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Abstract: LiDAR-based 3D object detection is a critical technology for the devel-
opment of autonomous driving and robotics. However, the high cost of data an-
notation limits its advancement. We propose a novel and effective active learning
(AL) method called Distribution Discrepancy and Feature Heterogeneity (DDFH),
which simultaneously considers geometric features and model embeddings, as-
sessing information from both the instance-level and frame-level perspectives.
Distribution Discrepancy evaluates the difference and novelty of instances within
the unlabeled and labeled distributions, enabling the model to learn efficiently
with limited data. Feature Heterogeneity ensures the heterogeneity of intra-frame
instance features, maintaining feature diversity while avoiding redundant or sim-
ilar instances, thus minimizing annotation costs. Finally, multiple indicators are
efficiently aggregated using Quantile Transform, providing a unified measure of
informativeness. Extensive experiments demonstrate that DDFH outperforms the
current state-of-the-art (SOTA) methods on the KITTI and Waymo datasets, ef-
fectively reducing the bounding box annotation cost by 56.3% and showing ro-
bustness when working with both one-stage and two-stage models. Source code:
https://github.com/Coolshanlan/DDFH-active-3Ddet
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Figure 1: The three core concepts of DDFH. (a) Embedding and geometric features are used as
DDFH inputs. (b) Considering instance-level distribution discrepancy and frame-level feature het-
erogeneity ensures that instances remain highly informative across all levels. (c) After transforming
various indicators using the Quantile Transform, it effectively aggregates to estimate the final infor-
mativeness.
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1 Introduction

Research on LiDAR-based 3D object detection [1, 2] has emerged due to its significant potential
and applications. However, annotating LiDAR data requires locating multiple objects in three-
dimensional space, which is expensive and time-consuming. Therefore, obtaining annotated data
more efficiently within limited time and resources has become a crucial and unavoidable issue.
Several studies have attempted to reduce annotation costs through Auto Labeling [3, 4] or Domain
Adaptation [5, 6], which rely on a small number of annotated samples. However, unstable annotation
accuracy and restricted domain shifts may limit their usage in various applications.

Active Learning (AL), aiming to select the most informative samples from a large pool of unla-
beled data for human annotation, is a significant solution to reduce the model’s dependence on the
amount of data. Although AL has been proven effective in mitigating annotation costs in various
research domains [7, 8], its application to LIDAR-based 3D Object Detection is underexplored, with
three main challenges remaining unresolved: (1) Compared to 2D object detection, LiDAR-based
object detection has additional geometric features (such as rotation and point density) that need to
be considered. (2) While the detector’s predictions are instance-level, the selection in AL is frame-
level, making it challenging to propagate from instances to frames and estimate informativeness. (3)
Aggregating multiple indicators under different units and scales is also challenging.

Previous work has used general AL strategies such as entropy and ensemble methods to estimate un-
certainty. However, they neglected the unique geometric features in LIDAR-based object detection
(first challenge), and solely assessing the instance-level informativeness is insufficient to address
the second challenge. A recent work, CRB [9], proposed three heuristic methods to estimate label
balance, representativeness, and point density balance through a staged filtering approach. Unfortu-
nately, the filtering order significantly affects sampling results, impacting the fairness among indica-
tors and failing to solve the third challenge. Another work, KECOR [10], proposed a kernel coding
rate maximization strategy. However, it also did not consider geometric features and used different
weighted settings to aggregate multiple indicators in different datasets, affecting generalization.

To address the above challenges, we propose the Distribution Discrepancy and Feature Heterogene-
ity (DDFH) method, as illustrated in Fig.1, where components (a), (b), and (c) are designed for the
first, second, and third challenges, respectively. DDFH leverages model embedding and geomet-
ric information as features for informativeness estimation to address the first challenge. Moreover,
we explores informativeness from instance-level and frame-level perspectives by considering intra-
class Distribution Discrepancies (DD) and intra-frame Feature Heterogeneity (FH) to tackle the
second challenge. Then, DDFH employs a Quantile Transform (QT) to normalize each indicator
to the same scale, effectively aggregating the indicators to solve the third challenge. Finally, we
propose Confidence Balance (CB) to evaluate the allocation of annotation resources. Unlike previ-
ous methods that solely count selected instances for each category, CB considers the summation of
confidence levels for each instance within the same category.

We verify the effectiveness of DDFH through experiments on real-world datasets, KITTI and
Waymo Open Dataset. The results indicate that our DDFH method outperforms the existing SOTA,
effectively reducing the data annotation cost by 56.3% and achieving an average improvement of
1.8% in 3D mAP with the same amount of data. From our extensive ablation studies, DDFH also
demonstrates its generalization when used with both one-stage and two-stage detection models.

2 Related Work

LiDAR-based 3D Object Detection. LiDAR-based object detection techniques are primarily di-
vided into two categories: point cloud direct processing and voxelization. Methods such as the
PointNet series [11, 12] operate directly on point clouds, preserving the original spatial accuracy
of the data but are less efficient in handling large-scale data. Recent research, like PointAugment-
ing [13], introduces cross-modal augmentation, enhancing LiDAR point clouds with deep features
extracted from pre-trained 2D object detection models, thereby improving 3D object detection per-



formance. Voxelization methods, such as VoxNet [14] and SECOND [15], convert point clouds
into voxel grids to enable efficient 3D convolution, significantly increasing computational speed.
The Voxel Transformer (VoTr) [16] architecture effectively expands the model’s receptive field, en-
hancing the ability to capture large-scale environmental information. The PV-RCNN series [17, 18]
improves detection accuracy and processing efficiency by fusing point cloud and voxel features.
These detectors rely heavily on large volumes of high-quality training data; however, the labeling
cost for LiDAR data is quite expensive.

Active learning for object detection. Active learning selects the most informative samples for an-
notation, thus mitigating the model’s dependence on the volume of data. Numerous general active
learning strategies currently exist, such as those based on model uncertainty [4, 19, 20, 21, 22], diver-
sity [23, 24, 25], or hybrid methods that combine both approaches [26]. Estimating in the gradient
space is also a common approach (e.g., BADGE [27], BAIT [28]). Research applying these methods
to object detection [29, 30, 31, 32] remains limited. Many studies directly use general strategies like
maximum entropy [33], bayesian inference [34] to estimate uncertainty in both bounding box and
category. LT/C [35] introduces noise-perturbed samples and assesses tightness and stability based
on the model’s output. The estimation of information quantity through the output probability dis-
tribution is also a common approach [36, 37]. Research on LiDAR-based object detection is even
scarcer, mainly due to the high computational cost of point cloud processing and the higher dimen-
sionality of regression information. General AL methods (Shannon Entropy [38], ensemble [29]) do
not consider geometric features and therefore are not well-suited for LIDAR. Recent work, such as
CRB [9], proposes three heuristic methods to incrementally filter samples. KECOR [10] identifies
the most informative samples through the lens of information theory. However, these studies fail to
effectively integrate multi-level information and do not consider the distribution of selected samples,
leading to redundant annotation costs. Therefore, we propose DDFH, which estimates the informa-
tiveness based on the distributional differences of instances and intra-frame feature heterogeneity,
and effectively aggregates multiple indicators using the quantile transform to estimate multi-level
informativeness.

3 Methodology

3.1 Active Learning Setup

In the active object detection setup, the labeled set DT = {(P%,Y%)} contains a small amount of
point clouds P% with annotations Y'*, and Dy; = { Py} represents a large unlabeled set of raw point
clouds Py . Initially, samples are randomly selected to form Dy, and the detection model learns over
multiple rounds r € {1, ..., R}. The objective of active learning is to evaluate the informativeness
of Py in each round and select the most informative samples to form a new subset D} for human
annotation. Then, the D is merged into Dy, to start a new round to retrain the model. This process
repeats until the size of the labeled set reaches the annotation budget.

3.2 Framework Overview

We propose a novel active learning framework, Distribution Discrepancy and Feature Heterogeneity
(DDFH) for LiDAR-based 3D object detection. As illustrated in Fig. 2, we infer point clouds
P € {Dy, D} into the model and get model output containing embeddings and bounding boxes.
However, estimating distributions in high-dimensional space is challenging, so we use t-SNE[40]
to project embeddings into lower dimensions while retaining important information, denoted as
fe* € R2. The geometric features of LIDAR-based object detection (length, width, height, volume,
rotation, and point cloud density) f¢ € RS are also significant, as they convey direct information
about objects such as occlusion, behavior, and morphology. So we use f = [fe*T fﬂ’T]T € R8 as
the input feature for DDFH, calculating multiple indicators to estimate informativeness. However,
since the units of the indicators differ, normalization is required before aggregation.
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Figure 2: DDFH framework for LiDAR-based 3D active object detection. According to the batch
active learning[39] setup, one cycle represents a single sampling. DDFH utilizes a Quantile Trans-
form to normalize all metrics before aggregation to estimate informativenes, and then updates the
dataset before starting a new round.

Score Normalization. DDFH evaluates informativeness based on multiple indicators, but their
scales differ, making direct aggregation impossible. Thus, we use Quantile Transform @ to nor-
malize. (., .) is a non-linear transform that converts the first input to follow a normal distribution
and returns the transformed result of the second input. v spreads out the most frequent values and
reduces the impact of outliers. Since the goal of active learning is to select the top k samples, the
relative distance of scores is not particularly important. Instead, maintaining the ranks of various
indicators and reducing outliers aids in aggregating the indicators, making v a crucial bridge in
computing I;,4;. Next, we will introduce the operating principles of DDFH sequentially.

3.3 Instance-Level Distribution Discrepancy

Since labeled set is much smaller than the unlabeled set, estimating the distribution is particularly
important. Reducing the distribution gap between the labeled set and the unlabeled set will assist the
model in inference. Inspired by [37], we use a Gaussian Mixture Model(GMM) to estimate proba-
bility density. Unlike previous works, we consider both geometric features and embeddings, using
dimensionality reduction to avoid overly sparse space. Intuitively, if an instance appears frequently
in the unlabeled set but is rare in the labeled set, such an instance can help the model efficiently un-
derstand unlabeled samples. Therefore, for each class ¢ € C, we establish Gf fit on {fc,1~-~fc7N£‘}
and GY fiton {fc ;...fo yu}, where G¥ is a GMM fit on unlabeled features, and N is the number
of instances with class c in the unlabeled set. We estimate the probability density function of each
instance in the unlabeled and labeled sets, and calculate the discrepancy score s&<:

s =Pgu(fe;) —Par(fy), i=1,2,..,NY, (1)
where Pgu (f;,c) represents the probability density of f; . in the unlabeled set. However, considering
Saq alone is insufficient, as very dense instances might overly influence the indicator, leading to
frequent selection of dense but repetitive instances in the early stages. Hence, unlike previous works
[7], we also extract Pz (f;.c) to calculate the novelty score s™°V:

sp9’ = —Pgr(fe), i=1,2,...,N7. )
sV ensures the novelty of instances. If an instance has a high probability density in the labeled set,
it indicates that the instance has already been selected, thus the s™°" score will decrease, effectively
reducing redundant annotation costs. Following these two indicators, I44(P;) can be calculated as:
N
1
Lia(Py) = — > [h(S4, i) + (S, s7v)], 3)

N 4
i=1



where N is the number of instances in P;. S9? is the set of all instances’ s%?. Ablation studies show
that ;4 enables the active learning model to learn rapidly with a small amount of data. However, 14
does not consider frame-level information, which may overlook similar instances within the same
frame. Therefore, we introduce a second component to address this issue.

3.4 Frame-Level Feature Heterogeneity

Object detection is a multiple-instance problem. Considering only instance-level information can
lead to redundant annotations. Complex scenes usually contain numerous objects that share the
same lighting and environmental factors, making their features highly similar or following linear
variations. Such samples are costly to annotate but offer limited assistance to the model. There-
fore, we propose frame-level Feature Heterogeneity (FH) As shown in Fig. 1b, we decompose
heterogeneity into correlation and variance. Denote F/. = [f]UC 1- f]UC ) as the feature vector of
all instances with class ¢ in j-frame, where m represents the number of instances. FH ensures I .
can maximize the feature heterogeneity of the labeled instance vector FX. Specifically, we combine
the two into Fj . = [FY, F¥] € R®N where N as the number of all sample. We use covariance
cov and variance o2 to calculate the Pearson correlation p, ensuring non-linear variations among
features. The correlation p is calculated as:

Ny Fk FZ )
J.C

i 9 cov(Fy
F'C = - L ’ 4
p(Fjc) Nf(Nf—l);o(Efc)'U(Ff,c) ¥

where ﬁ'}fc and Fj{ . represent the k-th and /-th feature dimension of matrix Fj ¢, and ﬁ'k is the

mean of Fﬁc. o? (F r) = + HFJ Fk 2, Ny is the number of feature dimensions of matrix Fj .
The smaller the value of p, the less hnear the correlation, enabling the model to learn more feature
combinations. However, as shown in Fig. 1, considering only correlation overlooks the information
about the distance between features. Thus, we also consider o2 to ensure sufficient variation among
features. Based on these two indicators, we calculate s“°" and s"*":

gvar ZO’ Fk S;OCT =1- |p(Fj,c)| (5)

The closer p is to 0, the less linear the correlation between features. Conversely, values far from 0
indicate positive or negative correlations. Therefore, we take the absolute value of correlation and
subtract it from 1, making the sj7" indicator larger. Based on these two scores, we calculate the

feature heterogeneity informativeness / fh (P;) for P;:

Ifh O Z w vars ;)(zr) ' w(scora 8;?;) (6)

where SV is the set of all s%. Iy, ensures instances maintain low correlation and high variance,
calculated through multiplication. This introduces the core components of the DDFH approach,
exploring informativeness from both instance-level and frame-level perspectives.

3.5 Confidence Balance for Imbalanced Data

Balancing annotation costs across classes has always been crucial in active learning. Previous works
[10, 9] calculate entropy by the number of all categories and the classification logit from the clas-
sifier, termed Label Balance (LB). However, these method is limited in imbalanced datasets, as
imbalanced classes usually have lower confidence, resulting in more false-positive instances. The
actual quantity is often less than expected. Therefore, we propose Confidence Balance (CB) Iy,
replacing instance quantities with the sum of confidences in each category to better reflect the true
class distribution in the frame, enhancing the number of minority classes. I, can be calculated as

follows: C
epj,c
Ip(Py) = — ;¢(pj,c) log ¢(pj.c),  O(Pjec) = ﬂ, @)



Table 1: Compare 3D mAP(%) scores for general AL and AL for detection in KITTI Dataset with
two-stage 3D detector PV-RCNN

AVERAGE CAR PEDESTRIAN CYCLIST
Method Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard
.2 CORESET [24] 7226  59.81 5559 87.77 7173 7295 4727 4197 38.19 81.73 59.72 55.64
2 BADGE [41] 7534 6144 56.55 89.96 7578 70.54 5194 4098 4597 8411 6229 58.12
& LLAL [42] 7394 6295 58.88 89.95 78.65 7532 46.94 4597 4597 7555 6035 5536
LT/c [35] 75.88 6323 5889 8873 78.12 74.87 55.17 4837 4363 8372 6321 59.16
= Mc-REG [9] 66.21 5441 5170 88.85 76.21 73.87 3582 31.81 29.79 7398 5523 51.85
2 Mc-MI [38] 71.19 57.77 53.81 86.28 75.58 71.56 41.05 37.50 33.83 8626 6022 56.04
8 CONSENSUS[29] 75.01 61.09 57.60 90.14 78.01 7428 5643 49.50 44.80 7846 55.77 53.73
A CRBI[9] 79.06 6649 61.76 90.81 79.06 7473 62.09 5456 48.89 8428 6585 61.66
—  CRB(offi.) 80.70 67.81 62.81 90.98 79.02 74.04 64.17 50.82 5082 8696 67.45 63.56
< KECOR [10] 79.81 67.83 6252 9143 79.63 7441 6349 5631 5020 8451 67.54 62.96
KECOR(offi.) 81.63 68.67 6342 91.71 79.56 7405 6537 5733 5156 87.80 69.13 64.65
DDFH(Ours) 82.27 69.84 64.76 91.76 80.65 76.46 66.37 59.40 52.97 88.68 69.47 64.85
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Figure 3: 3D mAP(%) of DDFH and AL baselines on the KITTI val split with PV-RCNN.

where p; . represents the sum of confidences of all instances of class c in the j-th frame. We compare
the effectiveness of LB and CB sampling in Fig. 4(c-d), demonstrating the importance of I, for
imbalanced data.

3.6 Acquisition Function

As described in 3.2, DDFH combines multiple indicators to explore informativeness comprehen-
sively. Through QT, all indicators are normalized to compute a unified informativeness indicator
Iio1q1, ensuring that the top-k frames are efficient, novel, heterogeneous, and balanced, identifying
the optimal selected sets D}, formulated as:

Dy =argmax  liotat(Pv), Tiotat(P) = (Llaa(Pj) + Lpn(Pj)) - Lep(Pj). (®)

D;CDy

I4q and Iy), evaluate informativeness, and multiplying by /., ensures balanced annotation costs
across classes while considering informativeness.

4 Experiments

4.1 Experimental Settings

3D Point Cloud Datasets. We tested our method on two real-world datasets: KITTI [43] and
Waymo Open Dataset [44]. KITTI contains approximately 7,481 training point clouds (3712 for
training, 3769 for validation) with annotations. Each point cloud is annotated with 3D bounding
boxes for cars, pedestrians, and cyclists, totaling 80,256 objects. The Waymo Open Dataset provides
a large-scale collection of data, it contains 158,361 training point clouds and 40,077 testing point
clouds. The sampling intervals for KITTI and Waymo are set to 1 and 10, respectively.

Baselines. We comprehensively evaluated 6 general active learning (AL) methods and 6 AL meth-
ods for object detection. RAND selects samples randomly. ENTROPY [45] and LLAL [42] are
uncertainty-based methods. CORESET [24] is a diversity-based method. BAIT [28] and BADGE
[41] are hybrid methods. MC-MI [38] and MC-REG [9] utilize Bayesian inference. CONSENSUS
[29] employs an ensemble to calculate the consensus score. LT/C evaluates instability and local-
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(c-d) are experiments on the KITTI dataset. (c) demonstrates the impact on performance when
DDFH omits geometric features and replaces confidence balance with label balance. (d) calculates
the entropy of the number of samples selected for each class to compare the effectiveness of different
AL methods in balancing annotation costs.
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ization tightness. CRB [9] progressively filters based on three heuristic methods. KECOR [10]
identifies the most informative sample through the lens of information theory.

Evaluation Metrics. We follow the work of KECOR [10]: In the KITTI dataset, we utilize Average
Precision (AP) to evaluate object location in Bird Eye View and 3D, calculated with 40 recall posi-
tions. The task difficulty is categorized as EASY, MODERATE (MOD.), and HARD based on the
visibility, size, and occlusion/ truncation of the objects. In Waymo, we use Average Precision with
Heading (APH), which incorporates both bounding box overlap and orientation accuracy. It cate-
gorizes objects into Level 1 (at least five LIDAR points, easier to detect) and Level 2 (all objects,
including more challenging scenarios).

Implementation Details. We strive to avoid excessive parameter tuning by using a unified set of
hyper-parameters across all experiments. We set the perplexity for t-SNE to 100. For Gaussian
Mixture Model, set number of components to 10, reg_covar to le-2 to increase generalization and
initialize parameters by k-means++.

4.2 Main Results

Since the most of baseline method do not provide initial selection samples, to present the results
more fairly, we reproduce most of the baseline methods using the same initial settings and provided
the official reported performance of two recent methods (CRB and KECOR) in our experiments.

DDFH with Two-Stage Detection Model. For the KITTI dataset, We ran each method three times.
As show in Fig. 3, our method outperforms all baseline methods. Compared with the CRB and
KECOR, the annotation cost is reduced by 51.7% and 33.2%, respectively, especially when the num-
ber of annotations is small, the growth rate is particularly fast. In Table 1, we follow the KECOR
setting, showing the performance with 800 (1%) bounding box annotations. Under the same initial-
ization conditions, our average performance surpasses the SOAT by 2.23%, especially improving
by 4.17% in the imbalanced class (Cyclist). For the Waymo Dataset, in Fig. 4(a-b), the Level-1
and Level-2 performance are reported, respectively. Compared to KECOR and CRB, DDFH im-
proves APH by 1.8% and 3.8%, respectively, and reduces the annotation cost by 56.3% and 66.4%,
respectively, demonstrating the effectiveness of DDFH in more diverse and complex scenarios.

DDFH with One-Stage Detection Model. Table 2 reports the 3D and BEV mAP scores with 1%
annotation bounding boxes. Compared to the SOTA, it improves by approximately 2.8% in 3D mAP
and 2.28% in BEV mAP. In Fig. 5, we further report the performance growth trend for each category
in different levels of difficulty in MOD. DDFH, especially in the car category, which often leads to
excessive annotations, can quickly improve performance with the most streamlined annotation cost.
For the pedestrian category, the uncertainty-based method performs exceptionally well with a small
number of annotations. However, the lack of consideration for diversity limits the performance.

4.3 Ablation Study



Table 2: Compare 3D mAP and BEV scores for general AL and AL for detection in KITTI Dataset
with one-stage 3D detector SECOND
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Figure 5: 3D mAP(%) of DDFH and the AL Baseline across various categories on the KITTI dataset
at the moderate difficulty with SECOND.

Efficacy of Confidence Balance. As Table 3: Compare the impact of each component on 3D
shown in Table 3, CB effectively improves mAP scores of KITTI dataset at the moderate difficulty
the 3D mAP of the imbalanced class (Cy-
clist) by 4.3% compared to LB. From Fig.
4c, it is evident that the performance using
LB decreases by an average of 2.8% 3D

DD FH CB | LB | Average Car Pedes. Cyclist

- - - - 6297 79.44 4893  60.52
v 66.87 78.89 56.36 6538

- - v - 67.69 7841 5496  69.71
mAP in each round. In Fig. 4d, we further - v 64.73  80.15 51.09 62.94
demonstrate the label entropy of the se- A 6894 7994 5822 68.66
lected samples. DDFH can effectively al- Vv Y | -] 6984 8065 5940 6947

locate annotation resources in each round,
while KECOR sacrifices balance while considering informativeness.

Efficacy of Distribution Discrepancy and Feature Heterogeneity. The results in Table 3 show that
DD can significantly enhance overall performance, especially in categories with fewer instances,
such as pedestrians and cyclists, by focusing more on the selection of these categories due to their
larger distribution differences. Using FH alone to estimate informativeness without considering the
labeled distribution would be too limiting. The experiments demonstrate that DDFH effectively
combines the advantages of both components, resulting in improvements across all categories.

Efficacy of Geometric Features. In Fig. 4c, the results show that after considering geometric
features, DDFH improves the average performance by 1.6% in 3D mAP, confirming that diverse
geometric features help the model capture a wider variety of objects.

5 Conclusion

We propose a novel active learning framework DDFH for LiDAR-based 3D object detection that
integrates model features with geometric characteristics. By exploring point cloud data through
instance-level distribution discrepancy and frame-level feature heterogeneity, and introducing con-
fidence balance, we enhance annotations for imbalanced classes. Our extensive experiments show
that compared to SOTA, DDHF reduces annotation costs by 56%, improves performance by 1.8%,
and efficiently extracts richer information, demonstrating its effectiveness over current methods.
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Table 1: Compare 3D mAP(%) scores for different SOTA apporch in KITTI Dataset when acquiring
approximately 1% queried bounding boxes. ' indicates the reported performance of the backbone
trained with the 100% labeled set.

AVERAGE CAR PEDESTRIAN CYCLIST
Method Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard
CRB [1] 79.06 66.49 61.76 90.81 79.06 7473 62.09 5456 4889 8428 65.85 61.66

CRB(offi.) 80.70 67.81 62.81 9098 79.02 74.04 64.17 50.82 50.82 8696 67.45 63.56
KECOR [2] 7981 67.83 6252 9143 79.63 7441 6349 5631 5020 8451 67.54 62.96
KECOR(offi.) 81.63 68.67 6342 91.71 79.56 7405 6537 5733 51.56 87.80 69.13 64.65
DDFH(Ours)  82.27 69.84 64.76 91.76 80.65 76.46 6637 59.40 5297 88.68 69.47 64.85

PV-RCNN 81.75 70.99 67.06 92.56 8436 8248 6426 56.67 5191 88.88 7195 66.78
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Figure 6: (a) report 3D mAP of various AL methods on KITTI in each active round. (b-c) represents
the impact of different density estimation methods and varying parameter settings on the perfor-
mance of DDFH.

A More Implementation Details

To ensure the fairness and reproducibility of our experiments, we implemented DDFH and re-
produced most of the baselines based on the public ACTIVE-3D-DET toolbox. We followed all
KECOR training settings, using Adam as the optimizer, and a onecycle learning scheduler with an
initial learning rate of 0.01. The batch size was set to 6, and each active round was trained for 40
epochs before proceeding to a new sampling round. We used one NVIDIA RTX A6000 to complete
all experiments. The runtime for an experiment on KITTI and Waymo is approximately 5 and 81
GPU hours, respectively. The model embeddings f¢ used in our method are extracted from the
second convolutional layer in the shared block of PV-RCNN.

B More Experimental Details

DDFH in the KITTI Dataset. In Fig. 6a, we present the performance of various AL methods
in each active round. The number of point clouds in each active round is fixed, allowing us to
compare the performance of models under conditions where they have seen the same number of
scenes. Notably, KECOR'’s performance is below expectations given the same number of frames,
indicating that KECOR does not effectively consider the diversity information of the scenes. In
contrast, DDFH considers frame-level information to avoid redundant instances in similar scenes.
The results show that DDFH has a significant advantage in each active round. We present more
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Figure 7: 3D mAP(%) of DDFH and the AL Baseline across various categories on the KITTI dataset
at the moderate difficulty with PV-RCNN.
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Figure 8: 3D mAP(%) of DDFH and AL baselines on the KITTI val split with SECOND.

comprehensive experimental results of DDFH on the KITTI Dataset in Fig. 7 and Fig. 8. The
results in Fig. 7 indicate that DDFH with PV-RCNN has a significant advantage in all categories
in KITTI, consistent with the results of Figure 4 in main text on SECOND. It is noteworthy that
in the car category, some uncertainty-based methods achieve similar performance to DDFH with
the same annotation cost. However, these methods fail to improve effectively in other categories,
demonstrating DDFH’s effectiveness in resource allocation and diversity. Fig. 8 also provides the
trend of average 3D mAP for the one-stage model SECOND in different difficulties, consistent with
PV-RCNN, outperforming SOTA methods in all difficulties. Further, in Table 1, we provide the
performance of PV-RCNN trained on 100% labeled data, showing that DDFH’s performance with
only 1% of bounding box annotation is close to fully trained performance, even outperforming fully
trained models in the pedestrian category.

Ablation Study of Density Estimation. We also test the stability and generalizability of DDFH
through different density estimation methods and parameters. In Fig. 6b, we set different numbers
of GMM components, specifically 1, 10 (DDFH Ours), 50, and 100. The results indicate that all
experiments, except for 1 component, maintain similar effectiveness. In Fig. 6c, we use Kernel
Density Estimation (KDE) to estimate the probability density and adjust different bandwidths to
test the stability and generalizability of the DDFH. Silverman [3] and Scott [4] calculate bandwidth
based on sample size. The results show that the performance of DDFH remains consistent and stable
under different density estimation models and parameters. This is due to the distribution discrepancy
focusing on distribution differences and novelty, rather than relying on highly accurate distribution
estimates, thus providing sufficient robustness to noisy instances and estimation deviations.

C Limitation

Considering that the distribution of objects in real environments is often uneven, common objects
tend to occupy the majority (e.g. cars). This leads to the underestimation of less frequent categories
when estimating informativeness. Therefore, the components DD, FH, and CB in DDFH reduce
the impact of uneven distribution at different levels, decrease redundant annotations, and effec-
tively balance minority categories. Although most real-world scenarios exhibit an uneven long-tail
distribution, if specific situations lead to a dataset where object distribution is close to a uniform
distribution, the effectiveness of DDFH might be limited due to the less apparent distribution dif-
ferences. A possible solution is to incorporate indicators of uncertainty into DDFH, such as model
instability, entropy, or the kernel coding rate combined with KECOR. This approach could address
the mentioned limitation and is left for future research.
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