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ABSTRACT

Label smoothing (LS) is a popular regularisation method for training neural net-
works as it is effective in improving test accuracy and is simple to implement.
“Hard” one-hot labels are “smoothed” by uniformly distributing probability mass
to other classes, reducing overfitting. Prior work has suggested that in some cases
LS can degrade selective classification (SC) – where the aim is to reject misclassifi-
cations using a model’s uncertainty. In this work, we first demonstrate empirically
across an extended range of large-scale tasks and architectures that LS consistently
degrades SC. We then address a gap in existing knowledge, providing an explana-
tion for this behaviour by analysing logit-level gradients: LS degrades the uncer-
tainty rank ordering of correct vs incorrect predictions by suppressing the max logit
more when a prediction is likely to be correct, and less when it is likely to be wrong.
This elucidates previously reported experimental results where strong classifiers
underperform in SC. We then demonstrate the empirical effectiveness of post-hoc
logit normalisation for recovering lost SC performance caused by LS. Furthermore,
linking back to our gradient analysis, we again provide an explanation for why such
normalisation is effective. Project page: https://ensta-u2is-ai.github.
io/Understanding-Label-smoothing-Selective-classification/

1 INTRODUCTION

Label smoothing (LS) (Szegedy et al., 2016) is a common regularisation technique used to improve
classification accuracy in deep learning. The one-hot labels used for cross entropy (CE) are linearly
combined with a uniform distribution over classes, redistributing the probability mass and “smoothing”
the “hard” targets, discouraging overfitting. Due to its simplicity and empirical effectiveness, label
smoothing features in many recent training recipes (Vaswani et al., 2017; Tan et al., 2019; He et al.,
2019; Touvron et al., 2021; Liu et al., 2021; 2022b;c; Tan & Le, 2019; 2021), being particularly
popular on the ImageNet-1k (Russakovsky et al., 2015) image classification benchmark.

Within the domain of uncertainty estimation, LS is well explored in the context of model calibration
(Müller et al., 2019; Chun et al., 2020; Mukhoti et al., 2020; Liu et al., 2022a), where the aim is to align
a model’s output probabilities with its empirical accuracy. The pairing is intuitive as LS encourages
models to output lower probabilities, and models are typically more confident than they are accurate
(Guo et al., 2017). On the other hand, there is very little research investigating the effects of LS in
the context of Selective Classification. Selective Classification (SC) (Hendrycks & Gimpel, 2017;
Geifman & El-Yaniv, 2017; Xia & Bouganis, 2022b; Jaeger et al., 2023) is a problem setting where, in
addition to the primary classification task, a binary rejection decision is made based on the uncertainty
estimated by the model, i.e. reject/abstain if uncertain. The aim is to reduce the number of failures
served by the classifier by pre-emptively rejecting potential misclassifications. It is well motivated
by applications where safety and reliability are important due to the high cost of failure. For example,
when uncertain, an autonomous driving system may require driver assistance (Kendall & Gal, 2017), a
medical diagnosis system may defer to a doctor (Beam & Kompa, 2021; Kurz et al., 2022), or a visual
aid system for the visually impaired may abstain from answering a query (Whitehead et al., 2022).

Recently Zhu et al. (2022; 2024) empirically observe that LS can lead to worse SC for convolutional
neural networks (CNNs) performing image classification, yet it is not clear why this occurs.
Concurrently, large-scale empirical evaluations of open-source pre-trained models have shown
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Figure 1: Top: LS causes overconfidence for semantic segmentation. The LS-trained model predicts
much lower (ranked) uncertainty on incorrect ✗ segmentations than CE. In particular, for the
erroneous region on the left where the model has predicted parts of the “sidewalk” as “road”,
the LS model is highly overconfident. This could have dire consequences in a safety-critical
application such as autonomous driving. Bottom: LS leads to close to 0% of samples being accepted
(coverage) when a strict tolerance of 1% error on accepted samples (risk) is imposed on ImageNet.
Deployment-time logit normalisation effectively negates the degradation caused by LS.

that many strong classifiers have surprisingly poor SC ability (Galil et al., 2023; Cattelan & Silva,
2024). Cattelan & Silva (2024) additionally present deployment-time logit normalisation as a
sometimes-effective approach to improving SC, but the reason for its effectiveness remains unclear.
In this work, we aim to empirically validate and analytically demystify the effect of LS on SC, tying
together and filling in the gaps in knowledge of previous work with the following key contributions:
1. We show empirically, across a range of large-scale architectures (CNN,ViT) and tasks (image

classification, semantic segmentation), that training with LS consistently leads to degraded SC
performance (see Fig. 1), even if it may improve accuracy. Moreover, we find that the degradation
worsens with stronger LS. As LS can be found in the training recipes of many of the models
evaluated in (Galil et al., 2023; Cattelan & Silva, 2024), this suggests LS as one potential cause
for previously unexplained negative results where strong classifiers underperform at SC.

2. We address a gap in the understanding of LS by providing an explanation of this behaviour
through analysing the logit-level gradients of the LS loss. We show that the amount LS suppresses
the max logit directly corresponds to the true probability of error Perror, with suppression
increasing(decreasing) the more likely a prediction is correct(wrong). This leads to relatively
higher uncertainty on correct predictions and lower uncertainty on misclassifications, degrading
the ranking of uncertainties and hurting SC compared to vanilla CE.

3. We show that post-hoc logit normalisation (Cattelan & Silva, 2024) is effective in negating the
degradation from LS (Fig. 1). Moreover, we elucidate this effectiveness through the lens of our
gradient-based analysis. Linking back to the imbalanced logit suppression of LS, we find that logit
normalisation compensates for this effect by increasing uncertainty as the max logit increases.

2 PRELIMINARIES

For a glossary of notation see Appendix A. Consider a K-class neural network classifier with
parameters θ that models the conditional distribution P (y|x;θ) of labels y ∈ Y = {ωk}Kk=1 given
inputs x ∈ X = RD. Typically the network has a categorical softmax output π(x;θ) ∈ [0, 1]K ,

P (ωk|x;θ) = πk(x;θ) = exp vk(x)/
∑K

i=1
exp vi(x) , v = Wz + b , (1)
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Figure 2: Left: illustration of how label smoothing (LS) alters a training label. LS reduces data
supervision and adds regularisation, potentially improving generalisation by reducing overfitting.
Right: illustration of selective classification (SC). Uncertain samples (U > τ ) are rejected/detected,
to reduce the number of errors ✗ served by the system. Rejected samples can be discarded or
processed separately (e.g. deferred to a human expert). We wish to better separate/rank ✓ vs ✗ via U .

where v ∈ RK are the logits output by the final layer with weight matrix W ∈ RK×L, bias b ∈ RK ,
and pre-logit features z ∈ RL as inputs. The neural network is trained by minimising the cross
entropy (CE) loss on a finite dataset Dtr = {x(n), y(n)}Nn=1 drawn from distribution pdata(x, y), such
that it approximately learns the true conditional Pdata(y|x),

LCE(θ) = − 1

N

∑
n

∑
k
δy(n)ωk

logP (ωk|x(n);θ) (2)

≈ −Epdata(x)

[∑
k
Pdata(ωk|x) logP (ωk|x;θ)

]
(3)

= Epdata(x) [KL [π̄(x)||π(x;θ)]] + const. = Ltrue
CE (θ) , (4)

where δij = 1 if i = j, and 0 if i ̸= j is the Kronecker delta and KL[·||·] is the Kullback–Leibler
divergence. We use π̄(x) ∈ [0, 1]K as a shorthand for the true conditional categorical, i.e.
π̄k = Pdata(ωk|x). Predictions ŷ are then made on new unlabelled input data x∗ using classifier
function f during deployment,

ŷ = f(x∗;θ) = argmaxω P (ω|x∗;θ) . (5)

We also define the probability of the classifier making an error on a given sample as Perror = 1− π̄ŷ ,
where in a slight abuse of notation π̄ŷ is the true probability of the predicted class Pdata(ŷ|x).

2.1 LABEL SMOOTHING (LS)

Label smoothing involves mixing the original one-hot labels (δ in Eq. (2)) with a uniform categorical
distribution u = 1/K · 1 using hyperparameter α ∈ [0, 1] (see Fig. 2). The LS loss is thus

LLS(θ;α) = − 1

N

∑
n

∑
k

[
(1− α)δy(n)ωk

+ α
1

K

]
logP (ωk|x(n);θ) (6)

= (1− α)LCE(θ) + α
1

N

∑
n

[
KL

[
u||π(x(n);θ)

]]
+ const. (7)

≈ Epdata(x)

[
KL

[
(1− α)π̄(x)︸ ︷︷ ︸

data supervision

+ αu︸︷︷︸
regularisation

||π(x;θ)
]]

+ const. = Ltrue
LS (θ;α) , (8)

where we see that it can also be viewed as reduced CE supervision from the data combined with a
regularisation term encouraging the softmax π to be uniform and preventing it from overfitting to the
training data (Fig. 2). Eq. (8) also shows that LS can be seen as learning to predict a “softened” version
of the true conditional (1− α)π̄(x) + αu, encouraging a model to be less confident on all samples.

2.2 SELECTIVE CLASSIFICATION (SC)

A simple downstream task for estimates of predictive uncertainty is to reject (or detect) predictions that
may incur a high cost (Xia & Bouganis, 2022b; Jaeger et al., 2023), using a binary rejection function,

g(x; τ) =

{
0 (reject prediction), if U(x) > τ (uncertain)
1 (accept prediction), if U(x) ≤ τ (confident) ,

(9)
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where U(x) is a scalar measure of predictive uncertainty extracted from the prediction model and τ
is a user-set operating threshold. Intuitively, we reject if the model is uncertain, preventing the system
from serving failures, which may then be processed separately. We are only concerned with the
relative rankings of Us rather than absolute values - we want to be more uncertain on failures. In the
case where the prediction task is classification and we wish to reject potential misclassifications (✗),
we can use a selective classifier (Chow, 1970; El-Yaniv & Wiener, 2010) (f, g), which is simply the
combination of a classifier f (Eq. (5)) and the aforementioned binary rejection function g (Eq. (9)).
Fig. 2 contains an illustration. To evaluate a selective classifier, we use the 0/1 classification error,

LSC(f(x), y) =

{
0, if f(x) = y (correct ✓)
1, if f(x) ̸= y (misclassified ✗) ,

(10)

to define the selective risk (El-Yaniv & Wiener, 2010; Geifman & El-Yaniv, 2017) as

Risk(f, g; τ) =
Epdata(x,y)[g(x; τ)LSC(f(x), y)]

Epdata(x,y)[g(x; τ)]
, (11)

which is the average error on the accepted samples. The denominator of Eq. (11) is the proportion
of samples accepted, or the coverage, Cov = Epdata(x)[g(x; τ)]. Our objective is to minimise risk
for a given coverage (lower %error on accepted samples) and/or maximise coverage for a given
risk (accept more samples). Note this can be achieved both through improving f (fewer errors) and
through improving g (better rejection). SC performance is evaluated via the Risk-Coverage (RC)
curve (Geifman & El-Yaniv, 2017) (see Fig. 3 for examples). The area under the curve (AURC↓)
provides an aggregate metric over τ ,1 whilst the curve can also be inspected at specific operating
points (Whitehead et al., 2022; Xia & Bouganis, 2023), e.g. coverage at 5% risk (Cov@5↑). For
deployment, τ can be set using a held-out validation dataset by finding a suitable operating point
on the RC curve according to an external requirement e.g. risk=1% if tolerance for failure is low.

U(x) = −MSP(x) = −πmax = −maxk πk(x;θ) = −P (ŷ|x;θ) , (12)
i.e. the (negative of the) Maximum Softmax Probability (MSP) (Hendrycks & Gimpel, 2017) is the
model’s estimate of the probability of its prediction ŷ. We focus on this uncertainty measure U for
SC as it is a popular default choice and has been shown to consistently and reliably perform well
in the literature (Xia & Bouganis, 2022b; 2023; Jaeger et al., 2023; Feng et al., 2023) compared to
alternatives. MSP is a natural choice as P (y|x;θ) models Pdata(y|x), and U = −maxk Pdata(ωk|x)
(or any scalar monotonic to it) provides the optimal risk if the true distribution Pdata(y|x) is known
(Chow, 1970). We omit evaluations on other softmax-based U from the main paper as we find them
to behave similarly to MSP. In line with previous work (Xia & Bouganis, 2022b; Jaeger et al., 2023;
Zhu et al., 2024), we find that OOD detection (Yang et al., 2021) scores perform poorly at SC, and
also omit them (see Appendix F.1 for discussion and additional results).

Over/Underconfidence. Since we are only concerned about the relative ranking of U , we loosely
refer to overconfidence as when a model’s estimate of uncertainty for a given sample is (relatively) low
when Perror high, as we want a model to be uncertain when it is likely to be wrong. Underconfidence
is then the inverse. Both will result in worse SC: overconfidence leads to errors being accepted, un-
derconfidence to correct predictions being rejected. Intuitively, over/underconfidence may arise from
poorness of fit, where π(x;θ) fails to accurately model the true conditional distribution π̄(x) (Fig. 4).

This is different to the definition used in model calibration (Guo et al., 2017), which, notably, is
concerned with marginal properties (averaged over the input distribution) rather than per-sample
properties, as well as absolute probabilities rather than relative rankings. It is possible to be highly
over/underconfident in calibration but optimal for SC and vice versa (Zhu et al., 2024), e.g. applying
the monotonic transformation U = −maxk[Pdata(ωk|x)]1000. We note that model calibration is an
independent task to SC (Jaeger et al., 2023), is well explored in the context of LS (Müller et al., 2019),
and is not the focus of this work. LS may improve calibration by increasing the uncertainty of both
correct ✓ and incorrect ✗ predictions, however, this will not necessarily help SC (Zhu et al., 2024).

3 THE EFFECT OF LABEL SMOOTHING ON SELECTIVE CLASSIFICATION

Zhu et al. (2022; 2024) observe empirically (as part of a broader investigation) that for a single value
of α LS degrades SC for CNN-based image classification. In this section we aim to validate this

1We note that there are a number of alternative aggregate metrics to AURC (Geifman et al., 2019; Cattelan &
Silva, 2024; Traub et al., 2024). We choose to omit them, as we focus on non-aggregated results in this work.
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behaviour on a wider range of large-scale tasks and architectures. We find that LS leads to consistent
degradation in SC, with stronger LS leading to greater degradation. We suggest that it may partially
explain the findings of recent large-scale empirical evaluations of open-source pre-trained models
(Galil et al., 2023; Cattelan & Silva, 2024) where strong classifiers surprisingly underperform on SC.

Experimental details. We investigate large-scale2 image classification on ImageNet-1k (Rus-
sakovsky et al., 2015) and semantic segmentation (pixel-level classification) on Cityscapes (Cordts
et al., 2016). For ImageNet, we randomly split the validation set into 10,000 validation and 40,000
evaluation images. For Cityscapes, we randomly split the original validation set into 100 validation
and 400 evaluation images. To estimate the risk for the RC curves, we subsample 5000 labelled
pixels per image at random. We evaluate on the same pixels between models. The only parameter
varied between training runs is the level of LS α, and to isolate the effects of LS, we train all models
from scratch using simple recipes. We purposely avoid augmentations such as MixUp (Zhang et al.,
2018) and CutMix (Yun et al., 2019) as these directly affect the training labels, which would interfere
with our experiments. For ImageNet classification, we train ResNet-50 (He et al., 2016) and ViT-S-16
(Dosovitskiy et al., 2021) using only random resized cropping and flipping for data augmentation.
To achieve decent accuracy for ViT training from scratch without advanced augmentations, we
use sharpness-aware minimisation (SAM) (Foret et al., 2021; Chen et al., 2022). For semantic
segmentation on Cityscapes, we train DeepLabV3+ (Chen et al., 2018) (ResNet-101 backbone) using
only random cropping, flipping and colour jitter for augmentations. Extended training details for
reproducibility can be found in the Appendix C. We release our code on GitHub.

3.1 LABEL SMOOTHING DEGRADES SELECTIVE CLASSIFICATION

To examine the effects of LS on SC, we plot RC curves in Fig. 3. We use U = −MSP and vary
only the LS level α between training runs. We see that training with LS leads to a noticeable
degradation for selective classification, with higher α worsening the effect. We provide illustrative
examples of LS overconfidence on ImageNet in Fig. 9. Although LS leads to slightly better risk
at higher coverage, it quickly becomes worse than CE as coverage is reduced. The degradation
is especially evident for the low-risk regime, which is relevant to safety-critical scenarios where
tolerances for error are strict. For example, if the target is to achieve only 1% error/risk on ImageNet,
then all of our LS models have close to zero coverage, rendering them effectively useless (Figs. 1
and 3). To further highlight the overconfidence caused by LS, we visualise the uncertainty ranking
of incorrect pixels for the segmentation of a Cityscapes scene in Fig. 1. The LS-trained model is
extremely confident for an erroneous region where it has predicted the “sidewalk” as “road”. Whilst
the CE model has made the same error, it is much more uncertain. This illustrates potential danger
in an autonomous driving scenario if the vehicle is making decisions based on uncertainty estimates.

Upon inspection, many of the SC-underperforming models benchmarked in (Galil et al., 2023; Catte-
lan & Silva, 2024) are trained using LS, aligning with our results. The models are sourced from repos-
itories such as torchvision (Paszke et al., 2019) and timm (Wightman, 2019), where the training
recipes are optimised for top-1 accuracy. We note that for ImageNet, LS is such a common technique
that it is often used by default, and not even mentioned in papers, e.g. (Tan & Le, 2019; 2021).
Overall, our results highlight that only optimising for accuracy may result in negative downstream
consequences and that practitioners of SC need to be aware of the effects of their training recipes.
We include additional discussion of existing benchmarks and model checkpoints in Appendix F.6.

4 TOWARDS EXPLAINING THE NEGATIVE EFFECT OF LS ON SC

In the following section, we attempt to delve deeper into why our empirical results (and those in (Zhu
et al., 2024)) occur, shedding light on a previously unexplained phenomenon. It might intuitively
seem odd that LS degrades SC performance as the transform applied to the true targets in Eq. (8)
(1 − α)π̄(x) + αu reduces the max probability for all samples but does not change the relative
ranking. However, this only carries over to the model when it is knowledgeable about the data, so it is
well fit π(x;θ) ≈ (1− α)π̄(x) + αu. For such samples, the model has learnt to be more uncertain.
However, we cannot assume that the model is equally well fit on all regions of the data distribution.3

2We additionally provide small-scale CIFAR, tabular and text experiments in Appendices B.3 to B.5.
3For the sake of simplicity we avoid the term epistemic uncertainty (see Appendix F.2 for brief discussion).
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Figure 3: Risk-coverage plots for different levels of LS α for different models and tasks (ImageNet
classification and Cityscapes semantic segmentation). Although it may improve error rate/accuracy at
100% coverage, label smoothing consistently degrades SC performance.

Through analysing the logit gradients, we provide a potential explanation: LS suppresses the max logit
differently depending on how well fit the model is to a given sample – suppression is stronger(weaker)
the more likely a model is correct(wrong), harming the model’s ability to separate ✓ vs ✗.

4.1 COMPARING LOGIT GRADIENTS BETWEEN CE AND LS

To better understand how LS could lead to degraded SC, we consider how LS affects logit-level
training gradients. These are the first term in the chain rule for backpropagation and so directly
contribute to all parameter gradients during training. We take the gradient of Ltrue (Eqs. (4) and (8)),4

∂Ltrue
CE

∂vk
= − [π̄k− πk] ,

∂Ltrue
LS

∂vk
= −

[[
(1− α)π̄k︸ ︷︷ ︸

data supervision

+ α/K︸︷︷︸
regularisation

]
− πk

]
, (13)

for a single sample, where in a slight abuse of notation we omit the outer expectation over pdata(x)
for convenience. We can then define the suppression gradient on the logits,

∂Ltrue
sup

∂vk
=

∂(Ltrue
LS − Ltrue

CE )

∂vk
=

∂Ltrue
LS

∂vk
− ∂Ltrue

CE

∂vk
= α [π̄k − 1/K] = απ̄k − α/K , (14)

4Here we assume that the empirical loss L (Eqs. (2) and (6)) approximates Ltrue, in order to relate our discus-
sion to Perror. However, the same analysis on the empirical loss leads to similar conclusions (see Appendix D).
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Figure 4: How the suppression gradient (Eq. (14)), i.e. the difference between LS and CE gradients,
affects the logits differently. LS affects the max logit differently depending on how well fit the
model is for a given sample x. In the left two when U is lower (sharper softmax), the suppression
on the max logit is lower when the model is poorly fit and likely to be wrong. In the right two when
U is higher (flatter softmax), the suppression is higher when the model is poorly fit and more likely
to be correct. Thus, LS degrades the softmax’s ability to separate ✓ vs ✗ , hurting SC.

which is the difference between the LS and CE gradients. This represents how LS influences training
at the logit level in comparison to CE. Notably, it only depends on the target π̄. Gradient descent in-
volves updating weights in the opposite direction to the gradient. Hence απ̄k suppresses vk when the
true probability π̄k is higher. The second term −α/K uniformly increases the logits for all samples,
which does not affect the softmax as it is invariant to uniform logit shifts π(v) = π(v + η1), η ∈ R.

4.2 IMBALANCED SUPPRESSION DEGRADES UNCERTAINTY RANKING OF ✓ VS ✗

We now consider how the suppression gradient affects the maximum logit vmax,

∂Ltrue
sup

∂vmax
= απ̄ŷ − α/K = α[1− Perror]− α/K, (15)

which shows that the suppression on vmax decreases as the probability of error increases. This
directly impacts softmax-based U such as MSP (see Eqs. (1) and (12)), as the exponentiation of
the softmax will be dominated by the largest logits, especially the max logit vmax. The max logit
will be especially dominant on high-confidence samples which are the last to be rejected.

Eq. (15) suggests that for predictions that share the same value of U , those with higher Perror (more
likely ✗), will have vmax suppressed less, whilst predictions with lower Perror (more likely ✓) will
have vmax suppressed more. Thus, softmax-based U will have the relative ranking of correct ✓ and
incorrect ✗ predictions degraded – less uncertain on ✗ , more uncertain on ✓. To further build an
intuition, we consider how a model may not be uniformly well-fit over the data distribution during
training. As illustrated in Fig. 4, varying levels of fit with regards to the true distribution π̄ leads to
differing Perror for predictions with similar U , resulting in the degradation described above. Finally, as
the suppression gradient in Eq. (15) is proportional to α, this explains why stronger LS leads to greater
degradation. In summary: for a given predicted U the Perror will vary depending on how well
fit the model is. LS suppresses the max logit more(less) when Perror is lower(higher), degrading
the ranking of ✓ vs ✗ for softmax-based U , hurting SC. We note that although our analysis is
performed on training gradients, all our experiments are performed on evaluation data, suggesting that
effects indeed generalise to unseen data. We also note that our explanation is purely based on the loss,
and thus generalises across network architectures and tasks, matching the empirical results in Sec. 3.

LS empirically leads to higher vmax on misclassifications ✗. To further validate the effects of
Eq. (15), we plot the mean±std. of vmax given πmax for ResNet-50 on evaluation data in Fig. 5. We
see that for LS the distribution of correct ✓ is below incorrect ✗, whilst for CE they are roughly
similar. This provides further empirical support for Eq. (15) which states that when using LS, vmax
is more strongly suppressed for lower Perror. For results on other models see Appendix B.2.

LS empirically leads to increasing overconfidence on less-well-fit data. To further investigate
how LS affects uncertainty differently depending on how well-fit/knowledgeable the model is about
data, we artificially introduce distribution-shifted data that we expect our models to be worse fit on.
We use ImageNet-Sketch (Wang et al., 2019), a dataset containing sketches of each ImageNet class
and evaluate on the combination of the 50,889 ImageNet-Sketch and 40,000 ImageNet evaluation
images in Fig. 6. Even though the regularisation of LS improves the error rate, the degradation of
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Figure 5: Distribution of the max logit vmax given the MSP πmax for correct ✓ and incorrect ✗ predic-
tions on evaluation data. vmax is lower for ✓ for the LS model, whilst the distributions are roughly
similar for CE. This empirically matches the imbalanced max logit suppression described in
Eq. (15). We calculate the mean±std. in a 0.05-wide sliding window.
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Figure 6: Left: Evaluation on the combination of ImageNet + ImageNet-sketch. We see that for
low-uncertainty predictions, the degradation caused by LS is exacerbated when distribution shift is
artificially introduced (vs Fig. 3). Right: statistics @10% coverage of the combined evaluation set. As
the level of LS α increases, the number of accepted errors increases, especially from ImageNet-Sketch.
This shows that LS leads to increasing overconfidence on less-well-fit data.

SC at lower coverages from LS is exacerbated by the distribution-shifted data. At 10% coverage
of the combined evaluation set, LS leads to accepting many more errors compared to CE, with an
increasing proportion originating from ImageNet-Sketch. That is to say, LS leads to increasing
overconfidence on less-well-fit data (ImageNet-Sketch). This empirically highlights the situation
illustrated on the left of Fig. 4 where confident and well-fit samples have their max logit suppressed,
whilst confident but poorly fit samples do not, leading to samples with higher Perror being relatively
less uncertain (overconfident). For results on other models see Appendix B.2.

5 LOGIT NORMALISATION IMPROVES THE SC OF LS-TRAINED MODELS

Ideally, we would like to find a way to recover from the degradation caused by LS. A recent empirical
study by Cattelan & Silva (2024) has shown that logit normalisation can improve the SC performance
of many (but not all) pre-trained models. During deployment the logits are normalised by their
p-norm and then the MSP score πmax is replaced by the normalised max logit,

U = −v′max = −maxk v
′
k, v′ = [v + s]/ ∥v + s∥p = [v + s]

/(∑
k
|vk + s|p

) 1
p , (16)

where s is a scalar shift5 and p is found via AURC↓ grid search on a validation set. We investigate
the efficacy of this approach, applying it to our LS-trained models. Figs. 7 and 13 show the
SC performance with and without logit normalisation, and we indeed find that applying logit
normalisation greatly improves SC performance for models trained using LS, allowing for
improved error rate (@100% coverage) with good SC. This is further visualised for semantic
segmentation in Fig. 8, where logit normalisation successfully mitigates the overconfident errors
(bright yellow) caused by LS. However, we also find that logit normalisation does not notably

5We follow Cattelan & Silva (2024) and centralise the logits by subtracting the mean s = −1/K
∑

k vk.
For our experiments, this has little effect as s ≈ 0, but it has other benefits (see Appendix F.3 for discussion).
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Figure 7: RC curves with inference-time logit normalisation. Logit normalisation improves SC
performance on LS models, but has little effect on CE models. For other models, see Appendix B.2.
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Figure 8: Visualisation of the effect of logit normalisation for segmentation (same scene as Fig. 1).
Logit normalisation significantly reduces the overconfidence of the LS-trained model, although it
has little effect on the uncertainty of the CE-trained model. We provide more figures in Appendix G.

improve the SC of CE models. This aligns with (Cattelan & Silva, 2024) where certain models do
not benefit from logit normalisation so the authors suggest “falling back” to the MSP.

5.1 EXPLAINING THE EFFECTIVENESS OF LOGIT NORMALISATION.

Although Cattelan & Silva (2024) empirically validate this approach on a large number of pre-trained
models, it remains unclear as to why it is so effective, or why it isn’t effective sometimes (further
discussion in Appendix F.4). Let us shed light on the interaction between logit normalisation and LS.
If we examine Eq. (16), we see that it resembles the softmax, however, the logits are raised to power
p rather than exponentiated. Crucially, whilst the softmax is invariant to uniform shifts in the logits,

πk(v) =
exp vk∑
i exp vi

=
exp(vk + η)∑
i exp(vi + η)

= πk(v + η1), ∀η ∈ R , (17)

this is not the case for v′. In fact, we have the following inequality for positive6 logits v:

Result 1. For all vectors v ∈ (R>0)
K with at least two different values and p ∈ [1,+∞[, the ratio of

the ∞-norm and p-norm strictly decreases when summing v with any uniform vector η1, η > 0:

v′max(v) = ||v||∞
/
||v||p > ||v + η1||∞

/
||v + η1||p = v′max(v + η1) . (18)

The proof can be found in Appendix E. Recalling that ||v||∞ = vmax, Result 1 thus implies that for a
given softmax output π(v) = π(v+η1) and arbitrary corresponding v, the greater the value of η and
thus vmax, the lower the value of the normalised max logit v′max. That is to say logit normalisation
increases uncertainty when the max logit vmax is higher for the same softmax probabilities π.

Recall how in Sec. 4.2 we show how imbalanced logit suppression leads to degradation in SC. In
particular Fig. 5 shows how LS leads to higher vmax given πmax for errors ✗ – this implies that,
independent of the value of πmax, information about Perror has been encoded in vmax. We see now that
logit normalisation will increase the uncertainty (ranking) of errors ✗ relative to correct predictions

6Although this assumption may not necessarily hold, we find that in practice, πmax and v′max are dominated by
the larger positive logits, meaning the behaviour discussed still occurs empirically (Appendix F.3 and Fig. 22).

9



Published as a conference paper at ICLR 2025

✓ using the information in vmax, leading to improved SC for an LS model. That is to say logit normal-
isation effectively reverses the effect of the imbalanced logit suppression from LS, improving SC.
We note that Cattelan & Silva (2024) find that models that are less confident (on both ✓ and ✗) tend
to benefit more from logit normalisation, again pointing towards LS. Given our analysis and empirical
results, we strongly recommend logit normalisation for LS-trained models when performing SC.
On the other hand, Fig. 5 also shows that the distributions of vmax given πmax for correct ✓ and incor-
rect ✗ predictions are very similar for the CE model. This explains why for CE, logit-normalisation
does not seem to help, as vmax does not provide useful information about Perror given πmax.

6 RELATED WORK

Prediction with rejection. Selective classification falls into the broader problem setting of prediction
with rejection. In the case of SC, misclassifications are to be rejected (El-Yaniv & Wiener, 2010).
The baseline approach is to use the MSP (Hendrycks & Gimpel, 2017; Geifman & El-Yaniv, 2017)
and there have been a number of proposed training (Moon et al., 2020; Huang et al., 2020a; Ziyin
et al., 2019; Zhu et al., 2024) and architectural (Geifman & El-Yaniv, 2019; Corbière et al., 2019)
enhancements, however, recently the effectiveness of some of these enhancements has been called
into question (Feng et al., 2023). Another scenario is out-of-distribution (OOD) detection (Yang et al.,
2021; Hendrycks & Gimpel, 2017), where data from outside of the training distribution are to be
rejected. There is a plethora of research in this field (Xia & Bouganis, 2022a; Sun et al., 2021; Liu
et al., 2020; Zhang et al., 2023; Liu et al., 2023; Wang et al., 2022; Hendrycks et al., 2022). Recently,
a combination of SC and OOD detection has been proposed, where the aim is to reject both misclassi-
fications and OOD data (Jaeger et al., 2023; Xia & Bouganis, 2022b; Kim et al., 2023). Notably, Deep
Ensembles (Lakshminarayanan et al., 2020) have arisen as a reliable method to improve performance
in all three scenarios (Kim et al., 2023; Xia & Bouganis, 2023; Laurent et al., 2023; 2024). We believe,
given the results of this work, that extending the investigation of LS (and other training enhancements)
to other scenarios involving prediction with rejection is an important avenue of future work.

Mixup. Mixup (Zhang et al., 2018) and its variants (Yun et al., 2019; Franchi et al., 2021; Pinto
et al., 2022; Liu et al., 2022d; Bouniot et al., 2023) are a set of regularisation techniques that involve
interpolating between random pairs of samples at training time, modifying both inputs and targets.
They are commonly found in many ImageNet training recipes (Tan & Le, 2021; Liu et al., 2021;
2022b) and are often used in conjunction with label smoothing (Wightman et al., 2021; Touvron
et al., 2021; Liu et al., 2022c). Research into how Mixup affects SC is a particularly salient avenue
of future work as (Zhu et al., 2024) also observe empirically that it can have a negative impact.

Label smoothing. Beyond prediction with rejection, LS is well-explored across various contexts. It
has been shown to improve model calibration (Müller et al., 2019; Chun et al., 2020; Mukhoti et al.,
2020; Liu et al., 2022a) as well as accuracy when training under label noise (Lukasik et al., 2020).
Knowledge distillation (Hinton et al., 2015), where soft labels are provided by a teacher network, is
also commonly linked and combined with LS (Müller et al., 2019; Gao et al., 2020; Yuan et al., 2020;
Shen et al., 2021; Chandrasegaran et al., 2022) due to their similarity. Interestingly, in a similar vein
to our work, pre-training using LS has been shown to harm transfer learning (Kornblith et al., 2021).

7 CONCLUDING REMARKS

In this work, we elucidate the effect of label smoothing (LS) on selective classification (SC). Our
experiments across various tasks and architectures show that LS leads to consistent degradation in a
model’s ability to reject misclassifications, even if it improves accuracy. By analysing the logit-level
gradients of the LS loss, we provide an explanation for this previously not understood behaviour – LS
suppresses the max logit more(less) the more likely a prediction will be correct(wrong), degrading
a model’s uncertainty ranking of correct ✓ vs incorrect ✗ predictions. We then investigate post-hoc
logit normalisation as a method to improve the degraded SC performance caused by LS. We find it
to be highly effective and shed light on why – it reverses the effect of the aforementioned imbalanced
suppression by increasing the uncertainty when the max logit is higher. We hope that our work
encourages more research into understanding how different training techniques may impact model
performance in downstream applications such as uncertainty estimation. A further discussion about
the practical impact of our work, as well as potential future work can be found in Appendix H.
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IMDB, Bank Marketing, and Online shoppers. Our detailed experimental methods are outlined in
Appendix C. Finally, the proof supporting our explanation of the effectiveness of logit normalisation
is provided in Appendix E.

To help replicate our work, we share our source code on GitHub based on TorchUncertainty (Lafage
et al., 2025),7, including the configuration files and training code. We also release the most important
models on Hugging Face.8
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Our primary objective is to contribute to enhancing the reliability of machine learning methods, with
a particular focus on raising awareness about the negative effects of label-smoothing on selective
classification. While our work aims to improve the robustness of ML systems, we acknowledge
the potential risk that these advancements could be misapplied in harmful ways.

7https://github.com/ENSTA-U2IS-AI/Label-smoothing-Selective-
classification-Code

8https://huggingface.co/ENSTA-U2IS/Label-smoothing-Selective-
classification
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A GLOSSARY OF NOTATION

We summarise the main notations used in the paper in Tab. 1.

Table 1: Glossary of Notation

Notation Meaning

p(·) Probability density function

P (·) Probability mass function

x Input datum in RD

y Label (categorical) from the set of K possible labels {ωk}Kk=1

pdata(·) True data distribution

Dtr = {x(n), y(n)}Nn=1 Training dataset of inputs and labels drawn from pdata(x, y)

θ Model parameters

v Logits (pre-softmax model outputs) in RK

vmax Maximum logit, maxk vk(x;θ)

π̄(x) True categorical conditional data distribution, π̄k = Pdata(ωk|x)

π(x;θ) Softmax output in [0, 1]K of model, πk = exp vk∑
i exp vi

= P (ωk|x;θ)

(−)MSP/πmax Maximum softmax probability, maxk πk(x;θ), negate for uncertainty

δij Kronecker delta, δij = 1 if i = j, and 0 if i ̸= j

KL[·||·] Kullback–Leibler divergence

LCE(θ) Empirical cross entropy loss minimised over finite data Dtr

Ltrue
CE (θ) True cross entropy loss minimised over pdata(x, y).

α Label smoothing parameter in [0, 1]

LLS(θ;α) Label smoothing loss

x∗ Test input datum

f(x) Classifier function

ŷ Label predicted by model for a given input, ŷ = f(x∗;θ) = argmaxω P (ω|x∗;θ)

π̄ŷ True probability of label predicted by model π̄ŷ = Pdata(ŷ|x)

Perror Probability of a given label prediction being incorrect, Perror = 1− π̄ŷ

U(x) Scalar uncertainty score

g(x; τ) Binary rejection function, 0 (reject) if U > τ otherwise 1 (accept)

Risk(f, g; τ) Average error on accepted samples for threshold τ

Coverage(g; τ) Proportion of all data that is accepted for threshold τ

∂Lsup

∂vk
Suppression logit gradient, difference between LS and CE gradients, LLS

∂vk
− LCE

∂vk

v′ p-normalised logits, v′ = [v + s]/ ∥v + s∥p with scalar shift s.
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label y = 'lotion'

CE
pred: 'lipstick'
unc. rank: 82.2%

LS = 0.2
pred: 'hair spray'
unc. rank: 28.0%

label y = 'flagpole'

CE
pred: 'church'
unc. rank: 35.1%

LS = 0.2
pred: 'church'
unc. rank: 15.1%

label y = 'mashed potato'

CE
pred: 'meat loaf'
unc. rank: 74.4%

LS = 0.2
pred: 'meat loaf'
unc. rank: 10.9%

label y = 'hotdog'

CE
pred: 'Band Aid'
unc. rank: 70.2%

LS = 0.2
pred: 'Band Aid'
unc. rank: 12.2%

Figure 9: Illustrative examples of overconfident errors performed by our LS-trained ResNet-50 on
evaluation data. Even though Perror is high in all cases (e.g. due to multiple possible labels), the
model predicts low (ranking) uncertainty. Note that even though the CE model is wrong as well, it
has assigned higher ranking uncertainties, reflecting its superior SC ability shown in Fig. 3.

B ADDITIONAL RESULTS

B.1 ILLUSTRATIVE EXAMPLES OF IMAGENET OVERCONFIDENCE

Fig. 9 shows a few examples of overconfident misclassifications on the ImageNet evaluation data
by our LS-trained ResNet-50.

B.2 COMPLETE RESULTS FOR VIT AND DEEPLABV3+

We include additional experimental results that mirror those found in the main paper on ResNet-50,
for ViT-S-16 and DeepLabV3+:

• Fig. 10 and Tab. 2 show full ResNet-50 and ViT-S-16 results on ImageNet + ImageNet-
Sketch. We see that the behaviour of ViT-S-16 is similar to ResNet-50 (increasing numbers
of confident errors from sketch as α increases), but less pronounced.

• Figs. 11 and 12 shows the distribution of vmax given πmax for ViT-S-16 and DeepLabV3+.
We see that similarly to ResNet-50, for LS, the distribution of vmax is higher for errors ✗.
Although it is less obvious, it is clear for both ViT-S-16 and DeepLabV3+ that for higher
πmax the standard deviations overlap much less than for CE.

• Fig. 13 shows the effectiveness of logit normalisation for ViT-S-16 on ImageNet and
DeepLabV3+ (ResNet-101) on Cityscapes. We also provide 2 additional segmentation
figures in Appendix G.

Table 2: Statistics @10% coverage of the combined evaluation set. As the level of LS α increases,
the number of errors increases, especially the number of errors from ImageNet-Sketch.

ResNet-50 @10% coverage of ImageNet + Sketch

ImageNet Sketch

CE
#samples 7940 1148
#errors 94 74
error rate 1.2 6.4

LS α = 0.1
#samples 7422 1666
#errors 174 296
error rate 2.3 17.8

LS α = 0.2
#samples 6808 2280
#errors 225 549
error rate 3.3 24.1

LS α = 0.3
#samples 6726 2362
#errors 258 647
error rate 3.8 27.4

ViT-S-16 @10% coverage of ImageNet + Sketch

ImageNet Sketch

CE
#samples 8529 559
#errors 90 35
error rate 1.1 6.3

LS α = 0.1
#samples 8229 859
#errors 158 102
error rate 1.9 11.9

LS α = 0.2
#samples 7927 1161
#errors 196 161
error rate 2.5 13.9

LS α = 0.3
#samples 7618 1470
#errors 254 294
error rate 3.3 20.0
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Figure 10: RC curves evaluating on the combination of ImageNet and ImageNet-sketch. For low-
uncertainty predictions, the degradation caused by LS is exacerbated when distribution shift is
artificially introduced. This shows that LS leads to increasing overconfidence on less-well-fit data.
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Figure 11: Distribution of the max logit vmax given MSP πmax for correct ✓ and incorrect ✗ predictions
separately for ViT-S-16. Similarly to the main paper, the distribution of errors ✗ is higher than correct
predictions ✓ for the LS-trained model. We calculate the mean±std. in a 0.05-wide sliding window.
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Figure 12: The same as Fig. 11 but for DeepLabV3+ (ResNet-101)
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Figure 13: RC curve showing the effect of logit normalisation for ViT-S-16 and DeepLabV3+
(ResNet-101). The behaviour is similar to the results in the main paper. Logit normalisation is
effective in improving the performance of the LS-trained models, bringing them close to the CE
models. However, logit normalisation makes little difference to the CE-trained model.
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B.3 SMALL-SCALE CIFAR EXPERIMENTS

We also include experimental results on small-scale 32× 32 CIFAR-100 (Krizhevsky, 2009). We
train a DenseNet-BC (Huang et al., 2017) (k = 12, L = 100) to show further generality over model
architecture families. Figs. 14 to 16 show results that mirror those found in the main paper for
ResNet-50 on ImageNet, although we note that LS does not improve top-1 error rate in this case.
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Figure 14: RC curves for DenseNet on CIFAR-100 – LS degrades SC
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Figure 15: DenseNet on CIFAR-100 – logit normalisation improves SC for LS but not for CE
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Figure 16: DenseNet on CIFAR-100 – LS leads to higher vmax on errors ✗

B.4 SMALL-SCALE TABULAR DATA EXPERIMENTS

To increase the scope of our experiments on the degradation of selective classification due to
label-smoothing, we perform small-scale tabular binary classification. Following the setting of
TabTransformer (Huang et al., 2020b), we train two-hidden-layer MLPs on Bank Marketing (Moro
et al., 2014) and Online purchasing shoppers intentions (Sakar et al., 2019).
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Figure 17: RC curves for MLPs trained on Bank Marketing and Online Shoppers using α = 0.6,
hence with a gap between the positive and negative smooth labels of 0.4.

In this binary classification setting, we set α to 0.6 to sufficiently reduce the gap between the optimal
MSP corresponding to the positive and negative detections of the class at stake. With α = 0.6 the
minimum of the loss with label-smoothing is achieved for a prediction with a score of 0.7 when
the hard label equals 1, and a score of 0.3 when the hard label is 0, resulting in a gap of a magnitude
of 0.4. In Fig. 17, we see that in both cases, the AURC of the LS models are worse than those trained
with the classical cross-entropy despite their accuracy being very similar. Furthermore, we see that
the CE models are able to get much closer to zero risk, similar to the image classification experiments.

However, we note that the effect of label smoothing seems less pronounced for small-scale tabular
data. We posit that this may be due to the data distributions being simpler and easier to capture, such
that the neural networks are generally better fit and more knowledgeable about the data. Thus reducing
the level of imbalanced suppression over training data (see Sec. 4). To address this lack of difficulty
in fitting the distribution, we reduce the number of training points (as described in Appendix C).

Moreover, training small-scale and simple datasets drastically reduces the quality of our estimation
of the Risk-Coverage curves. Given the limited number of data and the very high accuracy achieved
by our MLPs, the number of errors used to estimate the risk is limited. The estimation of the “true”
risk-coverage curve – which would be obtained with the whole distribution – is therefore imprecise
and suffers from an important variability. The results may thus differ when starting the optimization
process from different initializations, using a different batch composition and order, or due to the non-
deterministic nature of some algorithms used to compute the backpropagation (Laurent et al., 2023).

B.5 SMALL-SCALE NATURAL LANGUAGE DATA

With also provide small-scale natural language processing experiments training LSTM-based
models (Sepp Hochreiter, Jürgen Schmidhuber , 1997) combined with two-layer perceptrons. We
focus on LSTMs to add another architecture, and given that CNNs and transformers were already
used in the image-classification setting (see e.g. Sec. 4).

We train two networks on the IMDB Movie Review dataset (Maas et al., 2011) with the classical
binary cross-entropy loss and our implementation of the binary cross entropy with label-smoothing.
Similarly to our results in image classification and tabular data classification, Fig. 18 shows
that the LSTMs trained with label smoothing have worse AURC than models trained with
cross-entropy despite their lower error-rate. Furthermore, the models also display greater error rates
at high-confidence (low-coverage). We provide more extensive details on the training in Appendix C.

C REPRODUCIBILITY

Alongside this document, we provide a code demo to train two ResNet-20 (He et al., 2016)
on CIFAR-10 (Krizhevsky, 2009) with cross-entropy and label smoothing and compare the
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Figure 18: RC curves for LSTMs trained the IMDB Movie review dataset, using α = 0.6, hence with
a gap between the positive and negative smooth labels of 0.4.

corresponding Risk-Coverage curves. We recall that our code – based on TorchUncertainty (Lafage
et al., 2025) – is available on GitHub.9 We release the most important models on HuggingFace.10

Here, we provide the full details of our training recipes used in the main paper and in the additional
results presented in Appendix B. All our models are trained with PyTorch (Paszke et al., 2019).
We use the native implementation from the CrossEntropyLoss for label smoothing in the
multi-class setting and a custom version of the BCEWithLogitsLoss for the binary experiments
as the original does not support label smoothing. We use the original implementation of the authors
for the negative label smoothing (Wei et al., 2022) experiments.

NB: The results presented in the final camera-ready ICLR 2025 version of this paper may differ
slightly to earlier preprint versions. This is due to models being retrained with different random
seeds, train-val-test splits, and having minor recipe and hardware differences after a consolidation
of the experimental codebase to TorchUncertainty.11 Readers should use the information in this
final version for reproducibility purposes.

C.1 IMAGE CLASSIFICATION

DenseNet – CIFAR100. For the DenseNet trained on CIFAR-100, we randomly split the original
test set into 2000 images for validation and 8000 for evaluation. We take batches of 64 32×32-pixel
images and train on a single GPU for 300 epochs using stochastic gradient descent and a starting
learning rate of 0.1, Nesterov (Nesterov, 1983; Sutskever et al., 2013), a momentum of 0.9, and
1× 10−4 weight decay. We divide the learning rate by ten after 150 and 225 epochs. We use standard
augmentations: we apply random crop with a four-pixel padding as well as random horizontal flip.
We do not perform model selection and keep the last checkpoint.

ViT-S-16 – ImageNet. For our ViT-S-16 trained on ImageNet, we take batches of 2048 images and
train on 4 A100s for 300 epochs with AdamW (Loshchilov & Hutter, 2019) with the βs equal to 0.9
and 0.999. We start with a linear warmup for 15 epochs, then use a cosine annealing scheduler with
3× 10−3 as the starting learning rate. The models are trained with non-adaptive sharpness-aware
minimisation (SAM) (Foret et al., 2021; Chen et al., 2022) with ρ = 0.2. We use a dropout (Srivastava
et al., 2014) rate of 0.1 but no attention dropout. We transform the training images with a standard
random resized crop to 224×224 pixels using bicubic interpolation and a random horizontal flip. For
evaluation, we center-crop the images to this resolution. For ImageNet, we do not perform model
selection and keep the last checkpoint. However, we randomly extract a validation set of 10,000
images from the validation set to perform logit normalisation, and evaluation on the remaining 40,000.

9https://github.com/ENSTA-U2IS-AI/Label-smoothing-Selective-
classification-Code

10https://huggingface.co/ENSTA-U2IS/Label-smoothing-Selective-
classification

11https://torch-uncertainty.github.io/
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ResNet-50 – ImageNet. Our ResNet-50 is trained on 4 A100 with stochastic gradient descent
for 120 epochs using a batch size of 1024 images. After five epochs of linear warmup, we use a
cosine annealing scheduler starting with a learning rate of 0.4 with a momentum of 0.9 and a weight
decay of 1× 10−4. We use the same transformation of the images as for the ViT and select the last
checkpoint for inference. We use the same validation set as for the ViT for logit normalisation.

C.2 SEMANTIC SEGMENTATION

Deeplabv3+. We train a Deeplabv3+ on CityScapes (Cordts et al., 2016) with a ResNet-101 (He
et al., 2016) backbone pre-trained on ImageNet (Russakovsky et al., 2015). We use stochastic gradient
descent with a base learning rate of 0.01, divided by 10 for the backbone weights, and reduced follow-
ing the "poly" policy (Liu et al., 2015) with a power of 0.9. The weights are optimised with a momen-
tum of 0.9 and a weight decay of 10−4. We take a batch size of 16 images and train for 30,000 steps.
During training, we randomly crop the input images and targets to squares with 768-pixel-long sides.
We apply random horizontal flip and colour-jitter with the classical parameters: brightness, contrast,
and saturation levels of 0.5. For testing, we use the images at their original resolution and do not per-
form any test time augmentations. For the RC curves, we randomly sample 5000 predictions per image
extracted prior to the final interpolation to compute the coverage and error rates. We keep the pixel-
wise locations of the samples when changing the level of label smoothing α to ensure fair comparisons.

C.3 TABULAR DATA

We perform the tabular data binary classification on two UCI datasets: Bank Marketing and Online
shoppers. These two datasets have an input dimension and a number of samples of 7 and 45,211
for the former and 16 and 12,330 for the latter. In both cases, we select 80% of the data points for
the test set and train the models for 10 epochs using PyTorch’s default Adam optimizer and a batch
size of 128. Similarly to the other experiments of this paper, we do not perform model selection
and keep the last checkpoint. Our models are MLPs with two hidden layers, whose size depends
on the input size as follows: the first hidden layer has 4 times as many neurons as the dimension
of the input data, and the second has half the number of neurons of the first layer.

C.4 NATURAL LANGUAGE DATA

For the training on the IMDB (Maas et al., 2011) dataset, we tokenize the data with nltk and convert
them to 300-dimensional vectors using GloVe 840B (Pennington et al., 2014). The architecture of
the models is defined as follows:

• an LSTM layer with a 300 input dimension and a 256 output dimension, followed by a
dropout layer of rate 0.2,

• a linear layer keeping the dimension of the vectors unchanged, on which we apply ReLU,
followed by a second dropout layer with the same rate,

• two linear layers with ReLU reducing the dimension to 128 and 1, respectively (binary
classification).

Finally, we train the models with PyTorch’s Adam default for 10 epochs using the pre-made train
test split. The code is available on GitHub.

C.5 LOGIT CALCULATIONS

We perform logit evaluation calculations in double precision (softmax, logit normalisation, entropy
etc.), in order to reduce the impact of numerical error.

We perform normalisation as in Eq. (16) on logits v. The value of p is searched over {1,2,3,4,5,6,7,8}
on the corresponding validation data with the optimisation metric as AURC↓. We set s =
−1/K

∑
k vk following Cattelan & Silva (2024) (see Appendix F.3 for a discussion on this choice).
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D ANALYSIS OF EMPIRICAL LOSS (ONE-HOT LABELS)

We can perform a similar analysis as in Sec. 3 using the empirical loss (Eqs. (2) and (6)) rather
than Ltrue as in the main paper. We leave this to the Appendix as the conclusions are similar to
analysing Ltrue, however, the presence of one-hot targets makes it less convenient to reason about the
probability of error Perror and how well fit the model is to the true conditional distribution Pdata(y|x)
for a given data sample. Taking the gradients of Eqs. (2) and (6) as in Eq. (13),

∂LCE

∂vk
= − [δyωk

− πk] ,
∂LLS

∂vk
= −

[[
(1− α)δyωk︸ ︷︷ ︸
data supervision

+ α/K︸︷︷︸
regularisation

]
− πk

]
, (19)

which in turn gives the suppression gradient,
∂Lsup

∂vk
=

∂(LLS − LCE)

∂vk
=

∂LLS

∂vk
− ∂LCE

∂vk
= α [δyωk

− 1/K] , (20)

which is once again independent of the model output π. In this case, as the label y has already been
sampled, the model is either right ✓ or wrong ✗, giving two different suppression gradients for the
max logit vmax,

∂L✓
sup

∂vmax
= α [1− 1/K] = α− α/K,

∂L✗
sup

∂vmax
= α [0− 1/K] = −α/K . (21)

We can see that the max logit is more strongly suppressed during training when the prediction is
correct, which aligns with the analysis of Ltrue and Perror in the main paper. When the model is
correct during training, the max logit is suppressed, but when it is incorrect the max logit is not
suppressed. Thus the uncertainty ranking of correct ✓ vs incorrect ✗ data samples is degraded,
harming SC. This leads us to the same conclusions as in Sec. 4 and also aligns with the behaviour
in Fig. 5 (right) where vmax is higher for errors given the value of MSP.

E RESULT AND PROOF

Result. For all strictly positive vectors v ∈ (R>0)
K containing at least two different values and

p ∈ [1,+∞[, the ratio of the infinite norm and the p-norm strictly decreases when summing v and
any uniform vector η1, η strictly positive:

||v||∞
||v||p

>
||v + η1||∞
||v + η1||p

. (22)

Proof. Let there be a real η > 0. Take p ≥ 1 the dimension of the norm and v a vector of dimension
K ≥ 1 of strictly positive elements vk for 1 ≤ k ≤ K, such that there exists 1 ≤ i ≤ K such that
vi < max

k≤K
vk. We have that

1 +
η

vk
≥ 1 +

η

max
k≤K

vk
, (23)

and, for at least i, we have the same equation, yet with strict inequality. We can adapt Eq. (23) to get

vk + η ≥
max
k≤K

(vk + η)

max
k≤K

vk
vk. (24)

And when set to exponent p ≥ 1, we obtain
(vk + η)p

max
k≤K

(vk + η)p
≥

vpk
max
k≤K

vpk
. (25)

Similar to Eq. (23), please note that using k = i, we get the same equation as Eq. (25), although
with a strict inequality. We can now sum on the elements of v to get

K∑
k=1

(vk + η)p

max
k≤K

(vk + η)p
>

n∑
k=1

vpk

max
k≤K

vpk
. (26)
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By taking the inverse (all values are strictly positive), we get

max
k≤K

vpk

n∑
k=1

vpk

>

max
k≤K

(vk + η)p

K∑
k=1

(vk + η)p
. (27)

And setting the equation to the exponent p−1 and replacing the maxima of the vk and vk + η with
the infinite norm, ||v||∞ and ||v + η1||∞ respectively, we obtain the result.

F DISCUSSIONS

F.1 U OTHER THAN MSP

In the main body of the paper we focus solely on MSP as our uncertainty score U . Fig. 19 shows how
LS affects the SC behaviour of MSP (top) compared two other softmax scores: DOCTOR (Granese
et al., 2021) (U = −||π||2) (middle) and entropy (U = H(π) = −

∑
k πk log πk) (bottom). We

see that the behaviour is very similar across all three softmax scores, with increasing the level of
LS α degrading all the scores. As MSP is the (marginally) best performing and the most commonly
used, we thus choose to focus on it for the main paper.

Fig. 20 shows the SC performance of Energy (U = − log
∑

k exp vk) (Liu et al., 2020), a popular
OOD detection score, compared to MSP with and without LS. We see that Energy performs much
worse than MSP at SC. This aligns with a large body of existing work (Xia & Bouganis, 2022b;
Jaeger et al., 2023; Kim et al., 2023; Yang et al., 2024; Zhu et al., 2024) that empirically finds that
uncertainty scores designed for OOD detection perform poorly at detecting misclassifications and
are thus not suitable for SC. Thus we choose not to investigate any OOD detection scores in the
main paper. We remark that LS also has a strong negative effect on the SC performance of Energy.
This is unsurprising as Energy is dominated by the max logit. An important future direction would
be to investigate the effect of LS on various OOD detection scores on the task of OOD detection.

Finally, we also choose to omit various training/architecture-based approaches such as (Ziyin
et al., 2019; Geifman & El-Yaniv, 2019; Moon et al., 2020; Zhu et al., 2024), as we aim to focus
our investigation solely on understanding the training effects of LS. We note that LS (potentially
combined with post-hoc logit normalisation) is considerably simpler to implement than the
aforementioned training-based approaches, and has been shown to be stable in many more use cases
and so may be more likely to be chosen by a practitioner. Besides, recent work (Feng et al., 2023)
has suggested that MSP applied to the methods in (Ziyin et al., 2019; Geifman & El-Yaniv, 2019)
actually performs better than the Us proposed in them (reject logit/selection head).

F.2 ALEATORIC AND EPISTEMIC UNCERTAINTY

We recognise that the conceptual decomposition of predictive uncertainty into aleatoric and epistemic
uncertainty (Gal, 2016; Hüllermeier & Waegeman, 2021; Kirsch, 2024) can be applied to the
discussion throughout this paper, and that some readers may be confused as to why we do not use
these terms. We choose to use simpler, more direct language as we believe it more efficiently conveys
our discussion, reduces the number of concepts to introduce and also reduces any potential confusion.

F.3 ON THE ASSUMPTION THAT LOGITS ARE POSITIVE

Largest positive logits dominate. Result 1 assumes that all elements in the logit vector are > 0,
which is not necessarily true. However, we also find empirically that both v′max and πmax tend to
be dominated by the largest positive logits. This is intuitive as exponentiating or raising to power
p > 1 will amplify the larger logits. This is shown in Fig. 21, where we plot the mean±std of
v, v5 and exp v for the sorted logits of ResNet-50 α = 0.2 on the ImageNet evaluation set (p = 5
is optimal on the validation data for logit normalisation in this case). Thus πmax(v) ≈ πmax(vtop-k)
and v′max(v) ≈ v′max(vtop-k), where the top-k logits are positive and dominate the computation.
As Result 1 holds for v′max(vtop-k), we still expect logit normalisation to increase uncertainty
for higher vmax when comparing samples with similar πmax, even if not all vk > 0. (Note that
we omit shift s = −1/K

∑
k vk as it is ≈ 0 in our experiments).
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Figure 19: The effect of LS on different softmax scores: MSP (top), DOCTOR (middle), Entropy
(bottom). We see that the behaviour is very similar, with MSP being the best performer.

We can also consider the scenario where we add η to only the top-k logits. This more aptly describes
the empirical logit behaviour compared to adding η to all logits, as the values of the lower ranking
logits vary much less than the higher ranking ones (Fig. 21). Here we would expect πmax(v) to
increase very slightly, but would expect v′max(v) to decrease as the numerator of Eq. (26) would be
dominated by the top-k largest logits.

Fig. 22 shows how empirically logit normalisation indeed increases uncertainty for higher vmax.
We plot the mean±std of v′max given vmax for samples in different MSP bins. We see clearly that
in almost all cases, for samples with similar πmax, the normalised max logit v′max decreases as the
original max logit vmax increases. As shown in Figs. 5, 11, 12 and 16, LS leads to misclassifications
✗ having higher vmax than correct predictions ✓. Thus, logit normalisation is able to improve the
SC performance of LS-trained models by penalising the confidence of higher max logit values.

Logit centralisation. We follow Cattelan & Silva (2024) and suggest to shift the logits by their
mean during normalisation,

v′ =
v − µ(v)

∥v − µ(v)∥p
, µ(v) =

1

K

∑
k

vk. (28)

In our experiments, this has little-to-no effect as µ ≈ 0 (for example for ResNet-50 α = 0.2 on the
ImageNet evaluation data µ averages ∼ 3× 10−3 with std. ∼ 1× 10−3). This is corroborated by
Cattelan & Silva (2024)’s observations in their Appendix G, where they find this shift does not affect
the vast majority of their models.
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Figure 20: SC performance of MSP and Energy (OOD detection score). Energy significantly
underperforms MSP. This behaviour is in line with existing work that shows that uncertainty scores
designed for OOD detection are not suitable for SC.
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Figure 21: Mean±std after logits have been sorted highest to lowest for ResNet-50 α = 0.2 on the
ImageNet evaluation set. We see that v5 and exp v are much larger for the top < 10 logits. Thus
these logits dominate πmax and v′max.

We note that according to the analysis in Sec. 5.1 and Appendix F.3, for logit normalisation to be effec-
tive, v′max and πmax should be dominated by positive logits. Logits are not necessarily constrained to be
positive. They can be arbitrarily shifted without affecting the cross entropy loss (e.g. via bias b of the fi-
nal layer), or derived as log probabilities which are necessarily negative. Thus we suggest applying the
above shift to ensure that the largest logits are positive. We note that other shifts are possible (for ex-
ample s = −mink vk) to achieve the same purpose but we leave the exploration of this to future work.

F.4 EXPLANATIONS OF LOGIT NORMALISATION IN (CATTELAN & SILVA, 2024)

The work that introduces logit normalisation (Cattelan & Silva, 2024) is primarily an experimental
study, where the focus is on extracting empirical takeaways. However, the authors do discuss
potential reasons for the effectiveness of the approach in their Appendix B. They observe that models
that are generally (on both ✓ and ✗) more uncertain benefit from logit normalisation and so suggest
that logit normalisation alleviates “underconfidence” by reducing the influence of lower-ranked logits
on the uncertainty of a prediction (using analysis similar to ours in Appendix E). We believe their
explanation is ultimately incomplete as:

1. They do not clearly delineate the definition of over/underconfidence used in model calibra-
tion with that used in selective classification. This is an issue since calibration is concerned
with absolute marginal (averaged over data samples) properties, whilst selective classifi-
cation is concerned with relative conditional (per sample) properties. It is possible to be
extremely over/underconfident in the calibration sense, whilst being optimal for SC, or very
well calibrated and worse at distinguishing correct vs incorrect samples (Zhu et al., 2024).

2. Although they elucidate some of the mechanics of logit normalisation, showing that logit
normalisation reduces the impact of smaller logits on uncertainty, they do not link it to
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Figure 22: v′max given vmax within bins of similar MSP for ResNet-50 α = 0.2 on the ImageNet evalu-
ation set. Generally, v′max decreases as vmax increases, showing empirically how logit normalisation
increases uncertainty for higher vmax. We calculate the mean±std. of v′max in a 0.2-wide sliding
window for samples with vmax within mean±2std of vmax within the bin (to remove noisy averages).

any observed model behaviour that differs between correct ✓ vs incorrect ✗ predictions,
instead just speculating that models may be underconfident on certain sets of samples. To
explain why an approach improves SC, we need to know how it treats ✓ and ✗ differently
to improve the rank ordering of uncertainties between ✓ and ✗.

On the other hand, our explanation focuses solely on the relative ranking of uncertainties between
✓ vs ✗ samples and is able to link the mechanics of logit normalisation to how the behaviour of
correct ✓ vs incorrect ✗ predictions differ under label smoothing (Fig. 5 and Result 1).

F.5 ANALYSIS OF NEGATIVE LABEL SMOOTHING (WEI ET AL., 2022)

We consider the framework developed in the main paper to study Generalized Label Smoothing
(GLS) with negative smoothing values – called Negative Label Smoothing (NLS) – as suggested by
Wei et al. (2022). The definition of GLS is the same as the original from Szegedy et al. (2016), except
for the domain of the label smoothing value α, which can take values in (−∞, 1]. Wei et al. (2022)
suggest that using negative values for the label smoothing value can lead to improved performance
when training with noisy labels as well as in the “clean” setting. It is tempting to consider, as negative
α ought to reverse the logit suppression described in Eq. (15). However, here we show that NLS
can lead to unstable training characteristics.

The per-sample cross-entropy between a single softmax prediction π and the corresponding true
categorical distribution π̄ is convex and can be written as follows:

CE(π, π̄) = −
∑

k∈J1,KK

[
(1− α)π̄k +

α

K
1
]
log πk. (29)

For α ≥ 0, which covers vanilla cross entropy (α = 0) and regular label smoothing (α > 0) a single
global minimum is attained in π = (1− α)π̄ + α

K1. Here, the gradient of the loss is zero therefore
creating a balance and stabilizing training, taking the gradient as in Eq. (13),

∂CE(π, π̄)
∂vk

= −
[[
(1− α)π̄k + α/K

]
︸ ︷︷ ︸

target

− πk︸︷︷︸
softmax output

]
. (30)

However, in the case of a negative label smoothing value α < 0 the target can be outside [0, 1],
but the softmax output is constrained to [0, 1], thus π = (1− α)π̄ + α

K1 is not achievable and the
gradient will always have some magnitude and there is no optimisation minimum.

Indeed, if we consider for one-hot π̄, the i-th terms s.t. π̄i = 0 of Eq. (29) will be strictly negative
with a negative-label-smoothed target. Since the log of the softmax probabilities π can take values
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in (−∞, 0], so can the loss. Being convex, there cannot exist a local minimum, and therefore, the
gradient can never be zero and pushes its value to −∞ by reducing the value of the corresponding
logit to −∞ and pushing the others to ∞. We hypothesise that this unbalance explains the instability
of the method that users reported on the GitHub repository of the original paper. Unfortunately, we
too were not able to reproduce the experiments of Wei et al. (2022) and obtain stable enough training
runs to perform experiments on NLS and confirm this theoretical analysis.

F.6 EXISTING BENCHMARKS AND TRAINING RECIPES WITH LS

Although we do not exhaustively search all training recipes for all models benchmarked in (Galil
et al., 2023; Cattelan & Silva, 2024), we do provide a number of examples of evaluated models
trained with label smoothing. We also provide links to publicly available training repositories, as
not all papers mention label smoothing even when it is used in training. Upon inspection of (Galil
et al., 2023; Cattelan & Silva, 2024), these models do in fact seem to underperform at selective
classification (and Cattelan & Silva (2024) report that their AURCs benefit from logit normalisation).

• EfficientNet (Tan & Le, 2019): https://github.com/tensorflow/tpu/blob/
master/models/official/efficientnet/main.py#L249

• EfficientNet-V2 (Tan & Le, 2021): https://github.com/google/automl/blob/
master/efficientnetv2/datasets.py#L658

• DeiT (Touvron et al., 2021): https://github.com/facebookresearch/deit/blob/
main/main.py#L101

• Swin-Transformer (+V2) (Liu et al., 2022b; 2021):
https://github.com/microsoft/Swin-Transformer/blob/main/config.py#
L70

• ConvNeXt (Liu et al., 2022c): https://github.com/facebookresearch/ConvNeXt/
blob/main/main.py#L105

• Torchvision (Paszke et al., 2019) (various): https://github.com/pytorch/vision/
tree/main/references/classification

Galil et al. (2023) state that some of their best performing (at SC) ViT models (Dosovitskiy et al.,
2021; Steiner et al., 2022; Chen et al., 2022) are trained with label smoothing (their Tab.1). However,
after inspecting both the original papers and open-source repositories12 of the aforementioned work
we were unable to find any confirmation of the use of label smoothing.

G ADDITIONAL SEGMENTATION RESULTS

In this section, we complete the picture by providing additional semantic segmentation results
to Figs. 1 and 8. As in the main paper, the following segmentation maps are performed by
ResNet-101-based DeepLab-v3+ trained on Cityscapes with cross-entropy and label-smoothing
with α = 0.2. We recall that the models and notebooks used to generate these plots are available on
Hugging Face and GitHub, respectively. In these figures, we provide the rank of all the predictions
– not only errors – to show the difference between the model’s behavior on its errors but also correct
predictions. The rank of the correct predictions ✓ is slightly greyed out compared to the rank of
the errors ✗. Fig. 23 presents the full ranks corresponding to the scene used in the main paper.

Figs. 23 and 24 shows that the cross-entropy-based model predicts label maps in which pixel
uncertainty ranks are generally smoother than those provided by the label-smoothing-based model.
The label-smoothing model exhibits large areas with low uncertainty rankings, which suddenly
increases near the boundary of objects. However, the boundaries are sometimes wrongly predicted,
leading to (rank-wise) highly confident errors ✗. The pixels corresponding to the boundaries
of objects, where the probability of error is naturally higher and which are most sensitive to
(ground-truth) label errors, have higher confidence (lower uncertainty ranks) according to the
LS-based model than the CE-based model. This explains the high-confidence errors ✗ in the
misclassified boundaries of several objects, either in Figs. 1 and 24, and aligns with the imbalanced

12https://github.com/google-research/vision_transformer
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suppression of Eq. (15). We again see how logit normalisation is able to decrease the confidence
of the label-smoothing-trained model on highly confident (bright yellow) errors ✗.

We also provide Fig. 25 to show that the logit normalisation method is not always successful in
solving the ranking of the predictions. In this figure, we see that a large part of the misclassified pixels
(lower left) keeps low uncertainty ranks either using the CE-based model or the LS-based model
while using logit normalisation. However, there are some improvements on the label-smoothing
side, where the original low-ranked boundary errors ✗ are less (rankwise) confident, such as the
right border of the median strip. Interestingly, LS-based high confidence errors in Fig. 25 mainly
correspond to a change of texture of the median strip – likely associated with an uncertainty on the
true label – and correlate with those of the CE-based model. The choices of p match Fig. 13 from
optimising AURC↓ on the 100 validation images.

H IMPACT AND FUTURE WORK

In this section, we provide some additional discussion about the (practical) impact of our work as
well as promising directions for potential future research.

Direct impact. By empirically verifying and analytically elucidating the limited experimental
results pertaining to LS in (Zhu et al., 2024) (it is not the focus of that work), we provide strong
evidence that the behaviour that LS degrades SC is generalisable (over architectures, data modalities
etc.). In particular, we directly analyse the loss, which is common to all settings involving label
smoothing. This will help inform practitioners of selective classification when they are designing
and deploying systems. Furthermore, by explaining the efficacy of logit normalisation we provide
an effective and well-motivated solution to the previously demonstrated problem. We emphasise
that when logit normalisation was introduced in (Cattelan & Silva, 2024), it was not clearly explained
why logit normalisation was effective on some pretrained models and ineffective on others. In our
work, we analytically clarify the mechanism of logit normalisation, opening up the figurative black
box, and are able to directly link it to our previous analysis on LS. This provides clear guidance on
when and why to use logit-normalisation, giving potential practitioners confidence in the effectiveness
of the approach, which is especially important in high-risk safety-critical applications.

Future work. The empirical and analytical results relating to LS in our work naturally suggest that
other training approaches that alter the labels such as Mixup (Zhang et al., 2018) may also have similar
adverse effects and/or be amenable to similar gradient analysis. It also raises the question of how such
label augmentations effect problem settings outside of selective classification such as OOD detection
or transfer learning. The novel analysis of LS in Sec. 4 may also be useful in problem settings beyond
SC: Does this aspect of label smoothing (suppressing the max logit less for incorrect predictions) affect
generalisation? What about behaviour on OOD data? Could it help explain the behaviour in (Kornblith
et al., 2021) where LS results in worse transfer/representation learning? Can this insight lead to a
modification of LS to improve it? Our analysis of the mechanism of logit normalisation in Sec. 5.1 is
also general – we simply demonstrate that logit normalisation reduces confidence when the max logit
is higher. Thus, this knowledge can be potentially applied to other scenarios (e.g. OOD detection).
Furthermore, in the case of post-hoc methods, logit normalisation using the p-norm is just one possible
option for correcting the effect of LS – armed with the insight presented in our work it may be possible
to develop superior or more principled methods for extracting better uncertainty estimates from logits.
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Figure 23: We provide all the predicted ranks on our segmentation plots to understand where the
model predicted higher relative confidence. The pixel uncertainty rankings provided by the model
trained with CE (left) are smoother than those of the model trained with LS α = 0.2 (right).
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Figure 24: Logit normalisation improves on boundary-related very confident errors ✗, but does not
completely fix the high (ranked) confidence of the bottom right errors ✗.
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Figure 25: Logit normalisation does not always completely fix selective classification when used on a
model trained with a label-smoothing (right).
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