manipulation with reinforcement learning. In *Thirty-sixth Confer-*

540 ence on Neural Information Processing Systems Datasets and Benchmarks Track, 2022. URL
 541 <https://openreview.net/forum?id=D29JbExncTP>.
 542

543 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 544 Dhillon, Marcel Blstein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
 545 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
 546 bilities, 2025.

547 Pu Hua, Minghuan Liu, Annabella Macaluso, Lirui Wang, Yunfeng Lin, Weinan Zhang, Huazhe
 548 Xu, and Xiaolong Wang. Gensim2: Realistic robot task generation with LLM. In *8th An-
 549 nual Conference on Robot Learning*, 2024. URL <https://openreview.net/forum?id=5u916U61S7>.
 550

551 Zhiao Huang, Feng Chen, Yewen Pu, Chunru Lin, Hao Su, and Chuang Gan. Diffvl: Scaling up soft
 552 body manipulation using vision-language driven differentiable physics, 2023.
 553

554 Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
 555 Adnan Esmail, Michael Equi, Chelsea Finn, Niccol Fusai, Manuel Y. Galliker, Dibya Ghosh,
 556 Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Devin
 557 LeBlanc, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Allen Z.
 558 Ren, Lucy Xiaoyang Shi, Laura Smith, Jost Tobias Springenberg, Kyle Stachowicz, James Tanner,
 559 Quan Vuong, Homer Walke, Anna Walling, Haohuan Wang, Lili Yu, and Ury Zhilinsky. $\pi_{0.5}$: a
 560 vision-language-action model with open-world generalization, 2025. URL <https://arxiv.org/abs/2504.16054>.
 561

562 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
 563 Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
 564 evaluation of large language models for code. *arXiv preprint arXiv:2403.07974*, 2024.
 565

566 Anqing Jiang, Yu Gao, Yiru Wang, Zhigang Sun, Shuo Wang, Yuwen Heng, Hao Sun, Shichen Tang,
 567 Lijuan Zhu, Jinhao Chai, Jijun Wang, Zichong Gu, Hao Jiang, and Li Sun. Irl-vla: Training an
 568 vision-language-action policy via reward world model, 2025. URL <https://arxiv.org/abs/2508.06571>.
 569

570 Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
 571 Narasimhan. Swe-bench: Can language models resolve real-world github issues? *arXiv preprint
 572 arXiv:2310.06770*, 2023.
 573

574 Pushkal Katara, Zhou Xian, and Katerina Fragkiadaki. Gen2sim: Scaling up robot learning in
 575 simulation with generative models, 2023.
 576

577 Fanqi Lin, Yingdong Hu, Pingyue Sheng, Chuan Wen, Jiacheng You, and Yang Gao. Data scaling
 578 laws in imitation learning for robotic manipulation, 2025. URL <https://arxiv.org/abs/2410.18647>.
 579

580 Toru Lin, Zhao-Heng Yin, Haozhi Qi, Pieter Abbeel, and Jitendra Malik. Twisting lids off with two
 581 hands, 2024a. URL <https://arxiv.org/abs/2403.02338>.
 582

583 Toru Lin, Yu Zhang, Qiyang Li, Haozhi Qi, Brent Yi, Sergey Levine, and Jitendra Malik. Learning
 584 visuotactile skills with two multifingered hands, 2024b. URL <https://arxiv.org/abs/2404.16823>.
 585

586 Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu, Hang
 587 Su, and Jun Zhu. Rdt-1b: a diffusion foundation model for bimanual manipulation, 2025. URL
 588 <https://arxiv.org/abs/2410.07864>.
 589

590 Raymond R Ma and Aaron M Dollar. On dexterity and dexterous manipulation. In *2011 15th
 591 International Conference on Advanced Robotics (ICAR)*, pp. 1–7. IEEE, 2011.
 592

593 Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
 594 man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
 595 coding large language models. *arXiv preprint arXiv:2310.12931*, 2023.

594 Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna Tripathi, Leonidas J. Guibas, and Hao
 595 Su. PartNet: A large-scale benchmark for fine-grained and hierarchical part-level 3D object
 596 understanding. In *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*,
 597 June 2019.

598 Yao Mu, Junting Chen, Qinglong Zhang, Shoufa Chen, Qiaojun Yu, Chongjian Ge, Runjian Chen,
 599 Zhixuan Liang, Mengkang Hu, Chaofan Tao, Peize Sun, Haibao Yu, Chao Yang, Wenqi Shao,
 600 Wenhui Wang, Jifeng Dai, Yu Qiao, Mingyu Ding, and Ping Luo. Robocodex: Multimodal code
 601 generation for robotic behavior synthesis, 2024. URL <https://arxiv.org/abs/2402.16117>.

602 Yao Mu, Tianxing Chen, Shijia Peng, Zanxin Chen, Zeyu Gao, Yude Zou, Lunkai Lin, Zhiqiang
 603 Xie, and Ping Luo. Robotwin: Dual-arm robot benchmark with generative digital twins (early
 604 version), 2025. URL <https://arxiv.org/abs/2409.02920>.

605 Soroush Nasiriany, Abhiram Maddukuri, Lance Zhang, Adeet Parikh, Aaron Lo, Abhishek Joshi,
 606 Ajay Mandlekar, and Yuke Zhu. Robocasa: Large-scale simulation of everyday tasks for gener-
 607 alist robots, 2024. URL <https://arxiv.org/abs/2406.02523>.

608 OpenAI. Gpt-4 technical report, 2023.

609 OpenAI. Gpt-4o system card, 2024. URL <https://arxiv.org/abs/2410.21276>.

610 OpenAI. Gpt-5. GPT-5 system card, released via OpenAI blog and ChatGPT platform, August
 611 2025. <https://openai.com/index/introducing-gpt-5/>.

612 Debalina Ghosh Paul, Hong Zhu, and Ian Bayley. Benchmarks and metrics for evaluations of code
 613 generation: A critical review, 2024. URL <https://arxiv.org/abs/2406.12655>.

614 Haozhi Qi, Ashish Kumar, Roberto Calandra, Yi Ma, and Jitendra Malik. In-hand object rotation
 615 via rapid motor adaptation, 2022. URL <https://arxiv.org/abs/2210.04887>.

616 Haozhi Qi, Brent Yi, Mike Lambeta, Yi Ma, Roberto Calandra, and Jitendra Malik. From simple to
 617 complex skills: The case of in-hand object reorientation, 2025. URL <https://arxiv.org/abs/2501.05439>.

618 Navid Rajabi and Jana Kosecka. Gsr-bench: A benchmark for grounded spatial reasoning evaluation
 619 via multimodal llms, 2024. URL <https://arxiv.org/abs/2406.13246>.

620 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 621 optimization algorithms, 2017. URL <https://arxiv.org/abs/1707.06347>.

622 Himanshu Gaurav Singh, Antonio Loquercio, Carmelo Sferrazza, Jane Wu, Haozhi Qi, Pieter
 623 Abbeel, and Jitendra Malik. Hand-object interaction pretraining from videos, 2024. URL
 624 <https://arxiv.org/abs/2409.08273>.

625 Ilias Stogiannidis, Steven McDonagh, and Sotirios A. Tsaftaris. Mind the gap: Benchmarking
 626 spatial reasoning in vision-language models, 2025. URL <https://arxiv.org/abs/2503.19707>.

627 Gemini Team. Gemini: A family of highly capable multimodal models, 2023.

628 Marcel Torne, Arhan Jain, Jiayi Yuan, Vidaaranya Macha, Lars Ankile, Anthony Simeonov, Pulkit
 629 Agrawal, and Abhishek Gupta. Robot learning with super-linear scaling, 2024. URL <https://arxiv.org/abs/2412.01770>.

630 Sreyas Venkataraman, Yufei Wang, Ziyu Wang, Navin Sriram Ravie, Zackory Erickson, and David
 631 Held. Real-world offline reinforcement learning from vision language model feedback, 2025.
 632 URL <https://arxiv.org/abs/2411.05273>.

633 Lirui Wang, Yiyang Ling, Zhecheng Yuan, Mohit Shridhar, Chen Bao, Yuzhe Qin, Bailin Wang,
 634 Huazhe Xu, and Xiaolong Wang. Gensim: Generating robotic simulation tasks via large language
 635 models, 2024a.

648 Yufei Wang, Zhou Xian, Feng Chen, Tsun-Hsuan Wang, Yian Wang, Zackory Erickson, David Held,
 649 and Chuang Gan. Robogen: Towards unleashing infinite data for automated robot learning via
 650 generative simulation, 2023.

651 Yufei Wang, Zhanyi Sun, Jesse Zhang, Zhou Xian, Erdem Biyik, David Held, and Zackory Erickson.
 652 RL-vlm-f: Reinforcement learning from vision language foundation model feedback, 2024b. URL
 653 <https://arxiv.org/abs/2402.03681>.

654 Tianhao Wu, Yunchong Gan, Mingdong Wu, Jingbo Cheng, Yaodong Yang, Yixin Zhu, and Hao
 655 Dong. Dexterous functional pre-grasp manipulation with diffusion policy, 2024. URL <https://arxiv.org/abs/2403.12421>.

656 Zhou Xian, Theophile Gervet, Zhenjia Xu, Yi-Ling Qiao, Tsun-Hsuan Wang, and Yian Wang. To-
 657 wards generalist robots: A promising paradigm via generative simulation, 2023. URL <https://arxiv.org/abs/2305.10455>.

658 Jun Yamada, Jack Collins, Shoco U. Mentel, Yusuke Iwasawa, Yutaka Matsuo, and Shixiang Shane
 659 Gu. Motion planner augmented reinforcement learning for robot manipulation in obstructed en-
 660 vironments, 2020. URL <https://arxiv.org/abs/2010.11940>.

661 Sizhe Yang, Qian Luo, Anumpam Pani, and Yanchao Yang. Bbsea: An exploration of brain-body
 662 synchronization for embodied agents. *arXiv preprint arXiv:2402.08212*, 2024.

663 Seonghyeon Ye, Joel Jang, Byeongguk Jeon, Sejune Joo, Jianwei Yang, Baolin Peng, Ajay Man-
 664 dlekar, Reuben Tan, Yu-Wei Chao, Bill Yuchen Lin, Lars Liden, Kimin Lee, Jianfeng Gao, Luke
 665 Zettlemoyer, Dieter Fox, and Minjoon Seo. Latent action pretraining from videos, 2025. URL
 666 <https://arxiv.org/abs/2410.11758>.

667 Tianhe Yu, Ted Xiao, Austin Stone, Jonathan Tompson, Anthony Brohan, Su Wang, Jaspia Singh,
 668 Clayton Tan, Dee M, Jodilyn Peralta, Brian Ichter, Karol Hausman, and Fei Xia. Scaling robot
 669 learning with semantically imagined experience, 2023. URL <https://arxiv.org/abs/2302.11550>.

670 Jiazhao Zhang, Kunyu Wang, Shaoan Wang, Minghan Li, Haoran Liu, Songlin Wei, Zhongyuan
 671 Wang, Zhizheng Zhang, and He Wang. Uni-navid: A video-based vision-language-action model
 672 for unifying embodied navigation tasks, 2025. URL <https://arxiv.org/abs/2412.06224>.

673 Xinlu Zhang, Yujie Lu, Weizhi Wang, An Yan, Jun Yan, Lianke Qin, Heng Wang, Xifeng Yan,
 674 William Yang Wang, and Linda Ruth Petzold. Gpt-4v(ision) as a generalist evaluator for vision-
 675 language tasks, 2023.

676 Bingchen Zhao, Yongshuo Zong, Letian Zhang, and Timothy Hospedales. Benchmarking multi-
 677 image understanding in vision and language models: Perception, knowledge, reasoning, and
 678 multi-hop reasoning, 2024. URL <https://arxiv.org/abs/2406.12742>.

679 Yifan Zhong, Xuchuan Huang, Ruochong Li, Ceyao Zhang, Zhang Chen, Tianrui Guan, Fanlian
 680 Zeng, Ka Num Lui, Yuyao Ye, Yitao Liang, Yaodong Yang, and Yuanpei Chen. Dexgraspvla:
 681 A vision-language-action framework towards general dexterous grasping, 2025. URL <https://arxiv.org/abs/2502.20900>.

682 Fengbin Zhu, Ziyang Liu, Xiang Yao Ng, Haohui Wu, Wenjie Wang, Fuli Feng, Chao Wang,
 683 Huanbo Luan, and Tat Seng Chua. Mmdocbench: Benchmarking large vision-language mod-
 684 els for fine-grained visual document understanding, 2024. URL <https://arxiv.org/abs/2410.21311>.

685 Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
 686 Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon Brunner, Chen Gong, Thong
 687 Hoang, Armel Randy Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kaddour, Ming Xu, Zhihan
 688 Zhang, Prateek Yadav, Naman Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu, Qian Liu, Zijian Wang,
 689 Binyuan Hui, Niklas Muennighoff, David Lo, Daniel Fried, Xiaoning Du, Harm de Vries, and
 690 Leandro Von Werra. Bigcodebench: Benchmarking code generation with diverse function calls
 691 and complex instructions, 2025. URL <https://arxiv.org/abs/2406.15877>.

702 **A THE USE OF LARGE LANGUAGE MODELS**
703704 Large language models (LLMs) were employed in this work as auxiliary tools to support the writing
705 process. Specifically, they assisted in refining the clarity of expression, ensuring coherence across
706 sections, and suggesting stylistic adjustments to align with academic writing standards. All substan-
707 tive ideas, experimental designs, and conclusions, however, remain the intellectual contributions of
708 the authors.710 **B APPENDIX**
711712 **B.1 DETAIL OF TASK GENERATION**
713714 **Proposal Generation Prompt**

715 You are a robot manipulation task proposal generation assistant.

716 Your goal is to propose simple and direct robot manipulation tasks based on available objects
717 and their semantic properties.718 **CRITICAL: Task Simplification Requirements:**719

- 720 • Keep tasks SIMPLE and DIRECT - avoid complex multi-step sequences
- 721 • Each task should be achievable with 1–3 basic actions maximum
- 722 • Use ONLY simple atomic action phrases like: "approach", "grasp", "release", "move",
723 "open", "close", "push", "pull"
- 724 • AVOID complex compound actions like: "pick up", "put down", "place inside"
- 725 • Each action should be a single, atomic movement that can be executed independently
- 726 • Focus on single, clear objectives that are easy for robots to execute
- 727 • Examples of SIMPLE atomic actions: "approach apple", "grasp apple", "open microwave
728 door", "close microwave door"
- 729 • Examples of COMPLEX actions to AVOID: "pick up apple", "place apple inside mi-
730 crowave", "move apple to table", "put cup on table"
- 731 • Break down complex actions into atomic steps:
 - 732 – "pick up" → "approach" + "grasp"
 - 733 – "place inside" → "move" + "release"

734 Control Mode Guidelines:

735

- 736 • For each task step, specify the appropriate control mode:
 - 737 – **hand** – fine manipulation (grasping, releasing, finger movements)
 - 738 – **arm** – gross movement (reaching, positioning, large movements)
 - 739 – **both** – coordinated movement (pick-and-place, complex manipulation)

740 Available resources:

741

- 742 1. Pickable Items (YCB objects): {ycb_assets}
- 743 2. Robotwin Objects: {laptop_assets}
- 744 3. Object Semantic Guidance (includes PartNet articulated objects): {semantic_guidance}

745 Instructions:

746

- 747 • Analyze the available objects and their properties from the semantic guidance.
- 748 • Propose exactly one creative robot manipulation task that involves:
 - 749 – One PartNet articulated object (chosen from the semantic guidance)
 - 750 – One YCB pickable object
 - 751 – One Robotwin object
- 752 • Be creative and diverse in object selection! Avoid always choosing the same combinations.

756 • Ensure the task is realistic, feasible, and makes semantic sense.
 757 • Consider object properties like size, graspability, container capacity, and typical usage sce-
 758 narios.
 759 • Diversity Guidelines:
 760 – Try different PartNet objects: microwave, oven, dishwasher, cabinet, drawer, wash-
 761 ing_machine, lamp, laptop, printer, etc.
 762 – Explore various YCB objects: tools, sports items, containers, utensils, not just fruits
 763 – Use different Robotwin objects: plates, cups, utensils, cookware, not just bowls
 764
 765 Output Format:
 766 TASK PROPOSAL
 767 Task Name: [Brief descriptive name for the task]
 768 Selected Objects:
 769 • PartNet Object: [category] (Model ID: [id]) – [brief description of properties]
 770 – Use only REAL numeric Model IDs from the semantic guidance
 771 • YCB Object: [object_id] – [brief description of properties]
 772 • Robotwin Object: [object_id] – [brief description of properties]
 773
 774 Task Description: [Simple, direct description of what the robot needs to accomplish]
 775 Task Steps:
 776 Single atomic action Control Mode: [hand/arm/both] – [explanation]
 777 Optional second atomic action Control Mode: [hand/arm/both] – [explanation]
 778 Optional third atomic action Control Mode: [hand/arm/both] – [explanation]
 779
 780 Scene Context:
 781 • Environment: [Kitchen/Dining/Office/etc.]
 782 • Complexity Level: [Basic/Intermediate/Advanced]
 783 • Estimated Duration: [Short/Medium/Long]
 784
 785 Spatial Considerations:
 786 • Object placement strategy
 787 • Workspace requirements
 788 • Safety considerations
 789
 790 Success Criteria:
 791 What defines successful task completion
 792
 793

794 We collected and organized a dataset of 3D object assets, accompanied by a list mapping each asset
 795 to its semantic label. Building on this dataset, and guided by the content of the Proposal Generation
 796 Prompt [B.1](#), we generated long-horizon tasks composed of multiple simple operations. During task
 797 proposal generation, we employed a relatively high sampling temperature to encourage diversity in
 798 the proposed tasks. In our implementation, the temperature was set to 1.2.
 799

Scene Configuration Generation Prompt

800 You are a robot manipulation YAML configuration generation assistant.
 801 Your goal is to generate a precise YAML configuration file based on a given task proposal.
 802 Task Proposal: {task_proposal}
 803 Reference YAML Data: {reference_yaml}
 804 Available Object Information:
 805 1. Pickable Items (YCB objects): {ycb_assets}
 806 2. Robotwin Objects: {laptop_assets}
 807 3. Object Semantic Guidance (includes PartNet articulated objects): {semantic_guidance}

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

Instructions:

- Generate a YAML configuration that implements the task proposal exactly as specified.
- Use the objects mentioned in the task proposal (do not substitute with different objects).
- The output YAML must strictly follow the structure of the provided `example.yaml` template.
- You may only change the content/values, not the structure, keys, or data types of existing fields.
- You must not introduce any new keys, sections, or elements that are not present in the template.

Task Simplification Requirements:

- Keep tasks SIMPLE and DIRECT – avoid complex multi-step sequences.
- Each task should be achievable with 1–5 basic atomic actions maximum.
- Use ONLY simple atomic action phrases like: `approach`”, `grasp`”, `release`”, `move`”, `open`”, `close`”, `push`”, `pull`”.
- AVOID complex compound actions like: `pick up`”, `put down`”, `place inside`”, `move to position`”.
- Each action should be a single, atomic movement that can be executed independently.
- Focus on single, clear objectives that are easy for robots to execute.
- Examples of SIMPLE atomic actions: `approach apple`”, `grasp apple`”, `open microwave door`”, `close microwave door`”.
- Examples of COMPLEX actions to AVOID: `pick up apple`”, `place apple inside microwave`”, `move apple to table`”, `put cup on table`”.
- Break down complex actions into atomic steps:
 - `pick up`” → `approach`” + `grasp`”
 - `place inside`” → `move`” + `release`”

CRITICAL: PartNet Model ID Requirements:

- For PartNet articulated objects, you MUST use only the exact Model IDs provided in the semantic guidance.
- DO NOT create fictional IDs like `refrigerator_001`”, `cabinet_001`”, or `microwave_12345`”.
- Look up the actual available Model IDs from the semantic guidance for each category.
- Model IDs are NUMERIC STRINGS (e.g., `35059`”, `38516`”, `40147`”) – NOT descriptive names.
- **VERIFICATION REQUIRED:** Always double-check that the Model ID you use exists in the semantic guidance for that category.
- If no specific model id is provided in the semantic guidance, use only the category name without `model_id` field.

Control Joint Requirements:

- Each sub-stage with `method`: ‘‘RL’’ MUST include a `control_joint` field with one of these values:
 - `hand` – for fine manipulation tasks (grasping, releasing, precise finger movements)
 - `arm` – for gross movement tasks (reaching, positioning, large arm movements)
 - `both` – for tasks requiring coordinated hand and arm movement (pick-and-place, complex manipulation)
- Choose `control_joint` based on the sub-task requirements:
 - Grasping/releasing objects → `hand`
 - Moving to positions → `arm`

864

- Pick-and-place operations → both
- Opening/closing articulated objects → hand or both

866

Physical Placement Rules:

867

- The YAML must include a table object with reasonable positioning.
- The PartNet articulated object must be placed on the ground, not colliding with the table.
- YCB objects should typically be placed on the table surface or in appropriate containers.
- Robotwin objects should be placed on the table surface unless the task specifies otherwise.
- Use table surface dimensions (length 2.418,m along X-axis, width 1.209,m along Y-axis) for placement calculations.
- Ensure all objects are within robot reach (max reach distance: 0.8,m from robot base).
- Maintain minimum clearances: small objects (0.05,m), large objects (0.1,m), fragile objects (0.15,m).

868

Task Implementation:

869

- Break down the task proposal into appropriate sub-stages if the template supports multiple stages.
- Each stage should have clear instructions matching the proposal's task steps.
- Use appropriate control methods (RL, motion_planning) based on the complexity of each sub-task.
- Ensure the instruction field clearly describes the overall task from the proposal.

870

Coordinate System:

871

- Robot base is at [-0.5, 0.0, 0.0].
- Positive X is forward, positive Y is left, positive Z is up.
- All positions are in meters.
- All orientations are quaternions [w, x, y, z].

872

YAML Template: {example_yaml}

873

Output Requirements:

874

- Output only the complete YAML configuration.
- Do not include any explanations or additional text.
- Ensure all syntax is valid YAML.
- Use proper indentation and formatting.

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

Scene Analysis Prompt

You are a professional robotic task environment analyst. I will provide you with multi-view rendered images of a robotic manipulation task.

Please carefully analyze these images and check if the scene has the following issues. Base your analysis ONLY on what you can see in the images, not on any configuration files.

Core Inspection Requirements (Excellent Task Definition Standards):

1. Dexterous Hand Reachability Check - Key Focus!

- Critical Requirement: All interactive objects must be near the dexterous hand, not just near the robotic arm
- Check if the distance between target objects and robot arm end-effector is reasonable (typically within 100cm)
 - Ensure the robot arm can naturally reach the target objects
 - Objects should not be placed outside the robot's workspace

2. Object Spatial Position Check - Key Focus!

- Critical Requirement: Objects should not appear behind the robotic arm or behind walls
- Check if objects are obstructed by other large objects (such as cabinets, walls)
- Ensure objects are in visible and reachable areas in front or to the side of the robot
- Avoid placing objects behind the robot or in operational blind spots
- Ensure the objects orientation is reasonable, e.g., bottle, bowl, plate upright, cup horizontal, book flat, etc.

925 3. Object Size Reasonableness Check - Enhanced Visual Analysis

- Critical Requirement: All object sizes must conform to normal conditions based on visual appearance
- Visual Size Analysis: Compare object sizes in the rendered images with expected real-world dimensions
- Size Reference Guidelines:
 - Microwave: $\sim 0.6\text{m wide} \times 0.5\text{m deep} \times 0.3\text{m tall}$
 - Apple: $\sim 0.08\text{m diameter}$
 - Bowl: $\sim 0.15\text{m diameter} \times 0.06\text{m tall}$
 - Table: scale $2.0 \rightarrow 2.4\text{m} \times 1.2\text{m}$
- Relative Size Assessment:
 - Microwave should NOT dominate the scene or appear larger than the table
 - Apple should appear small relative to microwave and bowl
 - Bowl should be appropriately sized for holding an apple
- Scale Adjustment Guidance:
 - Too large \rightarrow reduce scale (e.g., $1.0 \rightarrow 0.8, 0.6, 0.5$)
 - Too small \rightarrow increase scale (e.g., $1.0 \rightarrow 1.2, 1.5, 2.0$)
- Verify scaling parameters are within $0.3\text{--}2.0x$

945 4. Object Pose Realism Check - Key Focus!

- Critical Requirement: Object positions and poses should conform to realistic conditions
- Check if container-type objects (bowls, cups, boxes) have openings facing upward
- Confirm if books and notebooks are placed in normal ways
- Verify if bottles, cans, and other objects are placed upright
- Check if orientations conform to daily usage habits

951 5. Physical Collision Issues

- Whether there are overlaps or interpenetrations between objects
- Whether objects have reasonable support (should not be floating)

955 6. Joint State Issues

- Whether cabinet doors and drawer states match the task description
- Whether laptop open/close states are correct

959 Analysis Requirements:

1. Scene Layout Observation: Describe the overall scene layout in the 3 viewpoint images
2. Object Identification: Identify all major objects (robot, table, cabinet, YCB items, etc.)
3. Core Inspection: Focus on checking the 4 excellent task definition standards
4. Detailed Analysis: Conduct detailed analysis for each inspection item
5. Correction Suggestions: If issues are found, provide specific feasible correction solutions

966 Output Format:

- **Scene Observation**

968 Describe the scene layout seen in the 3 viewpoint images, including robot position, object
969 distribution, etc.

971

972
973
974
975
976
977

- **Core Inspection Results**

1. Dexterous Hand Reachability: [Analysis]
2. Object Spatial Position: [Analysis]
3. Object Size Reasonableness: [Analysis]
4. Object Pose Realism: [Analysis]

- **Visual Size Analysis**

Object Size Assessment: [Assess each object visually and suggest adjustments]
 - [Object Name]: [too large/too small/appropriate] → [Suggested scale]
 Reasoning: [Explain why]

- **Special Attention Required**

- Microwave Size Check: [Analysis]
- Relative Proportions: [Analysis]

- **Identified Issues**

List all identified issues by priority or state “No obvious issues found”

- **Correction Suggestions**

Provide YAML correction suggestions: coordinates, angles, dimensions, scale

- **Corrected Configuration**

Provide corrected YAML configuration or “No correction needed”

985

986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

After obtaining the proposals, we provide them—along with the object list, an example YAML file, and the Scene Configuration Generation Prompt [B.1](#) to the Generator. Based on this input, the Generator produces a corresponding scene configuration file in YAML format. To improve stability in YAML generation, we adopt a relatively low sampling temperature, set to 0.3 in our experiments. For each proposal, three YAML files are generated, and their quality is then assessed by the Evaluator, which jointly considers both the proposal and the configuration. The best configuration is selected as the final output.

Once the YAML file is obtained, we render the scene in simulation using three fixed cameras to capture different viewpoints: left-overhead, right-overhead, and top-down. These rendered images, together with the Scene Analysis Prompt [B.1](#), are then provided to the Refiner to obtain modification suggestions. The suggested modifications are subsequently applied to adjust the original configuration, yielding an improved scene specification.

Instruction-to-Task Proposal Prompt

You are a robot manipulation task proposal generation assistant that specializes in interpreting human natural language instructions.

Your goal is to understand a human’s simple instruction and expand it into a detailed, feasible robot manipulation task proposal using available objects.

Human Instruction: “{human_instruction}”

Available Resources:

1. Pickable Items (YCB objects): {ycb_assets}
2. Robotwin Objects: {laptop_assets}
3. Object Semantic Guidance (includes PartNet articulated objects): {semantic_guidance}

Instructions:

- Interpret the human instruction and understand the core action/goal.
- Select appropriate objects from the available resources that match or relate to the instruction.
- If the exact object mentioned (e.g., apple”) is not available, select the most similar or appropriate substitute from YCB objects.
- Design a complete manipulation task that accomplishes the human’s intent using:
 - One PartNet articulated object (that makes sense for the task context)
 - One YCB pickable object (that matches or substitutes the mentioned object)
 - One Robotwin object (that provides context or serves as a container/surface)

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

- **IMPORTANT:** Be creative and diverse in object selection! Even when the human mentions common objects like “apple” or “bowl”, consider alternative combinations and contexts to create varied scenarios.
- Ensure the task is realistic, safe, and executable by a robot arm.
- Consider the semantic properties and typical usage scenarios of selected objects.
- Keep the task simple and focused on the core action requested.
- Diversity Guidelines:
 - Try different PartNet objects: microwave, oven, dishwasher, cabinet, drawer, washing_machine, etc.
 - Explore various YCB objects: tools, sports items, containers, utensils, not just fruits
 - Use different Robotwin objects: plates, cups, utensils, cookware, not just bowls

Task Simplification Guidelines:

- Keep tasks SIMPLE and DIRECT – avoid complex multi-step sequences.
- Simple actions like “grab X” should be kept as basic pick-up tasks.
- DO NOT over-expand simple instructions into complex scenarios.
- Focus on the core action requested by the human.
- Use only 1–5 basic actions maximum per task.
- Examples: “grab apple” → simple pick-up task, *not* “pick up apple, open microwave, place inside, close door”.

Control Mode Guidelines:

- For each task step, specify the appropriate control mode:
 - “hand” – fine manipulation (grasping, releasing, finger movements)
 - “arm” – gross movement (reaching, positioning, large movements)
 - “both” – coordinated movement (pick-and-place, complex manipulation)

Output Format:

TASK PROPOSAL (Based on Human Instruction: “human_instruction”)

Task Name: [Descriptive name that captures the expanded task]

Human Intent Analysis:

- Original instruction: “{human_instruction}”
- Interpreted goal: [What you understand the human wants to accomplish]
- Task expansion rationale: [Why you designed the task this way]

Selected Objects:

- PartNet Object: [category] (Model ID: [id]) – [why this object fits the task context]
 - **CRITICAL:** Use only REAL numeric Model IDs from the semantic guidance (e.g., “35059”, “38516”).
 - DO NOT create fictional IDs like “cabinet_001”, “refrigerator_123”, or “microwave_456”.
 - Check the semantic guidance for actual available Model IDs for your chosen category.
 - If no specific model ID is provided, use only the category name.
- YCB Object: [object_id] – [how this relates to the human instruction]
- Robotwin Object: [object_id] – [role in the expanded task]

Task Description: Simple, direct description of what the robot needs to accomplish – keep it to 1–2 basic actions maximum

Task Steps:

Single, simple action – use basic phrases like “pick up”, “place”, “open”, “close” **Control Mode:** [hand/arm/both] – [brief explanation of why this control mode is needed]

Optional second simple action if absolutely necessary **Control Mode:** [hand/arm/both] – [brief explanation of why this control mode is needed]

1080
1081 **Scene Context:**
1082 • Environment: [Kitchen/Dining/Office/etc. – chosen to match the task context]
1083 • Complexity Level: [Basic/Intermediate/Advanced]
1084 • Estimated Duration: [Short/Medium/Long]
1085 • Task Category: [Pick-and-Place/Container-Manipulation/Multi-Step/etc.]
1086
1087 **Spatial Considerations:**
1088 • Object placement strategy
1089 • Workspace requirements
1090 • Safety considerations
1091 • Ergonomic factors
1092
1093 **Success Criteria:**
1094 What defines successful completion of the expanded task
1095 How to verify the human’s original intent was fulfilled
1096
1097 **Contextual Notes:**
1098 Any assumptions made about the user’s environment or intent
1099 Alternative interpretations that were considered
1100
1101 Generate exactly one task proposal that meaningfully expands the human instruction into a
1102 complete, executable robot manipulation task.
1103

1104
1105 In addition to allowing the Generator to autonomously propose task candidates, we also implement
1106 a human-guided task generation approach. The workflow is identical to the original pipeline, except
1107 that task proposals are guided by explicit human instructions. The corresponding prompt used for
1108 this process is provided in the Human-Guided Proposal Generation Prompt.
1109

1110 B.2 DETAIL OF POLICY GENERATION

1111
1112 This section introduces our framework for generating reinforcement learning (RL) policy code
1113 for dexterous manipulation. The framework uses a Large Language Model (LLM), guided by
1114 a multi-stage prompting strategy, to create three key functions: a dense reward function (`compute_dense_reward`), an evaluator (`evaluate`), and an auxiliary observation function (`_get_obs_extra`).
1115 We then detail the specific prompts and implementation used in this process.
1116

1117 Our multi-stage strategy provides the LLM with layered context, from the high-level environment
1118 API to specific coding patterns. This structured approach ensures the generated code is functionally
1119 correct, efficient, and robust. The process begins by grounding the LLM in the task environment via
1120 the Environment Prompt (Prompt B.2). This prompt acts as a technical specification, defining the
1121 API, data structures, and helper functions available for code generation.
1122

1123 Env Prompt

1124 You are an expert in robotics, reinforcement learning, and code generation.
1125 **Target:** Write high-quality reward/evaluation/extra-observation functions for ShadowHand +
1126 UR10e dexterous manipulation tasks.
1127 **Focus:** Clarity, vectorization, and correct tensor shapes/devices.
1128

1129 Environment Conventions:

- 1130 • All tensors are [num_envs, ...] and live on self.device
- 1131 • Pose quaternion order: [w, x, y, z]
- 1132 • Not all members exist in every task config; guard with hasattr(self, "...")

1133 Class Structure:

```

1134
1135     class ShadowHandBaseEnv(BaseEnv):
1136         self.num_envs: int
1137         self.agent: UR10eShadowHand
1138
1139         # Manipulated objects (optional per task)
1140         self.ycb: Actor # merged view for YCB objects
1141         self.robotwin_obj: Actor # merged view for RobotWin objects
1142
1143         # Articulated scenes (optional)
1144         self.partnet: Articulation
1145         self.cabinet: Articulation
1146
1147         # Goal markers (kinematic actors, no collision)
1148         self.obj_goal_site: Actor # goal for object placement/pose
1149
1150         # For articulations, the environment provides:
1151         self.partnet_handle_link: Link
1152         self.cabinet_handle_link: Link
1153
1154         # Local handle point on the link (in link local frame):
1155         self.partnet_handle_link_pos: # [num_envs, 3]
1156         self.cabinet_handle_link_pos: # [num_envs, 3]
1157
1158         # World-frame handle point utility :
1159         self.partnet_handle_link_positions(env_idx:
1160             Optional[torch.Tensor] = None) # [|env_idx| or num_envs, 3]
1161
1162         self.cabinet_handle_link_positions(env_idx:
1163             Optional[torch.Tensor] = None) # [|env_idx| or num_envs, 3]
1164
1165         # Handle link world pose (center at link origin):
1166         #     self.cabinet_handle_link.pose.p: # [num_envs, 3]
1167         #     self.cabinet_handle_link.pose.q: # [num_envs, 4]
1168
1169         # Kinematic helpers
1170         self.cabinet_handle_link_goal: Actor # marker actor;
1171         its pose can be set to handle world point for visualization
1172
1173         self.partnet_handle_link_goal: Actor # marker actor;
1174         same usage for partnet
1175
1176         # Joint access of the handle link:
1177         #     self.cabinet_handle_link.joint.qpos # [num_envs]
1178         #     self.cabinet_handle_link.joint.qvel # [num_envs]
1179         #     self.cabinet_handle_link.joint.limits : # [num_envs, 2]
1180
1181         # Precomputed joint targets for opening/closing:
1182         self.partnet_open_target_qpos: # [num_envs, 1]
1183         self.partnet_close_target_qpos: # [num_envs, 1]
1184         self.cabinet_open_target_qpos: # [num_envs, 1]
1185         self.cabinet_close_target_qpos: # [num_envs, 1]
1186
1187     class UR10eShadowHand(Agent):
1188         self.robot.get_qpos() : # [num_envs, DOF]
1189         self.robot.get_qvel() : # [num_envs, DOF]
1190         self.tip_links : List[Link] # fingertips
1191         self.palm_link : Link # palm link

```

```

1188
1189     self.tip_poses:           # [num_envs, num_tips*7]
1190
1191     # Contact impulse utilities (tip-based):
1192     - get_fsr_impulse()           [num_envs, num_tips, 3]
1193     - get_fsr_obj_impulse(obj: Actor) [num_envs, num_tips, 3]
1194
1195     # Contact force utilities (force = impulse / dt):
1196     - get_fsr_force()            [num_envs, num_tips, 3]
1197     - get_fsr_obj_force(obj: Actor) [num_envs, num_tips, 3]
1198     - get_hand_group_obj_mean_force(obj: Actor) [num_envs, 6, 1]
1199     # group order: ["th", "ff", "mf", "rf", "lf", "palm"];
1200     each entry is mean |F| per group on self.device
1201
1202 class Actor:
1203     self.pose : Pose
1204     self.pose.p :           # [num_envs, 3]
1205     self.pose.q :           # [num_envs, 4]
1206     self.linear_velocity : # [num_envs, 3]
1207     self.angular_velocity : # [num_envs, 3]
1208
1209 class Articulation:
1210     self.max_dof : int
1211     self.get_qpos() # [num_envs, max_dof]
1212     self.get_qvel() # [num_envs, max_dof]
1213     self.get_net_contact_impulses(link_names: Union[List[str], Tuple[str]]) # [num_envs, L, 3]
1214     self.get_net_contact_forces(link_names: Union[List[str], Tuple[str]]) # [num_envs, L, 3]
1215
1216 class Link:
1217     self.joint : ArticulationJoint
1218     self.pose : Pose           # [num_envs, 7]
1219     self.pose.p:              # [num_envs, 3]
1220     self.pose.q:              # [num_envs, 4]
1221     self.linear_velocity : # [num_envs, 3]
1222     self.angular_velocity : # [num_envs, 3]
1223
1224 class ArticulationJoint:
1225     self.qpos : # [num_envs]
1226     self.qvel : # [num_envs]
1227     self.limits : # [num_envs, 2], [low, high]
1228
1229 Device & Shape Requirements:
1230
1231     • device = self.device
1232
1233     • Keep batch dimension even for single-env runs: [1, D]

```

1231 To promote efficient and clean code generation, we provide the model with a library of common, 1232 vectorized code functions. The Useful Patterns Prompt (Prompt B.2) offers canonical implementations 1233 for recurring calculations, such as computing distances or orientation errors. This guides the 1234 LLM to adopt efficient, vectorized solutions over less performant alternatives, such as iterating over 1235 the environment batch with for-loops.

1237 Useful Patterns Prompt

1238 Useful Vectorized Patterns:

1239 1. Distance Calculation:

1240

1241

```

1242     dist = torch.linalg.norm(pos1 - pos2, dim=-1) # [num_envs]
1243
1244 2. Fingertip Positions:
1245
1246     tip_pos = self.agent.tip_poses.reshape(self.num_envs, -1, 7)
1247     [:, :, :3]
1248
1249 3. Orientation Error:
1250
1251     dot = (q_cur * q_goal).sum(dim=-1).abs().clamp(
1252         1e-8, 1 - 1e-8)
1253     ang = 2 * torch.arccos(dot)
1254
1255 4. Contact Force Measurement:
1256
1257     gf = self.agent.get_hand_group_obj_mean_force(obj)
1258     thumb_mean_force = gf[:, 0, 0] # [num_envs]
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

```

The Function Generation Prompt (Prompt B.2) defines the high-level guidelines and strict output specifications for the three target functions. It mandates specific function signatures, input/output types, and critical requirements, such as the need for smooth reward signals and the exclusive nature of "success" and "fail" conditions in the evaluation logic.

Function Generation Prompt

Task Implementation Guidelines:

- **Rewards:** Can be staged (approach/manipulate/place), smoothed, weighted
- **Hard Constraints:** Do NOT only reward success predicates; rewards should optimize phenomena
- **Computations:** Keep lightweight and deterministic

Mandatory Function Specifications:

1. `compute_dense_reward(self, obs, action, info)`

- **Input:** obs (observation), action (tensor), info (dict)
- **Output:** torch.Tensor of shape [num_envs] on self.device
- **Requirements:**
 - Read only from environment members (do not use obs)
 - Combine smooth approach/manipulation signals
 - Maintain and update caches safely (self._obj_init_z, self._qpos_base, etc.)
 - Include W&B logging for reward components

2. `evaluate(self)`

- **Output:** dict with "success" and "fail" boolean tensors of shape [num_envs]
- **Critical Requirements:**
 - MUST return both "success" and "fail" keys
 - Enforce exclusivity: success = success & (fail)
 - Cache baselines once per episode
 - Include W&B logging for evaluation metrics

3. `get_obs_extra(self, info)`

- **Output:** dict of tensors with shape [num_envs, D]
- **Requirements:** Provide compact, task-relevant features on self.device

Output Format:

```

1296
1297     def compute_dense_reward(self, obs, action, info):
1298         # [Implementation with proper vectorization and device]
1299         return reward
1300
1301     def evaluate(self):
1302         # [Implementation with success/failure criteria]
1303         return {"success": success, "fail": fail}
1304
1305     def _get_obs_extra(self, info):
1306         # [Implementation of task-relevant features]
1307         return obs_extra

```

1308 To provide task-specific context, the Sub-Guidance Prompt (Prompt B.2) is used. It contains the
 1309 environment's YAML configuration, a natural language description of both the full task and the
 1310 current learning stage, and specifies any active movement constraints (e.g., freezing the arm while
 1311 the hand learns). This allows the LLM to tailor the generated functions to the specific requirements
 1312 of the current training phase.

1313 Substage Guidance Prompt

1315 Movement Constraints (Joint Freezing):

- **control_joint='arm'**: Only UR10e arm moves; ShadowHand fingers frozen
- **control_joint='hand'**: Only ShadowHand hand moves; UR10e arm frozen
- **control_joint='both'**: Both arm and hand movable (full pipeline)
- **control_joint='three_finger'**: Only thumb, index, middle fingers movable
- **control_joint='arm_two_finger'**: Arm + thumb and middle fingers movable
- **control_joint='lift_inspire'**: UR10e_wrist_1 + All fingers movable(like inspire hand)

1324 Environment Configuration:

```
1325 {env_yaml}
```

1326 Task Instructions:

- **Current Stage**: {current_stage_instruction}
- **Full Task**: {full_task_instruction}
- **Guidance**: Optimize for current stage; use full task for context

1331 Implementation Strategy:

1332 1. Phase 1 - Task Understanding:

- Analyze task semantics and available signals
- Derive stage-specific goals from current instruction
- Align thresholds with full task instruction when applicable

1337 2. Phase 2 - Function Implementation:

- Implement THREE functions with strict signatures
- Follow success/failure criteria based on task type
- Ensure proper tensor shapes and device placement
- Include comprehensive logging

1343 Code Quality Standards:

- Vectorized operations (no for-loops over environments)
- Proper device management (all tensors on self.device)
- Safe caching with shape validation
- Clear reward component separation
- Comprehensive failure conditions

1350 For iterative development and refinement, we incorporate two additional prompts. The Previous
 1351 Function Analysis Prompt (Prompt B.2) provides the LLM with the previously generated code and
 1352 corresponding human feedback, enabling it to correct errors or improve logic in the next generation
 1353 cycle.

1354

1355 **Previous Function Analysis Prompt**

1356 **Previous Implementation Analysis**

1357 Here is the previous implementation of the three functions:

1358 **Previous compute_dense_reward:**

1359 {previous_reward_code}

1360 **Previous evaluate:**

1361 {previous_evaluate_code}

1362 **Previous _get_obs_extra:**

1363 {previous_obs_extra_code}

1364 **Feedback on Previous Implementation:**

1365 {human_feedback}

1366 **Update Requirements:**

- 1367 • Analyze the feedback and identify improvement areas
- 1368 • Update the three functions based on current instruction and feedback
- 1369 • Maintain function signatures and output formats
- 1370 • Ensure backward compatibility where appropriate

1371 Finally, to ensure continuity in multi-stage tasks, the Previous Stage Success Specification Prompt
 1372 (Prompt B.2) provides the success criteria from the preceding stage. This allows the model to build
 1373 upon previously learned behaviors, for example, by ensuring the current stage’s initial conditions
 1374 align with the successful completion of the prior stage.

1375

1376 **Previous Stage Success Specification**

1377 **PREVIOUS STAGE SUCCESS SPECIFICATION**

- 1378 • **Source Type:** prev_source_type

- 1379 • **Content:**

1380 {prev_success_text}

1381 **Guidance:**

- 1382 • If source type is motion_planning YAML: derive success definition from configured toler-
 1383 ances/goals
- 1384 • If source type is evaluate.py: align metric names and thresholds with prior logic
- 1385 • Keep vectorized outputs with shape [num_envs]

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

B.3 TRAINING AND NETWORK ARCHITECTURE DETAILS

1398 This section outlines the specific hyperparameters and network architecture used for training the
 1399 reinforcement learning agent. All models were trained using the Proximal Policy Optimization
 1400 (PPO) algorithm. The implementation details are provided to ensure full reproducibility of our
 1401 results.

1402

1403

1404 We used a consistent set of PPO hyperparameters and a standardized network architecture across all
 1405 training runs. The values, detailed in Table 2, were selected based on common practices in dexterous
 1406 manipulation literature and preliminary experiments to ensure stable and efficient learning.

Table 2: PPO Hyperparameters and Network Architecture.

Parameter	Value
num_envs	1024
Learning Rate	3×10^{-4}
Discount Factor	0.998
GAE Parameter	0.95
Update Epochs	4
Clipping Coefficient	0.2
Entropy Coefficient	0.01
Value Function Coefficient	0.75
Hidden Layers	[1024, 1024, 512]
Activation Function	ReLU (Hidden), Linear (Output)