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Abstract

Negation is a fundamental linguistic concept used by hu-
mans to convey information that they do not desire. De-
spite this, minimal research has focused on negation within
text-guided image editing. This lack of research means
that vision-language models (VLMs) for image editing may
struggle to understand negation, implying that they strug-
gle to provide accurate results. One barrier to achiev-
ing human-level intelligence is the lack of a standard col-
lection by which research into negation can be evaluated.
This paper presents the first large-scale dataset, Negative
Instruction (NeIn), for studying negation within instruction-
based image editing. Our dataset comprises 366,957 quin-
tuplets, i.e., source image, original caption, selected ob-
ject, negative sentence, and target image in total, includ-
ing 342,775 queries for training and 24,182 queries for
benchmarking image editing methods. Specifically, we au-
tomatically generate NeIn based on a large, existing vision-
language dataset, MS-COCO, via two steps: generation
and filtering. During the generation phase, we leverage
two VLMs, BLIP and InstructPix2Pix (fine-tuned on Mag-
icBrush dataset), to generate NeIn’s samples and the neg-
ative clauses that expresses the content of the source im-
age. In the subsequent filtering phase, we apply BLIP and
LLaVA-NeXT to remove erroneous samples. Additionally,
we introduce an evaluation protocol to assess the negation
understanding for image editing models. Extensive exper-
iments using our dataset across multiple VLMs for text-
guided image editing demonstrate that even recent state-of-
the-art VLMs struggle to understand negative queries.

1. Introduction
When it comes to training vision-language models (VLMs),
we have to consider a wide range of human information
needs, requiring systems to handle a wide range of user-
generated queries. They range from simple and straightfor-
ward ones like “describe the image” to complex prompts
involving rich contextual detail and creative reasoning.

Figure 1. The failures of recent text-guided image editing methods
in understanding the negative queries.

Inspired by Laurence R. Horn [7], “negation is a sine
qua non of every human language but is absent from oth-
erwise complex systems of animal communication.” In this
work, we address the problem of negative queries that spec-
ify information that should be excluded, a ubiquitous fea-
ture in human language. Examples of negative queries in
image editing tasks include “The bathroom area without a
curtain” or “The street with a person, but not with a car.”

Research that explicitly tackles the negation problem for
neural networks has mainly focused on natural language un-
derstanding [14, 20, 25, 27, 30], and a few vision-language
tasks including video retrieval [26]. However, in image edit-
ing, many recent SOTAs such as InstructPix2Pix [1], Mag-
icBrush [28], ZONE [10], and HQ-Edit [8] fail to under-
standing negative queries, as Figure 1 illustrates. In con-
trast, the models seem to focus on adding objects that need
to be excluded from the input images (for the query no tree
in the image, more trees are added, occluding the cathedral).

Although image editing VLMs can be prompted with in-
structions such as “remove,” understanding negation is cru-
cial for these models to achieve human-level intelligence.
This is because humans frequently use negation in various
ways, and not every negative cue can simply be replaced by
using “remove.”

One possible reason why VLMs fail to understand nega-
tion is the lack of negative descriptions in current image-
caption pair datasets, e.g., MS-COCO [11], SBU Captions
[17], CC12M [3], LAION-400M [22], etc. Since the na-
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Datasets Tasks Train Validation Total
#Negative #All #Negative #All #Negative #All

CC12M [3] Pre-training – – – – 314,181 (2.53%) 12,423,374
LAION-400M [22] Pre-training – – – – 2,404,784 (0.58%) 413,862,224
MS-COCO’14 [11] Image Captioning 1,761 (0.43%) 414,113 886 (0.44%) 202,654 – 616,767
SBU Captions [17] Image Captioning – – – – 26,222 (2.62%) 1,000,000
CC3M [23] Image Captioning 54,219 (1.63%) 3,318,333 – – – 3,369,218
CIRR [13] Composed Image Retrieval 868 (3.08%) 28,225 130 (3.11%) 4,181 – 36,554
InstructPix2Pix[1] Image Editing 77 (0.02%) 313,010 – – – 313,010
MagicBrush [28] Image Editing 54 (0.61%) 8,807 6 (1.17%) 528 – 10,388

Table 1. Statistic of captions in current image-caption pair datasets. We identify negative captions by 32 negative words: “no”, “not”, “with-
out”, “don’t”, “doesn’t”, “never”, “none”, “neither”, “nothing”, “can’t”, “isn’t”, “aren’t”, “didn’t”, “did not”, “isn’t”, “is not”, “aren’t”,
“are not”, “wasn’t”, “was not”, “weren’t”, “were not”, “won’t”, “will not”, “hasn’t”, “has not”, “haven’t”, “have not”, “can’t”, “can not”,
“couldn’t”, and “could not”.

ture of captions in these datasets is to describe objects and
visual concepts in the image as well as the stories related
to them, they lack negative clauses. As illustrated in Table
1, the number of negative sentences in image-caption pair
datasets is very small. Furthermore, some captions contain
negative words but they actually do not describe what is not
present in the image, e.g., “do not spend money in stores
with this sign,” “things you cannot miss.” This leads to two
consequences: (1) VLMs do not understand the meaning of
negative words because of the heavily-biased dataset dur-
ing training, and (2) there is no evaluation data to assess the
capability of VLMs in understanding negation.

To tackle this issue, we present a pipeline for construct-
ing a new dataset, Negative Instruction (NeIn1), designed
for training and evaluating VLMs on negation understand-
ing, specifically within the context of image editing. Par-
ticularly, we use BLIP [9] to identify objects that are not
present in the source image. We expand the captions that
represent the content of source image by incorporating neg-
ative words for objects that are not present. One example
of a negative sentence would be “The image doesn’t have
an apple”. We then generate counter-example target images
that contain those absent objects using InstructPix2Pix [1]
fine-tuned on MagicBrush [28]. We retain only acceptable-
quality images by filtering target samples using BLIP and
LLaVA-NeXT [12] to remove images that have been exces-
sively altered from the original content of the source image
or that make the excluded object unrecognizable. Thus, by
combining the target NeIn sample with the corresponding
negative query, we can obtain the source image.

In order to evaluate the performance of VLMs on our
dataset, we propose an evaluation method for image editing
models to assess both the ability to remove objects from im-
ages in response to negative clauses and the ability to retain
the original objects in the image after modification by the
queries. To summarize, our main contributions are:
• We investigate the ability of VLMs to interpret negation

cues in text-guided image editing, leading to the creation

1Nein means “no” in German.

of the first large-scale vision-language negation dataset
for this task, termed NeIn.

• We introduce a pipeline to generate NeIn, an extensive
dataset comprising 366,957 quintuplets. This dataset fo-
cuses on the understanding of negation, a fundamental
linguistic concept, for image editing VLMs.

• We propose an evaluation method for negation under-
standing that can be used by future researchers. Using
our evaluation method, we observe that VLMs in image
editing task have difficulty comprehending negative in-
structions. This insight opens a new research direction
for improving negation understanding for VLMs.

2. Related Work
Negation Understanding, a major linguistic topic, is be-
coming prominent in research. In natural language under-
standing, Ravichander et al. proposed CondaQA [20] which
is a question answering dataset specifically designed for
negation understanding. Experiments conducted on Con-
daQA revealed that deep learning models may have a simple
trick that they reverse the rank list when they see the nega-
tion cues, leading to acceptable results when encountering
fully negated queries. Nevertheless, their performance still
suffer a severe degradation on composed queries. Truong
et al. [25] investigated the LLMs’ ability to understand
negation under various settings. NevIR [27] benchmarked
models against a simple yet brilliant task, ranking two para-
graphs regarding a question that is relevant to only one
of them. Measured in pair-wise accuracy, volunteers eas-
ily achieved a perfect score of 100%, far superior to most
of the models whose performances are below 25%. The
best ones, using cross encoders, scored below 50%. Ex-
cluIR [30] included an evaluation benchmark comprising
3,452 manually curated queries, along with a training set
of 70,293 queries with a positive document and a negative
document. The authors have concluded that even after fine-
tuned on negated dataset, all models still lag behind human
performance a great deal. SetBERT [14] recently proposed
fine-tuning on a synthesized dataset with a focus on pre-



horse, remote, bowl, carrot, ..., couch

Filtered Out

tie, bowl, bear, dinning table, couch

A scene without tie.
The image does not have any bowl.
Bear is not part of the scene.
No dinning table in the image.
Not a single couch in sight.

Add a tie.
Add a bowl.
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Add a dinning table.
Add a couch.
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Generation
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A scooter covered in a green, felt-like fabric. 
A scooter is fashioned in Chia Pet and parked alongside the road. 
A parked motor cycle decorated with artificial grass. 
A motorcycle covered in green astro turf parked on the side of a road. 
A parked motorcycle is covered with green Astroturf.

A scooter covered in a green, felt-like fabric. This image has a tie.
A scooter is fashioned in Chia Pet and parked alongside the road. This image has a bowl. 
A parked motor cycle decorated with artificial grass. This image has a bear.
A motorcycle covered in green astro turf parked on the side of a road. This image has a dinning table.
A parked motorcycle is covered with green Astroturf. This image has a couch. 
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*Does the caption "A scooter is fashioned in Chia Pet and 
parked alongside the road." describe this image?

 *Does this image contain a bowl?

*Does the caption "A parked motor cycle 
decorated with artificial grass." describe this image?

*Does this image contain a bear?

Final Samples

*Does the caption "A motorcycle covered in green 
astro turf parked on the side of aroad." describe this image?

*Does this image contain a dinning table?

*Does the caption"A parked motorcycle is 
covered with green Astroturf." describe this image?

*Does this image contain a couch?

Filtered Out

Figure 2. The process to create our dataset. It consists of two main steps: generation and filtering. ITM and VQA are image-text matching
and visual question answering, respectively.

dicting negative samples using inverse-contrastive learning,
while BoolAttn [15] took a different approach by directly
adjusting attention scores to downweight tokens affected by
negation. In conclusion, all the results unanimously show
that even SOTAs struggle to comprehend negation cues.

For visual data retrieval, Wang et al. [26] measured
models on original dataset MSR-VTT3k, its negated ver-
sion, and composed version. However, models can cheat on
the negated version by inverting the result on the original
dataset (∆Recall and ∆MIR are nearly zero) but on com-
posed queries, all the models perform very poorly (Recalls
at rank N=1, 10 are respectively less than 12% and 46%, and
Mean Inverted Rank is less than 0.23), lagging behind their
own performance on the original dataset by a large margin.

Similar to our work, Singh et al. [24] recently intro-

duced the CC-Neg dataset tailored for negation problem,
contains 228,246 images, true captions and negated cap-
tions. However, the negated captions of CC-Neg falsely
describe their corresponding images. More precisely, the
authors generated the negated captions so that they and their
images can be used as negative pairs in the contrastive loss
to finetune the vision-language pre-trained models, whereas
in our dataset NeIn, the negated captions still describe ex-
actly their original images. Other differences will be clari-
fied in the Sections 3 and 4.

3. NeIn Dataset

NeIn is designed specifically to address the challenge of
negation understanding in VLMs for image editing. Each



1) The image doesn’t have any {S}. 2) {S} is not part of the scene. 3) No {S} present in the image. 4) The image is without {S}.
5) The image does not have any {S}. 6) The image lacks {S}. 7) No {S} in the image. 8) A scene without {S}.
9) The image cannot have any {S}. 10) Not a single {S} in sight. 11) {S} is missing from the image. 12) The image lacks the presence of {S}.

13) {S} is nowhere to be seen in the image.

Table 2. The pre-defined formats for Tn. These formats contain the negative words: “no”, “not”, “without”, “doesn’t”, “does not”,
“cannot”, “lacks”, “missing”, and “nowhere”.

tuple in NeIn consists of a natural image I and its original
caption To, selected object S, sentence containing negative
clause Tn and a synthetic image G that satisfies the original
caption but not its corresponding negative sentence.

The creation of NeIn involves two primary stages: the
first stage is generation, which employs BLIP [9] and In-
structPix2Pix [1], fine-tuned on MagicBrush[28], to gen-
erate target samples; the second stage is filtering, where
BLIP and LLaVA-NeXT [12] are utilized to remove erro-
neous samples.

3.1. Generation Pipeline

The data generation process of NeIn is shown in upper part
of Figure 2. The main idea is that given image I and a cor-
responding caption To describing what objects are present
in I, we will find a negative clause, termed Tn, such that
it satisfies the content of source image I. In our case, I
and To are the image and its corresponding captions from
MS-COCO [11]. More precisely, for each tuple, we arbi-
trarily select a collection of 15 object categories R from
MS-COCO. This means the categories vary for each tuple.
Then, we find out which objects in R do not appear in I
using the image-text matching (ITM) from BLIP [9]. Note
that the original caption To only describes the main objects
and their relationships within the source image I; it does
not account for all the categories present in I. For instance,
To is “bedroom scene with a bookcase, blue comforter, and
window,” but I also includes a mirror, trees, a lamp, and a
cabinet. Therefore, using BLIP instead of identifying ob-
jects in To to evaluate R will reduce errors for NeIn’s sam-
ples. We choose BLIP over other VLMs because it is suffi-
ciently fast to process large quantities of images. We accept
false positive results (when an object is present in the im-
age but BLIP fails to detect it) during the generation step. If
an object is too small or distorted to the point where BLIP
cannot recognize it, we consider that object is not present in
the image.

We select 5 objects with lowest scores and generate
their corresponding negative sentences based on some pre-
defined formats, illustrated in Table 2. The negative sen-
tences include negative words such as “doesn’t,” “not,”
“without” and S represents the selected objects, indicating
that these objects are not present in the image I. Concate-
nating Tn with the original caption To, we attain a new cap-
tion that still matches the original image I.

Algorithm 1 Generation
Input:
I: source image
R: list of 15 random object categories
P: list of pre-defined formats for negative clauses
Output:
S, Tn, Tg , G: lists of selected object categories, negative
sentences, prompts, and their corresponding synthetic im-
ages, respectively

1: S := [], Tn := [], Tg := [], G := []
2: for each objectR(i) inR do ▷ Categories not in I
3: c(i) ← ITM(I,R(i)) ▷ Cosine similarity

# threshold α = 0.4
4: if c(i) < α then ▷ Add categories
5: append (R(i), c(i)) to S
6: end if
7: end for
8: S ← top(S, 5) ▷ Select 5 lowest-cosine categories
9: for each object S(i) in S do ▷ Form sentences

10: p← random(P) ▷ Choose a random format
11: T (i)

n ← gen(p,S(i)) ▷ Negative sentence
12: append T (i)

n to Tn
13: T (i)

g ← “Add a/an {S(i)}” ▷ Instruction sentence
14: append T (i)

g to Tg
15: end for
16: for each prompt T (i)

g in Tg do ▷ NeIn samples gen
17: G(i) ← generator(I, T (i)

g ) ▷ Generated sample
18: append G(i) to G
19: end for
20: return S, Tn, Tg,G

Next, our goal is to create an image G that To matches it
but not Tn, which means the object specified in Tn is present
in G. Theoretically, we can create G by any image editing
method adding those objects to the source image. In the
case of NeIn, we choose a version of InstructPix2Pix [1],
a diffusion-based deep neural network, fine-tuned on Mag-
icBrush [28] due to the high quality of its outputs. Thus, in
the context of image editing, given image G, Tn will be a
query for removing some object in G, taking I as one of the
best results. For instance, if I is a picture of a dog in a gar-
den, Tn could be “the photo does not have any laptop,” and
G would be a picture of a dog and a laptop in the garden. To
summarize, Algorithm 1 illustrates the steps to accomplish
the generation phase. Note that each image in MS-COCO



has 5 captions, so we can generate 5 tuples for each image.

3.2. Filtering Pipeline
The data filtering process of NeIn is shown in lower part
of Figure 2. The main purpose of this stage is to eliminate
images that significantly alter the content of query image
I or difficultly identify object categories S. The specific
examples are the 1st and 4th images in G (Figure 2), where
the image is completely transformed and no longer retains
the original objects like the motorcycle and the green fabric.
If the original content is no longer preserved or the object
S is hard to distinguish, then, when combined with Tn, the
model can no longer output I.

We employ a two-stage filtering strategy: the first stage
leverages the image-text matching (ITM) function from
BLIP [9], while the second utilizes visual question answer-
ing (VQA) from LLaVA-NeXT [12]. We select these mod-
els because we need to verify two aspects: original captions
and selected object categories. Using ITM (represented by
BLIP) and VQA (represented by LLaVA-NeXT) enable us
to design prompts for checking these two aspects.

In order to perform the first filtering stage, we gener-
ate Tp by combining To with a prompt “This image has
a/an {S}”, where S represents the selected object category.
We utilize BLIP to calculate the matching score of Tp and
the generated samples G to eliminate the erroneous samples
from F .

Results from the first stage are further filtered in the sec-
ond stage to ensure the quality of NeIn’s samples. For this
second stage, we design two prompts P: (1) Does the cap-
tion To describe this image? and (2) Does this image con-
tain a/an {S}? The first prompt ensures that the content of
the samples F does not deviate significantly from I, while
the second prompt checks whether the selected objects ap-
pear in F . We require LLaVA-NeXT to output “Yes” or
“No” for both prompts, and if either prompt returns “No,”
we remove that sample from F . Algorithm 2 shows the
pseudo code for our filtering phase. The examples of NeIn’s
sample after filtering step and the data statistics are shown
in the supplementary material.

3.3. Discussion
First, in contrast to CC-Neg [24] whose tuples contain only
a natural image, its corresponding caption, and a negated
caption, we design NeIn so that for every caption, there is at
least one target image associated with it. As a consequence,
NeIn, with a source image, corresponding captions, se-
lected objects, negative sentences, and target images, may
be suitable for tasks that require target images (e.g., im-
age editing, composed image retrieval, visual grounding),
thus potentially having more applications than CC-Neg. Be-
sides, CC-Neg only consists of basic negative words like
“no”, “not”, “without”; while NeIn is more diverse.

Algorithm 2 Filtering
Input:
G, To: generated images and its original caption
S: list of selected object categories
Output:
F : final samples of NeIn

1: F := []
# first filtering stage by ITM

2: for each tuple (S(i), T (i)
o ,G(i)) in (S, To,G) do

3: T (i)
p ← T (i)

o + “This image has a/an {S(i)}”
4: c(i) ← ITM(G(i), T (i)

p ) ▷ Cosine similarity
# threshold α = 0.4

5: if c(i) > α then ▷ Add samples
6: append G(i) to F
7: end if
8: end for

# second filtering stage by VQA
9: for each tuple (S(i), T (i)

o ,F (i)) in (S, To,F) do
# two pre-defined prompts

10: P(i)
1 ← “Does the caption {T (i)

o } describe this im-
age?”

11: P(i)
2 ← “Does this image contain a/an {S(i)}?”

12: b
(i)
1 ← VQA(F (i), P(i)

1 ) ▷ Boolean result
13: b

(i)
2 ← VQA(F (i), P(i)

2 ) ▷ Boolean result
14: if b(i)1 = “No” or b

(i)
2 = “No” then ▷ Filter out

15: remove F (i) from F
16: end if
17: end for
18: return F

Second, this dataset is intended to support research on
negation understanding, as a purely mathematical logic,
rather than generating realistic images, which is related to
naturalness. That means, “a carrot within a traffic scene”
may seem absurd but humans can reliably and effortlessly
determine whether there is a carrot in the photo regardless
of other aspects of the photo. Therefore, the fact that NeIn’s
samples are synthetic does not impact the overall quality of
the dataset. In other words, we want to assess the models’
ability to answer logical questions, unaffected by irrelevant
factors such as naturalness, context, artistic style.

Third, one concern is raised by how we generate images
corresponding to G. Generated by the image editing diffu-
sion model InstructPix2Pix, fine-tuned using MagicBrush,
the synthetic images are unrealistic and they may be cor-
rupted. However, to the best of our knowledge, there is no
traditional technique that would allow us to automatically
add objects into an image without altering its main content
since the added object may cover some important existing
objects in the image. In practice, we observe that image-
editing deep neural networks try to keep the main portion
of the input image unharmed. Thus, we only need to ap-



ply some automatic filters to get rid of poor quality images
rather than employing a tedious and unscalable manual pro-
cess. From an input image and a caption, it only takes an
average of 9 seconds to generate the corresponding image
with clauses and 3 second to assess it by two-stage filtering
strategy on an A100 GPU. In total, we spend approximately
86 days to create NeIn with a single A100 GPU.

Fourth, our negative clauses Tn are descriptive prompts,
raising another concerns about whether evaluating image
editing models with descriptive prompts is fair. However,
existing evidence suggests that image editing methods can
effectively handle descriptive prompts. For instance, “in a
race car video game” and “it is now midnight” in from In-
structPix2Pix paper; “the dog is looking forward” and “she
is now cutting up carrots” from MagicBrush dataset; and
“the tarantula is given a glowing outline and the background
is changed to a dramatic sunset with vibrant reds and pur-
ples” from HQ-Edit dataset. This demonstrates that image
editing models must understand descriptive prompts, there-
fore, they must also understand negative cues, e.g. “the tree
is without a candle.”

4. Experiments on Image Editing Task
4.1. Experiment Setup
We benchmark our evaluation set in five SOTA image edit-
ing methods, including InstructPix2Pix [1], MagicBrush
[28], ZONE [10], HQ-Edit [8], and InstructDiffusion [4].
We fine-tune InstructPix2Pix and MagicBrush in our train-
ing set with 8 epochs. All baseline details, including the
versions of BLIP and LLaVA-NeXT, are provided in the
supplementary material.

For each tuple ith, these models take F (i) as an input
image and T (i)

n as an instruction, and return the target im-
age T (i); where the original image I(i) is the ground truth;
this is illustrated in Figure 3. In fairness, we conduct exper-
iments with the default settings for each model.

The image does not have any bowl.
Bear is not part of the scene.
Not a single couch in sight.

Final Samples VLMs for image
editing

Target

Figure 3. Illustration for fine-tuning and benchmarking process.

4.2. Evaluation Metrics
To assess the difference between the output of the image
editing models T and ground truth I, we consider two as-
pects: image quality and negative instruction satisfaction.

For image quality, we follow MagicBrush [28], employ-
ing four different metrics: L1, L2, CLIP-I, and DINO.

Algorithm 3 Removal Evaluation by VQA
Input:
T : considered model’s outputs
S: objects to be removed
Output:
s: removal score

1: s := 0
2: for each tuple (T (i),S(i)) in (T ,S) do

# pre-defined prompt
3: p← “Does this image contain a/an S(i)?”
4: if VQA(T (i), p) = “No” then ▷ Object is removed
5: s← s+ 1
6: end if
7: end for
8: s← s/|T |
9: return s

The L1 and L2 metrics measure the pixel-level distance be-
tween T and I. CLIP-I metric leverages CLIP [19] model,
while DINO metric employs DINO [2] model to compute
the alignment between target and query images by measur-
ing the cosine similarity of their embeddings. We consider
the image discrepancy in terms of realism using Clean-FID
[18] metric, an improved version of the Frechet Inception
Distance (FID) metric [5] that focuses on image resizing
and quantization. In addition, human perceptual judgment
is measured by LPIPS [29] score to more comprehensively
evaluate T and I by considering human visual perception.

Then, to measure how much the output semantically sat-
isfies the instruction, we consider whether image editing
methods successfully eliminate the object categories speci-
fied in the negative sentence, and determine if these meth-
ods can preserve the objects not mentioned in the negative
sentence. The first is determined by the Removal score,
while the second is assessed using the Retention score.

Since the purpose of both metrics is to identify objects,
we consider the visual question answering (VQA), repre-
sented by LLaVA-NeXT and open-vocabulary object detec-
tion (OVD), represented by OWLv2 [16]. Note that, differ-
ent from the generation step, we do not accept false positive
results for the evaluation metrics. Therefore, both LLaVA-
NeXT and OWLv2 are suitable choices.

Removal Evaluation. The removal evaluation by VQA
is illustrated by Algorithm 3, while the evaluation using
OVD is in the supplementary. For VQA (LLaVA-NeXT),
we prompt “Does this image contain a/an {S(i)}?” If the re-
sult is “No,” the object is considered successfully removed.
For OVD (OWLv2), we give the model output T (i) and ob-
ject S(i). The result is a list of bounding boxes with confi-
dence scores. The object is considered removed if the length
of this list is zero. Addressing the concern that the bound-
ing box may be misclassified, we calculate the Area Under
the Curve (AUC) regarding the highest confidence score of



Methods
Image Quality Negation Understanding

L1 ↓ L2 ↓ CLIP-I ↑ DINO ↑ FID ↓ LPIPS ↓ LLaVA-NeXT OWLv2
Removal ↑ Retention ↑ Removal ↑ AUC-Removal ↑ Retention ↑

InstructPix2Pix [1] 11.24 3.59 81.68 73.53 10.60 0.43 3.83 81.96 6.70 50.11 81.63
InstructPix2Pix 8.32 2.32 93.11 91.67 4.08 0.33 93.62 98.26 92.66 97.89 95.83
MagicBrush [28] 8.95 2.69 88.29 84.91 7.80 0.36 5.06 93.86 8.13 52.48 91.39
MagicBrush 8.38 2.35 93.04 91.53 4.15 0.33 92.18 98.21 91.24 97.34 98.07
ZONE [10] 11.95 3.67 74.12 63.18 14.95 0.46 2.93 72.38 6.47 46.04 69.07
HQ-Edit [8] 23.48 9.61 62.84 46.60 27.61 0.67 32.23 54.75 40.42 70.29 57.43
InstructDiffusion [4] 8.54 2.54 90.57 88.62 6.89 0.34 31.46 97.55 30.00 67.99 97.58

Table 3. Quantitative results of five image editing SOTA methods on the evaluation set of NeIn. All the metrics are in (%). The Instruct-
Pix2Pix and MagicBrush finetuned on NeIn’s training set are highlighted. The FID used here is Clean-FID [18].

Algorithm 4 Retention Evaluation by VQA
Input:
F : samples of NeIn
To: original caption from MS-COCO
T : considered model’s outputs
Output:
s: retention score

1: s := 0
2: for each tuple (F (i), T (i)

o , T (i)) in (F , To, T ) do
3: list1 :=[], list2 :=[]
4: O ← extractor(T (i)

o ) ▷ Original objects in I
# check O in F

5: for each object in O do
6: p← “Does this image contain a/an object ?”
7: b← VQA(F (i), p) ▷ Boolean result
8: if b = “Yes” then ▷ Object is still in F (i)

9: append object to list1

10: end if
11: end for

# check O in both F and T
12: for each object in list1 do
13: p← “Does this image contain a/an object ?”
14: b← VQA(T (i), p)) ▷ Boolean result
15: if b = “Yes” then ▷ Object is in F (i) & T (i)

16: append object to list2

17: end if
18: end for
19: score← length of list2 / length of list1

20: s← s+ score
21: end for
22: s← s / |T |
23: return s

each sample.
Retention Evaluation. We observe that, in the case of

not being able to understand which object needs to be re-
moved, the model may still achieve a high removal score
by removing as many objects as possible from the images.
Hence, we measure the retention score that assess whether
or not the model retains the salient objects in the origi-
nal images. Algorithm 4 shows the retention evaluation by
VQA, with the corresponding evaluation for OVD provided

in the supplementary. Let’s denote the original objects in
To (i.e. objects have in source image I) are O. To split
O from To, we use Spacy [6], a popular library for Natural
Language Processing. Note that we only consider the main
objects, which are essential to the content of I, therefore we
use To because it covers the important objects in I.

We first check that O is still present in the samples F of
NeIn. If O exists in F , we then check whether or not O
is present in generated image T of considered model. We
divide the number of retained objects by the number ofO to
get the retention score for each sample. The final retention
score is the average across all samples of the evaluation set.

4.3. Results
Quantitative Evaluation. Table 3 presents the quantita-
tive results between InstructPix2Pix, fine-tuned Instruct-
Pix2Pix, MagicBrush, fine-tuned MagicBrush, ZONE, HQ-
Edit, and InstructDiffusion on the evaluation set of NeIn.

None of the five methods perform well on pixel-level
metrics, such as L1 and L2, or on image quality met-
rics, such as CLIP-I, DINO, FID, and LPIPS, indicating
that negative prompts are considerably challenging. This
is particularly evident when considering the Removal and
Retention scores. Image editing models generally strug-
gle to understand the meaning of negation when they do
not remove the mentioned objects, as demonstrated by the
low Removal, calculated by LLaVA-NeXT and OWLv2,
and AUC-Removal scores of OWLv2. InstructPix2Pix [1],
ZONE [10], and HQ-Edit [8] also distort the content of the
source image, as can be seen by the low Retention score. It
is noteworthy that HQ-Edit achieves better Removal score
and AUC-Removal than the others but worse in retaining
the original content of the images. We hypothesize that
the model dramatically alters the images that makes their
content indecipherable, as indicated by the high L1 and L2
scores. InstructDiffusion [4] handles negation best among
the five baselines, likely due to its training on diverse com-
puter vision datasets that enhance generalization for nega-
tive queries.

In contrast, the fine-tuned versions of InstructPix2Pix
and MagicBrush significantly enhance both image quality
and instruction satisfaction with negative queries. Given



Input InstructPix2Pix MagicBrush ZONE HQ-Edit

Boat is not part of the scene.

InstructDiffusion

 Bus is missing from the image.

InstructPix2Pix MagicBrush

No basil.

The street with trees and person, but not with dog.

Figure 4. Qualitative results of five SOTA methods on NeIn’s evaluation samples (first two samples) and random image-prompt pairs (last
two samples). The fine-tuned InstructPix2Pix (3rd column) and MagicBrush (5th column) on NeIn’s training set are highlighted.

that current image editing methods rely on Diffusion [21]
framework. We assume by this evidence, other text-guided
image editing methods are likely to achieve similar results.

Qualitative Evaluation. Some results for each im-
age editing model are illustrated in Figure 4. We con-
sider both image-prompt pairs from NeIn’s samples and
randomly pairs outside of NeIn’s distribution to evaluate the
generalization of fine-tuned versions.

Instead of removing the mentioned objects, original im-
age editing models tend to have the following problems: (1)
retaining the mentioned object in the edited image; (2) in-
creasing the quantity of mentioned object in the generated
image, and even bringing that object to the center of the im-
ages; and (3) completely replacing the content of the query
image with that object. This observation demonstrates the
failure of VLMs in image editing on negation understand-
ing, potentially affecting other vision-language tasks.

On the contrary, the fine-tuned InstructPix2Pix and Mag-
icBrush models clearly demonstrate the ability to remove
objects specified in negative queries. Even when dealing
with difficult prompt that include trees, person, and dog;
models are still able to successfully understand negation.
This suggests that, following fine-tuning with NeIn, VLMs
may be capable of understanding negation.

5. Conclusion
We introduce NeIn, the first large-scale dataset for nega-
tion understanding within the context of text-guided im-
age editing, comprising 366,957 quintuplets with 342,775
queries for training set and 24,182 queries for evaluation
set. Negation understanding, an important linguistic con-
cept yet to be fully explored in image editing, is a crucial

task for aligning image editing VLMs with human informa-
tion needs. We present a novel pipeline to automatically
generate and filter samples for NeIn by leveraging VLMs
for vision-language pre-training and image editing. Addi-
tionally, we present a comprehensive evaluation protocol,
including removal and retention aspects, to assess the per-
formance of current image editing models on negation un-
derstanding for NeIn’s evaluation set. Our experiments re-
veal that existing image editing methods struggle to under-
stand negative queries, highlighting a new challenge for the
research community. By fine-tuning these models on NeIn’s
training set, we can improve their ability to identify negative
terms in user queries, as demonstrated by both quantitative
and qualitative results.

Limitations. Two current limitations of NeIn are that
(1) we have only performed experiments using image edit-
ing models, and (2) the negative predefined prompts are
relatively simple. Future Directions. Based on current
limitations, future research plans to leverage and expand
NeIn include: (1) fine-tuning and benchmarking NeIn for
other tasks in vision-language domain such as composed
image retrieval and image-text matching; (2) considering
complex negative sentences involving words such as “ex-
cept”, “neither-nor”, etc. We hope that with the release of
NeIn, the research community will shift its focus toward
negation understanding, which we believe is an important
open problem for VLMs.
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