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Abstract

Data sharing between different parties has become an important engine powering
modern research and development processes. An important class of privacy con-
cerns in data sharing regards the underlying distribution of data. For example, the
total traffic volume of data from a networking company reveals the scale of its
business. Unfortunately, existing privacy frameworks do not adequately address
this class of concerns. In this paper, we propose distributional privacy, a framework
for analyzing and protecting these distributional privacy concerns in data sharing
scenarios. Distributional privacy is applicable in multiple data sharing settings,
including synthetic data release. Theoretically, we analyze the lower and upper
bounds of privacy-distortion trade-offs. Practically, we propose data release mech-
anisms for protecting distributional privacy concerns, and demonstrate that they
achieve better privacy-distortion trade-offs than alternative privacy mechanisms on
real-world datasets.

1 Introduction

Data sharing between parties plays a critical role in modern research and development. Data holders
typically either release processed data [18, 9, 5, 21] or train a generative model (e.g., GANs [8],
diffusion models [11, 19, 20]) on their original data and share synthetic data with other parties. For
example, network traces shared from customers to networking vendors enable vendors to debug and
improve products [24, 1]. Medical data shared between hospitals [7, 21] enables them to develop
new machine-learning-based diagnosis algorithms collaboratively [4]. More generally, data shared
from researchers allow their research to be reproducible by others [15].

However, data sharing also raises privacy concerns. While the most well-studied privacy concerns
relate to leaking user data, an important other class of concerns relates to the underlying data
distribution. For example, a video analytics company that shares synthetic video session data may
wish to hide the total or mean traffic volume, which could imply the company’s total revenue [17]. A
cloud provider that shares synthetic cluster performance traces may not want to reveal the proportions
of different server types that the cloud provider owns, which are regarded as business secrets [15].
Note that this information (total/mean traffic volume, proportions of server types) cannot be inferred
from any single record, but is inherent to the overall data distribution (or the aggregate dataset).

Existing privacy metrics and privacy-preserving data sharing algorithms do not adequately address
these distributional privacy concerns, even in synthetic data scenarios. They either focus on protecting
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Figure 1: The related entities in a data sharing scenario. Data holder produces released data for the
data user and wants to hide a set of distributional secrets {g1, ..., gl} of the original data. The data
user requires that the distance d of released data from the original one is small. The attacker (could
be the data user) also observes the released data, and wants to guess the secrets of the original data.

the privacy of individual records in a database (e.g., differential privacy [6], anonymization [18]),
or are not suitable for synthetic data scenarios (e.g., attribute privacy [26], maximal leakage [12],
privacy funnel [16]). See more discussions in “related work” below.

Motivated by these observations, we argue that a new privacy framework is needed for defining,
analyzing, and protecting distributional privacy concerns in data sharing settings. In this paper, we
take a first step towards the goal. At a high level, the proposed framework works as follows (detailed
formulation in §2). A data holder first chooses one or more secrets, which are mathematically defined
as functions of the data holder’s data distribution. For example, a video analytics company might
choose the mean daily observed traffic as a secret quantity. Then, the data holder obfuscates their
data according to some mechanism and releases the output (Fig. 1). Our framework quantifies the
privacy of this mechanism by analyzing the probability that an attacker can infer the data holder’s true
secret after observing the output. To capture the utility of released data, we define the distortion of a
mechanism as the worst-case distance (where the distance metric can be chosen by the data holder or
data user) between the original and released data distributions. Our goal is to design mechanisms that
control tradeoffs between privacy and distortion.

Related work. Many existing techniques for privacy-preserving data release (both in the synthetic
data setting and beyond) typically focus on protecting the privacy of individual records in a database.
For instance, in a database of demographic information, these techniques might obfuscate whether a
specific user’s record is present in the database. Concretely, differential privacy [6] evaluates how
much individual samples influence the final output of the algorithm. Similarly, popular privacy-
preserving data sharing algorithms like sub-sampling [18], anonymization [18, 3], or more recently,
differentially-private deep generative models [13, 7, 15, 24], focus on protecting sensitive information
from individual samples. These techniques are not designed to protect distributional attributes at all
(in fact, they are designed to preserve them).

Other frameworks like attribute privacy [26], maximal leakage [12], and privacy funnel [16] are
designed to obfuscate sensitive random variables or properties of an aggregate dataset. They can be
adapted to protect distributional privacy concerns. However, they are not necessarily well-suited to
a data sharing setting. For instance, attribute privacy considers the setting of releasing a statistical
query of the dataset (instead of a full synthetic dataset). Using it to release datasets would cause
a poor privacy-distortion trade-off (see § 5). Maximal leakage considers the worst-case secrets in
discrete space. But in our case, the secret is predefined by the data holder, and they could be in a
continuous range (e.g., mean traffic). This seemingly small difference causes much of the analysis
from [12] to not extend to our setting. Privacy funnel [16] evaluates the mutual information between
a mechanism’s output and input. This is ill-suited for data sharing, as a higher mutual information
between the released and original datasets does not necessarily imply that they are close in distribution
distance.

For readers interested in more technical details about these works, please refer to App. A.

Contributions. Our contributions are as follows.

• Formulation: We formalize distributional privacy concerns in data sharing applications with the
notion of distributional privacy (§ 2). We propose new privacy and distortion metrics tailored to
data sharing applications, including synthetic data sharing (§ 2).
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• Analysis (upper and lower bounds): We derive fundamental limits (lower bounds) on the
tradeoff between privacy and distortion for a specific choice of distortion distance metric. As
a case study, we propose mechanisms that achieve order-optimal privacy-distortion tradeoffs
when the secret is the mean of the distribution.

• Practical evaluation: We give preliminary empirical results showing how to use distributional
privacy to release a real dataset, and how to evaluate the corresponding distributional privacy
metric. We show that our proposed algorithms achieve better privacy-distortion trade-offs than
baseline mechanisms that were designed to protect different privacy metrics (§ 5). Our proposed
mechanisms are compatible with existing data synthesis tools (e.g., based on deep generative
models [7, 15, 24, 13, 25]) and can be applied as an add-on to provide distributional privacy.

2 Distributional Privacy: Formulation

Notation. We denote random variables with uppercase letters, and their realizations with lowercase.
For a random variable X , we denote its probability density function (PDF), or, in the case of discrete
random variables, its probability mass function (PMF), as fX , and its distribution measure as ωX . If
a random variable X is drawn from a parametric family (e.g., X is Gaussian with specified mean and
covariance); the parameters will be denoted with a subscript of X , i.e., the above notations become
Xθ, fXθ

, ωXθ
respectively for parameters θ ∈ Rq , where q denotes the dimension of the parameters.

In addition, we denote fX|Y as the conditional PDF/PMF of X given another random variable Y .

Original data. Consider a data holder who possesses a dataset of n samples X = {x1, . . . , xn},
where for each i ∈ [n], xi ∈ Rp is drawn i.i.d. from an underlying parametric distribution. That is,
xi ∼ ωXθ

, where θ ∈ Rq is a realization of random q-dimensional parameter vector Θ, and ωΘ is the
probability measure for Θ. In this paper, we assume that the data holder knows θ; our results and
mechanisms generalize it to the case when the data holder only possesses the dataset X (see § 4).

For example, suppose the original data samples come from a Gaussian distribution. We have
θ = (µ, σ), and Xθ ∼ N (µ, σ). ωΘ (or fΘ) describes the prior distribution over (µ, σ). For example,
if we know a priori that the mean of the Gaussian is drawn from a uniform distribution between 0
and 1, and σ is always 1, we could have fΘ (µ, σ) = I (µ ∈ [0, 1]) · δ (σ), where I (·) is the indicator
function, and δ is the Dirac delta function. In practice, the underlying distribution can be much more
complicated than a Gaussian.

Distributional secrets to protect. We assume the data holder wants to hide ℓ ∈ Z>0 secrets from
the original data distribution, expressed as a function g (θ) : Rq → Rℓ. In the Gaussian example
Xθ ∼ N (µ, σ), suppose the random variable Xθ represents the traffic volume experienced by an
enterprise in a day. The data holder may wish to hide the mean traffic per day, in which case g(·)
would be the mean of the distribution, i.e., g (µ, σ) = µ. In general, the secret can be any (vector-
valued) function that can be deterministically computed from θ. In this paper, we present general
results for one-dimensional secrets (i.e., ℓ = 1) and defer a discussion of higher-dimensional secrets
to future work (see § 6).

Data release mechanism. The data holder releases data by passing the private parameter θ through
a data release mechanism Mg . That is, for a given θ, the data holder first draws internal randomness
z ∼ ωZ , and then releases another distribution parameter θ′ = Mg (θ, z), where Mg is a purely
deterministic function, and ωZ is a fixed distribution from which z is sampled. We denote the random
variable of the released data as Yθ′ . Note that here we assume that both the input and output of Mg

are distribution parameters. It is straightforward to generalize to the case when the input and/or output
are datasets of samples (see § 4).

For example, in the Gaussian case discussed above, the data release mechanism can be
Mg ((µ, σ) , z) = (µ+ z, σ) where z ∼ N (0, 1). I.e., this mechanism shifts the mean of the
Gaussian by a random amount drawn from a standard Gaussian distribution and keeps the variance.

Attacker strategy. Based on the released parameter θ′, the attacker outputs ĝ (θ′) as a guess of the
initial secret g (θ). ĝ can be either random or deterministic. The attacker is assumed to know the data
release mechanism Mg and output θ′ but not the realization of the data holder’s internal randomness
z. For instance, in the running Gaussian example, an attacker may choose ĝ (µ′, σ′) = µ′. When the
data holder releases a dataset of samples instead of the parameter θ′, this formulation can be used to
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upper bound attacker’s performance as if the released dataset has unlimited amount of samples and
therefore can estimate the distribution parameter correctly.

Privacy metric. The data holder cares about leaking its secrets. We define our privacy metric
privacy Πϵ as the attacker’s probability of guessing the secret(s) to within a tolerance ϵ, worst-case
over all attackers ĝ:

Πϵ ≜ sup
ĝ

P (ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]) . (1)

The probability is taken over the randomness of the original data distribution (θ ∼ ωΘ), the data
release mechanism (z ∼ ωZ), and the attacker strategy (ĝ).

Distortion metric. The main goal of data sharing is to provide useful data; hence, we (and data
holders and users) want to understand how much the released data distorts the original data. We
define the distortion ∆ of a mechanism as the worst-case distance between the original distribution
and the released distribution:

∆ ≜ sup
θ∈Supp(ωΘ),θ′,z∈Supp(ωZ):Mg(θ,z)=θ′

d
(
ωXθ

∥ωYθ′

)
, (2)

where d is a general distance metric defined over distributions. The choice of the distance metric
depends on the type of data and potentially depends on the applications that data holders and users
care about. In this paper, we adopt Wasserstein-α distance as the starting point and all the results
hold for any α ≥ 1. Wasserstein distance is often used for evaluating data quality (e.g., [24, 15]) and
as the distance metric in neural network design (e.g., WGAN [2]). Note that the definition in Eq. (2)
can be extended to data release mechanisms that take datasets as inputs and/or outputs.

Objective. To summarize, the data holder’s objective is to choose a data release mechanism that
minimizes privacy Πϵ subject to a constraint on distortion metric ∆:

min
Mg

Πϵ subject to ∆ ≤ T (3)

An alternative formulation of minimizing ∆ subject to a constraint on Πϵ is analyzed in App. F.

3 Lower Bounds: Privacy-Distortion Tradeoffs

In this section, we study lower bounds for Eq. (9); that is, given a budget for distortion ∆, what are
fundamental limits on achievable privacy metric Πϵ?

We first present a lower bound that applies regardless of the prior distribution of data ωΘ and
regardless of the secret function g. We assume that the secret is scalar (i.e., ℓ = 1).

Theorem 1 (Lower bound of privacy-distortion tradeoff). Let D (Xθ1 , Xθ2) ≜
1
2d
(
ωXθ1

∥ωXθ2

)
,

where d (·∥·) denotes Wasserstein-α distance. Further, let R (Xθ1 , Xθ2) ≜ |g(θ1)− g(θ2)|. Let

γ ≜ infθ1,θ2∈Supp(ωΘ)
D(Xθ1

,Xθ2)
R(Xθ1

,Xθ2)
. For any T > 0, when ∆ ≤ T , we have Πϵ ≥ ⌈ T

2γϵ⌉
−1.

The proof is in App. B. Note that we have not made the quantity infθ1,θ2∈Supp(ωΘ)
D(Xθ1

,Xθ2)
R(Xθ1

,Xθ2)
in the

lower bound explicit, as its closed-form expression depends on the secret function g. We have derived
lower bounds for several scalar secret functions, including the mean, quantile, and standard deviation
of continuous distributions, and the PMF of a discrete distribution evaluated at a specific point. Due
to space constraints, we present only the result for the mean of a continuous distribution.
Corollary 1 (Privacy lower bound, secret = mean of a continuous distribution). Consider the secret
function g (θ) =

∫
x
xfXθ

(x) dx. For any T > 0, when ∆ ≤ T , we have Πϵ ≥ ⌈T
ϵ ⌉

−1.

The proof is in App. C. This lower bound is tight when ϵ divides T , as we show in the next section.

4 Upper bound: Data Release Mechanism Design

To satisfy distributional privacy, the data release mechanism (and corresponding privacy-distortion
tradeoffs) depend on the secret function and potentially on the original data distribution. Our
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high-level vision is to build a library of mechanisms for different common secret functions and
families of parametric distributions; the data holder would then choose the setting that most closely
matches their own data. We have preliminary mechanism designs and analysis for a number of secret
functions (e.g., mean, α-quantile, PMF value) and data distributions (e.g., Gaussian, exponential,
Pareto, geometric). Due to space constraints, we present here results when the secret function is
the mean of a one-dimensional continuous distribution that can be parameterized with a location
parameter. That is, the distribution parameter vector θ can be written as (u, v), where u ∈ R,
v ∈ Rq−1, and for any u ̸= u′, fXu,v

(x) = fXu′,v (x− u′ + u). The prior over distribution
parameters is fU,V (a, b) = fU (a) · fV (b), where fU (a) = 1

u−u I (a ∈ [u, u)). In other words, the
prior distribution of the location parameter is uniform and independent of other factors. Examples
include the Gaussian, Laplace, and uniform distributions, as well as shifted distributions (e.g., shifted
exponential, shifted log-logistic).

Algorithm 1: Shifting data release mechanism

input :θ = (u, v) where u is the mean of Xθ = Xu,v , and v ∈ Rq−1 controls other properties of the
distribution, lower bound u of the mean value u, quantization interval s.

1 u′ ← u+
(
⌊u−u

s
⌋+ 0.5

)
· s ;

2 v′ ← v;
3 Mg ((u, v) , z)← (u′, v′).

𝑓!!",$"

𝑓"!,$

𝑠 𝑠

𝑢 + 𝑠𝑢 $𝑢 = 𝑢 + 2𝑠

𝑢 + 0.5𝑠 𝑢 + 1.5𝑠

Figure 2: Illustration of the shifting data re-
lease mechanism.

Shifting data release mechanism. The data release
mechanism we design is shown in Alg. 1. s is a hyper-
parameter of the mechanism that divides (u− u), i.e.,
there exists N ∈ N such that s = u−u

N . Fig. 2 shows
an example when the original data distribution is
Gaussian, i.e., Xθ ∼ N (u, v), and u ∈ [u, u). Our
mechanism “quantizes” the range of possible mean
values into segments of length s. It then shifts the
mean of private distribution fXu,v to the midpoint of
its corresponding segment, and releases the resulting
distribution fYu′,v′ . This simple deterministic mecha-
nism is able to achieve the optimal privacy-distortion
tradeoff in some cases, as shown below.

Theorem 2 (Optimality of Alg. 1 ). When 2ϵ divides
s, the data release mechanism in Alg. 1 achieves the lower bound in Thm. 1.

The proof is in App. D. Let ĝ∗ be the attack strategy that ĝ∗ (u′, v′) = u′, i.e., the attack
guesses the mean of private distribution as the release mean. We also show in the proof
that under the data release mechanism Alg. 1, ĝ∗ is the optimal attacker strategy (i.e., ĝ∗ ∈
arg supĝ P (ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ])).

Extending the data release mechanism for handling dataset input/output. Suppose the data
holder possesses a dataset of i.i.d. samples X = {x1, . . . , xn}, where xi ∼ ωXu,v

, i ∈ [n]. The data
release mechanism can be trivially extended to the dataset by shifting individual samples by the same
amount as the distribution shift in Alg. 1:

Mg (X , z) = {m(xi)}ni=1, where m(x) = xj − u+ u+

(
⌊u− u

s
⌋+ 0.5

)
· s. (4)

As before, s is a hyperparameter of the mechanism that divides (u− u). In practice, since we do
not know the true mean u, we estimate it by û = 1

n

∑
i∈[n] xi. Note that this mechanism applies

to samples. Therefore, it can be applied either to the original data, or as an add-on to existing data
sharing tools [7, 15, 24, 13, 25]. For example, it can be used to modify synthetically-generated
samples after they are generated, or to modify the training dataset for a generative model, or to
directly modify the original data for releasing.
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5 Experiments

In this section, we experimentally compare our mechanism for achieving distributional privacy with
privacy mechanisms that were designed to satisfy other privacy notions (e.g., differential privacy).
We demonstrate that prior mechanisms incur poor privacy-distortion tradeoffs under our metrics.

Dataset. We use Wikipedia Web Traffic Dataset [9] for the experiment. This dataset contains the
daily page views of 145,063 Wikipedia web pages from Jul. 1st, 2015 to Dec. 31st, 2016. To
preprocess it for our experiments, we remove the web pages with empty page view record on any
day (117,277 left), and compute the mean page views across all dates for each web page. The goal
is to release the page views (i.e., a 117,277-dimensional vector) while protecting the mean of the
distribution (which reveals the business scales of the company § 1).

Baselines. We compare our mechanisms discussed in § 4 with two popular mechanisms proposed in
prior work (§ 1): differentially-private density estimation [22] (shortened to DP) and attribute-private
Gaussian mechanism [26] (shortened to AP).

For a dataset of samples X = {x1, ..., xn}, DP works by: (1) Dividing the space into m bins:
B1, ..., Bm. (2) Computing the histogram Ci =

∑n
j=1 I (xj ∈ Bi). (3) Adding noise to the his-

tograms Di = max {0, Ci + Laplace (0, ϵ)}, where Laplace
(
0, ϵ2

)
means a random noise from

Laplace distribution with mean 0 and variance ϵ2. (4) Normalizing the histogram pi =
Di∑m

j=1 Dj
. We

can then draw yi according to the histogram and release Y = {y1, ..., yn} with differential privacy
guarantee. AP works by releasing Y =

{
xi +N

(
0, ϵ2

)}n
i=1

.

Metrics. Our privacy and distortion metrics depend on the prior distribution of the original data
θ ∼ ωΘ (though the mechanism does not). In practice (and also in this experiment), the data holder
only has one dataset. Therefore, we cannot empirically evaluate the proposed privacy and distortion
metrics, and resort to surrogate metrics to bound our true privacy and distortion.

Surrogate privacy metric. For an original dataset X = {x1, ..., xn} and the released dataset
Y = {y1, ..., yn}, we define the surrogate privacy metric Π̃ϵ as the error of an attacker who guesses
the mean of the released dataset as the secret: Π̃ϵ ≜ −

∣∣ 1
n

∑n
i=1 xi − 1

n

∑n
i=1 yi

∣∣ . Note that a minus
sign is added here so that a smaller value indicates stronger privacy, as in privacy metric (1). This
simple attacker strategy is in fact a good proxy for evaluating the privacy Πϵ due to the following
facts. (1) For our mechanism Alg. 1,when the prior distribution is uniform, this strategy is actually
optimal (see § 4), so there is a direct mapping between Π̃ϵ and Πϵ. (2) For AP, this strategy gives an
unbiased estimator of the secret. (3) For DP, this mechanism may not be an unbiased estimator of the
secret, but it gives an upper bound on the attacker’s error.

Surrogate distortion metric. We define our surrogate distortion metric as the Wasserstein-1 distance
between the two datasets: ∆̃ ≜ dWasserstein-1 (pX ∥pY) where pD denotes the empirical distribution of
a dataset D. This metric evaluates how much the mechanism distorts the dataset.

AP
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Ours
Lower bound
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Surrogate metric for distortion
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Figure 3: Privacy (lower is better) and dis-
tortion (lower is better) of AP, DP and ours
on Wikipedia Web Traffic Dataset. Each
point represents one instance of data release
mechanism with one hyper-parameter.

In fact, we can deduce a theoretical lower bound for the
surrogate privacy and distortion metrics using similar
techniques as Corollary 2 (App. E).

Results. We enumerate the hyper-parameters of each
method (bin size and ϵ for DP, ϵ for AP, and s for ours).
For each method and each hyper-parameter, we com-
pute their surrogate privacy and distortion metrics. The
results are shown in Fig. 3 (bottom left is best); each
data point represents one realization of mechanism Mg

under a distinct hyperparameter setting. AP directly
adds Gaussian noise to each sample. This process does
not change the mean of the distribution on expectation.
Therefore, Figure 3 shows that AP has a bad privacy-
distortion tradeoff. DP quantizes (bins) the samples
before adding noise. Quantization has a better property
in terms of protecting the mean of the distribution, and
therefore we see that DP has a better privacy-distortion
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tradeoff than AP. Our mechanism (Eq. (4)) always achieves the best privacy-distortion tradeoff;
indeed, it can be shown to be optimal even for these surrogate metrics (proofs in App. E).

6 Discussions and Future Work

This paper gives an initial framework for defining, analyzing, and protecting distributional privacy.
Many open questions remain, including how to measure privacy empirically for arbitrary secrets
and data distributions, how to analyze the privacy-distortion tradeoff (and design mechanisms) for
more secret types, distribution classes (including parametric families without an explicit location
parameter), multiple secrets, higher dimension of data, and other distance metrics for distortion.
While our framework is not intended for protecting sample level privacy (see § 1), it would be
interesting to study whether our mechanisms (§ 4) are able to defend against sample-level attacks
(e.g., membership inference attacks [10]) as a side benefit.
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Appendix

A Related Work

In this section, we discuss why existing privacy frameworks and mechanisms are unsuitable for this
distributional privacy concern.

Differential privacy (DP) [6] is one of the most popular privacy notions. A randomized mechanism
M is (ϵ, δ)-differentially-private if for any neighboring datasets D0 and D1 (i.e., D0 and D1 differ
one sample), and any set S ⊆ range (M), we have

P (M (D0) ∈ S) ≤ eϵ · P (M (D1) ∈ S) + δ .

In our data sharing scenarios, we could apply DP framework by treating M as the data release
mechanism that reads the original dataset and outputs the released dataset. However, the privacy
concerns of DP and our suggested framework are completely different: we aim to hide functions of a
distribution, while DP aims to hide whether any given sample contributed to the shared data. Indeed,
we will show in § 5 that DP is not effective in hiding distributional secrets.

Maximal leakage [12] is a framework for quantifying the leakage of sensitive information. We
denote X as the random variable of the data that many contain sensitive information, and Y as the
random variable of the information that is processed from X and is accessible by the attacker. With
the observation of Y , the attacker’s goal is to guess a secret function of X denoted by U , and the
guess is denoted by Û . Based on this setup, the Markov chain U −X − Y − Û holds. Maximal
leakage from X to Y is defined as

L (X → Y ) = sup
U−X−Y−Û

log
P
(
U = Û

)
maxu PU (u)

(5)

where the sup is taking over U (i.e., considering the worst-case secret) and Û (i.e., considering the
strongest attacker). Intuitively, Eq. (5) evaluates the ratio (in nats) of the probabilities of guessing the
secret correctly with and without observing Y .

To apply maximal leakage in data sharing scenario, we may regard X as the original dataset, Y as
the released dataset, and U as the secret (e.g., the fraction of a specific server type). However, this
formulation is still unsuitable for the following reasons. (1) Maximal leakage only considers discrete
U and Û under finite alphabet. Note that it is a critical assumption for making sure that P

(
U = Û

)
in the definition (Eq. (5)) is nontrivial. However, in our problem, secrets are usually in continuous
domains (e.g., the secrets in the motivating examples in § 1). (2) Maximal leakage assumes that the
secret to protect U is unknown a priori and therefore considers the worst-case leakage among all
possible secrets. However, in our problem, data holders know what secret they want to protect.

Attribute privacy [26] considers a similar privacy concerns as us: it tries to protect a function
of a sensitive column in the dataset (named dataset attribute privacy) or a sensitive parameter of
the underlying distribution from which the data is sampled (named distribution attribute privacy).
Attribute privacy applies Pufferfish privacy framework [14] to describe these two privacy concerns.
On the high level, an algorithm is said to be of higher dataset/distribution attribute privacy if for
any two different ranges of secret (e.g., fraction of the server type is in [0.1, 0.2) or [0.2, 0.3)), the
distributions of the algorithm output do not differ too much. For the more accurate definitions, please
refer to [26].

Although the privacy concerns are highly related, attribute privacy focuses on algorithms that output
a statistical query of the dataset (e.g., the number of servers) instead of the entire dataset (e.g., cluster
trace dataset). We could still apply the framework to analyze such data sharing algorithms, but due to
the high dimensionality of the dataset, attribute privacy requires to add too much noise which makes
the generated dataset of high distortion. Indeed, in § 5 we will see that attribute privacy mechanisms
give poor privacy-distortion trade-offs in data sharing applications.

Privacy funnel [16] is another popular privacy framework. We denote X as the random variable of
the data that many contain sensitive information U , and Y as the random variable of the information
that is processed from X and is accessible by the attacker. The privacy funnel framework use the
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mutual information I(U ;Y ) to evaluate the privacy leakage, and use the mutual information I(X;Y ),
to evaluate how well Y preserves the utility of data. To find a good privacy-preserving data processing
strategy PY |X , privacy funnel solves the optimization problem

min
PY |X :I(X;Y )≥R

I(S;Y ) ,

where R is a desired threshold on the utility of Y .

To apply it in data sharing problems, we could regard X as the original data, Y as the released data,
and U as the secret data holder wants to protect (e.g., the fraction of a specific server type). However,
mutual information is not a good metrics for either privacy or utility. On the privacy front, prior work
has shown that we could make I(S;Y ) smaller while allowing the attacker to guess S correctly from
Y with higher probability (see Example 1 in [12]). On the utility front, higher mutual information
I(X;Y ) does not mean that the released data Y is a useful representation of X . For example, for
could have Y as an arbitrary one-to-one transformation of X . In that case, I(X;Y ) obtains the
maximum but the structure of data could be completely destroyed. In addition, privacy funnel [16]
only considers X and Y in discrete domains, which is not the case for our setting.

Sub-sampling is used in prior data release practice for reducing the leakage of sensitive information
[18]. It works by sub-sampling the original datasets before doing follow-up processing or release.
The intuition is that by reducing the number of involved samples, less information can be leaked.
However, sub-sampling does not change the statistical properties of the distribution. Distributional
information can still be inferred from the released data (possibly with higher estimation variance,
though).

Anonymization, such as removing certain attributes (e.g., name of the patients in medical data, name
of jobs in cluster dataset) [18], is widely used in the release process of public datasets (e.g., [23]).
However, this process does not change the distribution of other attributes, which may contain the
private information that data holder wants to hide [15].

Summary. Based on the above observation, it is important to establish a new privacy framework for
distributional privacy in data sharing scenarios, which we discuss in the next section.

B Proof of Thm. 1

Proof. For any θ′, we have

T ≥ ∆

≥ sup
θ∈Supp(ωΘ),z∈Supp(ωZ):Mg(θ,z)=θ′

d
(
ωXθ

∥ωYθ′

)
≥ sup

θi∈Supp(ωΘ),zi:Mg(θi,zi)=θ′
D (Xθ1 , Xθ2) (6)

≥ γ · sup
θi∈Supp(ωΘ),zi:Mg(θi,zi)=θ′

R (Xθ1 , Xθ2)

where Eq. (6) comes from triangle inequality.

Let
Lθ′ ≜ inf

θ∈Supp(ωΘ),z:Mg(θ,z)=θ′
g (θ) ,

Rθ′ ≜ sup
θ∈Supp(ωΘ),z:Mg(θ,z)=θ′

g (θ) .

From the above result, we know that Rθ′ − Lθ′ ≤ T
γ . We can define a sequence of attackers such

that ĝi (θ′) = Lθ′ + (i+ 0.5) · 2ϵ for i ∈
{
0, 1, . . . , ⌈ T

2γϵ⌉ − 1
}

(Fig. 4). We have∑
i

P
(
ĝi (θ

′) ∈ [g (θ)− ϵ, g (θ) + ϵ]

∣∣∣∣θ′) ≥ 1,

and therefore,

max
i

P
(
ĝi (θ

′) ∈ [g (θ)− ϵ, g (θ) + ϵ]

∣∣∣∣θ′) ≥ ⌈ T

2γϵ
⌉−1, (7)
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Figure 4: The construction of attackers for proof of Thm. 1. The 2ϵ ranges of ĝ0, ..., ĝ⌈ T
2γϵ ⌉−1

jointly cover the entire range of possible secret [Lθ′ , Rθ′ ]. Therefore, there exists one attacker whose
probability of guessing the secret correctly within ϵ is ≥ ⌈ T

2γϵ⌉
−1 (Eq. (7)).

which implies that

sup
ĝ

P
(
ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]

∣∣∣∣θ′) ≥ ⌈ T

2γϵ
⌉−1.

Therefore, we have

Πϵ = sup
ĝ

P (ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ])

= sup
ĝ

E
(
P
(
ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]

∣∣∣∣θ′))
= E

(
sup
ĝ

P
(
ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]

∣∣∣∣θ′)
)

≥ ⌈ T

2γϵ
⌉−1.

C Proof of Corollary 1

Proof. For any Xθ1 , Xθ2 , we have

D (Xθ1 , Xθ2) =
1

2
dWasserstein-α

(
ωXθ1

∥ωXθ2

)
≥ 1

2
|g (θ1)− g (θ2)| (8)

=
1

2
R (Xθ1 , Xθ2) .

where Eq. (8) comes from Jensen inequality. Therefore, we have γ = infθ1,θ2∈Supp(ωΘ)
D(Xθ1

,Xθ2)
R(Xθ1

,Xθ2)
≥

1
2 . The result then follows from Thm. 1.

11



D Proof of Thm. 2

Proof. For any released parameter θ′ = (u′, v′), there exists i ∈ {0, ..., N − 1} such that u′ =
u+ (i+ 0.5) · s. We have

sup
ĝ

P
(
ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]

∣∣θ′)
= sup

ĝ

∫ u+(i+1)·s

u+i·s
fU |U ′ (u|u′) ·

∫ u+ϵ

u−ϵ

fĝ(u′,v′) (h) dh du

= sup
ĝ

∫ u+(i+1)·s+ϵ

u+i·s−ϵ

fĝ(u′,v′)(h) ·
∫ ĝ

(
fY

u′,v′

)
+ϵ

ĝ
(
fY

u′,v′

)
−ϵ

fU |U ′ (u|u′) du dh

≤ sup
ĝ

∫ u+(i+1)·s+ϵ

u+i·s−ϵ

2ϵ

s
· fĝ(u′,v′)(h) dh

≤ 2ϵ

s
.

Therefore, we have

Πϵ = sup
ĝ

P (ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ])

= sup
ĝ

E
(
P
(
ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]

∣∣∣∣θ′))
= E

(
sup
ĝ

P
(
ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]

∣∣∣∣θ′)
)

≤ 2ϵ

s
.

Let ĝ∗ be the attack strategy that ĝ∗ (u′, v′) = u′. When ĝ = ĝ∗, the equality achieves, and thus
ĝ∗ ∈ arg supĝ P (ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]).

For the distortion, we can easily get that ∆ = s
2 . From Corollary 1, we know that Πϵ ≥ ⌈ s

2ϵ⌉
−1.

Therefore, when 2ϵ divides s, the data release mechanism in Alg. 1 is optimal.

E Proofs for the Surrogate Metrics

For any pY , we have ∆̃ = dWasserstein-1 (pX ∥pY) ≥
∣∣ 1
n

∑n
i=1 xi − 1

n

∑n
i=1 yi

∣∣ = −Π̃ϵ.

For pY is released from our mechanism Eq. (4), we have ∆̃ = dWasserstein-1 (pX ∥pY) =∣∣ 1
n

∑n
i=1 xi − 1

n

∑n
i=1 yi

∣∣ = −Π̃ϵ.

F Analysis of the Alternative Formulation

In this section, we present the alternative formulation of minimizing distortion ∆ subject to a
constraint on privacy metric Πϵ:

min
Mg

∆ subject to Πϵ ≤ T (9)

Theorem 3 (Lower bound of privacy-distortion tradeoff). Let D (Xθ1 , Xθ2) ≜
1
2d
(
ωXθ1

∥ωXθ2

)
,

where d (·∥·) denotes Wasserstein-α distance. Further, let R (Xθ1 , Xθ2) ≜ |g(θ1)− g(θ2)|. Let

γ ≜ infθ1,θ2∈Supp(ωΘ)
D(Xθ1

,Xθ2)
R(Xθ1

,Xθ2)
. For any T ∈ [0, 1], when Πϵ ≤ T , we have ∆ >

(
⌈ 1
T ⌉ − 1

)
·2γϵ.

The proof is in App. G.
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Figure 5: The construction of attackers for proof of Thm. 3. The 2ϵ ranges of ĝ0, ..., ĝN−1 jointly
cover the entire range of possible secret [Lθ′ , Rθ′ ]. Therefore, there exists one attacker whose
probability of guessing the secret correctly within ϵ is ≥ ⌈ T

2γϵ⌉
−1 (Eq. (7)).

Corollary 2 (Privacy lower bound, secret = mean of a continuous distribution). Consider the secret
function g (θ) =

∫
x
xfXθ

(x) dx. For any T ∈ [0, 1), when Πϵ ≤ T , we have ∆ >
(
⌈ 1
T ⌉ − 1

)
· ϵ.

The proof is similar to App. C except that the last step applies Thm. 3 instead of Thm. 1.

Theorem 4 (Optimality of Alg. 1 ). The data release mechanism in Alg. 1 asymptotically achieves
the lower bound in Thm. 3 when ϵ → 0.

The proof is in App. H. Let ĝ∗ be the attack strategy that ĝ∗ (u′, v′) = u′, i.e., the attack
guesses the mean of private distribution as the release mean. We also show in the proof
that under the data release mechanism Alg. 1, ĝ∗ is the optimal attacker strategy (i.e., ĝ∗ ∈
arg supĝ P (ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ])).

G Proof of Thm. 3

Proof.

T ≥ Πϵ

= sup
ĝ

P (ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ])

= sup
ĝ

E
(
P
(
ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]

∣∣∣∣θ′))
= E

(
sup
ĝ

P
(
ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]

∣∣∣∣θ′)
)

Therefore, there exists θ′ s.t. supĝ P
(
ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]

∣∣∣∣θ′) ≤ T .

Let

Lθ′ ≜ inf
θ∈Supp(ωΘ),z:Mg(θ,z)=θ′

g (θ) ,

Rθ′ ≜ sup
θ∈Supp(ωΘ),z:Mg(θ,z)=θ′

g (θ) .

We can define a sequence of attackers such that ĝi (θ′) = Lθ′+(i+ 0.5)·2ϵ for i ∈ {0, 1, . . . , N − 1}
and Lθ′ + 2Nϵ ≥ Rθ′ > Lθ′ + 2(N − 1)ϵ (Fig. 5). From the above, we have

T ·N ≥
∑
i

P
(
ĝi (θ

′) ∈ [g (θ)− ϵ, g (θ) + ϵ]

∣∣∣∣θ′) ≥ 1,
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Therefore, we have N ≥ ⌈ 1
T ⌉, and Rθ′ − Lθ′ >

(
⌈ 1
T ⌉ − 1

)
· 2ϵ. Then we have

∆ ≥ sup
θ∈Supp(ωΘ),z∈Supp(ωZ):Mg(θ,z)=θ′

d
(
ωXθ

∥ωYθ′

)
≥ sup

θi∈Supp(ωΘ),zi:Mg(θi,zi)=θ′
D (Xθ1 , Xθ2) (10)

>

(
⌈ 1
T
⌉ − 1

)
· 2γϵ. (11)

where Eq. (11) utilizes Rθ′ − Lθ′ >
(
⌈ 1
T ⌉ − 1

)
· 2ϵ and the definition of γ, and Eq. (10) comes from

triangle inequality.

H Proof of Thm. 4

Proof. For any released parameter θ′ = (u′, v′), there exists i ∈ {0, ..., N − 1} such that u′ =
u+ (i+ 0.5) · s. We have

sup
ĝ

P
(
ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]

∣∣θ′)
= sup

ĝ

∫ u+(i+1)·s

u+i·s
fU |U ′ (u|u′) ·

∫ u+ϵ

u−ϵ

fĝ(u′,v′) (h) dh du

= sup
ĝ

∫ u+(i+1)·s+ϵ

u+i·s−ϵ

fĝ(u′,v′)(h) ·
∫ ĝ

(
fY

u′,v′

)
+ϵ

ĝ
(
fY

u′,v′

)
−ϵ

fU |U ′ (u|u′) du dh

≤ sup
ĝ

∫ u+(i+1)·s+ϵ

u+i·s−ϵ

2ϵ

s
· fĝ(u′,v′)(h) dh

≤ 2ϵ

s
.

Therefore, we have

Πϵ = sup
ĝ

P (ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ])

= sup
ĝ

E
(
P
(
ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]

∣∣∣∣θ′))
= E

(
sup
ĝ

P
(
ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]

∣∣∣∣θ′)
)

≤ 2ϵ

s
.

Let ĝ∗ be the attack strategy that ĝ∗ (u′, v′) = u′. When ĝ = ĝ∗, the equality achieves, and thus
ĝ∗ ∈ arg supĝ P (ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]).

For the distortion, we can easily get that ∆ = s
2 . Corollary 2 says that ∆ >

(
⌈ s
2ϵ⌉ − 1

)
· ϵ. The gap

between these two goes to zero when ϵ → 0.
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