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Abstract

While model quantization has become pivotal for deploying super-resolution (SR)
networks on mobile devices, existing works focus on quantization methods only
for image super-resolution. Different from image super-resolution, the temporal
error propagation, shared temporal parameterization, and temporal metric mis-
match significantly degrade the performance of a video SR model. To address
these issues, we propose the first quantization method, QBasicVSR, for video
super-resolution. A novel temporal awareness adaptation post-training quantiza-
tion (PTQ) framework for video super-resolution with the flow-gradient video bit
adaptation and temporal shared layer bit adaptation is presented. Moreover, we
put forward a novel fine-tuning method for VSR with the supervision of the full-
precision model. Our method achieves extraordinary performance with state-of-
the-art efficient VSR approaches, delivering up to ×200 faster processing speed
while utilizing only 1/8 of the GPU resources. Additionally, extensive experi-
ments demonstrate that the proposed method significantly outperforms existing
PTQ algorithms on various datasets. For instance, it attains a 2.53 dB increase on
the UDM10 benchmark when quantizing BasicVSR to 4-bit with 100 unlabeled
video clips. The code and models will be released on GitHub.

1 Introduction

Super-resolution (SR) is a classic low-level computer vision task focused on reconstructing high-
resolution image (s) from their low-resolution (LR) counterparts. In video scenarios, it extends
to aggregating spatiotemporal information from multiple misaligned frames within a sequence, re-
quiring motion compensation and frame alignment to achieve coherent detail enhancement across
the temporal domain. Despite demonstrating impressive performance, state-of-the-art video super-
resolution (VSR) networks [3, 4, 28, 29] face deployment challenges on resource-constrained edge
devices due to their high computational and memory demands. Furthermore, the growing industry
demand for real-time large-scale VSR (e.g., 4K video streaming) introduces quadratically increasing
computational complexity. To enhance computational efficiency in VSR, researchers have explored
various efficient methods, such as reparameterization [21] and network pruning [25, 43, 48], which
aim to reduce model size or simplify network structures. In parallel, model quantization has proven
to be another powerful efficiency-driven technique [14, 26, 37, 38, 49], by leveraging low-precision
arithmetic to reduce latency, memory footprint, and consumption cost on AI accelerators [6, 42].
However, despite its advantages, quantization has not yet been explored in the domain of VSR.

Although existing efficient VSR methods have achieved notable progress in reducing parameter sizes
and improving inference speed, their critical limitation stems from reliance on 32-bit floating-point
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(FP) operations. This high computational precision inherently restricts their ability to fully exploit
the capabilities of modern AI accelerators, which are optimized for low bit-width computations.
Furthermore, these efficient methods in VSR necessitate processing entire datasets during training,
resulting in prohibitively expensive computational overhead that persists despite their architectural
optimizations. As shown in Table 4, the SOTA efficient BasicVSR method [43] requires training
303,380 iterations with a batch size of 8, which takes approximately 15 days on 8 NVIDIA A6000
GPUs. Quantization has emerged as a critical, efficient strategy, systematically replacing 32-bit
FP representations in network parameters and activation tensors with reduced-precision arithmetic,
thereby achieving up to 4× memory footprint compression and 2−3× latency reduction in hardware-
accelerated inference engines.

Current mainstream quantization methods can be broadly categorized into two paradigms [11]:
quantization-aware training (QAT) approaches that require complete training datasets for end-to-
end model retraining, and post-training quantization (PTQ) methods that directly leverage pre-
trained models with only a few unlabeled calibration samples. While image SR quantization meth-
ods [14, 16, 26, 37, 38, 49] have achieved advanced performance with minimal degradation in
accuracy. There are seldom works on quantization for VSR. When transitioning from image to
VSR, three fundamental challenges emerge [3, 4, 28, 29] : (1) Temporal error propagation: the
recurrent architecture, which is adopted in almost all VSR models, accumulates quantization er-
rors across inter-frame dependencies; (2) Shared temporal parameterization: weight-sharing in VSR
across time steps introduces compounded quantization effects absent in single image processing; (3)
Temporal metric mismatch: conventional image quality assessments fail to capture temporal con-
sistency degradation. Therefore, existing quantization methods developed for image SR can not be
directly transferred to VSR tasks. Crucially, even when attempting to adapt QAT to VSR, significant
barriers persist. While QAT could theoretically recover quantized model performance, it demands
full retraining with the same iterations as original FP models. Each training step incurs exacer-
bated GPU memory and prolonged duration due to gradient accumulation through recurrent units
and quantization-aware gradient calculations. Given that VSR training already requires orders of
magnitude more computation than image SR, such additional overhead makes QAT-based retraining
unrealistic for practical deployment, particularly in resource-constrained scenarios. Therefore, we
concentrate on the PTQ methods in this paper.

To address the issues above, we propose the first VSR quantization method for an accurate model in
this paper. Our framework decouples the adaptive bit allocation mechanisms between video streams
and parameter-shared layers, allowing independent optimization of bit-width adaptation to reduce
the heavy computation. For video streams, we propose a flow-gradient video bit adaptation strategy
driven by a spatiotemporal complexity metric. Videos exceeding the upper threshold are assigned
a positive factor that increases bit-width allocation. Calibration datasets are then utilized to re-
fine the thresholds through backward propagation. Subsequently, by exploiting the spatiotemporal
correlations inherent in video data, a temporal shared layer bit adaptation module is presented to
evaluate the quantization sensitivity of each layer through temporal-aware analysis. This analysis
captures both intra-frame features and inter-frame temporal dependencies, ultimately determining
the bit factors for the weight-sharing layers. The layer-wise sensitivity is calculated by processing
the calibration datasets with the pre-trained FP network. Layers exhibiting sensitivity values exceed-
ing the upper threshold are identified as critical components and assigned positive adaptation factors.
These layer-specific adaptation factors undergo further calibration through direct fine-tuning using
the same calibration datasets, enabling precise adjustment of quantization parameters while pre-
serving temporal coherence across video frames. This dual-optimization architecture, strategically
combining temporal-aware bit allocation (for both video and VSR network layers) with calibration-
driven sensitivity refinement, establishes optimized quantization scheme designs that holistically
balance spatial-textural details, temporal evolution patterns, and layer-specific representation re-
quirements throughout the video restoration pipeline. Compared to traditional VSR methods, which
rely on complete labeled ground truth (GT), our method achieves rapid quantization with unprece-
dented efficiency, completing the entire process using only a small collection of unlabeled video
clips. The contributions of this work are summarized as follows:

(1) To the best of our knowledge, this is the first work that explicitly addresses model quantization
for video super-resolution task.
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(2) We propose a novel dual-optimization framework with a flow-gradient video bit adaptation strat-
egy guided by spatiotemporal complexity metrics, coupled with a temporal shared layer bit adapta-
tion module that dynamically coordinates layer-wise bit-width distribution.

(3) Moreover, we present a novel fine-tuning method for VSR tasks with the supervision of the
full-precision model. Our method outperforms existing efficient VSR approaches. Furthermore, our
method outperforms existing PTQ techniques by a substantial margin.

(4) To promote collaborative studies and industrial deployments, we also provide QbasicVSR, a
novel quantization VSR library. This new library includes the complete implementation, such as
training protocols, quantization-aware modules, and pre-trained model weights.
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Figure 1: Overview of the proposed temporal awareness adaptation quantization for VSR. Parame-
ters are shared within green and blue blocks seperately. (a) The frames It−1, It, and It+1 represent
consecutive LR video frames. F and B denote the forward and backward modules. (b) During
inference, the TS-LBA module is fixed, and the FG-VBA module is adapted according to the video
complexity. (c) The TS-LBA and FG-VBA modules dynamically modulate the bit-widths of layers.

2 Related Work

Model quantization has emerged as a critical technique for compressing and accelerating deep neu-
ral networks, garnering significant research attention and achieving ubiquitous adoption in modern
AI systems due to its effectiveness in enabling efficient deployment across resource-constrained
platforms. PAMS [26] addresses dynamic activation variations by adaptively updating quantization
ranges to match their statistical characteristics. Consequently, DDTB [49] successfully pushes the
compression boundary to ultra-low 4-bit precision without catastrophic accuracy degradation by de-
veloping test-time quantization range adaptation through dynamic parameterization. Furthermore,
recent works, CADyQ [14] and CABM [37], propose adaptive quantization frameworks employing
content-aware bit-width prediction modules that dynamically adjust quantization levels based on in-
put image characteristics. However, these methods all require QAT with a complete dataset and often
incur even higher computational costs than training full-precision models, particularly problematic
for videos where processing high-dimensional temporal data makes such retraining procedures pro-
hibitively expensive in both time and computational resources.
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To overcome these limitations, PTQ enables efficient model compression without retraining by cal-
ibrating quantization parameters using only a few unlabeled samples. Tu et al. [38] proposed the
first PTQ method for image SR, which introduces the density-based dual clipping to cut off the out-
liers by analyzing the asymmetric bounds of activations. To promote adaptive inference, Cheeun et
al. [16] proposed an adaptive quantization method, which achieves competitive performance with
the previous adaptive quantization methods. However, these methods are specifically designed for
image SR and cannot be directly applied to video models. To this end, we propose a video quantiza-
tion framework that requires only a few unlabeled video clips to determine quantization parameters
automatically.

3 Methodology

Our method, illustrated in Fig. 1, proposes a novel adaptive quantization method, temporal aware-
ness adaptation quantization for VSR. The bit allocation strategy comprises two adaptive modules:
a temporal shared layer bit adaptation, which dynamically assigns layer-wise bit-widths based on
spatial and temporal sensitivities, and a flow-gradient video bit adaptation, which globally adjusts
bit-widths guided by a unified spatiotemporal complexity metric. After the adaptive bit-width con-
figurations are determined by the two modules and finalized during the calibration phase, we design
a novel fine-tuning step. This fine-tuning further optimizes the quantization parameters, significantly
enhancing reconstruction accuracy while maintaining computational efficiency. During inference,
the layer-wise bit-widths remain fixed, while the bit-widths are adaptively adjusted based on the
input video complexity through the flow-gradient video bit adaptation module.

3.1 Preliminaries

We briefly introduce the quantization approach, focusing on asymmetric quantization for activations,
as is standard practice for SR networks due to their asymmetric activation distributions [14, 15, 37,
49]. Given a floating-point tensor x with bit-width b, the quantization process is formulated as:

xc = Clamp(x, l, u) = min(max(x, l), u),

xint = ⌊xc − l

S
⌉, S =

u− l

2b − 1
,

xq = xint · S + l,

(1)

where l and u denote the lower and upper clipping thresholds, b is the quantization bit-width, and S
represents the scaling factor that maps the clamped tensor xc (confined to [l, u]) to 2b discrete levels.
The operator ⌊·⌉ implements nearest-integer rounding, while xint corresponds to the hardware-
friendly integer representation. For weights, we enforce symmetry quantizer by setting l = −u.

3.2 Flow-Gradient Video Bit Adaptation

Our goal is to determine a universal flow-gradient synergized adaptation factor, which dynamically
adjusts the uniform bit-width for all layers based on spatiotemporal complexity characteristics of
input video streams. To achieve this, we design a joint gradient-flow complexity metric that models
spatial texture richness and temporal motion dynamics. Below, we formalize the components of this
metric and their mathematical definitions.

Spatial Gradient Analysis: For each frame It in a video stream of T frames, where t ∈ {1, . . . , T},
we compute spatial complexity by aggregating gradient magnitudes across the frame. Let Ω =
{(i, j) | 0 ≤ i < H, 0 ≤ j < W} denote the set of all pixel coordinates in the t-th frame with
height H and width W . The spatial gradient ∇It(i, j) at pixel (i, j) is defined as a vector containing
horizontal and vertical derivatives, computed via finite differences:

∂It
∂x

(i, j) = It(i+ 1, j)− It(i, j),
∂It
∂y

(i, j) = It(i, j + 1)− It(i, j). (2)

The spatial complexity St for frame t is then calculated as the mean ℓ2-norm of gradients across all
pixels, scaled by 103 to amplify small magnitudes:

St =
103

|Ω|
󰁛

(i,j)∈Ω

󰀂∇It(i, j)󰀂2 . (3)
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where ∇It(i, j) =
󰁫
∂It
∂x (i, j),

∂It
∂y (i, j)

󰁬⊤
, |Ω| = H × W , denotes the total number of pixels, and

󰀂 · 󰀂2 represents the Euclidean norm. This method emphasizes high-frequency spatial details (e.g.,
edges and textures), critical indicators of visual complexity in videos.

Temporal Flow-Field Dynamics: To holistically model video complexity, we characterize temporal
motion dynamics through bidirectional flow-field analysis. Let Bt = {Fforward ,Fbackward } denote
the set of forward (t → t+1) and backward (t+1 → t) flow fields estimated by SPyNet [34], where
each vector F(i, j) = (u, v) ∈ R2 represents horizontal and vertical displacements of pixel (i, j).
The temporal complexity is decomposed into complementary magnitude and consistency compo-
nents. The flow magnitude term quantifies average motion intensity across bidirectional flows:

Tmagnitude,t =
1

|Bt| · |Ω|
󰁛

F∈Bt

󰁛

(i,j)∈Ω

󰀂F(i, j)󰀂2 . (4)

where |Bt| = 2 accounts for bidirectional flows, |Ω| = H×W is the pixel count, and 󰀂·󰀂2 computes
the ℓ2-norm of displacement vectors. Beyond motion magnitude, we quantify flow consistency by
measuring the spatial smoothness of flow vectors. For each flow field F ∈ Bt, we compute the
Jacobian matrix JF(i, j) ∈ R2×2 at pixel (i, j), defined as:

JF(i, j) =

󰀥
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

󰀦
. (5)

where partial derivatives are approximated via finite differences:
∂u

∂x
(i, j) = u(i+ 1, j)− u(i, j),

∂u

∂y
(i, j) = u(i, j + 1)− u(i, j), (6)

and similarly for v-components. The Frobenius norm 󰀂JF(i, j)󰀂F aggregates squared gradients of
the flow field. The consistency term aggregates the Frobenius norm of Jacobians across all flows:

Tconsistency,t =
1

|Bt| · |Ω|
󰁛

F∈Bt

󰁛

(i,j)∈Ω

󰀂JF(i, j)󰀂F . (7)

Finally, the temporal complexity Tt combines the magnitude and consistency terms through a
weighted summation:

Tt = Tmagnitude,t + γ · Tconsistency,t. (8)
where γ is a balancing coefficient that determines the relative importance of motion magnitude
versus motion irregularity. To holistically model video complexity and bridge spatial texture details
with temporal motion dynamics, we introduce a spatiotemporal complexity metric Cvideo, which
unifies spatial and temporal components into a single guiding signal for bit adaptation. The overall
flow-gradient complexity metric is defined as:

Cvideo =
1

T

T󰁛

t=1

St + λ · 1

T − 1

T−1󰁛

t=1

(Tmagnitude ,t + γ · Tconsistency ,t) . (9)

where St represents the spatial complexity of the t-th frame (defined in Equation (3)), Tmagnitude ,t

and Tconsistency ,t denote the temporal magnitude and consistency terms at time t (defined in Equations
(4) and (7), respectively. The parameter λ balances the relative contributions of spatial texture rich-
ness and temporal motion dynamics. Finally, we design a flow-gradient driven bit-width adaptation
module that maps Cvideo to a global bit-width factor. This metric integrates spatial texture details
and temporal motion dynamics, enabling a unified characterization of video complexity. During
inference, the video-to-bit allocation function converts the computed complexity Cvideo into a global
bit-width adaptation factor bvideo, which dynamically adjusts the layer-wise bit-widths of the VSR
network. The allocation mechanism operates as follows: if Cvideo exceeds an upper threshold uv2b,
the bit-width factor bvideo is set to +1, globally increasing the bit-widths to preserve fidelity in scenes
with intricate textures or intense motion; if Cvideo falls below a lower threshold lv2b, bvideo is set to -1,
reducing bit-widths to optimize computational efficiency for simpler videos; for values within the
thresholds, bvideo remains 0, maintaining the default quantization configuration. The thresholds lv2b
and uv2b are initialized using percentile-based statistics from a small set of calibration video clips.
Specifically, lv2b corresponds to the pV -th percentile of the video complexity distribution across
calibration data, while uv2b is set to the (100 − pV )-th percentile. While the statistical thresholds
offer a practical baseline for determining video-adaptive bit-width allocations, we achieve superior
optimization performances through threshold fine-tuning.
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3.3 Temporal Shared Layer Bit Adaptation

It is widely acknowledged that different layers in neural networks exhibit varying sensitivity to
quantization [7, 9, 35, 39]. Layers with lower sensitivity can tolerate aggressive bit-width reduc-
tion without significant accuracy degradation, enabling better computational efficiency. To address
the unique challenges of VSR networks, where parameters are shared across frames, we propose a
temporal shared layer bit adaptation module. For each convolutional layer k, we define two comple-
mentary sensitivity metrics that jointly guide layer-wise bit-width adaptation. Given the input video
sequences with T frames, we stack activations into X k

stacked ∈ RT×B×C×H×W (B: batch size, C:
channels, H ×W : spatial dimensions), the spatial sensitivity skspace quantifies intra-frame activation
variability through channel-wise standard deviations:

skspace = Et,b,h,w

󰀅
σc

󰀃
X k

stacked,t,b,:,h,w

󰀄󰀆
. (10)

where Et,b,h,w denotes averaging over time step t, batch index b and spatial positions (h,w). σc(·)
computes the standard deviation across the channel dimension (dim=2). This captures spatial texture
complexity: higher values indicate regions with edges or fine details requiring higher bit-widths.
Moreover, the temporal sensitivity sktemp models inter-frame dynamics as:

sktemp = Eb,c,h,w

󰀅
σt

󰀃
X k

stacked,:,b,c,h,w

󰀄󰀆
. (11)

where Eb,c,h,w averages over batch b, channels c, and spatial coordinates (h,w). σt(·) calculates
the unbiased standard deviation along the temporal dimension (dim=0). Elevated sktemp reflects
dynamic regions with significant motion between frames. The layer-wise bit adaptation factor bkL is
determined by joint thresholding:

bkL =

󰀻
󰀿

󰀽

−1, if (skspace, s
k
temp) ∈ [0, lspace]× [0, ltemp]

+1, if (skspace, s
k
temp) ∈ [uspace,∞)× [utemp,∞)

0, otherwise
. (12)

where spatial thresholds lspace and uspace are initialized as the pspace-th and (100 − pspace )-th per-
centiles of spatial sensitivity values

󰀋
skspace

󰀌
from the calibration dataset, while temporal thresholds

ltemp and utemp correspond to the ptemp-th and (100− ptemp)-th percentiles of temporal sensitivi-
ties

󰀋
sktemp

󰀌
. The Cartesian product [0, lspace ] × [0, ltemp ] identifies stable regions where sensitiv-

ities fall below lower percentiles, enabling bit reduction without quality degradation. Conversely,
[uspace ,∞)× [utemp ,∞) defines regions where both spatial texture complexity and temporal motion
dynamics exceed upper percentiles, necessitating increased bit-widths.

3.4 Calibration

For initializing the clipping ranges of quantized activations, we first collect minimum and maxi-
mum activation statistics [20] by forwarding calibration video clips through the FP network. These
statistics are smoothed using the exponential moving average (EMA) to stabilize the initialization of
lower/upper bounds for each quantizer. Our framework decouples the adaptive bit allocation mech-
anisms between input video streams and parameter-shared layers. Notably, the calibration phase
determines the bkL of each layer, so it can be pre-determined and fixed during test time, leaving only
the flow-gradient video bit adaptation module active during inference. In short, we dynamically ad-
just the bit-width used for quantizing the tensors of a video stream V in the k-th layer of the network.
This adjustment is achieved through a combination of a flow-gradient video bit adaptation factor and
a temporal shared layer bit adaptation factor. The adapted bit-width is expressed as follows:

bkV = bbase + bV + bkL. (13)

where bkV represents the bit-width for video stream V in layer k, bbase is the baseline bit-width serving
as the starting point, bV adjusts for the complexity of the video, and bkL adapts to the quantization
sensitivity of each layer.

3.5 Fine-tuning

While calibration provides a reasonable starting point for the quantized VSR network, we further
fine-tune the bit adaptation modules through calibration data to achieve better adaptation. Since
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layer-wise bit adaptation factors
󰀋
bkL

󰀌K

k=1
are pre-configured and remain static during inference,

we optimize them directly through gradient descent. In contrast, the video-wise bit adaptation factor
bvideo is dynamically determined during inference based on video complexity. We therefore fine-tune
the flow-gradient video bit adaptation module, which is parameterized by threshold values lv2b and
uv2b. To overcome the non-differentiability of the thresholding operation in this module, we employ
a tanh-based gradient approximation during backpropagation, inspired by the approach in [12]. Si-
multaneously, we optimize the clipping boundaries for activation quantization (la, ua) and weight
quantization (−uw, uw). For the non-differentiable rounding operation in the quantizer, we uti-
lize the Straight-Through Estimator (STE) [1], maintaining the gradient flow by approximating the
rounding function as an identity operator during backward passes while preserving its exact behav-
ior in the forward path. During optimization, the super-resolution network’s weights remain fixed
to maintain the pre-trained knowledge of the full-precision model P . Inspired by the Charbonnier
loss [5] in VSR, we design the reconstruction loss as follows:

Lpix =
1

T

T󰁛

i=1

󰁴󰀐󰀐P (ILR
i )−Q(ILR

i )
󰀐󰀐2
2
+ 󰂃2. (14)

where T denotes the number of input video frames, ILR
i represents the i-th low-resolution frame,

P (·) and Q(·) correspond to the full-precision (FP) and quantized networks respectively, 󰀂 · 󰀂2 is
the L2 norm measuring feature discrepancies, and 󰂃 is a small positive constant introduced to ensure
numerical stability and maintain differentiability of the loss function, particularly when Lpix ap-
proaches zero. For feature-level supervision, we extend the pixel transfer loss [38] to video domains
by incorporating temporal dimension awareness. Given intermediate features from the FP network
P and quantized network Q, we first perform layer-wise L2 normalization across T consecutive
frames, and then we calculate the mean square error of these two feature maps across all the blocks
and temporal frames. The pixel transfer loss is formulated as follows:

Lskt =
1

T ·K

T󰁛

i=1

K󰁛

k=1

󰀐󰀐󰀐󰀐󰀐󰀐
F i,k
P󰀐󰀐󰀐F i,k
P

󰀐󰀐󰀐
2

−
F i,k
Q󰀐󰀐󰀐F i,k
Q

󰀐󰀐󰀐
2

󰀐󰀐󰀐󰀐󰀐󰀐

2

2

. (15)

where T denotes the number of temporal frames, K represents the total number of feature layers,
F i,k
P ∈ RCk×Hk×Wk and F i,k

Q ∈ RCk×Hk×Wk denote the k-th layer features for the i-th frame from
P and Q respectively, with (Ck, Hk,Wk) indicating the channel depth and spatial dimensions of
the k-th layer outputs. The L2 normalization ensures scale-invariant feature comparison, while the
temporal summation over T frames explicitly models inter-frame relationships in video sequences.
Such a supervision paradigm operates solely on low-resolution inputs, eliminating the dependency
on high-resolution ground-truth references. Finally, we can get the total loss:

Ltotal = Lpix + λsktLskt. (16)

with λskt balancing frame-wise reconstruction and temporal feature consistency in recurrent video
networks. This formulation enables optimization of quantization parameters across both spatial and
temporal dimensions, effectively suppressing error propagation in cyclic computation while preserv-
ing video texture details through adaptive adjustment. The quantization parameters are iteratively
optimized through three consecutive steps after the calibration phase: initially updating weight clip-
ping ranges {uk

w}Kk=1 with activation and bit adaptation module parameters frozen, subsequently re-
fining activation clipping ranges {lka, uk

a}Kk=1, and finally adjusting bit adaptive module parameters
lv2b, uv2b, {bkL}Kk=1. Each step exclusively optimizes the parameter subset while strictly maintaining
the others in fixed states, completing the fine-tuning within only three epochs.

4 Experiments

4.1 Implementation Details

We build the calibration datasets by randomly sampling 100 LR video clips from the REDS [33]
and Vimeo-90K [45]. For REDS, we use REDS4, containing four clips, as our test set. In addition,
we utilize Vid4 [30], UDM10 [46], and Vimeo-90K-T [45] as test sets along with Vimeo-90K.
We train and test models with 4× downsampling using two degradations, bicubic (BI) and blur
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downsampling (BD), as BasicVSR [3] did. The calibration datasets calibrate and fine-tune our bit
adaptation modules and the quantization ranges. The quantization range for activations is initialized
using MinMax [20], and weights OMSE [8]. The parameters γ and λ in the flow-gradient complexity
metric are set to 200 and 10. The hyperparameters for calibrating the bit adaptation modules, pV ,
pspace, and ptemp are set to 10, 30 and 30. The constant 󰂃 in the construction loss is set to 10−6. The
parameter λskt in total loss is set to 0.1. After freezing the network weights, we sequentially fine-tune
individual components for one epoch each: optimizing weight clipping ranges in the first epoch,
activation clipping ranges in the second epoch, and bit adaptation module parameters in the third
epoch. Each stage uses the Adam optimizer [24] with a batch size of 2. The initial learning rates are
set to 1× 10−3 for weight clipping ranges, 1× 10−5 for activation clipping ranges, and 0.1 for both
temporal shared layer bit adaptation and flow-gradient video bit adaptation modules. Each learning
rate is decayed by 0.9 every epoch. All experiments follow the same configuration described above,
and all parameters are fixed across datasets and models to ensure a fair and consistent evaluation.

4.2 Comparisons with Efficient Video Super-Resolution

We measure reconstruction accuracy using the peak signal-to-noise ratio (PSNR) and the structural
similarity index (SSIM) for evaluation metrics. As shown in Table 1, our method achieves superior
performance and establishes a new state-of-the-art among efficient VSR approaches. Compared to
KSNet [21], our model requires fewer parameters yet outperforms it by 0.12 dB in PSNR on the
REDS4 dataset. Compared to the SSL [43] method, our approach maintains comparable model
complexity while eliminating the need for ground-truth (GT) videos during training. Notably, we
achieve performance gains of 0.2 dB on REDS4 and 0.31 dB on Vimeo90K-T (BD degradation).
Moreover, we retrain a unidirectional variant of BasicVSR (BasicVSR-uni) by removing its back-
ward propagation branch, yielding a distinct yet functionally consistent architecture to assess the
generalizability of our quantization framework. These quantitative improvements across multiple
benchmarks convincingly demonstrate the effectiveness of our quantization framework.

Table 1: Quantitative comparison (PSNR / SSIM). All results are calculated on the Y-channel
except REDS4 (RGB-channel). Blank entries correspond to results that cannot be reported. The
results for PQ and FQ correspond to Partial Quantized and Fully Quantized models, respectively.

Methods Params(M) GT W / A BI degradation BD degradation
REDS4 [33] Vimeo-90K-T [45] Vid4 [30] UDM10 [46] Vimeo90K-T [45] Vid4 [30]

Bicubic - - - 26.14 / 0.7292 31.32 / 0.8684 23.78 / 0.6347 28.47 / 0.8253 31.30 / 0.8687 21.80 / 0.5246
VESPCN [2] - 󰃀 32 / 32 - - 25.35 / 0.7557 - - -
SPMC [36] - 󰃀 32 / 32 - - 25.88 / 0.7752 - - -

TOFlow [45] 1.4 󰃀 32 / 32 27.98 / 0.7990 33.08 / 0.9054 25.89 / 0.7651 36.26 / 0.9438 34.62 / 0.9212 -
DUF [22] 5.8 󰃀 32 / 32 28.63 / 0.8251 - - 38.48 / 0.9605 36.87 / 0.9447 27.38 / 0.8329

RBPN [13] 12.2 󰃀 32 / 32 30.09 / 0.8590 37.07 / 0.9435 27.12 / 0.8180 38.66 / 0.9596 37.20 / 0.9458 -
EDVR-M [40] 3.3 󰃀 32 / 32 30.53 / 0.8699 37.09 / 0.9446 27.10 / 0.8186 39.40 / 0.9663 37.33 / 0.9484 27.45 / 0.8406

PFNL [47] 3.0 󰃀 32 / 32 29.63 / 0.8502 36.14 / 0.9363 26.73 / 0.8029 38.74 / 0.9627 - 27.16 / 0.8355
TGA [18] 5.8 󰃀 32 / 32 - - - - 37.59/ 0.9516 27.63 / 0.8423
RLSP [10] 4.2 󰃀 32 / 32 - - - 38.48 / 0.9606 36.49 / 0.9403 27.48 / 0.8388
RSDN [17] 6.2 󰃀 32 / 32 - - - 39.35 / 0.9653 37.23 / 0.9471 27.92 / 0.8505
RRN [19] 3.4 󰃀 32 / 32 - - - 38.96 / 0.9644 - 27.69 / 0.8488

FastDVDnet [44] 2.6 󰃀 32 / 32 - 36.12 / 0.9348 26.14 / 0.8029 - - -

BasicVSR [3] 4.9 󰃀 32 / 32 31.42 / 0.8909 37.18 / 0.9450 27.24 / 0.8251 39.96 / 0.9694 37.53 / 0.9498 27.96 / 0.8553
BasicVSR-lite [43] 1.3 󰃀 32 / 32 30.56 / 0.8738 36.57 / 0.9397 26.86 / 0.8125 38.98 / 0.9645 36.78 / 0.9431 27.27 / 0.8327

L1-norm [25] 1.3 󰃀 32 / 32 30.66 / 0.8766 36.69 / 0.9406 26.87 / 0.8121 39.04 / 0.9650 36.84 / 0.9437 27.29 / 0.8335
ASSL [48] 1.3 󰃀 32 / 32 30.74 / 0.8770 36.75 / 0.9414 27.01 / 0.8176 39.15 / 0.9660 36.93 / 0.9450 27.40 / 0.8400
KSNet [21] 1.6 󰃀 32 / 32 31.14 / 0.8862 - 27.22 / 0.8245 - 37.54 / 0.9503 -
SSL [43] 1.0 󰃀 32 / 32 31.06 / 0.8833 36.82 / 0.9419 27.15 / 0.8208 39.35 / 0.9665 37.06 / 0.9458 27.56 / 0.8431
Ours-PQ 1.3 ✗ 6 / 6MP 31.26 / 0.8879 37.07 / 0.9440 27.18 / 0.8215 39.64 / 0.9680 37.37 / 0.9485 27.84 / 0.8495
Ours-FQ 1.0 ✗ 6 / 6MP 31.17 / 0.8849 36.79 / 0.9409 27.05 / 0.8140 39.22 / 0.9646 37.02 / 0.9444 27.69 / 0.8405
Ours-PQ 1.0 ✗ 4 / 4MP 30.34 / 0.8657 35.93 / 0.9315 26.26 / 0.7764 38.15 / 0.9576 36.46 / 0.9387 27.02 / 0.8161
Ours-FQ 0.7 ✗ 4 / 4MP 30.26 / 0.8637 35.82 / 0.9311 26.29 / 0.7752 37.59 / 0.9536 35.95 / 0.9339 26.81 / 0.8025

BasicVSR-uni [3] 2.6 󰃀 32 / 32 30.54 / 0.8694 36.99 / 0.9429 27.03 / 0.8163 39.29 / 0.9646 37.27 / 0.9473 27.54 / 0.8419
BasicVSR-uni-lite [43] 0.7 󰃀 32 / 32 29.95 / 0.8561 36.38 / 0.9372 26.68 / 0.8012 38.24 / 0.9586 36.38 / 0.9388 26.87 / 0.8157

L1-norm-uni [25] 0.7 󰃀 32 / 32 29.97 / 0.8570 36.45 / 0.9381 26.70 / 0.8031 38.43 / 0.9601 36.53 / 0.9405 26.89 / 0.8187
ASSL-uni [48] 0.7 󰃀 32 / 32 30.02 / 0.8589 36.49 / 0.9385 26.76 / 0.8051 38.48 / 0.9603 36.61 / 0.9416 27.02 / 0.8236
KSNet-uni [21] 1.6 󰃀 32 / 32 30.69 / 0.8724 - 27.14 / 0.8208 - 37.34 / 0.9490 -
SSL-uni [43] 0.5 󰃀 32 / 32 30.24 / 0.8633 36.56 / 0.9392 27.01 / 0.8148 38.68 / 0.9615 36.77 / 0.9429 27.18 / 0.8296
Ours-uni-PQ 0.8 ✗ 6 / 6MP 30.40 / 0.8665 36.81 / 0.9413 26.91 / 0.8101 38.97 / 0.9633 37.11 / 0.9460 27.40 / 0.8372
Ours-uni-FQ 0.55 ✗ 6 / 6MP 30.35 / 0.8646 36.63 / 0.9396 26.81 / 0.8060 38.70 / 0.9610 36.83 / 0.9434 27.29 / 0.8310
Ours-uni-PQ 0.7 ✗ 4 / 4MP 29.57 / 0.8460 35.96 / 0.9323 26.32 / 0.7784 37.78 / 0.9550 36.22 / 0.9366 26.71 / 0.8067
Ours-uni-FQ 0.4 ✗ 4 / 4MP 29.55 / 0.8434 35.75 / 0.9296 26.15 / 0.7674 37.29 / 0.9517 35.72 / 0.9319 26.53 / 0.7938

4.3 Comparison with Static Quantization

To substantiate the effectiveness of our method, we benchmark against conventional static quantiza-
tion techniques without QAT. Comparisons include standard PTQ approaches MinMax [20] and Per-
centile [27]. To ensure fair comparison, we extend these methods by incorporating fine-tuning (FT)
steps to existing PTQ approaches, denoted as MinMax+FT and Percentile+FT, where FT employs

8



our parameter optimization strategy described in Sec. 3.5. In addition, we also adapt DBDC [38], the
first image super-resolution quantization method, into the video setting. Since video SR networks
typically adopt a recurrent architecture with parameter sharing across frames, image-specific quan-
tization strategies cannot be directly applied. To address this, we apply DBDC’s clipping-boundary
estimation independently on each frame, and then aggregate the per-frame boundaries via an EMA
strategy across the temporal dimension. This modification preserves the core idea of DBDC (dy-
namic clipping with EMA) while making it compatible with recurrent video SR models, thus pro-
viding a meaningful baseline for comparison. As Table 2 demonstrates, our adaptive quantization
surpasses all counterparts in 4-bit weights. Extended experiments validating the applicability of our
method are included in the supplementary materials. Qualitative comparisons are shown in Fig. 5,
where it can be seen that only our method successfully restores the contours.

Table 2: Comparisons with static quantization on VSR. All results are calculated on the Y-channel
except REDS4 (RGB-channel). “Time (min)” indicates the total processing time for each method.

Methods FT W / A Time BI degradation BD degradation
(min) REDS4 [33] Vimeo-90K-T [45] Vid4 [30] UDM10 [46] Vimeo90K-T [45] Vid4 [30]

BasicVSR [3] - 32 / 32 - 31.42 / 0.8909 37.18 / 0.9450 27.24 / 0.8251 39.96 / 0.9694 37.53 / 0.9498 27.96 / 0.8553

BasicVSR-MinMax [20] ✗ 4 / 4 6 28.12 / 0.7896 34.89 / 0.9182 26.03 / 0.7585 35.37 / 0.9251 34.32 / 0.9106 25.64 / 0.7412
BasicVSR-Percentile [27] ✗ 4 / 4 3 27.78 / 0.7841 34.37 / 0.9159 25.23 / 0.7305 35.06 / 0.9341 34.11 / 0.9135 25.08 / 0.7275

BasicVSR-DBDC [38] ✗ 4 / 4 30 28.07 / 0.7817 35.23 / 0.9225 26.24 / 0.7720 35.96 / 0.9339 34.77 / 0.9172 26.01 / 0.7581
BasicVSR-MinMax+FT ✓ 4 / 4 70 29.21 / 0.8238 35.22 / 0.9212 26.17 / 0.7601 36.44 / 0.9393 34.88 / 0.9176 26.11 / 0.7584
BasicVSR-Percentile+FT ✓ 4 / 4 70 28.30 / 0.8054 34.40 / 0.9159 25.26 / 0.7314 35.32 / 0.9362 34.20 / 0.9142 25.26 / 0.7340

BasicVSR-DBDC+FT ✓ 4 / 4 95 29.24 / 0.8232 35.45 / 0.9243 26.31 / 0.7703 36.82 / 0.9434 35.25 / 0.9228 26.42 / 0.7764
BasicVSR-Ours ✓ 4 / 4MP 90 30.26 / 0.8637 35.82 / 0.9311 26.29 / 0.7752 37.59 / 0.9536 35.95 / 0.9339 26.81 / 0.8025

MinMax
24.28 / 0.6686 

Percentile
24.13 / 0.6642

MinMax+FT
24.69 / 0.6883

Percentile+FT
24.23 / 0.6650

Ours
25.73 / 0.7770

GT
PSNR / SSIMFrame 019, Clip city, Vid4

DBDC
24.53 / 0.6864

DBDC+FT
25.08 / 0.7213

Figure 2: Qualitative comparison on Vid4 [30]. Only our method reconstructs both structural con-
tours and fine-grained details. (Zoom-in for best view)

4.4 Ablation Study

Table 3 reports a component-wise ablation on REDS4 with 4-bit fully quantized BasicVSR. The
first row corresponds to the full-precision (FP32) baseline, where no calibration is performed and
the network therefore runs without quantization. Activating calibration alone (row 2) applies 4-bit
quantization and causes the expected accuracy drop. Fine-tuning on the small calibration set (row
3) restores most of the accuracy lost after calibration. Enabling FG-VBA or TS-LBA individually
(rows 4–5) provides further gains, and combining both adaptation modules (row 6) delivers the
best overall performance, surpassing the FP32 model in perceptual quality under the same 4-bit
constraint. These results demonstrate that each component, calibration, fine-tuning, and the two
adaptation modules, contributes significantly to the final reconstruction accuracy.

Table 3: Ablation study on each attribute of our
method evaluated on REDS4 with 4-bit FQ Ba-
sicVSR. FG-VBA and TS-LBA denote the flow-
gradient video bit adaptation and temporal shared
layer bit adaptation modules. Calib is the calibra-
tion, and FT denotes fine-tuning. The full configu-
ration gives the best reconstruction accuracy.

FG-VBA TS-LBA Calib FT PSNR SSIM

- - - - 31.42 0.8909
- - 󰃀 - 28.34 0.7933
- - 󰃀 󰃀 29.05 0.8180
󰃀 - 󰃀 󰃀 29.96 0.8502
- 󰃀 󰃀 󰃀 30.14 0.8606
󰃀 󰃀 󰃀 󰃀 30.26 0.8637

Table 4: Comparison with SOTA efficient
VSR methods. Pretraining denotes whether a
pretrained model has been used, Data means
the number of video clips required for train-
ing, GT denotes the requirement for ground-
truth HR videos, BS is the batch size during
the fine-tuning phase, and GPUs denotes the
number of GPUs used. The processing time
is measured on A6000 GPUs. The runtime is
computed based on an LR size of 180 × 320.

Methods Pretraining Data GT BS Iterations Processing Runtime GPUsTime

BasicVSR - 26600 󰃀 8 300,000 116hrs 53ms 2

KSNet [21] ✗ 26600 󰃀 8 600,000 96hrs - 4
SSL [43] 󰃀 26600 󰃀 8 303,380 370hrs 54ms 8

Ours 󰃀 100 ✗ 2 150 90min 8ms 1
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4.5 Computational Efficiency Comparison

We analyze the processing time of our framework in comparison to existing SOTA efficient meth-
ods in Table 4. In terms of processing time, our method is over ×200 faster than SSL [43]. The
calculation is as follows: 370 hours × 60 = 22,200 minutes; 22,200 minutes / 90 minutes ≈ 247×.
Furthermore, our method only requires 1 GPU, whereas SSL [43] requires 8 GPUs. These results
demonstrate that our method requires significantly less processing time and fewer GPU resources
compared to other SOTA efficient VSR compression methods. Note that this comparison specifically
evaluates model compression techniques applied to pretrained VSR models, rather than comparing
quantization with core VSR training. Both SSL and our method are compression approaches oper-
ating on the same pretrained VSR backbone. Beyond the drastic reduction in tuning cost and GPU
resource demand, our method also achieves a superior runtime of 8 ms. This is notably faster than
other methods, making the quantized model highly efficient for practical deployment. Combined
with its minimal data requirement (only 100 video clips without the need for GT), our approach
presents a highly practical and efficient compression solution for VSR models. To the best of our
knowledge, this work presents the first successful quantization scheme for video super-resolution
models, delivering a breakthrough in efficiency while maintaining competitive performance.

4.6 Error Bars Evaluation

PTQ for VSR requires a calibration dataset of unlabeled LR video clips to estimate activation statis-
tics. An important consideration for practical deployment is the sensitivity of the quantized model’s
performance to the composition of this dataset. Notably, these calibration data can be sourced di-
rectly from the target application’s video streams, eliminating the need for separate data collection.
In our main experiments, calibration data were sampled using a fixed random seed for consistency.
To rigorously evaluate the robustness of our method, we constructed multiple calibration datasets
by sampling 100 LR video clips using different random seeds (0, 1, 2, 3, and 321), where seed 1
served as the default in our main experiments. The performance variations across these datasets are
quantified in Table 5. The results show consistently high performance with low variance across dif-
ferent calibration sets, confirming that our method is robust to variations in the calibration data. This
demonstrates that in practice, any representative sample from the deployment domain can be effec-
tively used without requiring carefully curated data. Our approach therefore provides both superior
quantitative performance and practical robustness for real-world applications.

Table 5: Error bars evaluation with 4-bit fully quantized BasicVSR (PSNR / SSIM). All results
are calculated on the Y-channel except REDS4 (RGB-channel). The random seeds are taken from
0, 1, 2, 3, 321 to generate calibration datasets.

Methods seed BI degradation BD degradation
REDS4 [41] Vimeo-90K-T [45] Vid4 [30] UDM10 [46] Vimeo90K-T [45] Vid4 [30]

BasicVSR [3] - 31.42 / 0.8909 37.18 / 0.9450 27.24 / 0.8251 39.96 / 0.9694 37.53 / 0.9498 27.96 / 0.8553

Ours

0 30.09 / 0.8562 36.03 / 0.9335 26.29 / 0.7772 37.78 / 0.9554 35.93 / 0.9336 26.80 / 0.8040
1 30.26 / 0.8637 35.82 / 0.9311 26.29 / 0.7752 37.59 / 0.9536 35.95 / 0.9339 26.81 / 0.8025
2 29.90 / 0.8511 35.81 / 0.9311 26.22 / 0.7738 37.94 / 0.9563 36.02 / 0.9347 26.77 / 0.8032
3 30.19 / 0.8618 35.93 / 0.9320 26.19 / 0.7712 37.85 / 0.9557 36.08 / 0.9356 26.93 / 0.8114

321 30.09 / 0.8598 35.77 / 0.9299 25.84 / 0.7530 37.78 / 0.9546 35.97 / 0.9335 26.88 / 0.8056

Mean 30.11 / 0.8578 35.87 / 0.9315 26.17 / 0.7701 37.79 / 0.9567 35.99 / 0.9343 26.84 / 0.8053
Std 0.12 / 0.0038 0.10 / 0.0011 0.17 / 0.0088 0.12 / 0.0027 0.05 / 0.0019 0.06 / 0.0032

5 Conclusion

In this paper, we present the first quantization method for VSR with a few unlabeled calibration video
clips that adaptively learns the bit adaptation strategies. Different from image SR, the temporal error
propagation, shared temporal parameterization, and temporal metric mismatch significantly degrade
the performance of the quantized VSR model. To alleviate these problems, we propose a temporal
awareness adaptation post-training quantization framework for VSR. With the flow-gradient video
bit adaptation and temporal shared layer bit adaptation, we could get the initial bit-width for videos
and layers in VSR models, then optimize them with calibration and a novel fine-tuning method
with the supervision of the full-precision model. The results demonstrate that our method not only
achieves superior accuracy compared to SOTA methods but also significantly reduces the tuning cost
and achieves an ultrafast runtime, underscoring its high practicality.

10



Acknowledgement. This work was supported by the National Natural Science Foundation of China
(Nos. 62276182, 62476196), Emerging Frontiers Cultivation Program of Tianjin University Interdis-
ciplinary Center, Tianjin Natural Science Foundation (Nos. 24JCYBJC01230, 24JCYBJC01460),
and Tianjin Municipal Education Commission Research Plan (No. 2024ZX008).

References
[1] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradi-

ents through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432,
2013.

[2] Jose Caballero, Christian Ledig, Andrew Aitken, Alejandro Acosta, Johannes Totz, Zehan
Wang, and Wenzhe Shi. Real-time video super-resolution with spatio-temporal networks and
motion compensation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4778–4787, 2017.

[3] Kelvin C.K. Chan, Xintao Wang, Ke Yu, Chao Dong, and Chen Change Loy. Basicvsr: The
search for essential components in video super-resolution and beyond. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 4947–
4956, June 2021.

[4] Kelvin C.K. Chan, Shangchen Zhou, Xiangyu Xu, and Chen Change Loy. Basicvsr++: Im-
proving video super-resolution with enhanced propagation and alignment. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 5972–
5981, June 2022.

[5] Pierre Charbonnier, Laure Blanc-Feraud, Gilles Aubert, and Michel Barlaud. Two determin-
istic half-quadratic regularization algorithms for computed imaging. In Proceedings of 1st
international conference on image processing, volume 2, pages 168–172. IEEE, 1994.

[6] Wei-Hao Chen, Chunmeng Dou, Kai-Xiang Li, Wei-Yu Lin, Pin-Yi Li, Jian-Hao Huang, Jing-
Hong Wang, Wei-Chen Wei, Cheng-Xin Xue, Yen-Cheng Chiu, et al. Cmos-integrated memris-
tive non-volatile computing-in-memory for ai edge processors. Nature Electronics, 2(9):420–
428, 2019.

[7] Weihan Chen, Peisong Wang, and Jian Cheng. Towards mixed-precision quantization of neural
networks via constrained optimization. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 5350–5359, 2021.

[8] Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel Kisilev. Low-bit quantization of neural
networks for efficient inference. In 2019 IEEE/CVF International Conference on Computer
Vision Workshop (ICCVW), pages 3009–3018. IEEE, 2019.

[9] Zhen Dong, Zhewei Yao, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. Hawq:
Hessian aware quantization of neural networks with mixed-precision. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 293–302, 2019.

[10] Dario Fuoli, Shuhang Gu, and Radu Timofte. Efficient video super-resolution through re-
current latent space propagation. In 2019 IEEE/CVF International Conference on Computer
Vision Workshop (ICCVW), pages 3476–3485. IEEE, 2019.

[11] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer.
A survey of quantization methods for efficient neural network inference. In Low-power com-
puter vision, pages 291–326. Chapman and Hall/CRC, 2022.

[12] Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li, Peng Hu, Jiazhen Lin, Fengwei
Yu, and Junjie Yan. Differentiable soft quantization: Bridging full-precision and low-bit neural
networks. In Proceedings of the IEEE/CVF international conference on computer vision, pages
4852–4861, 2019.

[13] Muhammad Haris, Gregory Shakhnarovich, and Norimichi Ukita. Recurrent back-projection
network for video super-resolution. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 3897–3906, 2019.

11



[14] Cheeun Hong, Sungyong Baik, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Cadyq:
Content-aware dynamic quantization for image super-resolution. In European Conference on
Computer Vision, pages 367–383. Springer, 2022.

[15] Cheeun Hong, Heewon Kim, Sungyong Baik, Junghun Oh, and Kyoung Mu Lee. Daq:
Channel-wise distribution-aware quantization for deep image super-resolution networks. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV),
pages 2675–2684, January 2022.

[16] Cheeun Hong and Kyoung Mu Lee. Adabm: on-the-fly adaptive bit mapping for image super-
resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2641–2650, 2024.

[17] Takashi Isobe, Xu Jia, Shuhang Gu, Songjiang Li, Shengjin Wang, and Qi Tian. Video super-
resolution with recurrent structure-detail network. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XII 16, pages
645–660. Springer, 2020.

[18] Takashi Isobe, Songjiang Li, Xu Jia, Shanxin Yuan, Gregory Slabaugh, Chunjing Xu, Ya-Li
Li, Shengjin Wang, and Qi Tian. Video super-resolution with temporal group attention. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
8008–8017, 2020.

[19] Takashi Isobe, Fang Zhu, Xu Jia, and Shengjin Wang. Revisiting temporal modeling for video
super-resolution. arXiv preprint arXiv:2008.05765, 2020.

[20] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2704–2713, 2018.

[21] Shuo Jin, Meiqin Liu, Chao Yao, Chunyu Lin, and Yao Zhao. Kernel dimension matters: To
activate available kernels for real-time video super-resolution. In Proceedings of the 31st ACM
International Conference on Multimedia, MM ’23, page 8617–8625, New York, NY, USA,
2023. Association for Computing Machinery.

[22] Younghyun Jo, Seoung Wug Oh, Jaeyeon Kang, and Seon Joo Kim. Deep video super-
resolution network using dynamic upsampling filters without explicit motion compensation.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
3224–3232, 2018.

[23] Sergey Kastryulin, Jamil Zakirov, Denis Prokopenko, and Dmitry V. Dylov. Pytorch image
quality: Metrics for image quality assessment, 2022.

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[25] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

[26] Huixia Li, Chenqian Yan, Shaohui Lin, Xiawu Zheng, Baochang Zhang, Fan Yang, and Ron-
grong Ji. Pams: Quantized super-resolution via parameterized max scale. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XXV 16, pages 564–580. Springer, 2020.

[27] Rundong Li, Yan Wang, Feng Liang, Hongwei Qin, Junjie Yan, and Rui Fan. Fully quantized
network for object detection. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 2810–2819, 2019.

[28] Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Tim-
ofte, and Luc Van Gool. Vrt: A video restoration transformer. IEEE Transactions on Image
Processing, 33:2171–2182, 2024.

12



[29] Jingyun Liang, Yuchen Fan, Xiaoyu Xiang, Rakesh Ranjan, Eddy Ilg, Simon Green, Jiezhang
Cao, Kai Zhang, Radu Timofte, and Luc V Gool. Recurrent video restoration transformer with
guided deformable attention. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho,
and A. Oh, editors, Advances in Neural Information Processing Systems, volume 35, pages
378–393. Curran Associates, Inc., 2022.

[30] Ce Liu and Deqing Sun. On bayesian adaptive video super resolution. IEEE transactions on
pattern analysis and machine intelligence, 36(2):346–360, 2013.

[31] Anish Mittal, Anush K Moorthy, and Alan C Bovik. Blind/referenceless image spatial quality
evaluator. In 2011 conference record of the forty fifth asilomar conference on signals, systems
and computers (ASILOMAR), pages 723–727. IEEE, 2011.

[32] Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. Making a “completely blind” image
quality analyzer. IEEE Signal processing letters, 20(3):209–212, 2012.

[33] Seungjun Nah, Sungyong Baik, Seokil Hong, Gyeongsik Moon, Sanghyun Son, Radu Timofte,
and Kyoung Mu Lee. Ntire 2019 challenge on video deblurring and super-resolution: Dataset
and study. In Proceedings of the IEEE/CVF conference on computer vision and pattern recog-
nition workshops, 2019.

[34] Anurag Ranjan and Michael J Black. Optical flow estimation using a spatial pyramid network.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
4161–4170, 2017.

[35] Chen Tang, Kai Ouyang, Zhi Wang, Yifei Zhu, Wen Ji, Yaowei Wang, and Wenwu Zhu. Mixed-
precision neural network quantization via learned layer-wise importance. In European confer-
ence on computer vision, pages 259–275. Springer, 2022.

[36] Xin Tao, Hongyun Gao, Renjie Liao, Jue Wang, and Jiaya Jia. Detail-revealing deep video
super-resolution. In Proceedings of the IEEE international conference on computer vision,
pages 4472–4480, 2017.

[37] Senmao Tian, Ming Lu, Jiaming Liu, Yandong Guo, Yurong Chen, and Shunli Zhang. Cabm:
Content-aware bit mapping for single image super-resolution network with large input. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
1756–1765, 2023.

[38] Zhijun Tu, Jie Hu, Hanting Chen, and Yunhe Wang. Toward accurate post-training quantization
for image super resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5856–5865, 2023.

[39] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-aware automated
quantization with mixed precision. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 8612–8620, 2019.

[40] Xintao Wang, Kelvin CK Chan, Ke Yu, Chao Dong, and Chen Change Loy. Edvr:
Video restoration with enhanced deformable convolutional networks. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition workshops, 2019.

[41] Xintao Wang, Kelvin CK Chan, Ke Yu, Chao Dong, and Chen Change Loy. Edvr:
Video restoration with enhanced deformable convolutional networks. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition workshops, 2019.

[42] Yu Emma Wang, Gu-Yeon Wei, and David Brooks. Benchmarking tpu, gpu, and cpu platforms
for deep learning. arXiv preprint arXiv:1907.10701, 2019.

[43] Bin Xia, Jingwen He, Yulun Zhang, Yitong Wang, Yapeng Tian, Wenming Yang, and Luc
Van Gool. Structured sparsity learning for efficient video super-resolution. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
22638–22647, June 2023.

13



[44] Zeyu Xiao, Xueyang Fu, Jie Huang, Zhen Cheng, and Zhiwei Xiong. Space-time distillation
for video super-resolution. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 2113–2122, 2021.

[45] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William T Freeman. Video enhance-
ment with task-oriented flow. International Journal of Computer Vision, 127:1106–1125, 2019.

[46] Peng Yi, Zhongyuan Wang, Kui Jiang, Junjun Jiang, and Jiayi Ma. Progressive fusion video
super-resolution network via exploiting non-local spatio-temporal correlations. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 3106–3115, 2019.

[47] Peng Yi, Zhongyuan Wang, Kui Jiang, Junjun Jiang, and Jiayi Ma. Progressive fusion video
super-resolution network via exploiting non-local spatio-temporal correlations. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 3106–3115, 2019.

[48] Yulun Zhang, Huan Wang, Can Qin, and Yun Fu. Aligned structured sparsity learning for effi-
cient image super-resolution. Advances in Neural Information Processing Systems, 34:2695–
2706, 2021.

[49] Yunshan Zhong, Mingbao Lin, Xunchao Li, Ke Li, Yunhang Shen, Fei Chao, Yongjian Wu, and
Rongrong Ji. Dynamic dual trainable bounds for ultra-low precision super-resolution networks.
In European Conference on Computer Vision, pages 1–18. Springer, 2022.

14



A More Details on Datasets and Evaluation Metrics

Training and testing datasets. For video super-resolution at a scale factor of 4, we train the
model using two distinct datasets. In one setting, we generate LR frames by applying the MATLAB
imresize function with bicubic interpolation, and the model is trained on the REDS dataset [33],
using the REDS4 subset [41], which consists of clips 000, 011, 015, and 020, for evaluation. In
another setting, the model is trained on the Vimeo-90K dataset [45] using two types of degradation:
bicubic interpolation and a blur-downsampling approach that applies a Gaussian blur with a stan-
dard deviation of 1.6 followed by subsampling. The evaluation is conducted on three datasets, where
Vimeo-90K-T [45] and Vid4 [30] are tested under both degradation settings, while UDM10 [46] is
evaluated using only the blur-downsampling setting.

REDS [33] is a standard proposed high-quality video dataset with a resolution of 1280 × 720,
designed for video super-resolution. It includes 270 clips that serve both training and validation
purposes. Following the setting in [41], we use REDS4, which consists of four representative clips
(000, 011, 015 and 020), as the evaluation set, while the remaining 266 clips are used for training.
This dataset is employed for training video super-resolution models under bicubic degradation.

Vimeo-90K [45] is a widely used video dataset with a resolution of 448 × 256, commonly adopted
for video super-resolution tasks. It provides 64,612 clips for training and 7,824 clips for testing, with
the test set referred to as Vimeo-90K-T. This dataset is utilized for training video super-resolution
models under both bicubic interpolation and blur-downsampling degradations.

Vid4 [30] is a classic dataset commonly used for evaluating video restoration methods. It comprises
four video clips named calendar, city, foliage, and walk, each consisting of at least 34 frames with a
resolution of 720 × 480.

UDM10 [46] is a standard benchmark dataset introduced for evaluating video super-resolution meth-
ods. It consists of 4 video clips covering diverse scenes, with each clip containing 32 frames at a
resolution of 1272 × 720.

Evaluation metrics. Following [3, 41], the evaluation metrics are computed on the RGB channel
for REDS4 [41], while for Vimeo-90K-T [45], Vid4 [30], and UDM10 [46], the calculations are
performed on the Y channel.

B Additional Experiments

B.1 Per-stage Fine-tuning Analysis

As detailed in Section 3.5, our fine-tuning process consists of three sequential stages. This design
ensures stable optimization by progressively refining different subsets of quantization parameters.
To provide a comprehensive analysis, Table 6 reports the performance and feature average bit-width
(FAB), which is calculated across all video clips in the test dataset after each stage, with the analysis
conducted on the BasicVSR architecture under an FQ setting.

Stage 1: Weight Clipping Optimization. In this initial stage, we exclusively optimize the clipping
parameters ({uk

w}Kk=1) for weights, while freezing the quantization parameters ({lka, uk
a}Kk=1) for

activations and the bit adaptation parameters ({bkL}Kk=1, lv2b, uv2b). The fact that this stage alone
already surpasses strong baselines like DBDC [38] in accuracy, while maintaining a lower FAB,
demonstrates a key finding: our framework, even with its bit adaptation modules not yet finely tuned,
can achieve a superior performance-efficiency trade-off purely through optimized static quantization
of weights. This establishes a strong and efficient baseline.

Stage 2: Activation Clipping Optimization. We then refine the clipping ranges ({lka, uk
a}Kk=1) for

activations, with other parameters fixed. This step addresses the dynamic, input-dependent nature
of activation distributions. We observe a consistent performance improvement across all datasets
with a negligible change in FAB, indicating that the activation quantization parameters are being
effectively tuned without compromising efficiency.

Stage 3: Bit Adaptation Modules Optimization. The final stage unlocks the full potential of our
framework by optimizing the bit adaptation parameters, including the TS-LBA factors ({bkL}Kk=1)
and the FG-VBA thresholds (lv2b, uv2b). As shown in Table 6, this stage yields a significant per-
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formance boost by enabling dynamic bit-width allocation, at the cost of a moderate and controlled
increase in FAB. This introduces a tunable trade-off: users can opt for the high-efficiency model
from Stage 1 or 2, or the high-performance model from Stage 3, depending on their specific deploy-
ment constraints. Note that the weight bit-width remains fixed at the base precision (e.g., 4 bits in
"w4a4") throughout all stages; only the activation bit-width is dynamically adapted.

Table 6: Performance and efficiency analysis across different fine-tuning stages. Results are
reported in metrics of PSNR / SSIM / FAB. All the results are calculated on the Y-channel except
REDS4 (RGB-channel).

Methods W/A Time BI degradation BD degradation
(min) REDS4 [41] Vimeo-90K-T [45] Vid4 [30] UDM10 [46] Vimeo90K-T [45] Vid4 [30]

DBDC [38] 4 / 4 30 28.07 / 0.7817 / 4.00 35.23 / 0.9225 / 4.00 26.24 / 0.7720 / 4.00 35.96 / 0.9339 / 4.00 34.77 / 0.9172 / 4.00 26.01 / 0.7581 / 4.00
Ours-Stage1 4 / 4MP 40 29.82 / 0.8466 / 3.98 35.46 / 0.9266 / 3.95 26.12 / 0.7666 / 3.75 36.69 / 0.9464 / 3.70 35.45 / 0.9272 / 3.95 26.32 / 0.7716 / 3.75
Ours-Stage2 4 / 4MP 65 29.86 / 0.8479 / 3.98 35.51 / 0.9270 / 3.95 26.21 / 0.7695 / 3.75 36.76 / 0.9471 / 3.70 35.54 / 0.9283 / 3.95 26.38 / 0.7741 / 3.75
Ours-Stage3 4 / 4MP 90 30.26 / 0.8637 / 5.50 35.82 / 0.9311 / 5.03 26.29 / 0.7752 / 4.69 37.59 / 0.9536 / 4.78 35.95 / 0.9339 / 5.08 26.81 / 0.8025 / 4.98

B.2 Full Quantization vs. Partial Quantization

In this work, we compare VSR networks with existing static quantization methods that do not uti-
lize QAT. Meanwhile, the majority of SR quantization approaches employ a partial quantization
scheme, restricting quantization exclusively to the network’s body module. Therefore, we analyze
the effect of fully quantizing the network in Table 7. Despite its limited impact on reducing total
computational cost, partial quantization yields notably higher reconstruction accuracy. Overall, our
method delivers higher accuracy while maintaining comparable computational cost in both partial
and full quantization settings. For the evaluation metric, we measure reconstruction accuracy using
PSNR, SSIM, and FAB. We further validate our quantization framework on the unidirectional vari-
ant, BasicVSR-uni, to assess its generalizability across architectures. As shown in the lower part
of the table, our method consistently outperforms existing quantization schemes on both BasicVSR
and BasicVSR-uni, confirming the robustness of the proposed design.

B.3 Comprehensive Error Bars Evaluation with FAB

In our main experiments, calibration data were sampled using a fixed random seed (Seed 1) for con-
sistency. To provide a more comprehensive robustness analysis, we extend the error bars evaluation
presented in Table 5 of the main text by further including the variation in FAB. As in the main text,
we use random seeds (0, 1, 2, 3, 321) to sample calibration datasets. The results, presented in Table
8, demonstrate that our method exhibits not only stable performance (PSNR / SSIM) but also a sta-
ble FAB across different calibration video clips. The low standard deviation in FAB confirms that
the bit-width allocation is robust and does not fluctuate excessively with the calibration data.

B.4 Comprehensive Quantitative Comparisons with Perceptual Quality Metrics

As GT is not available for real-world videos, full-reference metrics such as PSNR and SSIM can-
not be applied in such cases. To provide a more comprehensive assessment, we additionally report
two widely used no-reference perceptual quality metrics, NIQE [32] and BRISQUE [31], on the
REDS4 [41] and Vid4 [30] datasets. The corresponding results are provided in the Table 9. Com-
pared to the efficient VSR method SSL [43], our 6-bit models (1.0-1.3M) are competitive or better
in PSNR / SSIM while using far lower bits. Compared to the FP BasicVSR (32 / 32, 4.9M), our
6-bit models narrow the fidelity gap to within 0.2-0.3 dB on average while using 4-5× fewer param-
eters, and with perceptual scores that are comparable or better in several cases. In addition, under
the same 4-bit FQ setting, our method consistently delivers higher fidelity and strong perceptual
quality than standard PTQ baselines, including DBDC [38]. On REDS4 [41], our method (4 / 4,
FQ) improves PSNR over DBDC+FT by +1.04 dB (30.26 vs. 29.22) with a lower NIQE (20.71
vs. 20.98). On Vid4 [30] (BI), we achieve a comparable PSNR (26.28 vs. 26.31) but with better
NIQE and BRISQUE (21.20 / 45.30 vs. 21.91 / 46.83). On Vid4 [30] (BD), our method outperforms
DBDC+FT by +0.39 dB in PSNR (26.81 vs. 26.42) and achieves a lower NIQE (21.27 vs. 22.01).
Furthermore, to validate the generalization of our method across different architectures, we also
evaluate on BasicVSR-uni variant. On this architecture, our quantized models maintain competi-
tive performance against the full-precision baseline while utilizing significantly fewer parameters
and consistently outperform other PTQ methods, demonstrating robust generalization capability. In
summary, unlike other PTQ methods (MinMax [20], Percentile [27], DBDC [38]) that often trade
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Table 7: Comparisons between fully quantization and partial quantization on VSR in terms
of PSNR, SSIM and FAB. All the results are calculated on the Y-channel except REDS4 (RGB-
channel) and FQ denotes Full Quantization models.

Methods FQ W/A BI degradation BD degradation
REDS4 [41] Vimeo-90K-T [45] Vid4 [30] UDM10 [46] Vimeo90K-T [45] Vid4 [30]

BasicVSR [3] - 32 / 32 31.42 / 0.8909 / 32.00 37.18 / 0.9450 / 32.00 27.24 / 0.8251 / 32.00 39.96 / 0.9694 / 32.00 37.53 / 0.9498 / 32.00 27.96 / 0.8553 / 32.00

BasicVSR-MinMax [20] ✗ 4 / 4 28.16 / 0.7915 / 4.00 34.95 / 0.9189 / 4.00 26.06 / 0.7594 / 4.00 35.48 / 0.9272 / 4.00 34.41 / 0.9120 / 4.00 25.66 / 0.7426 / 4.00
BasicVSR-Percentile [27] ✗ 4 / 4 28.89 / 0.8208 / 4.00 36.08 / 0.9345 / 4.00 26.51 / 0.7909 / 4.00 37.59 / 0.9537 / 4.00 35.96 / 0.9348 / 4.00 26.62 / 0.8000 / 4.00

BasicVSR-DBDC [38] ✗ 4 / 4 28.11 / 0.7836 / 4.00 35.29 / 0.9232 / 4.00 26.27 / 0.7725 / 4.00 36.04 / 0.9350 / 4.00 34.84 / 0.9182 / 4.00 26.03 / 0.7589 / 4.00
BasicVSR-MinMax+FT ✗ 4 / 4 29.21 / 0.8217 / 4.00 35.25 / 0.9219 / 4.00 26.11 / 0.7612 / 4.00 36.42 / 0.9399 / 4.00 34.86 / 0.9178 / 4.00 26.05 / 0.7570 / 4.00
BasicVSR-Percentile+FT ✗ 4 / 4 29.92 / 0.8513 / 4.00 36.17 / 0.9357 / 4.00 26.60 / 0.7948 / 4.00 37.77 / 0.9573 / 4.00 36.18 / 0.9375 / 4.00 26.78 / 0.8075 / 4.00

BasicVSR-DBDC+FT ✗ 4 / 4 29.22 / 0.8223 / 4.00 35.45 / 0.9245 / 4.00 26.12 / 0.7636 / 4.00 36.91 / 0.9450 / 4.00 35.32 / 0.9241 / 4.00 26.41 / 0.7795 / 4.00
BasicVSR-Ours ✗ 4 / 4MP 30.34 / 0.8657 / 5.48 35.93 / 0.9315 / 3.95 26.26 / 0.7764 / 3.75 38.15 / 0.9576 / 4.75 36.46 / 0.9387 / 5.05 27.02 / 0.8161 / 4.96

BasicVSR-MinMax [20] ✓ 4 / 4 28.12 / 0.7896 / 4.00 34.89 / 0.9182 / 4.00 26.03 / 0.7585 / 4.00 35.37 / 0.9251 / 4.00 34.32 / 0.9106 / 4.00 25.64 / 0.7412 / 4.00
BasicVSR-Percentile [27] ✓ 4 / 4 27.78 / 0.7841 / 4.00 34.37 / 0.9159 / 4.00 25.23 / 0.7305 / 4.00 35.06 / 0.9341 / 4.00 34.11 / 0.9135 / 4.00 25.08 / 0.7275 / 4.00

BasicVSR-DBDC [38] ✓ 4 / 4 28.07 / 0.7817 / 4.00 35.23 / 0.9225 / 4.00 26.24 / 0.7720 / 4.00 35.96 / 0.9339 / 4.00 34.77 / 0.9172 / 4.00 26.01 / 0.7581 / 4.00
BasicVSR-MinMax+FT ✓ 4 / 4 29.21 / 0.8238 / 4.00 35.22 / 0.9212 / 4.00 26.17 / 0.7601 / 4.00 36.44 / 0.9393 / 4.00 34.88 / 0.9176 / 4.00 26.11 / 0.7584 / 4.00
BasicVSR-Percentile+FT ✓ 4 / 4 28.30 / 0.8054 / 4.00 34.40 / 0.9159 / 4.00 25.26 / 0.7314 / 4.00 35.32 / 0.9362 / 4.00 34.20 / 0.9142 / 4.00 25.26 / 0.7340 / 4.00

BasicVSR-DBDC+FT ✓ 4 / 4 29.24 / 0.8232 / 4.00 35.45 / 0.9243 / 4.00 26.31 / 0.7703 / 4.00 36.82 / 0.9434 / 4.00 35.25 / 0.9228 / 4.00 26.42 / 0.7764 / 4.00
BasicVSR-Ours ✓ 4 / 4MP 30.26 / 0.8637 / 5.50 35.82 / 0.9311 / 5.03 26.29 / 0.7752 / 4.69 37.59 / 0.9536 / 4.78 35.95 / 0.9339 / 5.08 26.81 / 0.8025 / 4.98

BasicVSR-MinMax [20] ✗ 6 / 6 31.19 / 0.8846 / 6.00 36.97 / 0.9429 / 6.00 27.16 / 0.8199 / 6.00 39.53 / 0.9665 / 6.00 37.25 / 0.9470 / 6.00 27.79 / 0.8486 / 6.00
BasicVSR-Percentile [27] ✗ 6 / 6 31.04 / 0.8845 / 6.00 36.77 / 0.9427 / 6.00 26.94 / 0.8121 / 6.00 38.81 / 0.9664 / 6.00 36.95 / 0.9469 / 6.00 27.39 / 0.8376 / 6.00

BasicVSR-DBDC [38] ✗ 6 / 6 31.12 / 0.8842 / 6.00 37.01 / 0.9435 / 6.00 27.17 / 0.8214 / 6.00 39.61 / 0.9672 / 6.00 37.29 / 0.9476 / 6.00 27.80 / 0.8503 / 6.00
BasicVSR-MinMax+FT ✗ 6 / 6 31.22 / 0.8848 / 6.00 36.97 / 0.9426 / 6.00 27.17 / 0.8201 / 6.00 39.50 / 0.9663 / 6.00 37.23 / 0.9466 / 6.00 27.79 / 0.8465 / 6.00
BasicVSR-Percentile+FT ✗ 6 / 6 31.07 / 0.8851 / 6.00 36.80 / 0.9427 / 6.00 26.97 / 0.8137 / 6.00 38.85 / 0.9663 / 6.00 36.97 / 0.9465 / 6.00 27.41 / 0.8370 / 6.00

BasicVSR-DBDC+FT ✗ 6 / 6 31.23 / 0.8848 / 6.00 36.99 / 0.9430 / 6.00 27.16 / 0.8091 / 6.00 39.59 / 0.9670 / 6.00 37.28 / 0.9471 / 6.00 27.85 / 0.8479 / 6.00
BasicVSR-Ours ✗ 6 / 6MP 31.26 / 0.8879 / 7.48 37.07 / 0.9440 / 7.07 27.18 / 0.8215 / 6.73 39.64 / 0.9680 / 6.77 37.37 / 0.9485 / 7.06 27.84 / 0.8495 / 6.97

BasicVSR-MinMax [20] ✓ 6 / 6 31.11 / 0.8821 / 6.00 36.79 / 0.9411 / 6.00 27.10 / 0.8172 / 6.00 39.14 / 0.9637 / 6.00 36.96 / 0.9441 / 6.00 27.71 / 0.8438 / 6.00
BasicVSR-Percentile [27] ✓ 6 / 6 28.49 / 0.8098 / 6.00 34.70 / 0.9211 / 6.00 25.42 / 0.7451 / 6.00 35.56 / 0.9409 / 6.00 34.49 / 0.9196 / 6.00 25.41 / 0.7485 / 6.00

BasicVSR-DBDC [38] ✓ 6 / 6 31.07 / 0.8822 / 6.00 36.86 / 0.9421 / 6.00 27.13 / 0.8194 / 6.00 39.30 / 0.9651 / 6.00 37.05 / 0.9453 / 6.00 27.72 / 0.8460 / 6.00
BasicVSR-MinMax+FT ✓ 6 / 6 31.12 / 0.8816 / 6.00 36.77 / 0.9402 / 6.00 27.07 / 0.8151 / 6.00 39.12 / 0.9632 / 6.00 36.95 / 0.9434 / 6.00 27.67 / 0.8438 / 6.00
BasicVSR-Percentile+FT ✓ 6 / 6 29.02 / 0.8313 / 6.00 34.75 / 0.9219 / 6.00 25.51 / 0.7497 / 6.00 35.88 / 0.9438 / 6.00 34.65 / 0.9218 / 6.00 25.59 / 0.7571 / 6.00

BasicVSR-DBDC+FT ✓ 6 / 6 31.14 / 0.8826 / 6.00 36.82 / 0.9412 / 6.00 27.09 / 0.8143 / 6.00 39.28 / 0.9647 / 6.00 37.06 / 0.9448 / 6.00 27.72 / 0.8417 / 6.00
BasicVSR-Ours ✓ 6 / 6MP 31.17 / 0.8849 / 7.47 36.79 / 0.9409 / 6.99 27.05 / 0.8140 / 6.65 39.22 / 0.9646 / 6.66 37.02 / 0.9444 / 6.95 27.69 / 0.8405 / 6.86
BasicVSR-uni [3] - 32 / 32 30.54 / 0.8694 / 32.00 36.99 / 0.9429 / 32.00 27.03 / 0.8163 / 32.00 39.29 / 0.9646 / 32.00 37.27 / 0.9473 / 32.00 27.54 / 0.8419 / 32.00

BasicVSR-uni-MinMax [20] ✗ 4 / 4 28.48 / 0.8012 / 4.00 34.40 / 0.9103 / 4.00 25.63 / 0.7342 / 4.00 35.59 / 0.9291 / 4.00 34.60 / 0.9153 / 4.00 25.84 / 0.7550 / 4.00
BasicVSR-uni-Percentile [27] ✗ 4 / 4 29.28 / 0.8321 / 4.00 35.45 / 0.9274 / 4.00 26.11 / 0.7717 / 4.00 37.19 / 0.9516 / 4.00 35.78 / 0.9330 / 4.00 26.41 / 0.7963 / 4.00

BasicVSR-uni-DBDC [38] ✗ 4 / 4 28.39 / 0.7964 / 4.00 34.96 / 0.9187 / 4.00 25.89 / 0.7524 / 4.00 35.89 / 0.9337 / 4.00 34.78 / 0.9180 / 4.00 25.98 / 0.7622 / 4.00
BasicVSR-uni-MinMax+FT ✗ 4 / 4 28.88 / 0.8157 / 4.00 34.86 / 0.9167 / 4.00 25.80 / 0.7441 / 4.00 36.34 / 0.9397 / 4.00 34.93 / 0.9188 / 4.00 26.00 / 0.7581 / 4.00
BasicVSR-uni-Percentile+FT ✗ 4 / 4 29.43 / 0.8366 / 4.00 35.49 / 0.9275 / 4.00 26.07 / 0.7681 / 4.00 37.32 / 0.9519 / 4.00 35.78 / 0.9326 / 4.00 26.50 / 0.7979 / 4.00

BasicVSR-uni-DBDC+FT ✗ 4 / 4 28.80 / 0.8119 / 4.00 35.02 / 0.9187 / 4.00 25.90 / 0.7506 / 4.00 36.42 / 0.9404 / 4.00 34.50 / 0.9199 / 4.00 26.07 / 0.7613 / 4.00
BasicVSR-uni-Ours ✗ 4 / 4MP 29.57 / 0.8460 / 5.25 35.96 / 0.9323 / 5.12 26.32 / 0.7784 / 4.75 37.78 / 0.9550 / 5.00 36.22 / 0.9366 / 5.03 26.71 / 0.8067 / 4.90

BasicVSR-uni-MinMax [20] ✓ 4 / 4 28.45 / 0.7997 / 4.00 34.31 / 0.9088 / 4.00 25.56 / 0.7308 / 4.00 35.53 / 0.9274 / 4.00 34.55 / 0.9142 / 4.00 25.82 / 0.7531 / 4.00
BasicVSR-uni-Percentile [27] ✓ 4 / 4 28.12 / 0.7984 / 4.00 33.94 / 0.9096 / 4.00 24.81 / 0.7030 / 4.00 34.76 / 0.9318 / 4.00 33.97 / 0.9111 / 4.00 24.87 / 0.7138 / 4.00

BasicVSR-uni-DBDC [38] ✓ 4 / 4 28.36 / 0.7953 / 4.00 34.91 / 0.9182 / 4.00 25.86 / 0.7510 / 4.00 35.85 / 0.9327 / 4.00 34.74 / 0.9172 / 4.00 25.96 / 0.7608 / 4.00
BasicVSR-uni-MinMax+FT ✓ 4 / 4 28.86 / 0.8135 / 4.00 34.70 / 0.9146 / 4.00 25.72 / 0.7384 / 4.00 36.33 / 0.9392 / 4.00 34.88 / 0.9182 / 4.00 26.14 / 0.7667 / 4.00
BasicVSR-uni-Percentile+FT ✓ 4 / 4 28.35 / 0.8074 / 4.00 34.03 / 0.9107 / 4.00 24.92 / 0.7105 / 4.00 35.05 / 0.9341 / 4.00 34.06 / 0.9125 / 4.00 25.09 / 0.7242 / 4.00

BasicVSR-uni-DBDC+FT ✓ 4 / 4 28.81 / 0.8119 / 4.00 34.81 / 0.9159 / 4.00 25.79 / 0.7432 / 4.00 35.85 / 0.9327 / 4.00 34.89 / 0.9192 / 4.00 25.98 / 0.7618 / 4.00
BasicVSR-uni-Ours ✓ 4 / 4MP 29.55 / 0.8434 / 5.25 35.75 / 0.9296 / 5.12 26.15 / 0.7674 / 4.75 37.29 / 0.9517 / 5.07 35.72 / 0.9319 / 5.09 26.53 / 0.7938 / 4.97

BasicVSR-uni-MinMax [20] ✗ 6 / 6 30.40 / 0.8649 / 6.00 36.79 / 0.9409 / 6.00 26.94 / 0.8121 / 6.00 38.90 / 0.9619 / 6.00 36.99 / 0.9442 / 6.00 27.36 / 0.8331 / 6.00
BasicVSR-uni-Percentile [27] ✗ 6 / 6 30.36 / 0.8660 / 6.00 36.51 / 0.9405 / 6.00 26.75 / 0.8065 / 6.00 38.40 / 0.9619 / 6.00 36.72 / 0.9440 / 6.00 27.05 / 0.8252 / 6.00

BasicVSR-uni-DBDC [38] ✗ 6 / 6 30.40 / 0.8653 / 6.00 36.79 / 0.9411 / 6.00 26.92 / 0.8127 / 6.00 38.91 / 0.9620 / 6.00 36.99 / 0.9444 / 6.00 27.37 / 0.8340 / 6.00
BasicVSR-uni-MinMax+FT ✗ 6 / 6 30.35 / 0.8643 / 6.00 36.74 / 0.9404 / 6.00 26.89 / 0.8091 / 6.00 38.85 / 0.9614 / 6.00 36.93 / 0.9436 / 6.00 27.35 / 0.8314 / 6.00
BasicVSR-uni-Percentile+FT ✗ 6 / 6 30.33 / 0.8654 / 6.00 36.50 / 0.9401 / 6.00 26.73 / 0.8052 / 6.00 38.37 / 0.9617 / 6.00 36.77 / 0.9444 / 6.00 27.06 / 0.8268 / 6.00

BasicVSR-uni-DBDC+FT ✗ 6 / 6 30.39 / 0.8642 / 6.00 36.74 / 0.9401 / 6.00 26.91 / 0.8092 / 6.00 38.79 / 0.9611 / 6.00 36.95 / 0.9440 / 6.00 27.33 / 0.8321 / 6.00
BasicVSR-uni-Ours ✗ 6 / 6MP 30.40 / 0.8665 / 6.23 36.81 / 0.9413 / 7.05 26.91 / 0.8101 / 6.68 38.97 / 0.9633 / 7.07 37.11 / 0.9460 / 7.09 27.40 / 0.8372 / 6.97

BasicVSR-uni-MinMax [20] ✓ 6 / 6 30.29 / 0.8616 / 6.00 36.64 / 0.9393 / 6.00 26.89 / 0.8091 / 6.00 38.67 / 0.9601 / 6.00 36.80 / 0.9422 / 6.00 27.30 / 0.8302 / 6.00
BasicVSR-uni-Percentile [27] ✓ 6 / 6 28.77 / 0.8237 / 6.00 34.42 / 0.9168 / 6.00 25.07 / 0.7222 / 6.00 35.19 / 0.9373 / 6.00 34.32 / 0.9163 / 6.00 25.04 / 0.7237 / 6.00

BasicVSR-uni-DBDC [38] ✓ 6 / 6 30.35 / 0.8633 / 6.00 36.67 / 0.9398 / 6.00 26.88 / 0.8102 / 6.00 38.70 / 0.9604 / 6.00 36.81 / 0.9426 / 6.00 27.31 / 0.8315 / 6.00
BasicVSR-uni-MinMax+FT ✓ 6 / 6 30.26 / 0.8612 / 6.00 36.60 / 0.9385 / 6.00 26.90 / 0.8075 / 6.00 38.65 / 0.9595 / 6.00 36.73 / 0.9413 / 6.00 27.30 / 0.8277 / 6.00
BasicVSR-uni-Percentile+FT ✓ 6 / 6 29.01 / 0.8328 / 6.00 34.56 / 0.9195 / 6.00 25.23 / 0.7345 / 6.00 35.48 / 0.9402 / 6.00 34.46 / 0.9186 / 6.00 25.22 / 0.7352 / 6.00

BasicVSR-uni-DBDC+FT ✓ 6 / 6 30.30 / 0.8621 / 6.00 36.61 / 0.9389 / 6.00 26.89 / 0.8070 / 6.00 38.63 / 0.9599 / 6.00 36.74 / 0.9416 / 6.00 27.28 / 0.8288 / 6.00
BasicVSR-uni-Ours ✓ 6 / 6MP 30.35 / 0.8646 / 7.25 32.63 / 0.9396 / 7.12 26.81 / 0.8060 / 6.75 38.70 / 0.9610 / 6.91 36.83 / 0.9430 / 6.94 27.29 / 0.8310 / 6.82

Table 8: Error bars evaluation with 4-bit fully quantized BasicVSR (PSNR / SSIM / FAB). All
results are calculated on the Y-channel except REDS4 (RGB-channel). The random seeds are taken
from 0, 1, 2, 3, 321 to generate calibration datasets.

Methods seed BI degradation BD degradation
REDS4 [41] Vimeo-90K-T [45] Vid4 [30] UDM10 [46] Vimeo90K-T [45] Vid4 [30]

BasicVSR [3] - 31.42 / 0.8909 / 32.00 37.18 / 0.9450 / 32.00 27.24 / 0.8251 / 32.00 39.96 / 0.9694 / 32.00 37.53 / 0.9498 / 32.00 27.96 / 0.8553 / 32.00

Ours

0 30.09 / 0.8562 / 4.98 36.03 / 0.9335 / 5.05 26.29 / 0.7772 / 4.70 37.78 / 0.9554 / 4.95 35.93 / 0.9336 / 5.02 26.80 / 0.8040 / 4.95
1 30.26 / 0.8637 / 5.50 35.82 / 0.9311 / 5.03 26.29 / 0.7752 / 4.69 37.59 / 0.9536 / 4.78 35.95 / 0.9339 / 5.08 26.81 / 0.8025 / 4.98
2 29.90 / 0.8511 / 5.00 35.81 / 0.9311 / 5.11 26.22 / 0.7738 / 5.00 37.94 / 0.9563 / 5.05 36.02 / 0.9347 / 5.11 26.77 / 0.8032 / 4.95
3 30.19 / 0.8618 / 5.50 35.93 / 0.9320 / 5.07 26.19 / 0.7712 / 4.68 37.85 / 0.9557 / 4.80 36.08 / 0.9356 / 5.06 26.93 / 0.8114 / 5.00

321 30.09 / 0.8598 / 4.96 35.77 / 0.9299 / 5.07 25.84 / 0.7530 / 4.75 37.78 / 0.9546 / 5.00 35.97 / 0.9335 / 5.07 26.88 / 0.8056 / 5.00

Mean 30.11 / 0.8578 / 5.19 35.87 / 0.9315 / 5.07 26.17 / 0.7701 / 4.76 37.79 / 0.9551 / 4.92 35.99 / 0.9343 / 5.07 26.84 / 0.8053 / 4.98
Std 0.12 / 0.0038 / 0.24 0.10 / 0.0011 / 0.03 0.17 / 0.0088 / 0.12 0.12 / 0.0027 / 0.11 0.05 / 0.0019 / 0.03 0.06 / 0.0032 / 0.02

off distortion and perception, ours achieves reconstructions that are both quantitatively accurate and
perceptually natural.

B.5 On-device Latency and Memory Consumption

We present CPU evaluation across three benchmark datasets, REDS4 [41], UDM10 [46], and
Vid4 [30] running CPU-only inference on both Intel Xeon Gold 5218R (x86; Linux; 40 threads
used) and Apple M1 Pro (ARM; macOS; 8 threads used). Our quantized models use 6-bit weights
(64 levels) and dynamic 6-bit activation precision, executed via INT8 kernels due to current deploy-
ment constraints. Our method achieves consistent speedups across both platforms. On Intel, we ob-
serve 1.28–1.45× speedups over BasicVSR [3] and 1.05–1.14× over SSL [43] across all datasets.
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Table 9: Quantitative comparison (PSNR↑ / SSIM↑ / NIQE↓ / BRISQUE↓). PSNR and SSIM
are calculated on Y-channel except REDS4 [41] (RGB-channel). NIQE is computed on grayscale,
and BRISQUE on RGB, following the PIQ [23] implementation.

Methods FQ Params(M) GT W / A REDS4 [41] (BI) Vid4 [30] (BI) Vid4 [30] (BD)

BasicVSR [3] - 4.9 ✓ 32 / 32 31.42 / 0.8909 / 20.4533 / 42.0603 27.24 / 0.8251 / 21.2263 / 46.6820 27.96 / 0.8553 / 20.9968 / 43.2148
SSL [43] - 1.0 ✓ 32 / 32 31.06 / 0.8833 / 20.5275 / 42.5137 27.15 / 0.8208 / 21.2449 / 46.4442 27.56 / 0.8431 / 20.9479 / 44.2100

Ours ✗ 1.3 ✗ 6 / 6MP 31.26 / 0.8879 / 20.5416 / 42.6729 27.18 / 0.8215 / 21.1865 / 46.8981 27.84 / 0.8495 / 21.0283 / 44.0302
Ours ✓ 1.0 ✗ 6 / 6MP 31.17 / 0.8849 / 20.5608 / 41.9935 27.05 / 0.8140 / 21.1727 / 45.7232 27.69 / 0.8405 / 21.0390 / 43.9466
Ours ✗ 1.0 ✗ 4 / 4MP 30.34 / 0.8657 / 20.9095 / 46.9496 26.26 / 0.7764 / 21.0902 / 47.0901 27.02 / 0.8161 / 21.5588 / 44.8271
Ours ✓ 0.7 ✗ 4 / 4MP 30.26 / 0.8637 / 20.7069 / 46.0018 26.29 / 0.7752 / 21.1959 / 45.3042 26.81 / 0.8025 / 21.2659 / 44.4966

MinMax [20] ✓ 0.7 ✗ 4 / 4 28.12 / 0.7896 / 20.5620 / 42.6086 26.03 / 0.7585 / 21.7752 / 44.2720 25.64 / 0.7412 / 21.6568 / 40.8614
Percentile [27] ✓ 0.7 ✗ 4 / 4 27.78 / 0.7841 / 20.6565 / 46.4639 25.23 / 0.7305 / 21.0079 / 48.0859 25.08 / 0.7275 / 21.3866 / 45.0816

DBDC [38] ✓ 0.7 ✗ 4 / 4 28.07 / 0.7817 / 20.6225 / 39.5703 26.24 / 0.7720 / 21.5619 / 44.7354 26.01 / 0.7581 / 21.6323 / 41.6941
MinMax+FT ✓ 0.7 ✗ 4 / 4 29.21 / 0.8238 / 21.1095 / 45.4638 26.17 / 0.7601 / 21.9205 / 45.7476 26.11 / 0.7584 / 22.2404 / 43.5693

Percentile+FT [27] ✓ 0.7 ✗ 4 / 4 28.30 / 0.8054 / 20.8440 / 46.1643 25.26 / 0.7314 / 21.3187 / 48.1076 25.26 / 0.7340 / 21.5298 / 45.3654
DBDC+FT ✓ 0.7 ✗ 4 / 4 29.24 / 0.8232 / 20.9791 / 44.9058 26.31 / 0.7703 / 21.9100 / 46.8330 26.42 / 0.7764 / 22.0107 / 43.9439

BasicVSR-uni [3] - 2.6 ✓ 32 / 32 30.54 / 0.8694 / 20.6602 / 44.0094 27.03 / 0.8163 / 21.0566 / 46.3993 27.54 / 0.8419 / 20.9163 / 43.7744
Ours ✗ 0.8 ✗ 6 / 6MP 30.40 / 0.8665 / 20.6781 / 44.1256 26.91 / 0.8101 / 21.2396 / 46.7119 27.40 / 0.8372 / 20.8535 / 44.3251
Ours ✓ 0.55 ✗ 6 / 6MP 30.35 / 0.8646 / 20.7043 / 43.1907 26.81 / 0.8060 / 21.0356 / 46.2837 27.29 / 0.8310 / 20.8523 / 44.2879
Ours ✗ 0.7 ✗ 4 / 4MP 29.57 / 0.8460 / 20.8091 / 45.0827 26.32 / 0.7784 / 21.7651 / 47.2370 26.71 / 0.8067 / 21.3894 / 45.7664
Ours ✓ 0.4 ✗ 4 / 4MP 29.55 / 0.8434 / 20.7997 / 43.7369 26.15 / 0.7674 / 21.7846 / 46.7945 26.53 / 0.7938 / 21.2562 / 43.8501

MinMax [20] ✓ 0.4 ✗ 4 / 4 28.45 / 0.7997 / 21.1814 / 45.3900 25.56 / 0.7308 / 21.2691 / 43.8372 25.82 / 0.7531 / 21.3604 / 43.3835
Percentile [27] ✓ 0.4 ✗ 4 / 4 28.12 / 0.7984 / 20.8874 / 47.1888 24.81 / 0.7030 / 21.2692 / 47.6955 24.87 / 0.7138 / 21.2414 / 46.6296

DBDC [38] ✓ 0.4 ✗ 4 / 4 28.36 / 0.7953 / 21.1184 / 46.4919 25.86 / 0.7510 / 21.3411 / 45.2436 25.96 / 0.7608 / 21.1965 / 43.5195
MinMax+FT [20] ✓ 0.4 ✗ 4 / 4 28.86 / 0.8135 / 21.2081 / 44.9757 25.72 / 0.7384 / 22.2928 / 45.5211 26.14 / 0.7667 / 21.7386 / 45.0558
Percentile+FT [27] ✓ 0.4 ✗ 4 / 4 28.35 / 0.8074 / 20.9143 / 43.3349 24.92 / 0.7105 / 21.5808 / 48.3883 25.09 / 0.7242 / 21.3034 / 46.2203

DBDC+FT [38] ✓ 0.4 ✗ 4 / 4 28.81 / 0.8119 / 20.9934 / 46.2085 25.79 / 0.7432 / 22.4006 / 46.1070 25.98 / 0.7618 / 21.4305 / 45.4257

The ARM platform shows even more significant gains, with speedups of 1.32–5.79×against Ba-
sicVSR [3] and 1.07–1.53× against SSL [43]. Notably, on UDM10 [46], our ARM implementation
achieves a remarkable 5.79× speedup over BasicVSR [3] while reducing peak memory by approx-
imately 17% compared to SSL [43]. The flow-warping (alignment) operator runs in FP32 with
lightweight quantization overhead, preserving reconstruction quality while maintaining efficiency.
We observe that the ARM platform demonstrates superior scalability for our method, where the uni-
fied memory architecture avoids NUMA penalties and cross-socket traffic overhead present in the
dual-socket Intel system. These results demonstrate that our temporal awareness adaptation quan-
tization approach delivers consistent acceleration and memory efficiency across diverse hardware
architectures and datasets, while maintaining the reconstruction quality reported in the main paper.

Table 10: Inference latency and memory usage on x86 and ARM Platforms

Dataset method Intel Xeon Gold 5218R Apple M1 Pro
Memory (MB) Latency (s) Speedup Memory (MB) Latency (s) Speedup

REDS4 [41]
BasicVSR [3] 18823.56 2677.44 1.00× 10506.25 1293.22 1.00×

SSL [43] 19047.57 2203.05 1.22× 10122.02 1009.10 1.28×
Ours-FQ 19068.67 1963.63 1.36× 10034.67 659.82 1.96×

UDM10 [46]
BasicVSR [3] 14811.98 1252.88 1.00× 11346.16 3292.11 1.00×

SSL [43] 15020.86 909.86 1.38× 10337.38 850.59 3.87×
Ours-FQ 15083.24 866.65 1.45× 8549.67 568.83 5.79×

Vid4 [30]
BasicVSR [3] 3688.39 2095.47 1.00× 4470.97 422.10 1.00×

SSL [43] 4318.05 1860.86 1.13× 4511.02 340.19 1.24×
Ours-FQ 3605.30 1631.11 1.28× 3435.47 318.79 1.32×

C Overall Algorithm

Our Temporal Awareness Adaptation Quantization for VSR is summarized in Alg 1.

D Related Work

We provide a detailed comparison with AdaBM [16] to further clarify the distinctions in method-
ology and contributions. It is important to note that AdaBM was originally designed for image
SR and introduced an efficient on-the-fly adaptive quantization framework that significantly reduces
processing time. While we acknowledge the conceptual inspiration our work drew from AdaBM
in terms of bit-level adaptation, we would like to emphasize that our framework is fundamentally
redesigned to address the unique challenges of VSR, making it a substantially different and purpose-
built solution. The core technical divergence lies in the incorporation of temporal modeling. Ad-
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Algorithm 1 Temporal Awareness Adaptation Quantization for Video Super-Resolution

Input: Pretrained 32-bit VSR network P of K parameter-shared layers, calibration dataset Dcal =󰀋
V i
LR

󰀌N

i=1
, spacial percentile parameter pspace, temporal percentile parameter ptemp.

Output: Quantized VSR network Q.
1: Calibration Phase:
2: Initialize weight clipping ranges {uk

w}Kk=1 using OMSE [8];
3: Initialize activation clipping ranges {lka, uk

a}Kk=1 with the EMA smoothed minimum and maxi-
mum statistics [20] by running calibration dataset through the FP network;

4: for i = 1 to N do
5: Calculate the video flow-gradient complexity metric Cvideo (see Eq.\ (9));
6: Calculate the spatial sensitivity

󰀋
skspace

󰀌K

k=1
(see Eq.\ (10));

7: Calculate the temporal sensitivity
󰀋
sktemp

󰀌K

k=1
(see Eq.\ (11));

8: end for
9: Initialize spatial thresholds lspace and uspace according to pspace-th and (100−pspace)-th percentiles

of the spatial sensitivity values
󰀋
skspace

󰀌K

k=1
;

10: Initialize temporal thresholds ltemp and utemp according to ptemp-th and (100 − ptemp)-th per-
centiles of the temporal sensitivity values

󰀋
sktemp

󰀌K

k=1
;

11: Initialize temporal shared layer bit adaptation factor
󰀋
bkL

󰀌K

k=1
(see Eq.\ (12));

12: Update activation clipping ranges {lka, uk
a}Kk=1 using OMSE [8] depending on the temporal

shared layer bit adaptation factor
󰀋
bkL

󰀌K

k=1
assigned per layer;

13: Fine-tuning Phase:
14: Update weight clipping ranges {uk

w}Kk=1 using Eq.\ (16);
15: Update activation clipping ranges {lka, uk

a}Kk=1 using Eq.\ (16);
16: Update bit adaptive module parameters lv2b, uv2b, {bkL}Kk=1 using Eq.\ (16);
17: Output the final quantized VSR model Q.

aBM, targeting single-image SR, relies solely on spatial sensitivity for bit allocation. In contrast, our
method explicitly models spatio-temporal variance through components like FG-VBA and TS-LBA.
This temporal awareness is critical for maintaining coherence across frames in VSR but was absent
in AdaBM. Furthermore, the training strategies differ significantly due to the inherently higher com-
putational cost of processing video sequences compared to single images. AdaBM’s requirement for
ten full epochs of fine-tuning, while feasible for image SR models, becomes prohibitively expensive
for VSR. Our method addresses this by employing an efficient three-stage progressive optimization
schedule. This approach updates parameters in distinct stages, progressing through weight clipping,
activation clipping, and finally bit adaptation modules optimization, which enables fast convergence
in merely 3 epochs and demonstrates more stable optimization behavior, making it far more prac-
tical for VSR model quantization. The design of the loss function also reflects our focus on the
temporal dimension. We extend beyond the spatial reconstruction loss used in image SR by intro-
ducing a temporal structure consistency loss. This addition is crucial for ensuring smooth transitions
between frames and preventing artifacts like flickering, thereby enhancing the perceptual quality of
the output video. Lastly, our approaches diverge in the handling of the bit space. Unlike AdaBM,
which incorporates a bit-penalization loss to explicitly encourage lower bit-widths, we intentionally
forgo such a constraint. We found that an explicit penalization could lead to optimization insta-
bility in VSR quantization. Instead, our method allows the optimal bit allocation to emerge more
naturally through a data-driven optimization process, which we found to be more suitable for the
complex spatio-temporal features in video data. In conclusion, while AdaBM provided valuable in-
sights for adaptive quantization in image SR, our framework introduces critical innovations, from its
temporal-aware modules and efficient training strategy to its specialized loss design and the removal
of explicit bit-penalization, that collectively constitute a novel and substantially different solution
tailored for the demands of VSR.
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E More Visual Comparison

More visual results of the 4-bit FQ BasicVSR model are presented below. Our algorithm achieves
the highest PSNR value and restores the most optimal results across all datasets. Moreover, after
applying our designed FT strategy described in Sec 3.5, the performance of other benchmark algo-
rithms is significantly improved, further validating the effectiveness of the proposed FT method.

F Limitation and Future Direction

Currently, we only investigate quantization for video super-resolution. It is better to generalize the
quantized networks for other video restoration applications. Additionally, similar architectural con-
siderations apply across various video processing tasks. These methodologies commonly eliminate
Batch Normalization layers to maintain dynamic range adaptability while minimizing generative
anomalies. Our ongoing research will include comprehensive empirical validation and investigate
the broader applicability of this approach to pixel-to-pixel video tasks through systematic experi-
mentation in subsequent studies.

G Code

We have provided code to reproduce the results in this work.
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Figure 3: Qualitative comparison on REDS4 [41] (Zoom-in for best view)
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Figure 4: Qualitative comparison on Vimeo-90K [45] (Zoom-in for best view)
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Figure 5: Qualitative comparison on Vid4 [30] (Zoom-in for best view)
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DBDC+FT
44.44 / 0.9854 

DBDC
34.46 / 0.9485 

DBDC+FT
35.39 / 0.9602 

Figure 6: Qualitative comparison on UDM10 [46] (Zoom-in for best view)
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Appendix F.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Our method does not involve theory assumptions or proofs.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 4.1.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The code will be released to QBasicVSR library.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 4.1 and Appendix A.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See Section 4.6 and Appendix B.3.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Section 4.5 and Appendix B.5.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, we confirm.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There are no potential negative social impacts.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: There are no such problems in our task.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: See Section 4.1.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
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Answer: [NA]

Justification: We use existing public benchmark datasets for experiments.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: No such experiments or research are involved in our work.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No such experiments or research are involved in our work.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: LLMs are not used in any part of this research.
Guidelines:
• The answer NA means that the core method development in this research does not

involve LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)

for what should or should not be described.
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