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Abstract001

Multimodal Large Language Models (MLLMs)002
have demonstrated remarkable capabilities by003
integrating visual and textual inputs, yet modal-004
ity alignment remains one of the most chal-005
lenging aspects. Current MLLMs typically006
rely on simple adapter architectures and pre-007
training approaches to bridge vision encoders008
with large language models (LLM), guided009
by image-level supervision. We identify this010
paradigm often leads to suboptimal alignment011
between modalities, significantly constraining012
the LLM’s ability to properly interpret and rea-013
son with visual features particularly for smaller014
language models. To address this fundamen-015
tal limitation, we propose Supervised Embed-016
ding Alignment (SEA), a token-level supervi-017
sion alignment method that enables more pre-018
cise visual-text alignment during pretraining.019
SEA introduces minimal computational over-020
head while preserving language capabilities021
and substantially improving cross-modal under-022
standing. Our comprehensive analyses reveal023
critical insights into the adapter’s role in multi-024
modal integration, and extensive experiments025
demonstrate that SEA consistently improves026
performance across various model sizes, with027
smaller models benefiting the most (average028
performance gain of 7.61% for Gemma-2B).029
This work establishes a foundation for devel-030
oping more effective alignment strategies for031
future multimodal systems.032

1 Introduction033

Multimodal Large Language Models (MLLMs)034

have emerged as a transformative development in035

AI research, demonstrating exceptional capabilities036

in perceiving and reasoning across different modal-037

ities (Agrawal et al., 2019; Antol et al., 2015; Liu038

et al., 2023a; Li et al., 2024a; Bai et al., 2025). By039

integrating visual and textual information, these040

models mark a crucial step toward artificial general041

intelligence.042

The standard MLLM pipeline consists of two- 043

stages (Liu et al., 2023a, 2024b; Jiang et al., 2023; 044

Zhu et al., 2023; Dai et al., 2023; Li et al., 2024a; 045

Zhou et al., 2024a): pre-training, where an adapter 046

maps vision encoder features to the LLM’s input 047

space, guided by image-level supervision, and in- 048

struction tuning, which further adapts the model 049

for downstream tasks, often involving partial or full 050

LLM fine-tuning. 051

However, despite recent advances through scal- 052

ing up data, models, and visual inputs (Tong et al., 053

2024a; Li et al., 2024a; Bai et al., 2025; Wang et al., 054

2024), current approaches to cross-modal align- 055

ment in MLLMs predominantly rely on coarse- 056

grained image-level or region-level supervision, 057

such as optimal transport (Park et al., 2024) or 058

regression-based techniques (Shang et al., 2024). 059

These methods fail to capture the fine-grained se- 060

mantics necessary for optimal visual-language in- 061

tegration. Therefore, the adapter’s critical role of 062

current alignment paradigm remain insufficiently 063

explored. 064

Our experiments reveal two critical deficiencies 065

in conventional image-level alignment. First, as 066

shown in Figure 1, visual tokens from traditional 067

adapters often fail to preserve their intended seman- 068

tics, forcing the language model to compensate for 069

these deficiencies and leading to incorrect visual 070

understanding. Second, and perhaps more concern- 071

ing, the significant gap between adapter-processed 072

visual tokens and the LLM’s native input space 073

(see Figure 2) requires the language model to allo- 074

cate extra capacity interpreting misaligned visual 075

inputs, rather than leveraging its pre-trained knowl- 076

edge. These issues are particularly pronounced in 077

smaller models, where limited capacity makes the 078

trade-off between visual perception and language 079

performance more severe. 080

This work addresses a fundamental question: 081

How can we achieve optimal cross-modal align- 082

ment in MLLMs? To effectively bridge the gap 083
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(a) Accurate representation alignment with SEA.

What color are the sockets in 
the picture?

Instruction：

Visual token Recalled Word: referendum

Assistant:
The sockets in the picture are white.

Visual token Recalled Word: red

Assistant:
The sockets in the picture are red.
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(b) Improved visual perception enabled by SEA.

Figure 1: Illustration of token-level alignment benefits. (a) For each visual token, we retrieve and display the most similar
word from the pre-defined vocabulary. SEA (right) produces semantically appropriate words (e.g., "blueberry", "orange") that
better capture the visual content compared to conventional image-level alignment (left). (b) This improved alignment directly
enhances visual perception capabilities, enabling more precise understanding of image elements (SEA-LLaVA correctly identifies
"white" sockets while LLaVA misidentifies them).
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Figure 2: Illustration of the distribution of different to-
ken embeddings. Using t-SNE, we visualize the embedding
space of LLaVA visual tokens (left), SEA-LLaVA visual to-
kens (mid), and LLM’s native input embeddings (right). SEA
effectively shifts visual token representations closer to the
LLM’s natural input space, reducing the adaptation burden on
the language model and improving cross-modal integration.

between modalities, we argue that alignment must084

occur at the token level, where individual visual085

tokens are precisely mapped to their correspond-086

ing semantic representations in the language space.087

However, achieving such fine-grained alignment088

presents fundamental challenges: visual tokens089

contain rich, multifaceted semantic information090

that cannot be trivially equated to single word to-091

kens. Additionally, visual tokens often exhibit se-092

mantic shifts that cannot be easily captured through093

token-level annotations.094

To address this, we introduce Supervised Em-095

bedding Alignment (SEA), which achieves op-096

timal cross-modal alignment through token-level097

supervision during pretraining. By leveraging well-098

aligned vision-language models like CLIP, SEA099

obtains precise semantic labels for visual tokens100

and guides them toward optimal representations in101

the LLM’s embedding space through contrastive102

learning (see Figure 2). This approach requires no 103

additional training data or inference overhead. 104

Empirically, SEA demonstrates consistent im- 105

provements across model scales (2B-13B parame- 106

ters), with particularly substantial gains for smaller 107

models (7.61% improvement on Gemma-2B). This 108

scalability, combined with enhanced fine-grained 109

visual perception, fundamentally addresses the lim- 110

itations of current MLLM designs while maintain- 111

ing computational efficiency. 112

In summary, our contributions and findings can 113

be summarized as follows: 114

• We systematically analyze how adapter misalign- 115

ment impacts MLLM performance, revealing its 116

critical role in both visual perception and lan- 117

guage capabilities. 118

• We propose SEA, a novel token-level alignment 119

during pretraining that effectively bridges the 120

modality gap by precisely aligning visual tokens 121

with the LLM’s input space. 122

• We demonstrate SEA’s effectiveness across 123

model scales and different vision encoders with- 124

out additional training data or inference overhead, 125

showing particular benefits for smaller models. 126

2 Background and Problem Formulation 127

This section introduces the adapter-based archi- 128

tecture in MLLMs and analyzes the cross-modal 129

misalignment problem that forms the foundation 130

for our method in Section 3. 131

2.1 Adapter-Based Architecture in MLLMs 132

Multimodal Large Language Models typically em- 133

ploy an adapter module to bridge vision encoders 134

and language models. During pre-training, this 135
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(a) MMLU over Finetuning. (b) Results of Different
Methods.

Figure 3: Impact of alignment quality on model perfor-
mance. (a) Language model capability (measured by MMLU
score) during instruction-tuning: SEA-LLaVA (red line) main-
tains higher language capabilities compared to LLaVA (green
point) by reducing adaptation burden. (b) Radar chart compar-
ing performance across different benchmarks: SEA-LLaVA
(red) consistently outperforms LLaVA (blue) on multiple eval-
uation metrics.

adapter gθ transforms visual patches output by the136

vision encoder f into visual tokens compatible with137

the LLM’s embedding space.138

For a given image-text pair (Ximage, Xtext), the139

model processes inputs as follows:140

Xv = gθ(f(Ximage)) (1)141

142
Xt = Ψ(Xtext) (2)143

144
Xinput = [xv0 , . . . , xvm , xt0 , . . . , xtn ]

xvj ∈ Xv, xti ∈ Xt
(3)145

where Ψ represents the LLM’s embedding layer.146

The concatenated inputs Xinput are then processed147

by the LLM, with the adapter parameters θ updated148

using an auto-regressive language modeling loss.149

2.2 Issues in Image-level Alignment150

Despite current pre-training paradigm, significant151

misalignment issues persist between visual and tex-152

tual representations in MLLMs. To quantitatively153

analyze this misalignment, we measure the seman-154

tic correspondence between visual tokens and lan-155

guage representations.156

Semantic Information Distortion We evaluate157

the semantic information encoded in visual tokens158

by retrieving their closest word embeddings from159

a predefined word list W . For each visual token160

xvj ∈ Xv, we identify the word wj ∈ W with the161

highest similarity:162

wj = arg max
w∈W

sim(xvj ,Ψ(w)) (4)163

where sim(·, ·) is the cosine similarity function.164

As shown in Figure 1(a), conventional adapters165

frequently map visual tokens to semantically un- 166

related words (e.g., "bluejeans" for blueberries), 167

indicating severe semantic distortion. As shown 168

in Figure 1(b), this distortion forces the language 169

model to compensate for representational discrep- 170

ancies, resulting in incorrect visual understanding. 171

Modality Representation Gap We further ana- 172

lyze the modality gap through embedding space vi- 173

sualization (Figure 2). We selected approximately 174

100 images from COCO val2014 (Chen et al., 2015) 175

and generated detailed captions using Qwen2.5- 176

VL (Bai et al., 2025). The visualization shows 177

three distinct clusters: visual token embeddings 178

(Xv) from the images (orange), text token embed- 179

dings from the captions (yellow). The significant 180

distance between conventional adapter-processed 181

visual tokens and text token embeddings reveals a 182

fundamental representational gap. Mathematically, 183

we can quantify this gap as: 184

D =
1

|Xv|
∑

xvj∈Xv

min
w∈W

∥∥xvj −Ψ(w)
∥∥
2

(5) 185

This gap forces the language model to allocate sub- 186

stantial capacity to interpret misaligned visual in- 187

puts rather than leveraging its inherent knowledge. 188

The impact of this misalignment is clearly 189

demonstrated in Figure 3, where we track the lan- 190

guage model’s performance (measured by MMLU 191

score) during instruction-tuning. The model with- 192

out pre-training (blue line) shows a substantial de- 193

crease in language capability as training progresses, 194

highlighting the critical importance of alignment. 195

However,the conventional image-level alignment 196

provides only marginal mitigation. This effect is 197

particularly pronounced in smaller models where 198

computational capacity is limited, highlighting the 199

critical need for more efficient alignment strategies. 200

3 Method: Supervised Embedding 201

Alignment 202

This section presents SEA, the first supervision 203

paradigm to mitigate the issue of misalignment be- 204

tween visual and text tokens in LLM’s embedding 205

space during pretraining (See Figure 4). We will 206

introduce each step of SEA in detail. 207

3.1 Extract Semantic Labels for Visual 208

Patches 209

To achieve fine-grained supervision of the seman- 210

tic feature expression for each visual token trans- 211
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Figure 4: Left: Overview of the proposed SEA. For each visual token, SEA samples semantic labels with similarity-based
weighting and identifies their corresponding representations in the LLM’s embedding space. These are then used to supervise
the adapter via contrastive learning, enabling token-level alignment. Right: Overview of the SEA training pipeline. During
pretraining, SEA enhances modality alignment through token-level semantic supervision via contrastive learning, guided by
candidate labels derived from the text encoder. Once alignment is established, visual tokens are mapped to representations more
compatible with the LLM input space, substantially reducing the burden on the LLM during instruction tuning.

formed by the adapter, we obtain continuous se-212

mantic labels for each patch after the vision en-213

coder. For a pre-trained vision encoder f paired214

with a text encoder h and a word list W , we ex-215

tract semantic information for each patch using216

Eqs. (6), (7), (8). We then select the top n words217

based on cosine similarity scores for each visual218

patch (See Figure 4(3)). To ensure only relevant219

and positively correlated words are considered, we220

exclude labels with similarity scores below 0. The221

remaining words serve as the semantic labels for222

each visual patch. This approach assigns multi-223

ple semantic labels to each token, preserving its224

continuous semantic representation and preventing225

semantic shift through paired training of the vision226

and text encoders.227

V = f(Ximage) ∈ Rm×d (6)228

229

T = h(W ) ∈ Rq×d (7)230

231

wi, si = argmax
j

{−cos(vi, tj)} (8)232

where wi and si are the indices and scores of the233

top n semantic labels for the i-th visual patch vi234

respectively. vi is the visual feature of the patch235

obtained from the vision encoder f , and tj is the236

text embedding of the j-th word in the word list237

W , obtained from the text encoder h. The negative238

cosine similarity −cos(vi, tj) is computed as de-239

scribed in previous works (Li et al., 2023c), where240

the cosine similarity needs to be negated in the241

CLIP embedding space.242

3.2 Token-Level Alignment 243

The use of an adapter aims to convert visual patches 244

into LLM’s embedding space. However, the current 245

image-level approach falls short of achieving this 246

adequately as shown in Figure 1(a). We suggest 247

using the semantic labels of each patch to directly 248

guide the adapter in transforming visual patches 249

into the LLM’s embedding space, thereby reducing 250

misalignment. 251

Similarity-Weighted Sampling for Continuous 252

Semantic Representation Due to the semantic 253

continuity of visual tokens, we should identify an 254

appropriate position for each visual token within 255

the LLM’s embedding space, ensuring it retains its 256

continuous semantic representation. Specifically, 257

for a given visual patch vi with its corresponding 258

semantic labels Li = [w1, . . . , wn] and similarity 259

scores Si = [s1, . . . , sn], we first normalize the 260

similarity scores to get the sampling probability, 261

and then sample a label for each patch based on 262

Si
norm in Eq. (9). 263

Si
norm =

Si

sum(Si)
(9) 264

A Localized Sampling Strategy To further en- 265

hance the effectiveness of contrastive learning and 266

mitigate the issue of excessive similarity between 267

samples, we adopt a localized sampling strategy. 268

For each image, we perform sampling within a 269

k× k window, ensuring that only one patch is sam- 270

pled from each window. Consequently, a single 271

image with N visual patches will have N/(k × k) 272

patches participating in contrastive learning. For 273
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visual patches sharing the same label in one batch,274

we randomly retain only one patch to ensure the275

effectiveness of contrastive learning. We then ob-276

tain a series of visual patches with labels, namely,277

{(xv1 , w1), . . . , (xvN , wN )}, where N is the num-278

ber of tokens in one batch.279

For each label wi, we compute the corresponding280

text feature ti as follows:281

ti =
1

M

M∑
k=1

Ψ(wk
i ) (10)282

where Ψ(wk
i ) represents encoded feature of the k-283

th token of wi, and M is the number of tokens after284

encoding wi.285

The loss of alignment can be computed as:286

La = − 1

2N

N∑
i=1

(
log

exp(ϕ(xvi, ti)/τ)∑N
j=1 exp(ϕ(xvi, tj)/τ)

+ log
exp(ϕ(ti,xvi)/τ)∑N
j=1 exp(ϕ(ti,xvj)/τ)

)
(11)

287

where ϕ(xvi, tj) = xvi
∥xvi∥2 · tj

∥tj∥2 , and τ is the288

temperature, a learnable parameter.289

For generation, the prediction of the next token290

x(i) is conducted based on visual tokens Vi, prompt291

P and previous tokens x(<i). The loss can be com-292

puted as:293

Lg = − 1

B

B∑
i=1

log pθ

(
x(i) | Vi,P, x

(<i)
)

(12)294

where B is the batch size, θ is the trainable param-295

eters.296

During the pretraining process, two learning ob-297

jectives simultaneously supervise the adapter. We298

obtain the final loss L of pretraining by adding299

La and Lg, a weighting factor λ is introduced to300

balance the two losses.301

L = Lg + λLa (13)302

4 Experiments303

In this section, we conduct comprehensive exper-304

iments to validate SEA’s effectiveness. First, we305

provide our evaluation results on 8 common bench-306

marks compared with different backbones. Then,307

we analyze how SEA enhances token-level align-308

ment, visual perception and language capability.309

Finally, we explore SEA’s generalization capability310

through extensive ablation studies.311

4.1 Experimental Setup 312

We evaluate SEA’s generalization capability across 313

different MLLM components: 1) Vision Encoders: 314

We experiment with widely-adopted vision en- 315

coders including CLIP-ViT-L@336px (Radford 316

et al., 2021) and SigLIP-ViT-SO@384px (Zhai 317

et al., 2023). 2) Language Models: To assess scal- 318

ability, we test SEA on LLMs ranging from 2B 319

to 13B parameters, including Gemma-2B (Google, 320

2024), Phi-3-mini-4k-instruct (Abdin et al., 2024), 321

Llama3-8B-Instruct (AI@Meta, 2024), and Vicuna- 322

1.5-7B&13B (Chiang et al., 2023). 3) SEA Con- 323

figuration: We employ top-10 semantic labels 324

(n = 10), zero temperature (τ = 0) for robust 325

alignment, and 2×2 window sampling for efficient 326

training. Additional training details and datasets 327

are provided in Appendix A. 328

4.2 Main Results 329

We leverage SEA to train a family of MLLMs 330

called SEA-PRIME, utilizing LLM backbones of 331

various scales. The vision component employs 332

SigLIP-ViT-SO400M/14@384. We pre-train the 333

connector using 2.5M adapter data and instruction 334

tune using Cambrian-7M (Tong et al., 2024a). 335

As shown in Table 1, SEA-PRIME show ro- 336

bust improvements over existing open-source meth- 337

ods. Even with smaller models (2B and 3.8B), it 338

achieves competitive results compared to larger 339

counterparts. The scalability becomes particularly 340

evident with LLaMA-3-Instruct-8B (AI@Meta, 341

2024), where SEA-PRIME demonstrates superior 342

performance across all benchmarks. 343

These results highlight SEA’s ability to enhance 344

model performance while maintaining efficiency, 345

particularly benefiting smaller models through bet- 346

ter alignment. 347

4.3 Token-level Alignment Analysis 348

To comprehensively evaluate SEA’s effectiveness 349

in bridging the modality gap, we analyze its impact 350

from three perspectives: alignment quality during 351

pre-training, fine-grained visual perception, and 352

preservation of language capabilities. 353

Alignment Quality To quantify alignment qual- 354

ity, we introduce Token Alignment Consistency 355

Score (TACS) (see Appendix C), a simple metric 356

aligned with the SEA loss. As shown in Figure 5, 357

SEA progressively improves TACS during training, 358

with corresponding gains in POPE scores. This 359
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Method LLM Res. VQAv2 VQAT GQA SQAI MMB POPE VizWiz MM-Vet

MobileVLM-3B(Chu et al., 2023) MLLaMA 2.7B 336 – 47.5 59.0 61.0 59.6 84.9 – –
MobileVLM-V2-3B(Chu et al., 2024) MLLaMA 2.7B 336 – 57.5 61.1 70.0 63.2 84.7 – –

LLaVA-Phi (Zhu et al., 2024) Phi-2.7B 336 71.4 48.6 – 68.4 59.8 85.0 35.9 28.7
TinyLLaVA (Zhou et al., 2024b) Phi-2.7B 384 79.9 59.1 62.0 69.1 66.9 86.4 – 32.0
InstructBLIP (Dai et al., 2023) Vicuna-7B 224 – 50.1 – – 30.6 – 34.5 –
InstructBLIP (Dai et al., 2023) Vicuna-13B 224 – 50.7 49.5 63.1 – – 33.4 –

Qwen-VL (Bai et al., 2023) Qwen-7B 448 79.5 63.8 59.3 67.1 38.2 – 35.2 –
Qwen-VL-Chat (Bai et al., 2023) Qwen-7B 448 78.2 61.5 57.5 68.2 60.6 – 38.9 –
LLaMA-VID (Li et al., 2023b) Vicuna-7B 336 79.3 – 64.3 68.3 65.1 86.0 54.2 –
LLaMA-VID (Li et al., 2023b) Vicuna-13B 336 80.0 – 65.0 70.0 66.6 86.0 54.3 –
LLaVA-1.5∗ (Liu et al., 2023a) Vicuna-7B 336 78.8 58.3 62.0 67.9 66.2 86.5 45.7 30.7
LLaVA-1.5∗ (Liu et al., 2023a) Vicuna-13B 336 80.0 60.8 63.3 71.6 67.7 87.6 53.6 35.1

ShareGPT4V (Chen et al., 2023) Vicuna-7B 336 80.6 – – 68.4 68.8 – – 37.6
Mini-Gemini (Li et al., 2024b) Gemma-2B 336+768 – 56.2 – – 59.8 – – 31.1
Mini-Gemini (Li et al., 2024b) Vicuna-7B 336+768 – 65.2 – – 69.3 – – 40.8
Mini-Gemini (Li et al., 2024b) Vicuna-13B 336+768 – 65.9 – – 68.5 – – 46.0
S2−Wrapper∗ (Shi et al., 2024) Vicuna-7B 1008 79.7 60.3 63.2 – 67.3 87.4 50.1 33.0
S2−Wrapper (Shi et al., 2024) Vicuna-13B 1008 80.9 63.1 – – 67.9 – 56.0 35.4
AlignGPT (Zhao et al., 2024) Vicuna-7B 336 79.1 58.4 62.9 68.5 67.3 86.0 54.2 30.8
AlignGPT (Zhao et al., 2024) Vicuna-13B 336 80.0 60.2 63.6 70.3 69.5 86.2 56.4 35.6

Visual Prompt (Lin et al., 2024) Vicuna-7B 336 79.8 59.8 63.3 69.5 67.6 88.9 – 34.9

Our Models

SEA-PRIME Gemma-2B 384 81.0 60.7 62.4 69.2 68.8 87.8 61.9 38.0
SEA-PRIME Phi3-3.8B 384 80.7 64.0 62.0 78.7 72.6 87.0 61.9 46.8
SEA-PRIME Vicuna-7B 384 81.4 67.2 63.1 73.9 75.6 88.4 63.8 44.2
SEA-PRIME Llama3-8B 384 83.1 68.0 65.1 79.0 76.0 87.4 64.7 46.0
SEA-PRIME Vicuna-13B 384 81.9 66.2 64.3 80.9 76.9 86.7 63.6 48.8

Table 1: Main evaluation results compared with leading baselines on 8 popular benchmarks. VQAv2 (Goyal et al.,
2017); VQAT: TextVQA (Singh et al., 2019); GQA (Hudson and Manning, 2019); SQAI:ScienceQA-IMG (Lu et al.,
2022); MMB: MMBench (Liu et al., 2023b); POPE (Li et al., 2023d); VizWiz (Gurari et al., 2018); MM-Vet (Yu
et al., 2023). All methods maintain the number of visual tokens without doubling, and models marked with * are
results we reproduced. Column Res. is the image resolution of vision model.
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Figure 5: TACS score and POPE score during pre-training.
SEA achieves better alignment and higher POPE scores under
the same training data.

correlation validates both our metric and SEA’s360

effectiveness in improving visual-text integration.361

Fine-grained Visual Perception As illustrated362

in Section 2, conventional MLLMs treat visual to-363

kens as additional vocabulary, limiting their seman-364

tic understanding (see Figure 1(a)). SEA addresses365

this by providing precise semantic supervision dur-366

ing pre-training, enabling more accurate visual to-367

ken representations. This improvement in token- 368

level alignment directly enhances the model’s abil- 369

ity to capture fine-grained visual semantics, as 370

demonstrated across diverse perception-focused 371

tasks (see Table 3). From detailed caption genera- 372

tion to fine-grained object recognition, SEA consis- 373

tently improves the model’s visual understanding 374

capabilities. 375

Language Model Capabilities A key challenge 376

in multimodal learning is maintaining the LLM’s 377

inherent language abilities while adapting to vi- 378

sual inputs. As shown in Figure 3(a), conventional 379

image-level alignment show degradation (green 380

point) in language performance after training. In 381

contrast, SEA’s semantically aligned visual repre- 382

sentations alleviate the adaption burden, allowing 383

the language model to better preserve its pretrained 384

knowledge and capabilities. 385

These analyses demonstrate that SEA effectively 386

address both semantic distortion and modality rep- 387

resentation gaps identifies in Section 2, leading to 388

improved overall model performance. 389
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Method VE Res. PT+IT LLM VQAv2 VQAT GQA SQAI MMB POPE VizWiz MM-Vet

LLaVA CLIP-L 336 0.5M+0.6M Vicuna-7B 78.8 58.3 62.0 67.9 66.2 86.5 45.7 30.7
SEA-LLaVA CLIP-L 336 0.5M+0.6M Vicuna-7B 79.1 58.9 63.2 69.4 66.8 87.6 48.8 31.9

Applying to Different LLMs

LLaVA CLIP-L 336 0.5M+0.6M Gemma-2B 72.5 43.7 56.0 61.3 54.0 84.4 38.7 23.9
+ SEA CLIP-L 336 0.5M+0.6M Gemma-2B 76.6 49.7 60.9 62.5 59.5 87.0 39.5 27.6

LLaVA CLIP-L 336 0.5M+0.6M Phi3-3.8B 77.4 54.6 60.8 73.0 68.7 86.5 37.1 35.4
+ SEA CLIP-L 336 0.5M+0.6M Phi3-3.8B 77.5 55.3 61.0 74.2 69.4 87.0 39.0 34.7

LLaVA CLIP-L 336 0.5M+0.6M LlaMA3-8B 79.4 57.7 63.7 76.0 72.5 87.0 48.1 34.0
+ SEA CLIP-L 336 0.5M+0.6M LlaMA3-8B 79.6 58.0 63.8 76.6 72.0 87.0 45.2 36.3

LLaVA CLIP-L 336 0.5M+0.6M Vicuna-13B 80.0 60.8 63.3 71.6 67.7 87.6 53.6 35.1
+ SEA CLIP-L 336 0.5M+0.6M Vicuna-13B 79.8 60.4 63.8 71.7 68.0 87.6 57.3 35.8

Applying to Different Vision Encoders

LLaVA SigLIP-SO 384 0.5M+0.6M Vicuna-7B 80.8 62.3 63.2 70.6 68.0 86.7 51.1 32.9
+ SEA SigLIP-SO 384 0.5M+0.6M Vicuna-7B 80.9 62.6 63.4 71.3 68.4 87.3 52.4 34.6

Table 2: Exploring the compatibility and scalability of SEA. Scaling results on LLM, vision encoder (VE) and resolution
(Res.) are provided. "0.5M+0.6M" denotes the training data from LLaVA-1.5. Results with SEA are marked in ■.

4.4 Ablation Study390

We conducted a comprehensive ablation study to391

evaluate the effectiveness of SEA. As shown in Sec-392

tion 4.3, SEA introduces no additional training data393

or inference cost, yet consistently improves the394

overall performance of MLLMs.395

SEA consistently benefits different LLMs, with396

particularly strong improvements in smaller397

models. Our experiments explore the application398

of SEA across LLMs of varying sizes. Notably,399

for the smaller model, SEA significantly boosts400

performance across multiple tasks, with an average401

performance gain of 7.61%. This highlights SEA’s402

ability to effectively address misalignment issues403

that are more pronounced in smaller LLMs, thereby404

enhancing their performance. Larger LLMs, while405

inherently better at handling misalignment, still406

benefit from SEA, indicating that SEA offers addi-407

tional alignment gains regardless of model size.408

SEA provides robust benefits across diverse vi-409

sion encoders. We also examined the impact of410

SEA with different vision encoders. Replacing the411

CLIP-ViT (Radford et al., 2021) with the SigLIP-412

SO(400M) (Zhai et al., 2023), SEA consistently413

improves performance, underscoring SEA’s robust-414

ness across different encoders.415

4.5 Further Discussions416

Vision Encoder Fine-tuning Given that SEA417

leverages well-aligned vision encoders for optimal418

token-level supervision during pretraining, a nat-419

ural concern arises: would fine-tuning the vision420

encoder in instruction-tuning potentially disrupt421

this carefully established alignment? To investigate422

this, we follow (Tong et al., 2024a) to unfreeze the 423

vision encoder during instruction-tuning. Surpris- 424

ingly, our results show that this not only maintains 425

but further improves performance (see Section 4.4). 426

This suggests that with SEA’s strong token-level 427

alignment as initialization, the vision encoder can 428

focus on adapting to domain-specific features while 429

preserving the semantic alignment established in 430

pretraining. These findings indicate SEA’s flexibil- 431

ity and adaptability in different training paradigms. 432

Cross-encoder Transfer Recent advances in 433

combining different vision encoders have shown 434

promising results in MLLMs (Tong et al., 2024b,a; 435

Li et al., 2024b; Goncharova et al., 2024), yet a 436

common challenge lies in endowing these task- 437

specific vision encoders with rich semantic under- 438

standing. We explore whether SEA’s semantic su- 439

pervision can bridge this gap by transferring CLIP- 440

derived semantic labels to other vision encoders. 441

Specifically, we apply SEA’s training paradigm 442

to DINOv2 (Oquab et al., 2023), using the same 443

semantic labels extracted from CLIP. As shown 444

in Table 5, this simple transfer strategy leads to 445

significant improvements on visual understanding 446

benchmarks (e.g., VQAv2, GQA). Notably, the per- 447

formance gains persist even on MMVP (Tong et al., 448

2024b), where DINOv2 traditionally excels. These 449

results demonstrate that SEA’s semantic supervi- 450

sion framework can effectively enhance various 451

vision encoders’ semantic understanding capabili- 452

ties without requiring architectural changes or ad- 453

ditional training objectives. 454
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Method CapsBench Stanford Dogs COCO Captions (CIDEr) OCRBench MMMU

LLaVA 88.0 28.6 84.8 319 0.44
+ SEA 90.4 (+2.7%) 29.7 (+3.9%) 88.7 (+4.6%) 336 (+5.3%) 0.49 (+11.4%)

Table 3: Ablation results on fine-grained perception tasks. We conduct ablation studies based on LLaVA across five
fine-grained benchmarks: CapsBench (Liu et al., 2024a), Stanford Dogs (Khosla et al., 2012), COCO Captions (Chen et al.,
2015), OCRBench (Liu et al., 2024c), and MMMU (Yue et al., 2024). For Stanford Dogs, we reformulate the task as a 4-way
multiple-choice question. Results show that SEA consistently improves the perceptual capabilities of MLLMs, particularly in
capturing fine-grained visual semantics.

Method VQAv2 VQAT GQA SQA MMB VizWiz

Baseline 78.8 58.3 62.0 67.9 66.2 45.7
+ Finetune VE 80.3 +1.5 59.1 +0.8 63.4 +1.4 67.0 -0.9 66.1 -0.1 50.3 +4.6
+ SEA 80.5 +0.2 59.5 +0.4 63.6 +0.2 69.5 +2.5 68.0 +1.9 51.6 +1.3

Table 4: Ablations for fine-tuning vision encoder. The baseline is LLaVA-1.5 with Vicuna-7B, using the same training
data and strategy. "Finetune VE" refers to the vision encoder is unfrozen during instruction tuning.

Method VE Res. PT+IT LLM VQAv2 VQAT GQA SQAI MMB POPE VizWiz MM-Vet MMVP

LLaVA DINOv2-L 224 0.5M+0.6M Vicuna-7B 71.4 45.8 58.6 63.9 54.2 84.8 37.6 20.9 31.3
+ SEA DINOv2-L 224 0.5M+0.6M Vicuna-7B 74.0 45.8 60.9 65.1 57.6 86.1 39.6 20.8 32.0

Table 5: Exploring the semantic label transfer. We obtained semantic labels from CLIP-Large and directly transferred
them to the training of DINOv2, resulting in significant performance improvements.

5 Related Work455

Vision-Language Pre-training The integration456

of vision and language has led to Vision-Language457

Models (VLMs), which leverage image-text pairs458

to enrich semantic understanding. Contrastive459

learning has played a pivotal role in pre-training,460

with models like CLIP (Radford et al., 2021),461

ALIGN (Jia et al., 2021), and SPARC (Bica462

et al., 2024) applying softmax contrastive learn-463

ing on large-scale datasets. Unlike these methods,464

SigLIP (Zhai et al., 2023) introduces a simpler pair-465

wise Sigmoid loss, removing the need for global466

similarity normalization. These models demon-467

strate strong zero-shot transfer capabilities, improv-468

ing performance across multimodal tasks.469

Cross-modal Alignment in MLLMs Cross-470

modal alignment in MLLMs typically follows deep471

or shallow fusion strategies. Deep fusion (Alayrac472

et al., 2022; Laurençon et al., 2023; Awadalla et al.,473

2023; Wang et al., 2023) integrates vision encoder474

outputs into the LLM via interaction modules, al-475

lowing direct attention to image features. In con-476

trast, shallow fusion (Liu et al., 2024b; Koh et al.,477

2023; Driess et al., 2023; Li et al., 2023a; Zhu et al.,478

2023; Bai et al., 2025; Liu et al., 2023a) concate-479

nates visual and text embeddings before passing480

them to the LLM, but struggles to bridge the align-481

ment gap. Recent methods address this misalign-482

ment through techniques like similarity-based to-483

ken assignment (AlignGPT (Zhao et al., 2024)) and 484

segmentation/OCR-enhanced visual tokens (Re- 485

thinking MLLMs (Lin et al., 2024)). However, 486

these approaches fail to fundamentally improve 487

adapter alignment. To address this, we propose 488

Supervised Embedding Alignment (SEA), a token- 489

level alignment paradigm that optimizes adapter 490

integration for precise visual-text representation. 491

6 Conclusion 492

In this paper, we introduced Supervised Embedding 493

Alignment (SEA), a token-level supervision align- 494

ment method that effectively bridges the modal- 495

ity gap in Multimodal Large Language Models. 496

By leveraging well-aligned vision-language mod- 497

els like CLIP, SEA provides precise semantic su- 498

pervision for visual tokens, enabling their optimal 499

alignment with the LLM’s input space. Unlike con- 500

ventional image-level alignment approaches, SEA 501

mitigate both semantic distortion and modality rep- 502

resentation gaps, substantially reducing the adapta- 503

tion burden on language models during instruction- 504

tuning. SEA requires no additional data or infer- 505

ence cost, yet delivers consistent performance im- 506

provements across multiple benchmarks, with espe- 507

cially strong gains for smaller models. Our findings 508

highlight the importance of token-level alignment 509

for efficient multimodal learning and demonstrate 510

that precise adapter design impacts both visual per- 511

ception and language capabilities in MLLMs. 512
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Limitations513

While SEA demonstrates strong performance in514

visual-textual integration, future directions could515

explore dynamic label selection that adapts to vi-516

sual content complexity. Beyond images, extend-517

ing this token-level alignment framework to other518

modalities (e.g., video, audio) while maintaining519

language model capabilities presents an important520

direction for developing general-purpose multi-521

modal systems.522
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Appendix767

A Experimental Setup768

Training details. We perform a two-stage training process. In the first stage, only the adapter was769

optimized while the vision encoder remained fixed. In the second stage, both the LLM and adapter were770

optimized. For SEA-PRIME, the vision encoder was also tuned in the second stage with a 2e-6 learning771

rate. We optimized all models for 1 epoch using the AdamW optimizer and a cosine learning schedule,772

following LLaVA’s hyperparameters. The training time in Section 4.3 ranges from 6 to 10 hours using773

8×H800 GPUs, nearly identical to LLaVA’s training duration, with Stage 1 requiring only an additional774

10-20 minutes. For SEA-PRIME, training takes less than 4 days with the same GPU configuration.775

Datasets. For our models in Table 1, we use the Cambrian-1 (Tong et al., 2024a) training data, which776

consists of 2.5M caption pairs for modality alignment and Cambrian-7M data for instruction tuning.777

All ablation experiments in Section 4.3 utilize the same data as LLaVA-1.5, specifically the CC-595K778

dataset (Liu et al., 2024b) for pre-training and a 656K mixture dataset (Liu et al., 2023a), which includes779

LLaVA-Instruct (Liu et al., 2024b), TextVQA (Singh et al., 2019), GQA (Hudson and Manning, 2019),780

OCR-VQA (Mishra et al., 2019), and Visual Genome (Krishna et al., 2017) for instruction-tuning.781

B Word List782

We first performed syntactic analysis over the entire pretraining corpus to extract all meaningful and783

attribute-related words from the text. To expand coverage, we further incorporated frequent words from784

the 2of12 word list based on the Corpus 12 dictionary, resulting in a final vocabulary of approximately 4785

million words. The LLaVA-Pretrain dataset was then processed using the pipeline illustrated in Figure 4,786

where relevant semantic labels were assigned to each visual patch. As detailed in Section 3, once the787

candidate semantic labels were defined, the similarity scores of all other words in the vocabulary were set788

to zero.789

C Evaluating Alignment Consistency in Pretraining790

During the pre-training, for a given image-text pair (Ximage, Xtext). The LLM input is constructed as:791

Xv = gθ(f(Ximage)) ∈ Rm×dim (14)792

793
Xt = Ψ(Xtext) ∈ Rn×dim (15)794

where f represents for vision encoder, g represents for the adapter, and Ψ is LLM’s embedding layer.795

To quantify the alignment between visual and textual representations after the adapter, we introduce the796

Token Alignment Consistency Score (TACS). TACS is computed by measuring the cosine similarity797

between each visual token in the matrix Xv and each token in Xt. For each visual token, we identify the798

most similar text token based on similarity scores and record the similarity value. The final TACS score799

is obtained by averaging the top 10 highest similarity scores, providing a robust measure of alignment800

quality:801

TACS =
1

10

∑
i∈Top 10

max
j

(
Xv,i ·Xt,j

∥Xv,i∥∥Xt,j∥

)
(16)802

To create an evaluation dataset for assessing adapter alignment, we randomly selected 200 images from803

the COCO test dataset and manually annotated detailed captions for each image. As pretraining progresses,804

SEA achieves higher TACS scores, indicating improved alignment, while also showing corresponding805

improvements in POPE benchmark performance, as illustrated in Figure Figure 5.806
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