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Abstract

Zero-shot reinforcement learning (RL) promises to provide agents that can per-
form any task in an environment after an offline pre-training phase. Forward-
backward (FB) representations represent remarkable progress towards this ideal,
achieving 85% of the performance of task-specific agents in this setting. How-
ever, such performance is contingent on access to large and diverse datasets for
pre-training, which cannot be expected for most real problems. Here, we ex-
plore how FB performance degrades when trained on small datasets that lack
diversity, and mitigate it with conservatism, a well-established feature of per-
formant offline RL algorithms. We evaluate our family of methods across var-
ious datasets, domains and tasks, reaching 150% of vanilla FB performance in
aggregate. Somewhat surprisingly, conservative FB algorithms also outperform
the task-specific baseline, despite lacking access to reward labels and being re-
quired to maintain policies for all tasks. Conservative FB algorithms perform no
worse than FB on full datasets, and so present little downside over their predeces-
sor. Our code is available open-source via https://enjeeneer.io/projects/
conservative-world-models/.

1 Introduction

Today’s large pre-trained models exhibit an impressive ability to generalise to unseen vision (Rom-
bach et al., 2022) and language (Brown et al., 2020) tasks. Zero-shot reinforcement learning (RL)
methods leveraging successor features (SFs) (Barreto et al., 2017; Borsa et al., 2018) and forward-
backward (FB) representations (Touati & Ollivier, 2021) aim to instantiate a similar idea in the
sequential decision-making context. Recently, FB representations in particular have been shown to
perform zero-shot RL remarkably well: provided a dataset of reward-free transitions from a target
environment, FB can return policies for any task in the environment that are 85% as performant as
those returned by offline RL algorithms explicitly trained for each task. This is achieved with no
prior knowledge of the tasks, zero planning, and no online interaction.

However, such performance is only achievable if the pre-training dataset is large and diverse. Real
datasets, like those produced by an existing controller or collected by a task-directed agent, are
usually small and lack diversity. Even if we design agents to exhaustively explore environments, as
is done in Unsupervised RL (Jaderberg et al., 2016), they suffer the impracticalities of the online
RL algorithms we are trying to avoid: they act dangerously in safety-critical environments, and data
collection can be time-consuming.

Is it possible to relax this requirement and perform zero-shot RL using more realistic datasets? This
is the primary question we address in this paper. We begin by establishing that current methods
suffer in this regime because they overestimate the value of out-of-distribution state-action pairs.
In response, we adapt ideas from conservatism in offline RL (Kumar et al., 2020) for use with
FB representations, creating two new algorithms: value-conservative FB representations (VC-FB)
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Figure 1: Toy illustration of FB’s failure mode on sub-optimal datasets and VC-FB’s resolution. (Left) Zero-
shot RL methods train on a dataset collected by a behaviour policy optimising against task zcollect, yet gener-
alise to new tasks zeval. Both tasks have associated optimal value functions Q∗

zcollect and Q∗
zeval for a given

marginal state. (Middle) Forward-backward (FB) representations overestimate the value of actions not in the
dataset for all tasks. (Right) Value-conservative forward-backward (VC-FB) representations suppress the value
of actions not in the dataset for all tasks. Black dots represent state-action samples present in the dataset.

(Figure 1 (right)) and measure-conservative FB representations (MC-FB). The former regularises
the predicted value of out-of-distribution state-action pairs, whilst the latter regularises future state
visitation measures. In experiments across varied domains, tasks and datasets, we show our pro-
posals outperform FB and SF-based approaches by up to 150% in aggregate, and even surpass a
task-specific baseline. Finally, we establish that both VC-FB and MC-FB perform no worse than FB
on large datasets, and so present little downside over their predecessor.

2 Background

Problem formulation. The zero-shot RL problem extends the standard RL setup of a Markov
decision process (MDP) (Sutton & Barto, 2018). We consider the class of continuous, finite-horizon
MDPs, in which S ∈ Rn andA ∈ Rm are continuous spaces of environment states and agent actions
and P : S × A → ∆(S) is a stochastic state transition function (Bellman, 1957). At each timestep
t, the agent observes state st, selects action at according to a policy function π and transitions to
the next state st+1 ∼ P(·|st, at). This process repeats until a terminal timestep t = T . The MDP
formalism is completed by reward function R : S → R≥0, which maps states to non-negative
rewards2, and a discount factor γ ∈ [0, 1]. Any given R instantiates a task for the agent, namely
to maximise the expected discounted sum of rewards for visited states, E π,P

∑T−1
t=0 γtR(st+1). In

contrast with standard RL, which considers only a singleR, we are interested in agents that can solve
any arbitrary task in an environment, each characterised by a different reward function but otherwise
sharing a common MDP structure (S,A,P, T, γ) (Borsa et al., 2018). During a pre-training phase,
we give the agent access to a static dataset of reward-free transitions D = {(si, ai, si+1)}i∈{1,...,k}
generated by an unknown behaviour policy. Once a task is revealed downstream, the agent must
return a good policy for that task with no further planning or learning.

Forward-backward representations. FB representations tackle the zero-shot RL problem using
successor measures, which generalise Dayan (1993)’s successor representations to continuous state
spaces (Blier et al., 2021). A successor measure gives the expected discounted time spent in each
subset of states S+ ⊂ S after starting in state s0, taking action a0, and following policy π thereafter:

Mπ(s0, a0, S+) :=
∑T−1
t=0 γ

t Pr(st+1 ∈ S+|(s0, a0), π), ∀ S+ ⊂ S. (1)

The successor measure is task-independent, but for any given task (with reward function R), the
state-action value (Q) function is the integral ofR with respect to Mπ:

QπR(s0, a0) :=
∫
s+∈S R(s+)M

π(s0, a0, ds+). (2)

2In more general formulations, rewards can be negative and dependent on (state, action, next state) triplets,
but we consider this special case here.
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π is an optimal policy forR if it maximises its own Q-function, i.e. π(s) = argmaxaQ
π
R(s, a), ∀s.

FB representations approximate the successor measures of near-optimal policies for an infinite fam-
ily of tasks. The key idea is to parameterise this family by a distribution of real-valued task vectors
Z ∈ ∆(Rd). For any given z ∼ Z , let πz = π(s, z) denote the associated parameterised policy for
that task. The first component of an FB representation is the forward model F : S ×A×Rd → Rd,
which takes in a state s0 ∈ S, action a0 ∈ A and task vector z and outputs an embedding vector
(also in Rd), which can be intuitively understood as summarising the distribution of future states vis-
ited after taking a0 in s0 and following πz thereafter. The second component is a backward model
B : S → Rd, which outputs another embedding vector summarising the distribution of states visited
before a given state s+ ∈ S (it is not conditioned on z) . Touati & Ollivier (2021) show that F and
B can be combined to form a rank-d approximation to the successor measure for any policy πz:

Mπz (s0, a0, ds+) ≈ F (s0, a0, z)⊤B(s+)ρ(ds+), ∀ s+ ∈ S. (3)

ρ is a marginal state distribution, which in practice is that of the pre-training dataset D. Intuitively,
Equation 3 says that the approximated successor measure under πz from (s0, a0) to s+ is high if
their respective forward and backward embeddings are similar (i.e. large dot product).

In turn, by Equation 2, an FB representation can be used to approximate the Q function of πz with
respect to any reward functionR as follows:

Qπz

R (s0, a0) ≈
∫
s+∈S R(s+)F (s0, a0, z)

⊤B(s+)ρ(ds+) = F (s0, a0, z)
⊤Es+∼ρ[R(s+)B(s+) ].

(4)

Pre-training FB. Since the successor measure satisfies a Bellman equation (Blier et al., 2021),
F and B can be pre-trained to improve the approximation in Equation 3 by performing temporal
difference (TD) updates (Samuel, 1959; Sutton, 1988) using transition data sampled from D:

LFB = E(st,at,st+1,s+)∼D,z∼Z [
(
F (st, at, z)

⊤B(s+)− γF̄ (st+1, πz(st+1), z)
⊤B̄(s+)

)2
− 2F (st, at, z)

⊤B(st+1)], (5)

where s+ is sampled independently of (st, at, st+1) and F̄ and B̄ are lagging target networks. See
Touati & Ollivier (2021) for a full derivation of this TD update, and our Appendix B.1 for practical
implementation details including the specific choice of task sampling distribution Z .

Using FB for zero-shot RL. Touati et al. (2023) show that using FB for zero-shot RL begins with
defining the parameterised policy family as:

πz(s) = argmaxaF (s, a, z)
⊤z. (6)

Then, relating Equations 4 and 6, we find z = Es+∼ρ[ R(s+)B(s+) ] for some reward func-
tion R. If z lies within the task sampling distribution Z used during pre-training, then πz(s) ≈
argmaxaQ

πz

R (s, a), and hence this policy is approximately optimal forR. In practice, continuous ac-
tion spaces necessitate learning an approximation to the argmax in Equation 6 via a task-conditioned
policy model,3 but the optimality relationship continues to approximately hold.

We can thus exploit it to obtain the following two-step process for performing zero-shot RL:

1. Provided access to a dataset Dlabelled of states distributed as ρ labelled with rewards by a
target reward function R∗, estimate z∗ ≈ E(s,r∗)∼Dlabelled [ r

∗B(s) ] by simple averaging.
For a goal-reaching task with goal sg , define the task vector directly as z∗ = B(sg).

2. In theory, a near-optimal policy πz∗ is given analytically via Equation 6. In practice, obtain
the policy by passing z∗ as a parameter to the task-conditioned policy model.

Since this process requires no further planning or learning, the goal of zero-shot RL is realised.

Alternative zero-shot RL methods utilise successor features (SF) (Borsa et al., 2018). The value-
space algorithms we propose next are fully-compatible with SF, as derived in Appendix E, but we
focus our analysis on FB because of its superior empirical performance (Touati et al., 2023).

3This model is learnt concurrently to the FB representation itself in an actor-critic formulation (Lillicrap
et al., 2016), as per the algorithm in Appendix B.1.5.
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Figure 2: FB value overestimation with respect to dataset size n and quality. Log Q values and IQM of
rollout performance on all Point-mass Maze tasks for datasets RND and RANDOM. Q values predicted during
training increase as both the size and “quality” of the dataset decrease. This contradicts the low return of all
resultant policies. Informally, we say the RND dataset is “high” quality, and the RANDOM dataset is “low”
quality–see Appendix A.2 for more details.

3 Conservative Forward-Backward Representations

We begin by examining the FB loss (Equation 5) more closely. The TD target includes an action
produced by the current policy at+1 = πz(st+1). Equation 6 shows that this action is the current
best estimate of the optimal action in state s for task z. When training on a finite dataset, this max-
imisation does not constrain the policy to actions observed in the dataset, and so the policy can be-
come biased towards out-of-distribution (OOD) actions thought to be of high value–a well-observed
phenomenon in offline RL (Kumar et al., 2019a, 2020). In such instances, the TD targets may be
evaluated at state-action pairs outside the dataset, making them unreliable and causing errors in the
measure and value predictions. Figure 2 shows the overestimation of Q as dataset size and quality
is varied. The smaller and less diverse the dataset, the more Q values tend to be overestimated.

The canonical fix for value overestimation in offline RL is conservative Q-learning (CQL) (Kumar
et al., 2019a, 2020). Intuitively, CQL suppresses the values of OOD actions to be below those of
in-distribution actions, and so approximately constrains the agent’s policy to actions observed in the
dataset. To achieve this, a new term is added to the usual Q loss function

LCQL = α ·
(
Es∼D,a∼µ(a|s)[Q(s, a)]− E(s,a)∼D[Q(s, a)]−H(µ)

)
+ LQ, (7)

where α is a scaling parameter, µ(a|s) is a policy distribution selected to find the maximum value of
the current Q function iterate,H(µ) is the entropy of µ used for regularisation, and LQ is the normal
TD loss on Q. Equation 7 has the dual effect of minimising the peaks in Q under µ whilst maximis-
ing Q for state-action pairs in the dataset. This proves to be a useful inductive bias, mitigating value
overestimation and producing state-of-the-art results on offline RL benchmarks (Fu et al., 2020).

We can replicate a similar inductive bias in the FB context, substituting F (s, a, z)⊤z for Q in Equa-
tion 7 and adding the normal FB loss (Equation 5)

LVC-FB = α ·
(
Es∼D,a∼µ(a|s),z∼Z [F (s, a, z)

⊤z]− E(s,a)∼D,z∼Z [F (s, a, z)
⊤z]−H(µ)

)
+ LFB.

(8)
The key difference between Equations 7 and 8 is that the former suppresses the value of OOD actions
for one task, whereas the latter does so for all task vectors drawn fromZ .4 We discuss the usefulness
of this inductive bias in Section 3.1. We call models learnt with this loss value-conservative forward-
backward representations (VC-FB).

4An intuitively appealing alternative, given some a priori knowledge of the downstream tasks for which the
model is to be used, would be to bias the sampling of task vectors z used in the conservativism penalty towards
those derived from plausible tasks R∗ via the backward model, i.e. z = Es∼D[R∗(s)B(s)]. We consider
one instantiation of this directed conservatism approach in Appendix B.1.6, but find that it generally performs
worse than undirected sampling in our experimental settings.
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Figure 3: Ignoring out-of-distribution actions.. The agents are tasked with learning separate policies for
reaching ⊛ and ⊛. (a) RND dataset with all “left” actions removed; quivers represent the mean action direction
in each state bin. (b) Best FB rollout after 1 million learning steps. (c) Best VC-FB performance after 1 million
learning steps. FB overestimates the value of OOD actions and cannot complete either task; VC-FB synthesises
the requisite information from the dataset and completes both tasks.

Because FB derives Q functions from successor measures (Equation 4), and because (by assump-
tion) rewards are non-negative, suppressing the predicted measures for OOD actions provides an
alternative route to suppressing their Q values. As we did with VC-FB, we can substitute FB’s
successor measure approximation F (s, a, z)⊤B(s+) into Equation 7, which yields:

LMC-FB = α ·
(
Es∼D,a∼µ(a|s),z∼Z,s+∼D[F (s, a, z)

⊤B(s+)]

−E(s,a)∼D,z∼Z,s+∼D[F (s, a, z)
⊤B(s+)]−H(µ)

)
+ LFB. (9)

Equation 9 has the effect of suppressing the expected visitation count to goal state s+ when taking an
OOD action for all task vectors drawn from Z . As such, we call this variant a measure-conservative
forward-backward representation (MC-FB). Since it is not obvious a priori whether the VC-FB or
MC-FB form of conservatism would be more effective in practice, we evaluate both in Section 4.

Implementing conservative FB representations requires two new model components: 1) a conser-
vative penalty scaling factor α and 2) a way of obtaining policy distribution µ(a|s) that maximises
the current Q function iterate. For 1), we observe fixed values of α leading to fragile performance,
so dynamically tune it at each learning step using Lagrangian dual-gradient descent as per Kumar
et al. (2020). Appendix B.1.4 discusses this procedure in more detail. For 2), the choice of maxi-
mum entropy regularisation following Kumar et al. (2020)’s CQL(H) allows µ to be approximated
conveniently with a log-sum exponential across Q values derived from the current policy distribu-
tion and a uniform distribution. That this is true is not obvious, so we refer the reader to the detail
and derivations in Section 3.2, Appendix A, and Appendix E of Kumar et al. (2020), as well as our
adjustments to Kumar et al. (2020)’s theory in Appendix B.1.3. Code snippets demonstrating the
required changes to a vanilla FB implementation are provided in Appendix I. We emphasise these
additions represent only a small increase in the number of lines required to implement FB.

3.1 A Didactic Example

To understand situations in which a conservative zero-shot RL methods may be useful, we introduce
a modified version of Point-mass Maze from the ExORL benchmark (Yarats et al., 2022). Episodes
begin with a point-mass initialised in the upper left of the maze (⊚), and the agent is tasked with
selecting x and y tilt directions such that the mass is moved towards one of two goal locations (⊛
and ⊛). The action space is two-dimensional and bounded in [−1, 1]. We take the RND dataset
and remove all “left” actions such that ax ∈ [0, 1] and ay ∈ [−1, 1], creating a dataset that has the
necessary information for solving the tasks, but is inexhaustive (Figure 3 (a)). We train FB and VC-
FB on this dataset and plot the highest-reward trajectories–Figure 3 (b) and (c). FB overestimates the
value of OOD actions and cannot complete either task. Conversely, VC-FB synthesises the requisite
information from the dataset and completes both tasks.

The above example is engineered for exposition, but we expect conservatism to be helpful in more
general contexts. Low-value actions for one task can often be low value for other tasks and, impor-
tantly, the more performant the behaviour policy, the less likely such low value actions are to be in
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the dataset. Consider the four tasks in the Walker environment: {walk, stand, run, flip}, where
all tasks require the robot to stand from a seated position before exemplifying different behaviours.
If the dataset includes actions that are antithetical to standing, as might be the case if the behaviour
policy used to collect the dataset is highly exploratory, then both FB and VC-FB can observe their
low value across tasks. However, if the dataset does not include such actions, as might be the case
if it was collected via a near-optimal controller that never fails to stand, then FB may overestimate
the value of not standing across tasks, and VC-FB would correctly devalue them. We extend these
observations to more varied environments in the section that follows.

4 Experiments

In this section we perform an empirical study to evaluate our proposals. We seek answers to three
questions: (Q1) Can our proposals from Section 3 improve FB performance on small and/or low-
quality datasets? (Q2) How does the performance of VC-FB and MC-FB vary with respect to task
type and dataset diversity? (Q3) Do we sacrifice performance on full datasets for performance on
small and/or low-quality datasets?

4.1 Setup

We respond to these questions using the ExORL benchmark, which provides datasets collected by
unsupervised exploratory algorithms on the DeepMind Control Suite (Yarats et al., 2022; Tassa et al.,
2018). We select three of the same domains as Touati & Ollivier (2021): Walker, Quadruped and
Point-mass Maze, but substitute Jaco for Cheetah. This provides two locomotion domains and two
goal-reaching domains. Within each domain, we evaluate on all tasks provided by the DeepMind
Control Suite for a total of 17 tasks across four domains. Full details are provided in Appendix A.1.

We pre-train on three datasets of varying quality. Although there is no unambiguous metric for
quantifying dataset quality, we use the reported performance of offline TD3 on Point-mass Maze
for each dataset as a proxy. We choose datasets collected via Random Network Distillation (RND)
(Burda et al., 2018), Diversity is All You Need (DIAYN) (Eysenbach et al., 2018), and RANDOM
policies, where agents trained on RND are the most performant, on DIAYN are median performers,
and on RANDOM are the least performant. As well as selecting for quality, we also select for
size. The ExORL datasets have up to 10 million transitions per domain. We uniformly sub-sample
100,000 transitions from these to create datasets that may be considered more realistically sized for
real-world applications. More details on the datasets are provided in Appendix A.2, which includes
a visualisation of the state coverage for each dataset on Point-mass Maze (Figure 6).

4.2 Baselines

We use FB and SF with features from Laplacian eigenfunctions (SF-LAP) as our zero-shot RL
baselines–the two most performant methods in Touati et al. (2023). As single-task RL baselines, we
use CQL and offline TD3 trained on the same datasets relabelled with task rewards. CQL approx-
imates what an algorithm with similar mechanistics can achieve when optimising for one task in a
domain rather than all tasks. Offline TD3 exhibits the best aggregate single-task performance on
the ExORL benchmark, so it should be indicative of the maximum performance we could expect to
extract from a dataset. Full implementation details for all algorithms are provided in Appendix B.

We evaluate the cumulative reward (hereafter called score) achieved by VC-FB, MC-FB and our
baselines on each task across five random seeds. To mitigate the well-established pitfalls of stochas-
tic RL algorithm evaluation, we employ the best practice recommendations of Agarwal et al. (2021)
when reporting task scores. Concretely, we run each algorithm for 1 million learning steps, eval-
uating task scores at checkpoints of 20,000 steps. At each checkpoint, we perform 10 rollouts,
record the score of each, and find the interquartile mean (IQM). We average across seeds at each
checkpoint to create the learning curves reported in Appendix H. From each learning curve, we
extract task scores from the learning step for which the all-task IQM is maximised across seeds. Re-
sults are reported with 95% confidence intervals obtained via stratified bootstrapping (Efron, 1992).
Aggregation across tasks, domains and datasets is always performed by evaluating the IQM. Full
implementation details are provided in Appendix B.1.
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Figure 4: Aggregate zero-shot performance. (Left) IQM of task scores across datasets and domains, nor-
malised against the performance of CQL, our baseline. (Right) Performance profiles showing the distribution
of scores across all tasks and domains. Both conservative FB variants stochastically dominate vanilla FB–see
Agarwal et al. (2021) for performance profile exposition. The black dashed line represents the IQM of CQL
performance across all datasets, domains, tasks and seeds.
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Figure 5: Performance by dataset and domain. IQM scores across tasks/seeds with 95% confidence intervals.

4.3 Results

Q1. We report the aggregate performance of all zero-shot RL methods and CQL in Figure 4. Both
MC-FB and VC-FB outperform FB, achieving 150% and 137% FB performance respectively. The
performance gap between FB and SF-LAP is consistent with the results in Touati et al. (2023). MC-
FB and VC-FB outperform our single-task baseline in expectation, reaching 111% and 120% of
CQL performance respectively despite not having access to task-specific reward labels and needing
to fit policies for all tasks. This is a surprising result, and to the best of our knowledge, the first time
a multi-task offline agent has been shown to outperform a single-task analogue. CQL outperforms
offline TD3 in aggregate, so we drop offline TD3 from the core analysis, but report its full results
in Appendix C alongside all other methods. We note FB achieves 80% of single-task offline TD3,
which roughly aligns with the 85% performance on the full datasets reported by Touati et al. (2023).
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Table 1: Aggregated performance on full datasets. IQM scores aggregated over domains and tasks for all
datasets, averaged across three seeds. Both VC-FB and MC-FB maintain the performance of FB; the largest
relative performance improvement is on RANDOM.

Dataset Domain Task FB VC-FB MC-FB
RND all domains all tasks 389 390 396
DIAYN all domains all tasks 269 280 283
RANDOM all domains all tasks 111 131 133
ALL all domains all tasks 256 267 271

DVC-FB (footnote 2; Appendix B.1.6) results are reported in Appendix C; it improves on vanilla
FB by 9% in aggregate, but is outperformed by both VC-FB (37%) and MC-FB (26%). Reasons for
these discrepancies are provided in Section 5.

Q2. We decompose the methods’ performance with respect to domain and dataset diversity in Fig-
ure 5. The largest gap in performance between the conservative FB variants and FB is on RND,
the highest-quality dataset. VC-FB and MC-FB reach 253% and 184% of FB performance respec-
tively, and outperform CQL on three of the four domains. On DIAYN, the conservative variants
outperform all methods and reach 135% of CQL’s score. On the RANDOM dataset, all methods
perform similarly poorly, except for CQL on Jaco, which outperforms all methods. However, in
general, these results suggest the RANDOM dataset is not informative enough to extract valuable
policies–discussed further in response to Q3. There appears to be little correlation between the type
of domain (Appendix A.1) and the score achieved by any method.

Q3. We report the aggregated performance of all FB methods across domains when trained on the
full datasets in Table 1–a full breakdown of results in provided in Appendix D. Both conservative
FB variants slightly exceed the performance of vanilla FB in expectation. The largest relative per-
formance improvement is on the RANDOM dataset–MC-FB performance is 20% higher than FB,
compared to 5% higher on DIAYN and 2% higher on RND. This corroborates the hypothesis that
RANDOM-100K was not informative enough to extract valuable policies. These results suggest we
can safely adopt conservatism into FB without worrying about performance trade-offs.

5 Discussion and Limitations

Performance discrepancy between conservative variants. Why does VC-FB outperform MC-
FB on the 100k datasets, but not on the full datasets? To understand, we inspect the regularising
effect of both models more closely. VC-FB regularises OOD actions on F (s, a, z)⊤z, with s ∼ D,
and z ∼ Z , whilst MC-FB regularises OOD actions on F (s, a, z)⊤B(s+), with (s, s+) ∼ D and
z ∼ Z . Note the trailing z in VC-FB is replaced with B(s+) which ties the updates of MC-FB to D
yet further. We hypothesised that as |D| reduces, B(s+) provides poorer task coverage than z ∼ Z ,
hence the comparable performance on full datasets and divergent performance on 100k datasets.

To test this, we evaluate a third conservative variant called directed (D)VC-FB which replaces all
z ∼ Z in VC-FB withB(s+) such that OOD actions are regularised on F (s, a,B(s+))

⊤B(s+) with
(s, s+) ∼ D. This ties conservative updates entirely to D, and according to our above hypothesis,
DVC-FB should perform worse than VC-FB and MC-FB on the 100k datasets. See Appendix B.1.6
for implementation details. We evaluate this variant on all 100k datasets, domains and tasks and
compare with FB, VC-FB and MC-FB in Table 2. See Appendix C for a full breakdown.

We find the aggregate relative performance of each method is as expected i.e. DVC-FB < MC-FB
< VC-FB, and as a consequence conclude that, for small datasets with no prior knowledge of the
dataset or test tasks, VC-FB should be preferred by practitioners. Of course, for a specific domain-
dataset pair, B(s+) with s+ ∼ D may happen to cover the tasks well, and MC-FB may outperform
VC-FB. We suspect this was the case for all datasets on the Jaco domain for example. Establishing

Table 2: Aggregated performance of conservative variants employing differing z sampling procedures.
DVC-FB derives all zs from the backward model; VC-FB derives all zs from Z; and MC-FB combines both.
Performance correlates with the degree to which z ∼ Z .

Dataset Domain Task FB DVC-FB MC-FB VC-FB
ALL (100k) all domains all tasks 99 108 136 148
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whether this will be true a priori requires either relaxing the restrictions imposed by the zero-shot
RL setting, or better understanding of the distribution of tasks in z-space and their relationship to
pre-training datasets. The latter is important future work.

Computational expense of conservative variants. The max value approximator used by the con-
servative FB variants performs log-sum-exponentials and concatenations across large tensors, both
of which are expensive operations. We find that these operations, which are the primary contributors
to the additional run-time, increase the training duration by approximately 3× over vanilla FB. An
FB training run takes approximately 4 hours on an A100 GPU, whereas the conservative FB vari-
ants take approximately 12 hours. It seems highly likely that more elegant implementations exist
that would improve training efficiency. We leave such an exploration for future work.

Learning instability. We report the learning curves for all algorithms across domains, datasets,
and tasks in Appendix H. We note many instances of instability which would require practitioners
to invoke early stopping. However, both CQL and offline TD3, our task-specific baselines, exhibit
similar instability, so we do not consider this behaviour to be an inherent flaw of any method, but
rather an indication of the difficulty of learning representations from sub-optimal data. Future work
that stabilises FB learning dynamics could boost performance and simplify their deployment by
negating the need for early stopping.

We provide detail of negative results in Appendix F to help inform future research.

6 Related Work

Conservatism in offline RL. Offline RL algorithms require regularisation of policies, value func-
tions, models, or a combination to manage the offline-to-online distribution shift (Levine et al.,
2020). Past works regularise policies with explicit constraints (Wu et al., 2019; Fakoor et al., 2021;
Fujimoto et al., 2019; Ghasemipour et al., 2021; Peng et al., 2023; Kumar et al., 2019b; Wu et al.,
2022; Yang et al., 2022b), via important sampling (Precup et al., 2001; Sutton et al., 2016; Liu et al.,
2019; Nachum et al., 2019; Gelada & Bellemare, 2019), by leveraging uncertainty in predictions
(Wu et al., 2021; Zanette et al., 2021; Bai et al., 2022; Jin et al., 2021), or by minimising OOD
action queries (Wang et al., 2018; Chen et al., 2020b; Kostrikov et al., 2021), a form of imitation
learning (Schaal, 1996, 1999). Other works constrain value function approximation so OOD action
values are not overestimated (Kumar et al., 2020, 2019a; Ma et al., 2021a,b; Yang et al., 2022a). Of-
fline model-based RL methods use the model to identify OOD states and penalise predicted rollouts
passing through them (Yu et al., 2020; Kidambi et al., 2020; Yu et al., 2021; Argenson & Dulac-
Arnold, 2020; Matsushima et al., 2020; Rafailov et al., 2021). All of these works have focused on
regularising a finite number of policies; in contrast we extend this line of work to the zero-shot RL
setting which is concerned with learning an infinite family of policies.

Zero-shot RL. Zero-shot RL methods leverage SFs (Borsa et al., 2018) or FB representations
(Touati & Ollivier, 2021; Touati et al., 2023), each generalisations of successor features (Barreto
et al., 2017), successor measures (Blier et al., 2021), universal value function approximators (Schaul
et al., 2015) and successor representations (Dayan, 1993). A representation learning method is re-
quired to learn the features for SFs, with past works using inverse curiosity modules (Pathak et al.,
2017), diversity methods (Liu & Abbeel, 2021; Hansen et al., 2019), Laplacian eigenfunctions (Wu
et al., 2018), or contrastive learning (Chen et al., 2020a). No works have yet explored the issues
arising when training these methods on low quality offline datasets. A concurrent line of work treats
zero-shot RL as a sequence modelling problem (Chen et al., 2021; Janner et al., 2021; Lee et al.,
2022; Reed et al., 2022; Zheng et al., 2022; Chebotar et al., 2023; Furuta et al., 2021; Siebenborn
et al., 2022; Yamagata et al., 2023; Xu et al., 2022), but, unlike SF and FB, these methods do not
have a robust mechanism for generalising to any task at test time. We direct the reader to Yang et al.
(2023) for a comprehensive review of such methods.

7 Conclusion

In this paper, we explored training agents to perform zero-shot reinforcement learning (RL) from
low quality data. We established that the existing state-of-the-art method, FB representations, suffer
in this regime because they overestimate the value of out-of-distribution state-action values. As a
resolution, we proposed a family of conservative FB algorithms that suppress either the values (VC-
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FB) or measures (MC-FB) of out-of-distribution state-action pairs. In experiments across various
domains, tasks and datasets, we showed our proposals outperform the existing state-of-the-art by up
to 150% in aggregate and surpass our task-specific baseline despite lacking access to reward labels
a priori. In addition to improving performance when trained on sub-optimal datasets, we showed
that performance on large, diverse datasets does not suffer as a consequence of our design decisions.
Our proposals are a step towards the use of zero-shot RL methods in the real world.
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F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Sys-
tems, volume 32. Curran Associates, Inc., 2019a. URL https://proceedings.neurips.cc/
paper_files/paper/2019/file/c2073ffa77b5357a498057413bb09d3a-Paper.pdf.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy q-
learning via bootstrapping error reduction. Advances in Neural Information Processing Systems,
32, 2019b.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

Aviral Kumar, Rishabh Agarwal, Xinyang Geng, George Tucker, and Sergey Levine. Offline q-
learning on diverse multi-task data both scales and generalizes. arXiv preprint arXiv:2211.15144,
2022.

12

https://proceedings.neurips.cc/paper_files/paper/2019/file/c2073ffa77b5357a498057413bb09d3a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c2073ffa77b5357a498057413bb09d3a-Paper.pdf


Kuang-Huei Lee, Ofir Nachum, Mengjiao Yang, Lisa Lee, Daniel Freeman, Winnie Xu, Sergio
Guadarrama, Ian Fischer, Eric Jang, Henryk Michalewski, et al. Multi-game decision transform-
ers. Advances in neural information processing systems, 35, 2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In ICLR
(Poster), 2016. URL http://arxiv.org/abs/1509.02971.

Hao Liu and Pieter Abbeel. Aps: Active pretraining with successor features. In International
Conference on Machine Learning, pp. 6736–6747. PMLR, 2021.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Off-policy policy gradient with
state distribution correction. arXiv preprint arXiv:1904.08473, 2019.

Xiaoteng Ma, Yiqin Yang, Hao Hu, Qihan Liu, Jun Yang, Chongjie Zhang, Qianchuan Zhao, and
Bin Liang. Offline reinforcement learning with value-based episodic memory. arXiv preprint
arXiv:2110.09796, 2021a.

Yecheng Ma, Dinesh Jayaraman, and Osbert Bastani. Conservative offline distributional reinforce-
ment learning. Advances in Neural Information Processing Systems, 34:19235–19247, 2021b.

Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu. Deployment-
efficient reinforcement learning via model-based offline optimization. arXiv preprint
arXiv:2006.03647, 2020.

Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. Dualdice: Behavior-agnostic estimation of dis-
counted stationary distribution corrections. Advances in neural information processing systems,
32, 2019.

Mitsuhiko Nakamoto, Yuexiang Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-
tuning. arXiv preprint arXiv:2303.05479, 2023.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

Zhiyong Peng, Changlin Han, Yadong Liu, and Zongtan Zhou. Weighted policy constraints for
offline reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 9435–9443, 2023.

Doina Precup, Richard S Sutton, and Sanjoy Dasgupta. Off-policy temporal-difference learning
with function approximation. In ICML, pp. 417–424, 2001.

Rafael Rafailov, Tianhe Yu, Aravind Rajeswaran, and Chelsea Finn. Offline reinforcement learning
from images with latent space models. In Learning for Dynamics and Control, pp. 1154–1168.
PMLR, 2021.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Arthur L Samuel. Some studies in machine learning using the game of checkers. IBM Journal of
research and development, 3(3):210–229, 1959.

Stefan Schaal. Learning from demonstration. Advances in neural information processing systems,
9, 1996.

13

http://arxiv.org/abs/1509.02971


Stefan Schaal. Is imitation learning the route to humanoid robots? Trends in cognitive sciences, 3
(6):233–242, 1999.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
tors. In International conference on machine learning, pp. 1312–1320. PMLR, 2015.

Max Siebenborn, Boris Belousov, Junning Huang, and Jan Peters. How crucial is transformer in
decision transformer? arXiv preprint arXiv:2211.14655, 2022.

Richard Sutton and Andrew Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3:9–44, 1988.

Richard S Sutton, A Rupam Mahmood, and Martha White. An emphatic approach to the problem
of off-policy temporal-difference learning. The Journal of Machine Learning Research, 17(1):
2603–2631, 2016.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018.

Ahmed Touati and Yann Ollivier. Learning one representation to optimize all rewards. Advances in
Neural Information Processing Systems, 34:13–23, 2021.
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APPENDICES

A Experimental Details

A.1 Domains

We consider two locomotion and two goal-directed domains from the ExORL benchmark (Yarats
et al., 2022) which is built atop the DeepMind Control Suite (Tassa et al., 2018). Environments are
visualised here: https://www.youtube.com/watch?v=rAai4QzcYbs. The domains are sum-
marised in Table 3.

Walker. A two-legged robot required to perform locomotion starting from bent-kneed position. The
state and action spaces are 24 and 6-dimensional respectively, consisting of joint torques, velocities
and positions. ExORL provides four tasks stand, walk, run and flip. The reward function for
stand motivates straightened legs and an upright torse; walk and run are supersets of stand in-
cluding reward for small and large degrees of forward velocity; and flip motivates angular velocity
of the torso after standing. Rewards are dense.

Quadruped. A four-legged robot required to perform locomotion inside a 3D maze. The state
and action spaces are 78 and 12-dimensional respectively, consisting of joint torques, velocities
and positions. ExORL provides five tasks stand, roll, roll fast, jump and escape. The
reward function for stand motivates a minimum torse height and straightened legs; roll and roll
fast require the robot to flip from a position on its back with varying speed; jump adds a term
motivating vertical displacement to stand; and escape requires the agent to escape from a 3D maze.
Rewards are dense.

Point-mass Maze. A 2D maze with four rooms where the task is to move a point-mass to one of the
rooms. The state and action spaces are 4 and 2-dimensional respectively; the state space consists of
x, y positions and velocities of the mass, the action space is the x, y tilt angle. ExORL provides four
reaching tasks top left, top right, bottom left and bottom right. The mass is always
initialised in the top left and the reward is proportional to the distance from the goal, though is sparse
i.e. it only registers once the agent is reasonably close to the goal.

Jaco. A 3D robotic arm tasked with reaching an object. The state and action spaces are 55 and
6-dimensional respectively and consist of joint torques, velocities and positions. ExORL provides
four reaching tasks top left, top right, bottom left and bottom right. The reward is
proportional to the distance from the goal object, though is sparse i.e. it only registers once the agent
is reasonably close to the goal object.

Table 3: Experimental domain summary. Dimensionality refers to the relative size of state and action spaces.
Type is the task categorisation, either locomotion (satisfy a prescribed behaviour until the episode ends) or
goal-reaching (achieve a specific task to terminate the episode). Reward is the frequency with which non-zero
rewards are provided, where dense refers to non-zero rewards at every timestep and sparse refers to non-zero
rewards only at positions close to the goal. Green and red colours reflect the relative difficulty of these settings.

Domain Dimensionality Type Reward
Walker Low Locomotion Dense
Quadruped High Locomotion Dense
Point-mass Maze Low Goal-reaching Sparse
Jaco High Goal-reaching Sparse

A.2 Datasets

We train on 100,000 transitions uniformly sampled from three datasets on the ExORL benchmark
collected by different unsupervised agents: RANDOM, DIAYN, and RND. The state coverage on
Point-mass maze is depicted in Figure 6. Though harder to visualise, we found that state marginals
on higher-dimensional tasks (e.g. Walker) showed a similar diversity in state coverage.

RND. An agent whose exploration is directed by the predicted error in its ensemble of dynamics
models. Informally, we say RND datasets exhibit high state diversity.

16

https://www.youtube.com/watch?v=rAai4QzcYbs


DIAYN. An agent that attempts to sequentially learn a set of skills. Informally, we say DIAYN
datasets exhibit medium state diversity.

RANDOM. A agent that selects actions uniformly at random from the action space. Informally, we
say RANDOM datasets exhibit low state diversity.

Figure 6: Point-mass maze state coverage by dataset. (left) RANDOM; (middle) DIAYN; (right) RND.

B Implementations

Here we detail implementations for all methods discussed in this paper. The code required to re-
produce our experiments is provided open-source at: https://anonymous.4open.science/r/
conservative-world-models-4903.

B.1 Forward-Backward Representations

B.1.1 Architecture

The forward-backward architecture described below follows the implementation by Touati et al.
(2023) exactly, other than the batch size which we reduce from 1024 to 512. We did this to reduce
the computational expense of each run without limiting performance. The hyperparameter study in
Appendix J of Touati et al. (2023) shows this choice is unlikely to affect FB performance. All other
hyperparameters are reported in Table 4.

Forward Representation F (s, a, z). The input to the forward representation F is always prepro-
cessed. State-action pairs (s, a) and state-task pairs (s, z) have their own preprocessors P 1

F and P 2
F .

P 1
F and P 2

F are feedforward MLPs that embed their inputs into a 512-dimensional space. These
embeddings are concatenated and passed through a third feedforward MLP F which outputs a d-
dimensional embedding vector.

Backward Representation B(s). The backward representation B is a feedforward MLP that takes
a state as input and outputs a d-dimensional embedding vector.

Actor π(s, z). Like the forward representation, the inputs to the policy network are similarly pre-
processed. State-action pairs (s, a) and state-task pairs (s, z) have their own preprocessors P 1

π
and P 2

π . P 1
π and P 2

π are feedforward MLPs that embed their inputs into a 512-dimensional space.
These embeddings are concatenated and passed through a third feedforward MLP which outputs a
a-dimensional vector, where a is the action-space dimensionality. A Tanh activation is used on the
last layer to normalise their scale. As per Fujimoto et al. (2019)’s recommendations, the policy is
smoothed by adding Gaussian noise σ to the actions during training.

Misc. Layer normalisation (Ba et al., 2016) and Tanh activations are used in the first layer of all
MLPs to standardise the inputs.

B.1.2 z Sampling

FB representations require a method for sampling the task vector z at each learning step. Touati
et al. (2023) employ a mix of two methods, which we replicate:

1. Uniform sampling of z on the hypersphere surface of radius
√
d around the origin of Rd,
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Table 4: (VC/MC) -FB Hyperparameters. The additional hyperparameters for Conservative FB representa-

tions are highlighted in blue .
Hyperparameter Value

Latent dimension d 50 (100 for maze)
F hidden layers 2
F hidden dimension 1024
B hidden layers 3
B hidden dimension 256
PF hidden layers 2
PF hidden dimension 1024
Pπ hidden layers 2
Pπ hidden dimension 1024
Std. deviation for policy smoothing σ 0.2
Truncation level for policy smoothing 0.3
Learning steps 1,000,000
Batch size 512
Optimiser Adam
Learning rate 0.0001
Discount γ 0.98 (0.99 for maze)
Activations (unless otherwise stated) ReLU
Target network Polyak smoothing coefficient 0.01
z-inference labels 100,000
z mixing ratio 0.5
Conservative budget τ 50
OOD action samples per policy N 3

2. Biased sampling of z by passing states s ∼ D through the backward representation z =
B(s). This also yields vectors on the hypersphere surface due to the L2 normalisation
described above, but the distribution is non-uniform.

We sample z 50:50 from these methods at each learning step.

B.1.3 Maximum Value Approximator µ

The conservative variants of FB require access to a policy distribution µ(a|s) that maximises the
value of the current Q iterate in expectation. Recall the standard CQL loss

LCQL = α ·
(
Es∼D,a∼µ(a|s)[Q(s, a)]− E(s,a)∼D[Q(s, a)]−R(µ)

)
+ LQ, (10)

where α is a scaling parameter, µ(a|s) the policy distribution we seek, R regularises µ and LQ
represents the normal TD loss on Q. Kumar et al. (2020)’s most performant CQL variant (CQL(H))
utilises maximum entropy regularisation on µ i.e. R = H(µ). They show that obtaining µ can be
cast as a closed-form optimisation problem of the form:

max
µ

Ex∼µ(x)[f(x)] +H(µ) s.t.
∑
x

µ(x) = 1, µ(x) ≥ 0 ∀x, (11)

and has optimal solution µ∗(x) = 1
Z exp(f(x)), where Z is a normalising factor. Plugging Equation

11 into Equation 10 we obtain:

LCQL = α ·

(
Es∼D[log

∑
a

exp(Q(s, a))]− E(s,a)∼D[Q(s, a)]

)
+ LQ. (12)

In discrete action spaces the logsumexp can be computed exactly; in continuous action spaces
Kumar et al. (2020) approximate it via importance sampling using actions sampled uniformly at
random, actions from the current policy conditioned on st ∼ D, and from the current policy condi-
tioned on st+1 ∼ D5:

5Conditioning on next states st+1 ∼ D is not mentioned in the paper, but is present in their official imple-
mentation.
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log
∑
a

expQ(st, at) = log(
1

3

∑
a

expQ(st, at)) +
1

3

∑
a

expQ(st, at)) +
1

3

∑
a

exp(expQ(st, at)),

= log(
1

3
Eat∼Unif(A)

[
exp(Q(st, at)

Unif(A)

]
+

1

3
Eat∼π(at|st)

[
exp(Q(st, at))

π(at|st)

]
1

3
Eat+1∼π(at+1|st+1)

[
exp(Q(st, at))

π(at+1|st+1)

]
),

= log(
1

3N

N∑
ai∼Unif(A)

[
exp(Q(st, at))

Unif(A)

]
+

1

6N

2N∑
ai∼π(at|st)

[
exp(Q(st, at))

π(ai|st)

]
1

3N

N∑
ai∼π(at+1|st+1)

[
exp(Q(st, at))

π(ai|st+1)

]
),

(13)

with N a hyperparameter defining the number of actions to sample across the action-space. We can
substitute F (s, a, z)⊤z forQ(s, a) in the final expression of Equation 14 to obtain the equivalent for
VC-FB:

log
∑
a

expF (st, ai, z)
⊤z = log(

1

3N

N∑
ai∼Unif(A)

[
exp(F (st, ai, z)

⊤z)

Unif(A)

]
+

1

6N

2N∑
ai∼π(at|st)

[
exp(F (st, ai, z

⊤z)

π(ai|st)

]
1

3N

N∑
ai∼π(at+1|st+1)

[
exp(F (st, ai, z)

⊤z)

π(ai|st+1)

]
).

(14)

In Appendix G, Figure 11 we show how the performance of VC-FB varies with the number of
action samples. In general, performance improves with the number of action samples, but we limit
N = 3 to limit computational burden. The formulation for MC-FB is identical other than each value
F (s, a, z)T z being replaced with measures F (s, a, z)TB(s+).

B.1.4 Dynamically Tuning α

A critical hyperparameter is α which weights the conservative penalty with respect to other losses
during each update. We initially trialled constant values of α, but found performance to be fragile to
this selection, and lacking robustness across environments. Instead, we follow Kumar et al. (2020)
once again, and instantiate their algorithm for dynamically tuning α, which they call Lagrangian
dual gradient-descent on α. We introduce a conservative budget parameterised by τ , and set α with
respect to this budget:

min
FB

max
α≥0

α ·
(
Es∼D,a∼µ(a|s)z∼Z [F (s, a, z)

⊤z]− E(s,a)∼D,z∼Z [F (s, a, z)
⊤z]− τ

)
+ LFB. (15)

Intuitively, this implies that if the scale of overestimation ≤ τ then α is set close to 0, and the
conservative penalty does not affect the updates. If the scale of overestimation ≥ τ then α is set
proportionally to this gap, and thus the conservative penalty is proportional to the degree of overes-
timation above τ . As above, for the MC-FB variant values F (s, a, z)⊤z are replaced with measures
F (s, a, z)⊤B(s+).

B.1.5 Algorithm

We summarise the end-to-end implementation of VC-FB as pseudo-code in Algorithm 1. MC-
FB representations are trained identically other than at line 10 where the conservative penalty is
computed for M instead of Q, and in line 12 where Ms are lower bounded via Equation 9.
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Algorithm 1 Pre-training value-conservative forward-backward representations

Require: D: dataset of trajectories
FθF , BθB , π: randomly initialised networks
N , Z , ν, b: learning steps, z-sampling distribution, polyak momentum, batch size

1: for learning step n = 1...N do
2: {(si, ai, si+1)} ∼ Di∈|b| ◁ Sample mini-batch of transitions
3: {zi}i∈|b| ∼ Z ◁ Sample zs (Appendix B.1.2)
4:
5: // FB Update
6: {ai+1} ∼ π(si+1, zi) ◁ Sample batch of actions at next states from policy
7: Update FB given {(si, ai, si+1, ai+1, zi)} ◁ Equation 5
8:
9: // Conservative Update

10: Qmax(si, ai) ≈ log
∑
a expF (si, ai, zi)

⊤zi ◁ Compute conservative penalty (Equation 14)

11: Compute α given Qmax via Lagrangian dual gradient-descent ◁ Equation 15
12: Lower bound Q ◁ Equation 8
13:
14: // Actor Update
15: {ai} ∼ π(si, zi) ◁ Sample actions from policy
16: Update actor to maximise E[F (si, ai, zi)⊤zi] ◁ Standard actor-critic formulation

17:
18: // Update target networks via polyak averaging
19: θ−F ← νθ−F + (1− ν)θF ◁ Forward target network
20: θ−B ← νθ−B + (1− ν)θB ◁ Backward target network
21: end for

B.1.6 Directed Value-Conservative Forward Backward Representations

VC-FB applies conservative updates using task vectors z sampled fromZ (which in practice is a uni-
form distribution over the

√
d-hypersphere). This will include many vectors corresponding to tasks

that are never evaluated in practice in downstream applications. Intuitively, it may seem reasonable
to direct conservative updates to focus on tasks that are likely to be encountered downstream. One
simple way of doing this would be consider the set of all goal-reaching tasks for goal states in the
training distribution, which corresponds to sampling z = B(sg) for some sg ∼ D. This leads to the
following conservative loss function:

LDVC-FB = α ·
(
Es∼D,a∼µ(a|s),sg∼D[F (s, a,B(sg))

⊤B(sg)]

− E(s,a)∼D,sg∼D[F (s, a,B(sg))
⊤B(sg)]−H(µ)

)
+ LFB. (16)

We call models learnt via this loss directed-VC-FB (DVC-FB). While we were initially open to the
possibility that DVC-FB updates would be better targeted than those of VC-FB, and would lead
to improved downstream task performance, this turns out not to be the case in our experimental
settings. This may be because our training datasets D are so heavily concentrated in state space that
conservatism ends up being applied to a very narrow region of z-space that is even less representative
of the downstream evaluation tasks than undirected sampling z ∼ Z . This would be less of an
issue when training on larger, more exploratory datasets, but these are also the datasets on which
conservatism is less likely to be necessary in the first place. We report scores obtained by the DVC-
FB method across all 100k datasets, domains and tasks in Appendix C.

B.2 Successor Features

We directly reimplement SFs, with basic features φ(s) provided by Laplacian eigenfunctions (Wu
et al., 2018), from Touati et al. (2023).
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Table 5: SF Hyperparameters.
Hyperparameter Value

Latent dimension d 50 (100 for maze)
ψ hidden layers 2
ψ hidden dimension 1024
φ hidden layers 3
φ hidden dimension 256
Pψ hidden layers 2
Pψ hidden dimension 1024
Pπ hidden layers 2
Pπ hidden dimension 1024
Std. deviation for policy smoothing σ 0.2
Truncation level for policy smoothing 0.3
Learning steps 1,000,000
Batch size 512
Optimiser Adam
Learning rate 0.0001
Discount γ 0.98 (0.99 for maze)
Activations (unless otherwise stated) ReLU
Target network Polyak smoothing coefficient 0.01
z-inference labels 100,000
z mixing ratio 0.5
Regularisation weight λ 1

B.2.1 Architecture

SF ψ(s, a, z). The input to the SF ψ is always preprocessed. State-action pairs (s, a) and state-task
pairs (s, z) have their own preprocessors P 1

ψ and P 2
ψ . P 1

ψ and P 2
ψ are feedforward MLPs that embed

their inputs into a 512-dimensional space. These embeddings are concatenated and passed through
a third feedforward MLP ψ which outputs a d-dimensional embedding vector. Note this is identical
to the implementation of F as described in Appendix B.1. All other hyperparameters are reported
in Table 5.

Feature Embedding φ(s). The feature map φ(s) is a feedforward MLP that takes a state as input
and outputs a d-dimensional embedding vector. The loss function for learning the feature embedding
is provided in Appendix B.2.2.

Actor π(s, z). Like the forward representation, the inputs to the policy network are similarly pre-
processed. State-action pairs (s, a) and state-task pairs (s, z) have their own preprocessors P 1

π
and P 2

π . P 1
π and P 2

π are feedforward MLPs that embed their inputs into a 512-dimensional space.
These embeddings are concatenated and passed through a third feedforward MLP which outputs a
a-dimensional vector, where a is the action-space dimensionality. A Tanh activation is used on the
last layer to normalise their scale. As per Fujimoto et al. (2019)’s recommendations, the policy is
smoothed by adding Gaussian noise σ to the actions during training. Note this is identical to the
implementation of π(s, z) as described in Appendix B.1.

Misc. Layer normalisation (Ba et al., 2016) and Tanh activations are used in the first layer of all
MLPs to standardise the inputs. z sampling distribution Z is identical to FB’s (Appendix B.1.2).

B.2.2 Laplacian Eigenfunctions Loss

Laplacian eigenfunction features φ(s) are learned as per Wu et al. (2018). They consider the sym-
metrized MDP graph Laplacian created by some policy π, defined as L = Id − 1

2 (Pπdiagρ−1 +

diagρ−1(Pπ)T ). They learn the eigenfunctions of L with the following:

min
φ

E(st,st+1)∼D
[
||φ(st)− φ(st+1)||2

]
+λE(st,s+)∼D

[
(φ(s)⊤φ(s+))

2 − ||φ(s)||22 − ||φ(s+)||22
]
,

(17)
which comes from Koren (2003).
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B.3 CQL

B.3.1 Architecture

We adopt the same implementation and hyperparameters as is used on the ExORL benchmark.
CQL inherits all functionality from a base soft actor-critic agent (Haarnoja et al., 2018), but adds a
conservative penalty to the critic updates (Equation 7). Hyperparameters are reported in Table 6.

Critic(s). CQL employs double Q networks, where the target network is updated with Polyak av-
eraging via a momentum coefficient. The critics are feedforward MLPs that take a state-action pair
(s, a) as input and output a value ∈ R1.

Actor. The actor is a standard feedforward MLP taking the state s as input and outputting an 2a-
dimensional vector, where a is the action-space dimensionality. The actor predicts the mean and
standard deviation of a Gaussian distribution for each action dimension; during training a value is
sampled at random, during evaluation the mean is used.

B.4 TD3

B.4.1 Architecture

We adopt the same implementation and hyperparameters as is used on the ExORL benchmark.
Hyperparameters are reported in Table 6.

Critic(s). TD3 employs double Q networks, where the target network is updated with Polyak aver-
aging via a momentum coefficient. The critics are feedforward MLPs that take a state-action pair
(s, a) as input and output a value ∈ R1.

Actor. The actor is a standard feedforward MLP taking the state s as input and outputting an a-
dimensional vector, where a is the action-space dimensionality. The policy is smoothed by adding
Gaussian noise σ to the actions during training.

Misc. As is usual with TD3, layer normalisation (Ba et al., 2016) is applied to the inputs of all
networks.

Table 6: Offline RL baseline algorithms hyperparameters.
Hyperparameter CQL TD3

Critic hidden layers 2 2
Critic hidden dimension 1024 1024
Actor hidden layers 2 2
Actor hidden dimension 1024 1024
Learning steps 1,000,000 1,000,000
Batch size 1024 1024
Optimiser Adam Adam
Learning rate 0.0001 0.0001
Discount γ 0.98 (0.99 for maze) 0.98 (0.99 for maze)
Activations ReLU ReLU
Target network Polyak smoothing coefficient 0.01 0.01
Sampled Actions Number 3 -
α 0.01 -
Lagrange False -
Std. deviation for policy smoothing σ - 0.2
Truncation level for policy smoothing - 0.3
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C 100k Dataset Results

Table 7: 100k dataset experimental results. For each dataset-domain pair, we report the score at the step for
which the all-task IQM is maximised when averaging across 5 seeds, and the constituent task scores at that
step. Bracketed numbers represent the 95% confidence interval obtained by a stratified bootstrap.

TD3 CQL SF-LAP FB VC-FB DVC-FB MC-FB
Dataset Domain Task

RND-100k

walker

walk 210 (205–231) 138 (128–140) 58 (31–103) 184 (108–274) 446 (435–460) 394 (275–512) 247 (137–318)
stand 362 (335–379) 386 (374–391) 190 (128–251) 558 (500–637) 624 (603–639) 590 (557–622) 480 (401–517)
run 84 (78–90) 71 (63–75) 34 (27–43) 101 (88–144) 179 (159–194) 134 (77–191) 106 (72–145)
flip 162 (148–171) 153 (130–172) 70 (56–84) 163 (90–203) 325 (294–350) 250 (215–286) 164 (120–198)
all tasks 189 (177–200) 142 (135–149) 91 (70–107) 266 (233–283) 396 (381–407) 342 (284–400) 252 (188–288)

quadruped

stand 119 (9–342) 167 (73–266) 108 (51–192) 134 (91–188) 331 (199–405) 269 (152–385) 171 (71–369)
roll fast 63 (4–180) 93 (18–219) 80 (22–181) 83 (57–127) 141 (87–191) 146 (85–207) 81 (21–194)
roll 96 (8–272) 251 (126–330) 100 (23–305) 139 (68–234) 141 (98–212) 209 (123–295) 132 (40–251)
jump 85 (7–255) 128 (65–223) 94 (28–223) 121 (79–193) 159 (105–212) 167 (100–234) 97 (37–191)
escape 3 (0–10) 3 (2–4) 1 (1–4) 7 (3–12) 8 (3–15) 13 (6–19) 5 (1–12)
all tasks 81 (6–230) 129 (70–207) 89 (30–170) 93 (69–137) 168 (104–201) 161 (96–225) 104 (38–212)

point-mass maze

reach top right 457 (0–733) 433 (275–558) 1 (0–185) 0 (0–26) 0 (0–203) 0 (0–0) 99 (9–377)
reach top left 921 (895–938) 561 (493–717) 302 (27–825) 384 (0–724) 662 (218–903) 244 (10–477) 723 (363–895)
reach bottom right 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)
reach bottom left 85 (22–295) 253 (102–451) 0 (0–17) 0 (0–0) 479 (70–748) 250 (0–501) 384 (0–776)
all tasks 345 (171–405) 299 (262–364) 126 (12–206) 102 (0–181) 323 (177–412) 123 (59–188) 270 (154–459)

jaco

reach top right 0 (0–0) 37 (21–53) 0 (0–2) 0 (0–3) 1 (0–4) 6 (3–9) 17 (8–29)
reach top left 0 (0–0) 21 (12–35) 2 (0–5) 2 (1–4) 2 (0–3) 11 (7–16) 9 (1–21)
reach bottom right 0 (0–0) 37 (21–53) 0 (0–0) 0 (0–6) 5 (2–21) 7 (3–11) 16 (6–25)
reach bottom left 0 (0–0) 20 (17–28) 1 (0–4) 7 (3–15) 4 (1–21) 3 (1–5) 11 (1–45)
all tasks 0 (0–0) 31 (25–36) 1 (0–2) 4 (1–6) 7 (3–12) 7 (4–9) 17 (7–26)

all domains all tasks 135 136 90 97 245 142 178

DIAYN-100k

walker

walk 150 (132–167) 147 (118–201) 251 (158–315) 93 (58–113) 262 (141–370) 248 (243–253) 261 (175–351)
stand 263 (235–306) 406 (365–455) 276 (189–292) 498 (381–652) 455 (401–492) 387 (352–423) 423 (375–595)
run 46 (44–48) 38 (33–43) 53 (32–59) 98 (79–114) 83 (75–94) 87 (82–92) 81 (71–108)
flip 163 (152–174) 149 (116–182) 144 (89–162) 193 (136–212) 229 (195–249) 180 (155–205) 183 (150–239)
all tasks 154 (142–176) 147 (134–172) 143 (92–156) 274 (214–301) 252 (195–291) 226 (208–243) 265 (195–322)

quadruped

stand 849 (737–893) 299 (139–405) 313 (134–562) 459 (397–530) 430 (394–482) 447 (413–482) 458 (396–513)
roll fast 447 (358–500) 164 (75–195) 185 (152–266) 288 (256–328) 260 (236–282) 290 (285–296) 293 (276–299)
roll 709 (619–800) 264 (128–369) 189 (85–355) 460 (409–492) 415 (392–439) 429 (407–452) 456 (407–494)
jump 410 (368–518) 196 (97–280) 240 (102–362) 363 (318–419) 358 (324–400) 391 (371–411) 373 (341–403)
escape 23 (15–31) 6 (3–10) 16 (5–28) 45 (35–58) 32 (27–43) 45 (42–48) 42 (37–50)
all tasks 487 (440–528) 208 (98–282) 189 (124–274) 322 (285–364) 296 (272–327) 321 (307–335) 331 (302–342)

point-mass maze

reach top right 796 (655–800) 760 (489–784) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 27 (0–86)
reach top left 943 (942–946) 943 (941–949) 764 (331–934) 576 (76–876) 911 (615–927) 557 (270–844) 853 (572–932)
reach bottom right 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)
reach bottom left 799 (538–808) 0 (0–0) 0 (0–0) 0 (0–1) 0 (0–0) 0 (0–0) 0 (0–0)
all tasks 798 (598–803) 380 (244–392) 190 (82–233) 144 (19–219) 227 (153–231) 138 (67–210) 213 (153–241)

jaco

reach top right 0 (0–0) 17 (10–31) 8 (1–19) 2 (0–9) 6 (2–11) 0 (0–0) 9 (5–17)
reach top left 0 (0–0) 10 (4–18) 0 (0–2) 2 (0–5) 7 (0–14) 27 (2–53) 0 (0–0)
reach bottom right 0 (0–0) 17 (10–31) 3 (2–7) 4 (2–14) 6 (2–14) 0 (0–0) 12 (2–40)
reach bottom left 0 (0–0) 2 (0–13) 2 (0–3) 10 (5–20) 5 (1–9) 15 (0–30) 10 (5–18)
all tasks 0 (0–0) 15 (9–21) 4 (2–7) 8 (5–9) 8 (5–10) 10 (4–17) 11 (4–16)

all domains all tasks 320 177 166 209 239 182 239

RANDOM-100k

walker

walk 132 (105–156) 126 (113–140) 129 (112–139) 76 (50–121) 123 (84–140) 38 (32–43) 119 (59–211)
stand 295 (251–328) 246 (194–287) 206 (161–263) 238 (201–279) 223 (206–244) 223 (201–246) 210 (187–239)
run 58 (39–65) 31 (23–49) 49 (36–58) 38 (32–48) 40 (37–46) 31 (25–36) 32 (27–38)
flip 72 (45–88) 115 (97–128) 100 (79–122) 47 (40–60) 63 (41–99) 47 (43–52) 44 (38–55)
all tasks 105 (88–111) 119 (108–131) 120 (101–143) 102 (91–119) 113 (98–125) 85 (79–91) 108 (78–127)

quadruped

stand 264 (46–532) 186 (125–296) 285 (131–432) 278 (154–493) 269 (48–618) 196 (108–284) 172 (68–284)
roll fast 151 (32–283) 161 (70–223) 64 (22–129) 96 (17–195) 43 (17–132) 155 (89–220) 78 (43–129)
roll 260 (41–449) 326 (215–434) 111 (29–166) 105 (53–188) 130 (74–185) 183 (120–246) 178 (101–402)
jump 189 (31–359) 213 (93–294) 128 (14–273) 75 (30–155) 78 (23–226) 94 (67–121) 147 (44–261)
escape 4 (1–9) 6 (2–9) 2 (0–5) 5 (2–9) 2 (1–11) 3 (2–5) 6 (1–14)
all tasks 191 (33–361) 187 (96–271) 125 (84–169) 149 (93–159) 125 (49–218) 126 (88–164) 126 (106–165)

point-mass maze

reach top right 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)
reach top left 1 (0–3) 0 (0–0) 3 (0–6) 18 (0–55) 26 (5–106) 52 (0–104) 10 (0–33)
reach bottom right 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)
reach bottom left 0 (0–4) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)
all tasks 0 (0–0) 0 (0–0) 0 (0–1) 4 (0–13) 6 (1–26) 13 (0–26) 2 (0–8)

jaco

reach top right 34 (15–78) 53 (45–60) 0 (0–0) 4 (0–19) 0 (0–8) 0 (0–0) 4 (0–13)
reach top left 3 (1–6) 52 (24–88) 2 (0–6) 0 (0–0) 13 (7–28) 26 (10–42) 23 (9–53)
reach bottom right 34 (15–78) 53 (45–60) 0 (0–0) 0 (0–4) 1 (1–1) 30 (0–59) 1 (0–6)
reach bottom left 3 (1–4) 32 (19–41) 0 (0–0) 2 (1–12) 0 (0–0) 16 (0–33) 0 (0–9)
all tasks 20 (10–42) 45 (39–58) 0 (0–2) 4 (0–9) 5 (2–10) 18 (4–32) 6 (4–18)

all domains all tasks 62 82 60 53 59 51 56
ALL all domains all tasks 123 128 92 99 148 108 136
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D Full Dataset Results

FB VC-FB MC-FB
Dataset Domain Task

RND

walker

walk 821 (758–883) 864 (850–879) 792 (728–857)
stand 928 (925–930) 878 (854–903) 873 (812–934)
run 281 (242–320) 351 (328–374) 343 (320–366)
flip 525 (452–598) 542 (513–571) 598 (538–657)
all tasks 639 (616–661) 659 (647–670) 651 (632–671)

quadruped

stand 957 (952–963) 863 (777–950) 949 (939–958)
roll fast 574 (553–594) 512 (471–553) 565 (555–575)
roll 920 (895–944) 831 (741–921) 890 (874–906)
jump 736 (721–751) 630 (570–690) 705 (703–707)
escape 94 (63–125) 59 (50–68) 66 (47–86)
all tasks 656 (638–674) 579 (522–635) 635 (628–642)

point-mass maze

reach top right 0 (0–0) 425 (153–698) 270 (7–533)
reach top left 612 (313–911) 454 (138–769) 773 (611–934)
reach bottom right 0 (0–0) 0 (0–0) 0 (0–0)
reach bottom left 268 (0–536) 270 (2–539) 1 (0–2)
all tasks 219 (86–353) 287 (117–457) 261 (159–363)

jaco

reach top right 48 (39–56) 24 (0–47) 51 (23–79)
reach top left 23 (6–40) 14 (4–25) 20 (7–33)
reach bottom right 60 (55–65) 5 (0–10) 47 (15–79)
reach bottom left 27 (12–42) 88 (33–143) 20 (9–30)
all tasks 39 (29–50) 33 (24–42) 34 (18–51)

all domains all tasks 389 390 396

DIAYN

walker

walk 459 (266–652) 536 (305–766) 519 (315–722)
stand 478 (463–494) 447 (422–472) 517 (433–602)
run 87 (81–93) 84 (78–89) 87 (65–110)
flip 235 (151–319) 251 (151–352) 301 (213–388)
all tasks 315 (247–383) 329 (251–408) 356 (273–439)

quadruped

stand 763 (725–801) 785 (739–810) 804 (756–851)
roll fast 497 (480–514) 491 (475–497) 495 (491–498)
roll 767 (726–808) 785 (740–801) 761 (736–786)
jump 628 (587–669) 620 (600–641) 608 (594–622)
escape 65 (62–69) 69 (59–74) 67 (55–79)
all tasks 544 (517–572) 550 (536–580) 547 (535–559)

point-mass maze

reach top right 0 (0–0) 0 (0–0) 0 (0–0)
reach top left 654 (565–742) 928 (907–950) 814 (725–903)
reach bottom right 0 (0–0) 0 (0–0) 8 (0–16)
reach bottom left 169 (0–337) 7 (0–14) 49 (0–98)
all tasks 205 (171–240) 233 (227–240) 217 (180–254)

jaco

reach top right 4 (2–7) 10 (5–15) 4 (1–8)
reach top left 5 (1–10) 1 (0–2) 2 (0–3)
reach bottom right 9 (4–14) 6 (3–8) 7 (0–14)
reach bottom left 25 (2–47) 12 (6–18) 25 (3–47)
all tasks 11 (4–18) 7 (7–7) 10 (1–18)

all domains all tasks 269 280 283

RANDOM

walker

walk 148 (70–225) 170 (139–231) 174 (142–243)
stand 318 (281–355) 343 (296–371) 355 (298–393)
run 51 (45–58) 101 (74–121) 100 (67–112)
flip 57 (47–67) 106 (49–117) 103 (65–140)
all tasks 143 (116–171) 180 (129–205) 183 (136–219)

quadruped

stand 417 (381–453) 450 (390–492) 431 (371–464)
roll fast 110 (51–170) 201 (120–251) 215 (139–292)
roll 231 (116–346) 292 (255–388) 303 (160–445)
jump 287 (123–450) 311 (261–354) 340 (275–393)
escape 10 (6–14) 10 (5–12) 12 (9–16)
all tasks 211 (148–274) 253 (180–315) 260 (196–327)

point-mass maze

reach top right 0 (0–0) 0 (0–0) 0 (0–0)
reach top left 309 (4–615) 317 (5–629) 307 (0–614)
reach bottom right 0 (0–0) 0 (0–0) 0 (0–0)
reach bottom left 0 (0–0) 0 (0–0) 0 (0–0)
all tasks 77 (0–153) 79 (1–157) 76 (0–153)

jaco

reach top right 1 (1–1) 2 (0–4) 5 (0–10)
reach top left 50 (0–100) 9 (0–18) 16 (0–31)
reach bottom right 0 (0–0) 15 (5–25) 21 (0–42)
reach bottom left 3 (1–6) 18 (2–34) 1 (0–3)
all tasks 13 (0–27) 11 (4–18) 11 (5–16)

all domains all tasks 111 131 133
ALL all domains all tasks 256 267 271

E Conservative Successor Features

Our proposals focus on improving the machinery of FB representations6, but we can apply similar
methods to other zero-shot RL methods. In this section, we shall show that our proposals make

6We only focus on FB representations because of their superior zero-shot RL performance (Touati et al.,
2023).
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sense in the context of the primary alternative: successor features (Barreto et al., 2017; Borsa et al.,
2018).

Successor features require a state-feature mapping φ : S → Rd which is usually obtained by some
representation learning method (Barreto et al., 2017). SFs are the expected discounted sum of these
features, starting in state s0, taking action a0 and following the task-dependent policy πz thereafter

ψ(s0, a0, z) ≈ E

∑
t≥0

γtφ(st+1)|(s0, a0), πz

 . (18)

SFs satisfy a Bellman equation (Borsa et al., 2018) and so can be trained using TD-learning on the
Bellman residuals:

LSF = E(st,at,st+1)∼D,z∼Z
(
ψ(st, at, z)

⊤z − φ(st+1)
⊤z − γψ̄(st+1, πz(st+1), z)

⊤z
)2
, (19)

where ψ̄ is a lagging target network updated via Polyak averaging, and Z is identical to that used
for FB training (Appendix B.1.2). As with FB representations, the policy is training to maximise the
Q-function defined by ψ:

πz(s) ≈ argmaxaψ(s, a, z)
⊤z. (20)

Like FB, SF training requires next action samples at+1 ∼ πz(st+1) for the TD targets. We therefore
expect SFs to suffer the same failure mode discussed in Section 3 (OOD state-action value over-
estimation) and to benefit from the same remedial measures (value conservatism). Training value-
conservative successor features (VC-SF) amounts to substituting the SF Q-function definition and
loss for FB’s in Equation 8:

LVC-SF = α ·
(
Es∼D,a∼µ(a|s),z∼Z [ψ(s, a, z)

⊤z]− E(s,a)∼D,z∼Z [ψ(s, a, z)
⊤z]
)
+ LSF. (21)

Both the maximum value approximator µ(a|s) (Equation 14, Section B.1.3) and α-tuning (Equation
15, Section B.1.4) can be extracted identically to the FB case with any occurrence of F (s, a, z)⊤z
substituted with ψ(s, a, z)⊤z. As SFs do not predict successor measures we cannot formulate
measure-conservative SFs.

F Negative Results

In this section we provide detail on experiments we attempted, but which did not provide results
significant enough to be included in the main body.

F.1 Downstream Finetuning

If we relax the zero-shot requirement, could pre-trained conservative FB representations be finetuned
on new tasks or domains? Base CQL models have been finetuned effectively on unseen tasks using
both online and offline data (Kumar et al., 2022), and we had hoped to replicate similar results with
VC-FB and MC-FB. We ran offline and online finetuning experiments and provide details on their
setups and results below. All experiments were conducted on the Walker domain.

Offline finetuning. We considered a setting where models are trained on a low quality dataset
initially, before a high quality dataset becomes available downstream. We used models trained on
the RANDOM-100k dataset and finetuned them on both the full RND and RND-100k datasets, with
models trained from scratch used as our baseline. Finetuning involved the usual training protocol as
described in Algorithm 1, but we limited the number of learning steps to 250k.

We found that though performance improved during finetuning, it improved no quicker than the
models trained from scratch. This held for both the full RND and RND-100k datasets. We conclude
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Figure 7: Learning curves for methods finetuned on the full RND dataset. Solid lines represent base models
trained on RANDOM-100k, then finetuned; dashed lines represent models trained from scratch. The finetuned
models perform no better than models trained from scratch after 250k learning steps, suggesting model re-
training is currently a better strategy than offline finetuning.

that the parameter initialisation delivered after training on a low quality dataset does not obviously
expedite learning when high quality data becomes available.

Online finetuning. We considered the online finetuning setup where a trained representation is
deployed in the target environment, required to complete a specified task, and allowed to collect
a replay buffer of reward-labelled online experience. We followed a standard online RL protocol
where a batch of transitions was sampled from the online replay buffer after each environment step
for use in updating the model’s parameters. We experimented with fixing z to the target task during
in the actor updates (Line 16, Algorithm 1), but found it caused a quick, irrecoverable collapse in
actor performance. This suggested uniform samples from Z provide a form of regularisation. We
granted the agents 500k steps of interaction for online finetuning.

We found that performance never improved beyond the pre-trained (init) performance during fine-
tuning. We speculated that this was similar to the well-documented failure mode of online finetuning
of CQL (Nakamoto et al., 2023), namely taking sub-optimal actions in the real env, observing unex-
pectedly high reward, and updating their policy toward these sub-optimal actions. But we note that
FB representations do not update w.r.t observed rewards, and so conclude this cannot be the failure
mode. Instead it seems likely that FB algorithms cannot use the narrow, unexploratory experience
obtained from attempting to perform a specific task to improve model performance.

We believe resolving issues associated with finetuning conservative FB algorithms once the zero-
shot requirement is relaxed is an important future direction and hope that details of our negative
attempts to this end help facilitate future research.

26



Figure 8: Learning curves for online finetuning. The performance at the end of pre-training (init performance)
is plotted as a dashed line for each method. None of the methods consistently outperform their init performance
after 250k online transitions.

G Hyperparameter Sensitivity

Figure 9: VC-FB sensitivity to conservative budget τ on Walker and Point-mass Maze. Top: RND dataset;
bottom: RANDOM dataset. Maximum IQM return across the training run averaged over 3 random seeds
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Figure 10: MC-FB sensitivity to conservative budget τ on Walker and Point-mass Maze. Top: RND
dataset; bottom: RANDOM dataset. Maximum IQM return across the training run averaged over 3 random
seeds

Figure 11: MC-FB sensitivity to action samples per policy N on Walker and Point-mass Maze. Top: RND
dataset; bottom: RANDOM dataset. Maximum IQM return across the training run averaged over 3 random
seeds.
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H Learning Curves

Figure 12: Learning Curves (1/3). Models are evaluated every 20,000 timesteps where we perform 10 rollouts
and record the IQM. Curves are the IQM of this value across 5 seeds; shaded areas are one standard deviation.
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Figure 13: Learning Curves (2/3). Models are evaluated every 20,000 timesteps where we perform 10 rollouts
and record the IQM. Curves are the IQM of this value across 5 seeds; shaded areas are one standard deviation.
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Figure 14: Learning Curves (3/3). Models are evaluated every 20,000 timesteps where we perform 10 rollouts
and record the IQM. Curves are the IQM of this value across 5 seeds; shaded areas are one standard deviation.

I Code Snippets

I.1 Update Step

1 def update_fb(

2 self ,

3 observations: torch.Tensor ,

4 actions: torch.Tensor ,

5 next_observations: torch.Tensor ,

6 discounts: torch.Tensor ,

7 zs: torch.Tensor ,

8 step: int ,

9 ) -> Dict[str , float ]:

10 """

11 Calculates the loss for the forward -backward representation network.

12 Loss contains two components:

13 1. Forward -backward representation (core) loss: a Bellman update

14 on the successor measure (equation 24, Appendix B)

15 2. Conservative loss: penalises out -of -distribution actions

16 Args:

17 observations: observation tensor of shape [batch_size , observation_length]

18 actions: action tensor of shape [batch_size , action_length]

19 next_observations: next observation tensor of

20 shape [batch_size , observation_length]

21 discounts: discount tensor of shape [batch_size , 1]

22 zs: policy tensor of shape [batch_size , z_dimension]
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23 step: current training step

24 Returns:

25 metrics: dictionary of metrics for logging

26 """

27
28 # update step common to all FB models

29 (

30 core_loss ,

31 core_metrics ,

32 F1,

33 F2,

34 B_next ,

35 M1_next ,

36 M2_next ,

37 _,

38 _,

39 actor_std_dev ,

40 ) = self._update_fb_inner(

41 observations=observations ,

42 actions=actions ,

43 next_observations=next_observations ,

44 discounts=discounts ,

45 zs=zs,

46 step=step ,

47 )

48
49 # calculate MC or VC penalty

50 if self.mcfb:

51 (

52 conservative_penalty ,

53 conservative_metrics ,

54 ) = self._measure_conservative_penalty(

55 observations=observations ,

56 next_observations=next_observations ,

57 zs=zs,

58 actor_std_dev=actor_std_dev ,

59 F1=F1,

60 F2=F2,

61 B_next=B_next ,

62 M1_next=M1_next ,

63 M2_next=M2_next ,

64 )

65 # VCFB

66 else:

67 (

68 conservative_penalty ,

69 conservative_metrics ,

70 ) = self._value_conservative_penalty(

71 observations=observations ,

72 next_observations=next_observations ,

73 zs=zs,

74 actor_std_dev=actor_std_dev ,

75 F1=F1,

76 F2=F2,

77 )

78
79 # tune alpha from conservative penalty

80 alpha , alpha_metrics = self._tune_alpha(

81 conservative_penalty=conservative_penalty

82 )

83 conservative_loss = alpha * conservative_penalty

84
85 total_loss = core_loss + conservative_loss

86
87 # step optimiser

88 self.FB_optimiser.zero_grad(set_to_none=True)

89 total_loss.backward ()

90 for param in self.FB.parameters ():

91 if param.grad is not None:

92 param.grad.data.clamp_(-1, 1)

93 self.FB_optimiser.step()

94
95 return metrics

I.2 Value-Conservative Penalty
1 def _value_conservative_penalty(

2 self ,

3 observations: torch.Tensor ,

4 next_observations: torch.Tensor ,

5 zs: torch.Tensor ,

6 actor_std_dev: torch.Tensor ,

7 F1: torch.Tensor ,

8 F2: torch.Tensor ,

9 ) -> torch.Tensor:

10 """

11 Calculates the value conservative penalty for FB.

12 Args:

13 observations: observation tensor of shape [batch_size , observation_length]

14 next_observations: next observation tensor of shape
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15 [batch_size , observation_length]

16 zs: task tensor of shape [batch_size , z_dimension]

17 actor_std_dev: standard deviation of the actor

18 F1: forward embedding no. 1

19 F2: forward embedding no. 2

20 Returns:

21 conservative_penalty: the value conservative penalty

22 """

23
24 with torch.no_grad ():

25 # repeat observations , next_observations , zs , and Bs

26 # we fold the action sample dimension into the batch dimension

27 # to allow the tensors to be passed through F and B; we then

28 # reshape the output back to maintain the action sample dimension

29 repeated_observations_ood = observations.repeat(

30 self.ood_action_samples , 1, 1

31 ).reshape(self.ood_action_samples * self.batch_size , -1)

32 repeated_zs_ood = zs.repeat(self.ood_action_samples , 1, 1).reshape(

33 self.ood_action_samples * self.batch_size , -1

34 )

35 ood_actions = torch.empty(

36 size=(self.ood_action_samples * self.batch_size , self.action_length),

37 device=self._device ,

38 ).uniform_(-1, 1)

39
40 repeated_observations_actor = observations.repeat(

41 self.actor_action_samples , 1, 1

42 ).reshape(self.actor_action_samples * self.batch_size , -1)

43 repeated_next_observations_actor = next_observations.repeat(

44 self.actor_action_samples , 1, 1

45 ).reshape(self.actor_action_samples * self.batch_size , -1)

46 repeated_zs_actor = zs.repeat(self.actor_action_samples , 1, 1).reshape(

47 self.actor_action_samples * self.batch_size , -1

48 )

49 actor_current_actions , _ = self.actor(

50 repeated_observations_actor ,

51 repeated_zs_actor ,

52 std=actor_std_dev ,

53 sample=True ,

54 ) # [actor_action_samples * batch_size , action_length]

55
56 actor_next_actions , _ = self.actor(

57 repeated_next_observations_actor ,

58 z=repeated_zs_actor ,

59 std=actor_std_dev ,

60 sample=True ,

61 ) # [actor_action_samples * batch_size , action_length]

62
63 # get Fs

64 ood_F1 , ood_F2 = self.FB.forward_representation(

65 repeated_observations_ood , ood_actions , repeated_zs_ood

66 ) # [ood_action_samples * batch_size , latent_dim]

67
68 actor_current_F1 , actor_current_F2 = self.FB.forward_representation(

69 repeated_observations_actor , actor_current_actions , repeated_zs_actor

70 ) # [actor_action_samples * batch_size , latent_dim]

71 actor_next_F1 , actor_next_F2 = self.FB.forward_representation(

72 repeated_next_observations_actor , actor_next_actions , repeated_zs_actor

73 ) # [actor_action_samples * batch_size , latent_dim]

74 repeated_F1 , repeated_F2 = F1.repeat(

75 self.actor_action_samples , 1, 1

76 ).reshape(self.actor_action_samples * self.batch_size , -1), F2.repeat(

77 self.actor_action_samples , 1, 1

78 ).reshape(

79 self.actor_action_samples * self.batch_size , -1

80 )

81 cat_F1 = torch.cat(

82 [

83 ood_F1 ,

84 actor_current_F1 ,

85 actor_next_F1 ,

86 repeated_F1 ,

87 ],

88 dim=0,

89 )

90 cat_F2 = torch.cat(

91 [

92 ood_F2 ,

93 actor_current_F2 ,

94 actor_next_F2 ,

95 repeated_F2 ,

96 ],

97 dim=0,

98 )

99
100 repeated_zs = zs.repeat(self.total_action_samples , 1, 1).reshape(

101 self.total_action_samples * self.batch_size , -1

102 )

103
104 # convert to Qs

105 cql_cat_Q1 = torch.einsum("sd, sd -> s", cat_F1 , repeated_zs).reshape(

106 self.total_action_samples , self.batch_size , -1
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107 )

108 cql_cat_Q2 = torch.einsum("sd, sd -> s", cat_F2 , repeated_zs).reshape(

109 self.total_action_samples , self.batch_size , -1

110 )

111
112 cql_logsumexp = (

113 torch.logsumexp(cql_cat_Q1 , dim=0).mean()

114 + torch.logsumexp(cql_cat_Q2 , dim=0).mean()

115 )

116
117 # get existing Qs

118 Q1, Q2 = [torch.einsum("sd, sd -> s", F, zs) for F in [F1 , F2]]

119
120 conservative_penalty = cql_logsumexp - (Q1 + Q2).mean()

121
122 return conservative_penalty

I.3 Measure-Conservative Penalty
1 def _measure_conservative_penalty(

2 self ,

3 observations: torch.Tensor ,

4 next_observations: torch.Tensor ,

5 zs: torch.Tensor ,

6 actor_std_dev: torch.Tensor ,

7 F1: torch.Tensor ,

8 F2: torch.Tensor ,

9 B_next: torch.Tensor ,

10 M1_next: torch.Tensor ,

11 M2_next: torch.Tensor ,

12 ) -> torch.Tensor:

13 """

14 Calculates the measure conservative penalty.

15 Args:

16 observations: observation tensor of shape [batch_size , observation_length]

17 next_observations: next observation tensor of shape

18 [batch_size , observation_length]

19 zs: task tensor of shape [batch_size , z_dimension]

20 actor_std_dev: standard deviation of the actor

21 F1: forward embedding no. 1

22 F2: forward embedding no. 2

23 B_next: backward embedding

24 M1_next: successor measure no. 1

25 M2_next: successor measure no. 2

26 Returns:

27 conservative_penalty: the measure conservative penalty

28 """

29
30 with torch.no_grad ():

31 # repeat observations , next_observations , zs , and Bs

32 # we fold the action sample dimension into the batch dimension

33 # to allow the tensors to be passed through F and B; we then

34 # reshape the output back to maintain the action sample dimension

35 repeated_observations_ood = observations.repeat(

36 self.ood_action_samples , 1, 1

37 ).reshape(self.ood_action_samples * self.batch_size , -1)

38 repeated_zs_ood = zs.repeat(self.ood_action_samples , 1, 1).reshape(

39 self.ood_action_samples * self.batch_size , -1

40 )

41 ood_actions = torch.empty(

42 size=(self.ood_action_samples * self.batch_size , self.action_length),

43 device=self._device ,

44 ).uniform_(-1, 1)

45
46 repeated_observations_actor = observations.repeat(

47 self.actor_action_samples , 1, 1

48 ).reshape(self.actor_action_samples * self.batch_size , -1)

49 repeated_next_observations_actor = next_observations.repeat(

50 self.actor_action_samples , 1, 1

51 ).reshape(self.actor_action_samples * self.batch_size , -1)

52 repeated_zs_actor = zs.repeat(self.actor_action_samples , 1, 1).reshape(

53 self.actor_action_samples * self.batch_size , -1

54 )

55 actor_current_actions , _ = self.actor(

56 repeated_observations_actor ,

57 repeated_zs_actor ,

58 std=actor_std_dev ,

59 sample=True ,

60 ) # [actor_action_samples * batch_size , action_length]

61
62 actor_next_actions , _ = self.actor(

63 repeated_next_observations_actor ,

64 z=repeated_zs_actor ,

65 std=actor_std_dev ,

66 sample=True ,

67 ) # [actor_action_samples * batch_size , action_length]

68
69 # get Fs

70 ood_F1 , ood_F2 = self.FB.forward_representation(

71 repeated_observations_ood , ood_actions , repeated_zs_ood
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72 ) # [ood_action_samples * batch_size , latent_dim]

73
74 actor_current_F1 , actor_current_F2 = self.FB.forward_representation(

75 repeated_observations_actor , actor_current_actions , repeated_zs_actor

76 ) # [actor_action_samples * batch_size , latent_dim]

77 actor_next_F1 , actor_next_F2 = self.FB.forward_representation(

78 repeated_next_observations_actor , actor_next_actions , repeated_zs_actor

79 ) # [actor_action_samples * batch_size , latent_dim]

80 repeated_F1 , repeated_F2 = F1.repeat(

81 self.actor_action_samples , 1, 1

82 ).reshape(self.actor_action_samples * self.batch_size , -1), F2.repeat(

83 self.actor_action_samples , 1, 1

84 ).reshape(

85 self.actor_action_samples * self.batch_size , -1

86 )

87 cat_F1 = torch.cat(

88 [

89 ood_F1 ,

90 actor_current_F1 ,

91 actor_next_F1 ,

92 repeated_F1 ,

93 ],

94 dim=0,

95 )

96 cat_F2 = torch.cat(

97 [

98 ood_F2 ,

99 actor_current_F2 ,

100 actor_next_F2 ,

101 repeated_F2 ,

102 ],

103 dim=0,

104 )

105
106 cml_cat_M1 = torch.einsum("sd, td -> st", cat_F1 , B_next).reshape(

107 self.total_action_samples , self.batch_size , -1

108 )

109 cml_cat_M2 = torch.einsum("sd, td -> st", cat_F2 , B_next).reshape(

110 self.total_action_samples , self.batch_size , -1

111 )

112
113 cml_logsumexp = (

114 torch.logsumexp(cml_cat_M1 , dim=0).mean()

115 + torch.logsumexp(cml_cat_M2 , dim=0).mean()

116 )

117
118 conservative_penalty = cml_logsumexp - (M1_next + M2_next).mean()

119
120 return conservative_penalty
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I.4 α Tuning

1 def _tune_alpha(

2 self ,

3 conservative_penalty: torch.Tensor ,

4 ) -> torch.Tensor:

5 """

6 Tunes the conservative penalty weight (alpha) w.r.t. target penalty.

7 Discussed in Appendix B.1.4

8 Args:

9 conservative_penalty: the current conservative penalty

10 Returns:

11 alpha: the updated alpha

12 """

13
14 # alpha auto -tuning

15 alpha = torch.clamp(self.critic_log_alpha.exp(), min=0.0, max=1e6)

16 alpha_loss = (

17 -0.5 * alpha * (conservative_penalty - self.target_conservative_penalty)

18 )

19
20 self.critic_alpha_optimiser.zero_grad ()

21 alpha_loss.backward(retain_graph=True)

22 self.critic_alpha_optimiser.step()

23 alpha = torch.clamp(self.critic_log_alpha.exp(), min=0.0, max=1e6).detach ()

24
25 return alpha
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