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Abstract

In the current machine learning landscape, we001
face a “model lake” phenomenon: Given a task,002
there is a proliferation of trained models with003
similar performances despite different behav-004
ior. For model users attempting to navigate and005
select from the models, documentation compar-006
ing model pairs is helpful. However, for every007
N models there could be O(N2) pairwise com-008
parisons, a number prohibitive for the model009
developers to manually perform pairwise com-010
parisons and prepare documentations. To facil-011
itate fine-grained pairwise comparisons among012
models, we introduced VERBA. Our approach013
leverages a large language model (LLM) to014
generate verbalizations of model differences by015
sampling from the two models. We established016
a protocol that evaluates the informativeness of017
the verbalizations via simulation. We also as-018
sembled a suite with a diverse set of commonly019
used machine learning models as a benchmark.020
For a pair of decision tree models with up to021
5% performance difference but 20-25% behav-022
ioral differences, VERBA effectively verbal-023
izes their variations with up to 80% overall024
accuracy. When we included the models’ struc-025
tural information, the verbalization’s accuracy026
further improved to 90%. VERBA opens up027
new research avenues for improving the trans-028
parency and comparability of machine learning029
models in a post-hoc manner.030

1 Introduction031

The rapid increase in the number of machine learn-032

ing models across various domains has led to a033

“model lake” phenomenon (Pal et al., 2024): navi-034

gating and selecting models has been increasingly035

challenging. It’s often a struggle to discern the036

strengths and weaknesses and identify the most037

appropriate model for a task.038

Several efforts have been made to improve model039

management and documentation. One example040

is ModelDB (Vartak et al., 2016), which serves041

as a versioning system that tracks models’ meta- 042

data across successive iterations (such as model 043

configurations, training datasets, and evaluation 044

metrics). ModelDB’s primary focus is on ensur- 045

ing reproducibility and traceability of models over 046

time, allowing users to track changes and repro- 047

duce past experiments. Similarly, Model Cards 048

(Mitchell et al., 2019) and Data Cards (Pushkarna 049

et al., 2022), along with recent work on their auto- 050

mated generation (Liu et al., 2024), offer valuable 051

documentation on data characteristics, model archi- 052

tectures, and training processes. 053

However, model selection is challenging even if 054

each model is well-documented and well-evaluated 055

with corresponding performance metrics, because 056

model selection involves pairwise comparison. Fre- 057

quently, two models have almost the same perfor- 058

mance metrics, but their behaviors differ drastically. 059

While the methods documenting each model indi- 060

vidually provide critical insights into individual 061

models and datasets, they do not directly explain 062

the fine-grained differences between the models’ 063

behavior. Research aimed at systematically differ- 064

entiating models remains sparse, calling for a more 065

transparent model comparison framework. 066

Recently, large language models (LLMs) have 067

shown exceptional capabilities over a diverse range 068

of tasks (Hendy et al., 2023; Brown et al., 2020). 069

Among these capabilities, the potential of LLMs 070

to explain model behavior is especially intriguing 071

(Kroeger et al., 2023; Singh et al., 2023). Motivated 072

by their works, we built a framework, VERBA, that 073

leverages LLMs to verbalize the model differences. 074

The VERBA framework is designed to compare 075

two models trained on the same dataset by verbal- 076

izing their differences. It does so by serializing 077

a representative sample of input instances (from 078

the dataset) and the corresponding model outputs 079

in a JSON format. The serialization, along with a 080

task description, is passed to the LLM through 081

a zero-shot-based prompt. The LLM then ana- 082
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lyzes the patterns from the serialization, captures083

the inconsistencies in the predictions between the084

two models, and summarizes them in natural lan-085

guage. The VERBA framework is flexible. Since086

the framework primarily relies on comparing input-087

output samples, it can be used with various model088

types and datasets. Additionally, VERBA is exten-089

sible. The framework allows the user to incorpo-090

rate model-specific information, for example, tex-091

tual descriptions of the structures of decision trees,092

which can improve the informativeness of the ver-093

balization — we present the effects via ablation094

studies in subsection 6.4 and subsection 6.5.095

To systematically evaluate the verbalizations of096

VERBA, we established a protocol inspired by the097

evaluation of natural language explanations (Kopf098

et al., 2024; Singh et al., 2023). Given the inputs,099

the first model’s outputs, and the verbalization, we100

use an external LLM to infer the second model’s101

outputs. The accuracy of the inference (averaged102

after exchanging the two models) is a proxy of the103

informativeness of the verbalization.104

To complement the evaluation protocol, we cre-105

ated a benchmark containing three types of com-106

monly used AI models: logistic regressors, deci-107

sion trees, and multilayer perceptrons. The models108

were systematically perturbed so that, despite re-109

sembling each other in performance, their behavior110

differed. We stratified the models based on their111

behavioral differences.112

On these models, we benchmarked VERBA uti-113

lizing state-of-the-art LLMs across three machine114

learning datasets. VERBA was able to achieve115

over 80% match accuracy over model pairs that116

have ≤ 5% accuracy differences.117

Our work provides a valuable starting point for118

using LLMs to verbalize the behavior differences119

of AI models, enhancing their transparency and120

comparability in a post-hoc manner. Our work121

can be a critical building block for the automated122

selection and management of AI models.123

2 Related Works124

Neuron-Level Explanations Research into the125

semantics of individual DNN components, partic-126

ularly neurons, has evolved significantly. Early127

investigations, such as those by Mu and Andreas128

(2020), focused on identifying compositional logi-129

cal concepts within neurons. Building on this, Her-130

nandez et al. (2022) developed techniques to map131

textual descriptions to neurons by optimizing point-132

wise mutual information. More recent approaches 133

have incorporated external models to enhance ex- 134

planations of neuron functions. For instance, Bills 135

et al. (2023) conducted a proof-of-concept study 136

using an external LLM, such as GPT-4, to articu- 137

late neuron functionalities. However, the perfec- 138

tion of these methods remains elusive, as noted by 139

Huang et al. (2023). Evaluating the effectiveness 140

of these explanations is currently a vibrant area of 141

inquiry, with ongoing studies like those by Kopf 142

et al. (2024) and Mondal et al. (2024). 143

Model-Level Explanations Beyond individual 144

neurons, the field is extending towards automated 145

explanation methods for broader model compo- 146

nents. Singh et al. (2023) approaches models as 147

opaque “text modules”, providing explanations 148

without internal visibility. Our methodology di- 149

verges by incorporating more detailed informa- 150

tion about the models, which we believe enhances 151

the accuracy of explanations, an approach recom- 152

mended by Ajwani et al. (2024). Notably, our work 153

aligns with Kroeger et al. (2023), who employ in- 154

context learning for prompting LLMs to explain 155

machine learning models. Our strategy differs as 156

we emphasize zero-shot instructions. 157

Extract Interpretable Features Concurrently, 158

an avenue of research in mechanistic interpretabil- 159

ity extracts interpretable features directly from neu- 160

rons. Techniques such as learning sparse auto- 161

encoders have been explored by Bricken et al. 162

(2023). A significant advancement by Templeton 163

et al. (2024) scales up these efforts to newer archi- 164

tectures like Claude 3.5 Sonnet (Anthropic, 2024). 165

Unlike previous methods, we do not assume a pre- 166

defined set of features for explanation, opting in- 167

stead to use the LLM as a dynamic verbalizer to 168

generate explanatory content. 169

Another prevalent mechanistic interpretability 170

approach is the use of the language model head of 171

DNNs as a “logit lens“, as demonstrated by nos- 172

talgebraist (2020). This method has been further 173

developed and diversified by researchers like Pal 174

et al. (2023) and Belrose et al. (2023). The Patch- 175

Scope framework by Ghandeharioun et al. (2024) 176

extends these techniques, incorporating methods 177

that modify the representations themselves. In our 178

research, rather than utilizing the language model 179

head directly, we employ an external LLM to serve 180

as the verbalizer, providing a novel means of inter- 181

preting and explaining model behaviors. 182
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LLM Distinction Several approaches have183

emerged to differentiate between LLMs. One184

method, LLM Fingerprinting, introduces a cryp-185

tographically inspired technique called Chain and186

Hash (Russinovich and Salem, 2024). This ap-187

proach generates a set of unique questions (the188

“fingerprints”) and corresponding answers, which189

are hashed to prevent false claims of ownership190

over models. Complementing this, another method191

(Richardeau et al., 2024) proposes using a sequence192

of binary questions, inspired by the 20 Questions193

game, to determine if two LLMs are identical. Un-194

like fingerprinting or binary distinction, our frame-195

work focuses on the behavioral aspect of models.196

Moreover, our current work does not aim to com-197

pare LLMs themselves; rather, we leverage LLMs198

as a tool to compare and verbalize the differences199

among other models. Similarly, Zhong et al. (2022)200

described the difference between text distributions.201

We describe the differences between AI models,202

including but not limited to those based on text.203

Model Selection and Ranking A recent ap-204

proach (Okanovic et al., 2024) introduces “Model205

Selector”, a framework for label-efficient selection206

of the best-performing model among pretrained207

classifiers. Similarly, You et al. (2022) ranked the208

models within a model hub. Ong et al. (2024) de-209

veloped a routing mechanism that selects the appro-210

priate model, and Frick et al. (2025) showed that211

the approaches based on model hubs could lead to212

systems with superior performance. Our work is213

also relevant to improving the models in a model214

hub, but we focus on assessing and interpreting the215

model behavior.216

LLM-driven Hypothesis Generation Recent217

work by Zhou et al. (2024) proposes HypoGeniC,218

a framework that uses LLMs to generate inter-219

pretable scientific hypotheses from small labeled220

datasets. Our VERBA framework can also be con-221

sidered a type of hypothesis generation framework,222

where our data are sampled from the machine learn-223

ing models, and our hypotheses are the verbaliza-224

tion of model differences.225

3 The VERBA Framework226

Here we present our VERBA framework. As illus-227

trated by Figure 1, VERBA generates the verbal-228

izations, i.e., natural-language descriptions of the229

differences between two machine learning models230

trained on the same dataset. 231

Notation: Let X = {xi}ni=1 be a tabular dataset 232

where each xi ∈ Rd represents a feature vector. 233

Since we considered classification tasks, suppose 234

the target vector is y = {yi}ni=1, where yi ∈ C and 235

C is a set of possible classes. We denote a subset 236

of the dataset as Xsub, with size nsub. Similarly, the 237

corresponding subset of target values is denoted by 238

ysub = {yi}nsub
i=1. We define the feature names of X 239

as F = {f1, f2, . . . , fd}, where each fi represents 240

a natural-language description of a feature, such as 241

“age” or “glucose”. 242

Let M0 and M1 be the two models that we com- 243

pare with VERBA. For each data point xi ∈ Xsub, 244

the predicted target values from models M0 and M1 245

are represented as ŷ
(0)
sub,i = M0(xi) and ŷ

(1)
sub,i = 246

M1(xi), respectively. The corresponding predicted 247

target vectors for the subset are denoted by ŷ
(0)
sub 248

and ŷ
(1)
sub. 249

Representative Sample: We constructed our rep- 250

resentative sample using the verb split of the 251

dataset Xverb (size nverb) along with the predicted 252

target vectors ŷ(0)
verb and ŷ

(1)
verb from models M0 and 253

M1 respectively. Before passing the verbalization 254

sample {Xverb, ŷ
(0)
verb, ŷ

(1)
verb} to the LLM, we serial- 255

ize it into a JSON format. 256

LLM for Verbalization: The framework can be 257

used with different LLMs. Let LLMverb repre- 258

sent the LLM responsible for generating verbaliza- 259

tions. The verbalization produced, denoted by v, 260

lies within the vocabulary space of LLMverb. 261

Prompt: We assembled the serialized results into 262

a prompt to the verbalizer LLMverb. Our prompt 263

was inspired by previous LLM work in explainable 264

AI (Kroeger et al., 2023) and included the following 265

elements: Context, Dataset, Model Information, 266

Task, and Instructions. 267

The Context outlines the type of models used, 268

their classification task, and a general overview of 269

the dataset, including details about the features and 270

the target variable. We chose to explicitly mention 271

the feature names, F = {f1, f2, . . . , fd}, drawing 272

insights from previous work (Hegselmann et al., 273

2023), which showed that feature names can help 274

improve interpretability. We included the order 275

of features in the representative sample to ensure 276

that LLMverb can correctly associate feature names 277
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… Model 0 is more likely going to 

predict a positive outcome than 

Model 1 when the Recency

feature is within the ranges of 

approximately –90 to –60 ...

Context: …. {dataset description}

Dataset: {serialized samples}

Model Information (optional):   {model info}

Task: Verbalize the model output differences.

Instructions: ….

Prompt

LLM

Verbalization

Model 0

Model 1

Serialized 
samples

Dataset

Figure 1: Overview of the VERBA framework. Given a dataset and a pair of models trained on a dataset, VERBA
verbalizes the differences between the two models.

with their corresponding feature values. Addition-278

ally, we explicitly explained the meaning of the279

target variable, including what each possible value280

c ∈ C represents.281

The Dataset was the serialized representative282

sample, as described above.283

The Model Information was kept optional. It284

could describe either the structural information or285

just the names of the two models. We studied the286

effects of the two choices in ablation studies (sec-287

tion 6.288

The Task section stated the underlying task we289

wanted LLMverb to perform, i.e., generate verbal-290

ization of the decision boundaries of the two mod-291

els based on the samples.292

The Instructions enumerated detailed instruc-293

tions for the LLM. These included: analyzing294

where the outputs of the two models diverged and295

aligned, and describing the specific ranges of fea-296

ture values in the decision boundaries. We also297

instructed the verbalizer to identify the key con-298

tributing features.299

An assembled prompt is illustrated in Ap-300

pendix C.301

4 Evaluation302

If a verbalization v accurately captured the dif-303

ferences between two models, it was expected to304

facilitate an evaluator to predict the second model’s305

outputs given the inputs and the outputs of the first.306

We used an LLM to be the evaluator, and referred307

to it as LLMeval. It received the verbalization v308

along with an evaluation sample {Xeval, ŷ
(0)
eval} to309

simulate ỹ
(1)
eval, and vice versa. If we let k ∈ {0, 1}310

to index the two models, we have:311

ỹ
(k)
eval = LLMeval(Xeval, ŷ

(1−k)
eval ; v) (1)312

To assess the accuracy of simulated output ỹ(k)eval,313

we compared it with the original model output ŷkeval314

using the following three evaluation metrics:315

Mismatch Accuracy (Accmismatch) It evalu- 316

ates the instances where the outputs of M0 317

and M1 disagree for Xeval, i.e., Imismatch = 318{
i | ŷ(0)eval,i ̸= ŷ

(1)
eval,i

}
. For these instances, the met- 319

ric is computed as the proportion of cases where 320

the simulated output of Mk matches that of the 321

original output of Mk, i.e., 322

Accmismatch = 323∑
k∈{0,1}

∣∣∣{i | ỹ(k)eval,i = ŷ
(k)
eval,i, i ∈ Imismatch

}∣∣∣
|Imismatch|

. 324

The Accmismatch quantifies how well the verbaliza- 325

tion v captures the points of divergence between 326

the two models. 327

Match Accuracy (Accmatch) It considers the in- 328

stances where the outputs of M0 and M1 agree, 329

i.e., Imatch =
{
i | ŷ(0)eval,i = ŷ

(1)
eval,i

}
. The accuracy 330

is similarly computed as the proportion of these 331

cases where the simulated output of Mk matches 332

that of the original output of Mk: 333

Accmatch = 334∑
k∈{0,1}

∣∣∣{i | ỹ(k)eval,i = ŷ
(k)
eval,i, i ∈ Imatch

}∣∣∣
|Imatch|

. 335

The Accmatch quantifies the extent to which the 336

verbalization v captures the points of agreement 337

between the two models. 338

Overall Accuracy (Accoverall) It evaluates v’s 339

performance across all instances, combining the 340

cases in both Imatch and Imismatch: 341

Accoverall =

∑
k∈{0,1}

∣∣∣{i | ỹ(k)eval,i = ŷ
(k)
eval,i

}∣∣∣
|Imatch|+ |Imismatch|

. 342

To obtain a single score for each metric, we com- 343

puted it in both directions (simulating M1 from M0 344
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and vice versa) and reported the mean, as written345

in the summations over k in the above equations.346

This way, we ensured that the evaluation reflected347

the verbalization’s ability to capture the differences348

symmetrically between the two models. The evalu-349

ation prompt template can be found in Appendix C.350

5 Experimental Setup351

Datasets: We considered classification tasks, and352

based on prior work involving LLMs ((Hegsel-353

mann et al., 2023)), we selected the following three354

datasets: Blood (784 rows, 4 features, 2 classes),355

Diabetes (768 rows, 8 features, 2 classes), and Car356

(1,728 rows, 6 features, 4 classes). The datasets357

were first divided into training and test sets. From358

the test set, we further split the data into two sub-359

sets in a 2:1 ratio: the verb split, which is used360

as a representative sample for verbalization (as ex-361

plained in section 3), and the eval split, which362

is reserved for evaluation purposes. This ensured363

that verbalization and evaluation operate on distinct364

subsets.365

To keep the input context manageable and ensure366

that each dataset had enough samples in both verb367

and eval splits, we adjusted the proportions of the368

initial train-test split. The train-test splits are shown369

in Table 1.370

Dataset Train Split (%) Test Split (%)

Blood 70% 30%
Diabetes 70% 30%
Car 87% 13%

Table 1: Train-test split percentages for datasets

The datasets were scaled, and preprocessing371

steps were consistent across all model types.372

Models types: We evaluated our framework on373

three representative models that span a range of374

representational capacities: (i) Logistic Regression375

(LR), (ii) Decision Tree (DT), and (iii) a Multi-376

layer Perceptron (MLP) with a single hidden layer.377

LR and DT were selected because they are widely378

used, interpretable, and serve as strong baselines.379

To assess the framework’s ability to handle more380

complex models, we also include a single-layer381

MLP, which introduces non-linearity.382

Model pairs: Models have similar performances383

(in accuracy), but their predictions differ. Such384

a discrepancy is not reflected by the performance385

metrics themselves, and we systematically study 386

the utility of VERBA for these models. For each 387

model type, multiple pairs of models (M1 and M2) 388

were trained. The accuracy differences between 389

M1 and M2 are ≤ 5%. Then, we stratified the 390

experiments based on the percentage of differing 391

outputs between M1 and M2, dividing them into 392

three levels - (i) Level 1 (15 − 20%), (ii) Level 2 393

(20− 25%), and (iii) Level 3 (25− 30%). 394

To generate pairs of LR models with a specific 395

percentage of differing outputs, we first trained 396

a base model using RandomizedSearchCV over 397

a broad hyperparameter space. We then created 398

multiple variations by adding randomly gener- 399

ated noise to the base model’s coefficients. The 400

noise was controlled by a modification factor m 401

(noise ∼ N (0,m)) and applied multiplicatively as 402

β · (1 + noise), where β denotes the vector of the 403

base model’s coefficients. We carefully adjusted m 404

until the percentage of differing outputs between 405

the base and modified models reached the desired 406

level. Rather than limiting our comparisons to the 407

base model obtained from RandomizedSearchCV, 408

we also compared the modified models against each 409

other, identifying a diverse collection of model 410

pairs. We also ensured that the difference in accu- 411

racy between any two models in a pair was ≤ 5%, 412

since in practice, models being compared would 413

usually have similar performance. 414

We follow a similar process for Decision Trees 415

and MLPs, with the details provided in Appendix B. 416

For each model type and across all levels of output 417

differences, we generate multiple base models and 418

corresponding modified models. 419

Verbalizers: We include four state-of-the-art 420

LLMs as LLMverb: Claude 3.5 Sonnet (Anthropic, 421

2024), Gemini 2.0 Flash (Google, 2024), GPT-4o 422

(OpenAI, 2024) and Llama 3.3 70B (Meta, 2024). 423

For each of these LLMs, we set the temperature as 424

T = 0.1 in their respective API calls. 425

Evaluator: For LLMeval, we use Llama 3.3 70B 426

as a fixed evaluator to avoid evaluator bias and 427

ensure consistent comparison across verbalization 428

models. 429

6 Experiment Results 430

6.1 Comparing Logistic Regressors 431

Our framework demonstrated strong performance 432

when applied to logistic regression (LR) across 433
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(a) Logistic Regression

(b) Decision Trees

(c) Multilayer Perceptron

Figure 2: Performance of three LLMs. 2a shows the
Accmismatch and Accmatch for Level 2 (20 − 25%) LR
models trained on Blood, Diabetes, and Car datasets. 2b
and 2c shows the same for DTs and MLPs respectively.

datasets, likely due to the models’ linear nature.434

Figure 2a illustrates the performance on LR models435

trained on the Blood, Diabetes, and Car datasets.436

As shown in Table 4, the LLMverb performance437

remained consistent across Levels 1–3 for the438

Blood dataset. Gemini outperformed the other439

LLMs in Accoverall by a small margin, achiev-440

ing an Accmismatch of 0.64±.13 and an Accmatch of441

0.83±.03 on Level 2 (20− 25%) models. GPT-4o442

and Claude followed closely, with Accmismatch val-443

ues of 0.70±.06 and 0.67±.10, and Accmatch values444

of 0.75±.09 and 0.81±.06, respectively.445

Performance decreased across all datasets at the446

most challenging level, Level 3 (25− 30%), as de-447

tailed in Table 4. This suggests that as the problem448

complexity increased, even the best-performing449

LLMs could not maintain the same level of accu-450

racy.451

For the Diabetes and Car datasets, we observed a452

decline in the performance of the framework, which453

could be attributed to the increasing complexity454

of the datasets—Diabetes with a larger number455

of features and Car with multiple classes. Nev-456

ertheless, all three—GPT–4o, Claude, and Gem-457

ini—achieved an Accoverall of 0.75±.06, 0.75±.05, 458

and 0.71±.05 respectively for the Car dataset, which 459

remained substantially above the random-guessing 460

baseline. These results suggest that LLMs were ef- 461

fective at verbalizing differences between logistic 462

regression models. Table 2 presents excerpts from 463

some of these verbalizations. 464

6.2 Comparing Decision Trees 465

Decision Trees posed a greater challenge than LR 466

models, primarily due to their non-linear decision 467

boundaries. Consequently, the framework’s perfor- 468

mance on DTs was lower, although trends similar to 469

those observed with LR models persisted. Detailed 470

results across all levels and datasets are provided 471

in Table 5. 472

Figure 2b illustrates that, on the Blood dataset, 473

all four LLMs performed well, with Gemini achiev- 474

ing the highest Accmismatch of 0.70±.06 and an 475

Accmatch of 0.83±.02 for Level 2 (20− 25%) mod- 476

els. Claude followed closely, with an Accmismatch 477

of 0.65±.08 and an Accmatch of 0.77±.04. GPT-4o 478

and Llama also exhibited comparable performance. 479

The Car dataset introduced additional com- 480

plexity. Gemini’s performance dropped, with 481

an Accmismatch of 0.58±.13 and an Accmatch of 482

0.71±.09. Claude followed closely, achieving 483

an Accmismatch of 0.57±.08 and an Accmatch of 484

0.78±.04. 485

Despite the decline in overall performance for 486

DTs across datasets, Gemini and Claude managed 487

to maintain relatively strong results. These find- 488

ings suggest a broader trend: LLMs were generally 489

able to verbalize differences between decision tree 490

models effectively. Table 3 presents excerpts from 491

some of these verbalizations. 492

6.3 Comparing Multilayer Perceptrons 493

Multilayer Perceptrons (MLPs) are more complex 494

than both LR and DTs, and thus posed a greater 495

challenge for our framework. The non-linear na- 496

ture of MLPs made it more difficult for LLMs to 497

verbalize their differences effectively. Full break- 498

downs of LLM performance on MLPs can be found 499

in Table 6. 500

Figure 2c illustrates that, on the Blood dataset, 501

all four LLMs performed consistently, with Gem- 502

ini and Llama emerging as the top performers. 503

Gemini achieved an Accmismatch of 0.66±.09 and 504

an Accmatch of 0.86±0.05, while Llama attained 505

an Accmismatch of 0.62±.09 and an Accmatch of 506
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Figure 3: Comparison of GPT-4o’s performance on
DTs, with and without models’ internals, for the Blood,
Diabetes, and Car datasets. Including models’ internals
resulted in performance improvements across all cases.

0.87±0.01 on the Level 2 (20−25%) models. GPT-507

4o and Claude exhibited comparable performance.508

On the Car dataset, performance dropped as ex-509

pected, with Gemini achieving an Accmismatch of510

0.58±0.13 and an Accmatch of 0.70±0.06. The other511

LLMs exhibited a similar decline, although their512

scores remained well above the random-guessing513

baseline.514

Despite the added complexity of MLPs, the515

framework still achieved reasonable performance.516

These results suggest that while MLPs are more517

difficult for LLMs to verbalize, the framework can518

nonetheless generate meaningful insights into their519

differences.520

6.4 Ablation on Information about Model’s521

Internals522

Access to model internals, compared to solely523

relying on the representative samples, may help524

LLMverb understand (and therefore verbalize) how525

the models make decisions. We hypothesized that526

providing such model-specific information would527

enable LLMs to generate more accurate and faithful528

verbalizations. We examined the effect of incor-529

porating the models’ internals on the performance530

of our framework in generating verbalizations. By531

internals, we refer to the textual descriptions of a532

model’s learned structure or information about its533

inner workings. Different model types expose dif-534

ferent internal signals that can inform their predic-535

tions. For Logistic Regression (LR), this entailed536

providing the framework with the learned weights537

and intercepts. For Decision Trees (DT), we sup-538

plied a textual representation of the model struc-539

ture, focusing on the decision rules and splits. For540

Multilayer Perceptrons (MLPs), we included the541

architecture specifications—such as the number of542

layers, nodes, and activation functions—alongside543

the learned weights and biases for both the hidden544

and output layers.545

For both LR and MLP, the inclusion of model in- 546

ternals led to performance either remaining within 547

the margin of error or increasing modestly (typi- 548

cally 3-5%) across all datasets. This suggests that 549

while providing weights and structural informa- 550

tion can help LLMs generate more accurate and 551

faithful verbalizations, the relatively simple deci- 552

sion boundaries of LR and the black-box nature of 553

MLPs may limit how much of this information the 554

LLMs can meaningfully leverage. Notably, Llama 555

and Gemini both showed the most consistent gains 556

when MLP internals were included. 557

The most pronounced impact of incorporat- 558

ing model internals was observed for Decision 559

Trees (Figure 3). On the Blood dataset, GPT- 560

4o’s performance rose to a Accmismatch of 0.73±.07 561

and an Accmatch of 0.92±.03, marking a 15% in- 562

crease in Accoverall. Claude’s scores improved 563

to a Accmismatch of 0.70±.02 and an Accmatch 564

of 0.91±.01. Gemini also exhibited a notable 565

jump, achieving a Accmismatch of 0.75±.12 and an 566

Accmatch of .94±.03. Similar improvements were 567

observed across the remaining datasets, with all 568

LLMs showing up to a 40% increase in Accmismatch 569

on the Diabetes dataset and around a 10% gain in 570

Accoverall. The Car dataset also exhibited meaning- 571

ful improvements. 572

These findings suggest that the rule-based na- 573

ture of decision trees allowed LLMs to better cap- 574

ture and articulate the model’s underlying decision 575

logic. The explicit structure of decision paths in 576

decision trees facilitated more accurate and inter- 577

pretable verbalizations. 578

The impact of including model-specific infor- 579

mation varied depending on the type of model. 580

Only marginal improvements were observed in the 581

scores for logistic regression and multilayer percep- 582

tron models. In contrast, decision trees witnessed 583

the most substantial improvement, with perfor- 584

mance gains across all datasets and all LLMs, with 585

Accoverall even exceeding 0.9 in some cases. This 586

underscores the effectiveness of including model- 587

specific information in generating more accurate 588

and faithful verbalizations. More broadly, our find- 589

ings indicate that for certain model classes, access 590

to internal structure can significantly enhance the 591

quality of LLM-generated explanations. 592

6.5 Ablation on Information on the Model’s 593

Type 594

The model-type is the name of the type of model 595

(e.g., Logistic Regression, Decision Tree, or MLP). 596
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We study the impact of excluding the model type597

when comparing models. We aim to evaluate if our598

framework can generate accurate verbalizations599

based purely on the observed behavior, rather than600

the names.601

The Level 5 results in Appendix D show that602

removing model-type information from the prompt603

had little effect on the quality of verbalizations,604

with performance variations remaining within the605

margin of error. This implies that our framework606

relies mainly on the observed behavior (i.e., the rep-607

resentative sample) when verbalizing differences608

in decision boundaries.609

It should be noted that all our ablation studies610

are conducted using stratification Level 2 (20-25%)611

as the default configuration. Specific details about612

prompts can be found Appendix C.613

7 Discussion614

Our results show promising trends when verbaliz-615

ing LR, DT, and MLP model differences. The non-616

linear nature of MLPs posed a greater challenge617

for our framework, as indicated by the decline in618

performance. Nevertheless, VERBA demonstrated619

reasonable effectiveness even in this more com-620

plex setting. This suggests that the framework can621

be extended to verbalizing the differences between622

DNNs, especially incorporating approaches that de-623

scribe the models’ internals (e.g., with mechanistic624

interpretability). Considering the complex nature625

of DNNs, the appropriate choice of a mechanistic626

interpretability approach will be crucial.627

The plug-and-compare flexibility of VERBA628

allows potential upgrades. When newer, higher-629

capability LMs are developed, we can replace the630

LM in VERBA with the next-generation ones. The631

same flexibility applies to the prompting techniques632

and the expected tasks (for example, comparing633

across more than two models).634

VERBA can be a foundational building block of635

a model resource manager. A good resource man-636

ager does not just observe; beyond verbalization,637

it should be able to automatically inspect the indi-638

vidual models, question the potential weaknesses,639

and potentially recommend improvement methods,640

including but not limited to model merging, model641

safeguarding, and model debiasing. Future work is642

needed toward this goal, which we believe deserves643

more attention from the field.644

8 Conclusion 645

In conclusion, the VERBA framework establishes 646

a foundational step toward the automated manage- 647

ment and comparison of machine learning mod- 648

els. VERBA verbalizes the differences between 649

two models by leveraging large language models 650

(LLMs) to produce natural language descriptions, 651

providing clear insights into the nuanced behav- 652

iors that performance metrics alone might not re- 653

veal. The framework is flexible and generalizable, 654

accommodating various model types and datasets 655

while also allowing the integration of additional 656

model-specific information to enhance the accu- 657

racy and depth of the verbalizations. 658

Our experimental findings demonstrate that 659

VERBA effectively captures behavioral differences 660

between models across logistic regression, deci- 661

sion trees, and multilayer perceptrons. The experi- 662

ments showed robust performance, achieving up to 663

80% accuracy in verbalizing differences even when 664

models had similar predictive performance but dif- 665

fered significantly in their behaviors. The inclusion 666

of structural information, particularly in decision 667

trees, markedly improved the informativeness of 668

the generated verbalizations, with accuracy rising 669

to around 90% in these cases. 670

Model verbalizers are useful for future research 671

in model management tools that can dynamically 672

adapt to the evolving landscape of ML technologies. 673

As we look to the future, integrating more sophis- 674

ticated language models and expanding the frame- 675

work’s capabilities will be essential in advancing 676

the field towards more transparent, accountable, 677

and effective AI systems. 678

9 Limitations 679

While VERBA demonstrates promising results, 680

several limitations remain that future research 681

could address. Firstly, our evaluation was limited 682

to logistic regression, decision trees, and multilayer 683

perceptrons. Expanding the framework to include 684

a broader range of models, such as deep neural 685

networks with more layers and complex architec- 686

tures, would further test and potentially enhance its 687

applicability. 688

Additionally, we explored verbalizations using 689

only a limited set of datasets. Future work should 690

include a more diverse range of datasets, encom- 691

passing varying sizes, dimensionalities, and do- 692

mains, to robustly assess the generalizability and 693

effectiveness of the framework across different data 694
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contexts.695

The current implementation of VERBA primar-696

ily utilizes basic structural information about the697

models. Including more comprehensive informa-698

tion—such as detailed performance metrics, accu-699

racy differences, model complexity measures, and700

dataset-specific characteristics—could enhance the701

quality and depth of verbalizations.702

Finally, we employed straightforward prompt-703

ing techniques for the LLMs. Exploring advanced704

prompting strategies, such as iterative refinement705

prompts or in-context learning, could significantly706

improve the clarity, precision, and informative-707

ness of the generated verbalizations. Addressing708

these limitations will be crucial for future iterations709

of VERBA, thereby moving closer to achieving710

comprehensive, automated model management and711

comparison.712
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A Extended discussions871

Why not train an interpretable-by-design872

model? An alternative approach might involve873

training an interpretable model—e.g., a logistic re-874

gression—to approximate Model 2’s predictions875

using the input features and Model 1’s predictions.876

While this can reveal behavioral similarities and877

alignment between models, it differs fundamen-878

tally from our goal. Our framework focuses on879

generating natural language verbalizations that ex-880

plain how two models differ, not on replicating one881

model’s predictions through another. The evalu-882

ation framework employs a reconstruction-based883

method to assess how well the verbalization cap-884

tures these differences, but this is strictly for evalu-885

ation purposes and is not part of the verbalization886

process itself. In contrast, interpretable-by-design887

models lack this linguistic component and address888

a different task altogether.889

B Additional Experimental Details890

DT generation: For DTs, similar to the LR891

models, we first train a base model using892

RandomizedSearchCV. To generate a modified DT,893

we introduced variation at two levels. First, we894

randomly sample new hyperparameters from the895

defined space. This ensures that the modified tree896

has a structure different from the base model. Sec-897

ond, we add noise to the splitting thresholds of898

the trained tree. The noise was sampled from a899

normal distribution (N (0,m)) and applied multi-900

plicatively as τ · (1 + noise), where τ denotes the901

original threshold values. We carefully adjust m902

until the percentage of differing outputs between903

the base model and the modified model reaches the904

desired level. We also ensured that the difference905

in accuracy between any two models in a pair was906

≤ 5%, since in practice, models being compared907

would usually have similar performance.908

MLP generation: For MLPs, we first trained a909

base model using RandomizedSearchCV, keeping910

the architecture fixed and tuning hyperparameters911

such as the activation function, solver, and learning912

rate. To generate modified versions, we introduced913

noise into the model’s learned weights and biases.914

The noise was sampled from a normal distribution915

(N (0,m)), where m is the modification factor, and916

applied multiplicatively as w · (1 + noise), with w917

representing each parameter matrix or vector. We918

varied m to produce a range of model variations919

and selected pairs where the output disagreement 920

fell within a target range and the difference in ac- 921

curacy was ≤ 5%. As with the other model fami- 922

lies, we included both comparisons against the base 923

model and comparisons between modified models 924

to ensure a diverse set of model pairs. 925

C Prompts 926

C.1 Verbalization Prompts 927

Verbalization Prompt
(Blood Dataset)

Context: We have two {model_type} models trained
on the same dataset for a binary classification
task. The dataset contains details about random
donors at a Blood Transfusion Service. The 4
features that it contains, in order, are: Recency
(months), Frequency (times), Monetary (c.c.
blood), and Time (months). The target feature
(Blood Donated) is a binary variable representing
whether the donor donated blood in March 2007
(1 stands for donating blood; 0 stands for not
donating blood).

The sample dataset is provided below, which
includes the 4 input features in the order
mentioned above as well as the outputs/predictions
generated by each of the two models.

Dataset Sample: {verbalization_data}

Task: Your goal is to verbalize the differences
between the decision boundaries of the two models
based on the sample above.

Instructions: 1. Analyze: Examine the dataset
sample to identify where the outputs of the two
models diverge and where they align.
2. Quantify Divergences: Determine the specific
ranges of feature values (numerical intervals)
where the decision boundaries of the two models
diverge. Explain how the predictions differ
within these ranges and where they remain
consistent. Use numerical ranges for feature
values to describe divergences; avoid vague terms
like "high" or "low."
3. Identify Key Features: Identify any features
that significantly contribute to the observed
differences in the models’ outputs.
4. Verbalize Findings: Provide a concise and
precise verbal explanation of how the decision
boundaries of the two models differ. Include
numerical details to support your observations.

Important Note: Please do not include specific
instances from the sample dataset in your response,
as this could reveal sensitive information to a
third person.

928
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Verbalization Prompt
(Car Dataset)

Context: We have two logistic regression models
trained on the same dataset for a multiclass
classification task. The dataset was derived from
a simple hierarchical decision model developed
for the evaluation of cars. The six features
that it contains, in order, are: buying (buying
price, encoding – {"vhigh":3, "high": 2, "med":
1, "low": 0}), maint (maintenance price, encoding
– {"vhigh": 3, "high": 2, "med": 1, "low": 0}),
doors (number of doors, encoding – {"2": 2, "3":
3, "4": 4, "5more": 5}), persons (capacity of
persons, encoding – {"2": 2, "4": 4, "more":
5}), lug_boot (size of luggage boot, encoding –
{"small": 0, "med": 1, "big": 2}), and safety
(safety level, encoding – {"low": 0, "med":
1, "high": 2}). The target variable (class)
represents the overall evaluation of the car and
has four possible values: 0 (Unacceptable), 1
(Acceptable), 2 (Good), 3 (Very Good).

The sample dataset is provided below, which
includes the 6 input features in the order
mentioned above as well as the outputs/predictions
generated by each of the two models.

Dataset Sample: {verbalization_data}

Task: Your goal is to verbalize the differences
between the decision boundaries of the two models
based on the sample above.

Instructions: 1. Analyze: Examine the dataset
sample to identify where the outputs of the two
models diverge and where they align.
2. Quantify Divergences: Determine the specific
ranges of feature values (numerical intervals)
where the decision boundaries of the two models
diverge. Explain how the predictions differ
within these ranges and where they remain
consistent. Use numerical ranges for feature
values to describe divergences; avoid vague terms
like "high" or "low."
3. Identify Key Features: Identify any features
that significantly contribute to the observed
differences in the models’ outputs.
4. Verbalize Findings: Provide a concise and
precise verbal explanation of how the decision
boundaries of the two models differ. Include
numerical details to support your observations.

Important Note: Please do not include specific
instances from the sample dataset in your response,
as this could reveal sensitive information to a
third person.

929

Verbalization Prompt
(Diabetes Dataset)

Context: We have two logistic regression
models trained on the same dataset for a
binary classification task. The objective
of the dataset is to diagnostically predict
whether or not a patient has diabetes, based on
certain diagnostic measurements. The 8 features
that it contains, in order, are: Pregnancies,
Glucose, BloodPressure, SkinThickness, Insulin,
BMI, DiabetesPedigreeFunction and Age. The
target variable (Outcome) is a binary variable
representing whether the patient has diabetes
(1 stands for diabetic, 0 stands for non-diabetic)

The sample dataset is provided below, which
includes the 8 input features in the order
mentioned above as well as the outputs/predictions
generated by each of the two models.

Dataset Sample: {verbalization_data}

Task: Your goal is to verbalize the differences
between the decision boundaries of the two models
based on the sample above.

Instructions: 1. Analyze: Examine the dataset
sample to identify where the outputs of the two
models diverge and where they align.
2. Quantify Divergences: Determine the specific
ranges of feature values (numerical intervals)
where the decision boundaries of the two models
diverge. Explain how the predictions differ
within these ranges and where they remain
consistent. Use numerical ranges for feature
values to describe divergences; avoid vague terms
like "high" or "low."
3. Identify Key Features: Identify any features
that significantly contribute to the observed
differences in the models’ outputs.
4. Verbalize Findings: Provide a concise and
precise verbal explanation of how the decision
boundaries of the two models differ. Include
numerical details to support your observations.

Important Note: Please do not include specific
instances from the sample dataset in your response,
as this could reveal sensitive information to a
third person.

930
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Verbalization Prompt
(Blood Dataset With Model Information)

Context: We have two {model_type} models trained
on the same dataset for a binary classification
task. The dataset contains details about random
donors at a Blood Transfusion Service. The 4
features that it contains, in order, are: Recency
(months), Frequency (times), Monetary (c.c.
blood), and Time (months). The target feature
(Blood Donated) is a binary variable representing
whether the donor donated blood in March 2007
(1 stands for donating blood; 0 stands for not
donating blood).

The sample dataset is provided below, which
includes the 4 input features in the order
mentioned above as well as the outputs/predictions
generated by each of the two models.

Dataset Sample: {verbalization_data}

Model Information: The weights for each
logistic regression model are provided below.
These weights correspond to the input features
in the same order as described above: {model_info}

Task: Your goal is to verbalize the differences
between the decision boundaries of the two models
based on the sample and model information above.

Instructions: 1. Analyze: Examine the dataset
sample to identify where the outputs of the two
models diverge and where they align. Review the
given model information to understand how and why
the models might produce different outputs.
2. Quantify Divergences: Determine the specific
ranges of feature values (numerical intervals)
where the decision boundaries of the two models
diverge. Explain how the predictions differ
within these ranges and where they remain
consistent. Use numerical ranges for feature
values to describe divergences; avoid vague terms
like "high" or "low."
3. Identify Key Features: Identify any features
that significantly contribute to the observed
differences in the models’ outputs.
4. Verbalize Findings: Provide a concise and
precise verbal explanation of how the decision
boundaries of the two models differ. Include
numerical details to support your observations.

Important Note: Please do not include specific
instances from the sample dataset in your response,
as this could reveal sensitive information to a
third person.

931

Evaluation Prompt
(Blood Dataset)

Context: We have two {model_type} models trained
on the same dataset for a binary classification
task. The dataset contains details about random
donors at a Blood Transfusion Service. The 4
features that it contains, in order, are: Recency
(months), Frequency (times), Monetary (c.c.
blood), and Time (months). The target feature
(Blood Donated) is a binary variable representing
whether the donor donated blood in March 2007
(1 stands for donating blood; 0 stands for not
donating blood).

Below is a sample of the dataset, which includes
the 4 input features in the order mentioned
above and the outputs/predictions generated by
{model_unpruned}. The accompanying verbalization
provides a verbal explanation of how the decision
boundaries of the two models differ.

Dataset Sample: {evaluation_data}

Verbalization: {verbalization}

Task: Based on the verbalization, predict the
output of {model_pruned} for each instance in the
sample above.

Instructions: Think about the question carefully.
Go through the verbalization thoroughly. Analyze
the input features in the sample. After explaining
your reasoning, provide the answer in a JSON
format within markdown at the end. The JSON
should contain the input features and the
output of {model_pruned}. The format of the
JSON should be the same as the dataset sample.
Do not provide any further details after the JSON.

932
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Evaluation Prompt
(Car Dataset)

Context: We have two logistic regression models
trained on the same dataset for a multiclass
classification task. The dataset was derived from
a simple hierarchical decision model developed
for the evaluation of cars. The six features
that it contains, in order, are: buying (buying
price, encoding – {"vhigh":3, "high": 2, "med":
1, "low": 0}), maint (maintenance price, encoding
– {"vhigh": 3, "high": 2, "med": 1, "low": 0}),
doors (number of doors, encoding – {"2": 2, "3":
3, "4": 4, "5more": 5}), persons (capacity of
persons, encoding – {"2": 2, "4": 4, "more":
5}), lug_boot (size of luggage boot, encoding –
{"small": 0, "med": 1, "big": 2}), and safety
(safety level, encoding – {"low": 0, "med":
1, "high": 2}). The target variable (class)
represents the overall evaluation of the car and
has four possible values: 0 (Unacceptable), 1
(Acceptable), 2 (Good), 3 (Very Good).

Below is a sample of the dataset, which includes
the 6 input features in the order mentioned
above and the outputs/predictions generated by
{model_pruned}. The accompanying verbalization
provides a verbal explanation of how the decision
boundaries of the two models differ.

Dataset Sample: {evaluation_data}

Verbalization: {verbalization}

Task: Based on the verbalization, predict the
output of {model_pruned} for each instance in the
sample above.

Instructions: Think about the question carefully.
Go through the verbalization thoroughly. Analyze
the input features in the sample. After explaining
your reasoning, provide the answer in a JSON
format within markdown at the end. The JSON
should contain the input features and the
output of {model_pruned}. The format of the
JSON should be the same as the dataset sample.
Do not provide any further details after the JSON.

933

Evaluation Prompt
(Diabetes Dataset)

Context: We have two {model_type} models
trained on the same dataset for a binary
classification task. The objective of the
dataset is to diagnostically predict whether or
not a patient has diabetes, based on certain
diagnostic measurements. The 8 features that
it contains, in order, are: Pregnancies,
Glucose, BloodPressure, SkinThickness, Insulin,
BMI, DiabetesPedigreeFunction and Age. The
target variable (Outcome) is a binary variable
representing whether the patient has diabetes
(1 stands for diabetic, 0 stands for non-diabetic)

Below is a sample of the dataset, which includes
the 8 input features in the order mentioned
above and the outputs/predictions generated by
{model_unpruned}. The accompanying verbalization
provides a verbal explanation of how the decision
boundaries of the two models differ.

Dataset Sample: {evaluation_data}

Verbalization: {verbalization}

Task: Based on the verbalization, predict the
output of {model_pruned} for each instance in the
sample above.

Instructions: Think about the question carefully.
Go through the verbalization thoroughly. Analyze
the input features in the sample. After explaining
your reasoning, provide the answer in a JSON
format within markdown at the end. The JSON
should contain the input features and the
output of {model_pruned}. The format of the
JSON should be the same as the dataset sample.
Do not provide any further details after the JSON.

934
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D Additional Experiment Results 935

D.1 Excerpts from model verbalization 936

Model Example Verbalization Excerpts

Claude . . . The divergence is most pronounced when Recency is in the -90 to -65 range, Frequency and Monetary
are very low (around -75 to -60), and Time is very low (-135 to -80). In these scenarios, Model 1 predicts
a positive outcome, while Model 2 predicts a negative outcome . . .

GPT . . . The decision boundaries of the two logistic regression models diverge primarily in the negative ranges
of the features Recency, Frequency, Monetary, and Time. Specifically, when the values of these features
are within the ranges of approximately -90 to -60 for Recency, -77 to -61 for Frequency and Monetary,
and -135 to -126 for Time, Model 2 is more likely to predict a positive outcome (1) compared to Model 1,
which tends to predict a negative outcome (0) . . .

Gemini . . . Model 2 appears to predict ’1’ (donating blood) more often than Model 1 for certain ranges of feature
values. Specifically, Model 2 predicts ’1’ when:

- Frequency is positive and Time is between approximately -25 and 40 months, and Recency is less than
approximately -70 months . . .

Table 2: Verbalization Excerpts for a pair of Level 2 (20− 25%) LR models trained on the Blood Dataset.

Model Example Verbalization Excerpts

Claude . . . Model 2 tends to be more lenient in its classifications compared to Model 1, often assigning higher
class values.

The most significant divergence occurs when the buying price (first feature) is 0 or 1, maintenance price
(second feature) is 0 or 1, and safety (sixth feature) is 2. In these cases, Model 2 often assigns a class of 2,
while Model 1 assigns a class of 0 or 1 . . .

GPT . . . When the buying price is low (0), Model 2 tends to predict higher classes (more favorable evaluations)
compared to Model 1, especially when other conditions such as safety, capacity, and maintenance are
moderate to high.

Similar to buying price, lower maintenance costs (0) often lead to higher predictions in Model 2 compared
to Model 1, under favorable conditions in other features . . .

Gemini . . . **Model 2 demonstrates greater leniency towards cars with higher maintenance costs.** Specifically,
when the maintenance price is "high" (encoded as 2) or "very high" (encoded as 3), Model 2 tends to
assign a higher evaluation class compared to Model 1, even when other features like buying price are less
favorable . . .

Table 3: Verbalization Excerpts for a pair of Level 2 (20− 25%) DT models trained on the Car Dataset.

D.2 Numerical Results 937
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LLM Metric Level 1 Level 2 Level 3 Level 4 Level 5

Blood Dataset

GPT-4o
Accoverall 0.78 ± .10 0.74 ± .08 0.73 ± .09 0.77 ± .07 0.76 ± .06
Accmismatch 0.76 ± .20 0.70 ± .06 0.67 ± .05 0.72 ± .08 0.69 ± .12
Accmatch 0.78 ± .08 0.75 ± .09 0.75 ± .11 0.77 ± .10 0.77 ± .08

Claude 3.5 Sonnet
Accoverall 0.79 ± .03 0.79 ± .04 0.77 ± .06 0.79 ± .04 0.79 ± .04
Accmismatch 0.81 ± .17 0.67 ± .10 0.70 ± .04 0.68 ± .12 0.69 ± .09
Accmatch 0.78 ± .05 0.81 ± .06 0.79 ± .08 0.81 ± .07 0.80 ± .06

Gemini 2.0 Flash
Accoverall 0.84 ± .03 0.80 ± .04 0.81 ± .04 0.81 ± .07 0.82 ± .05
Accmismatch 0.78 ± .22 0.64 ± .13 0.70 ± .04 0.66 ± .15 0.63 ± .10
Accmatch 0.85 ± .02 0.83 ± .03 0.85 ± .05 0.84 ± .05 0.85 ± .04

Llama 3.3
Accoverall 0.82 ± .07 0.73 ± .15 0.74 ± .09 0.75 ± .10 0.74 ± .09
Accmismatch 0.66 ± .20 0.72 ± .11 0.56 ± .07 0.72 ± .13 0.73 ± .12
Accmatch 0.85 ± .05 0.74 ± .16 0.80 ± .09 0.76 ± .09 0.75 ± .08

Diabetes Dataset

GPT-4o
Accoverall 0.82 ± .02 0.79 ± .08 0.76 ± .03 0.81 ± .05 0.78 ± .04
Accmismatch 0.56 ± .06 0.58 ± .15 0.56 ± .12 0.58 ± .06 0.55 ± .05
Accmatch 0.91 ± .04 0.87 ± .05 0.83 ± .08 0.90 ± .06 0.88 ± .06

Claude 3.5 Sonnet
Accoverall 0.82 ± .06 0.81 ± .04 0.75 ± .05 0.80 ± .06 0.79 ± .04
Accmismatch 0.58 ± .07 0.57 ± .04 0.57 ± .08 0.56 ± .08 0.54 ± .05
Accmatch 0.89 ± .03 0.89 ± .04 0.83 ± .08 0.89 ± .05 0.89 ± .04

Gemini 2.0 Flash
Accoverall 0.75 ± .05 0.79 ± .07 0.67 ± .06 0.80 ± .08 0.78 ± .06
Accmismatch 0.56 ± .14 0.61 ± .10 0.59 ± .16 0.62 ± .11 0.61 ± .09
Accmatch 0.79 ± .04 0.86 ± .09 0.71 ± .08 0.87 ± .10 0.85 ± .07

Llama 3.3
Accoverall 0.69 ± .06 0.71 ± .07 0.69 ± .06 0.74 ± .04 0.71 ± .05
Accmismatch 0.56 ± .05 0.55 ± .05 0.54 ± .05 0.57 ± .06 0.54 ± .04
Accmatch 0.72 ± .07 0.78 ± .09 0.75 ± .06 0.81 ± .05 0.79 ± .05

Car Dataset

GPT-4o
Accoverall 0.70 ± .05 0.75 ± .06 0.69 ± .04 0.79 ± .07 0.73 ± .05
Accmismatch 0.54 ± .08 0.54 ± .01 0.52 ± .14 0.57 ± .05 0.51 ± .07
Accmatch 0.74 ± .07 0.82 ± .08 0.75 ± .02 0.86 ± .10 0.81 ± .06

Claude 3.5 Sonnet
Accoverall 0.69 ± .03 0.75 ± .05 0.71 ± .09 0.75 ± .06 0.75 ± .04
Accmismatch 0.56 ± .17 0.49 ± .07 0.56 ± .13 0.51 ± .10 0.46 ± .08
Accmatch 0.73 ± .03 0.84 ± .06 0.77 ± .09 0.83 ± .06 0.87 ± .05

Gemini 2.0 Flash
Accoverall 0.66 ± .04 0.71 ± .05 0.66 ± .03 0.70 ± .08 0.74 ± .06
Accmismatch 0.56 ± .12 0.56 ± .11 0.53 ± .12 0.56 ± .10 0.58 ± .07
Accmatch 0.69 ± .08 0.77 ± .08 0.71 ± .03 0.76 ± .07 0.80 ± .06

Llama 3.3
Accoverall 0.62 ± .05 0.69 ± .06 0.60 ± .08 0.69 ± .08 0.67 ± .07
Accmismatch 0.56 ± .09 0.53 ± .05 0.50 ± .09 0.53 ± .05 0.53 ± .06
Accmatch 0.64 ± .08 0.75 ± .10 0.64 ± .11 0.75 ± .09 0.72 ± .08

Table 4: Evaluation metrics for LR models across different datasets. Each row includes the performance metrics for
an LLM, measured across Level 1 (15− 20%), Level 2 (20− 25%), Level 3 (25− 30%), Level 4 (20− 25% With
Models’ Internals), and Level 5 (20− 25% Without Model Type).
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LLM Metric Level 1 Level 2 Level 3 Level 4 Level 5

Blood Dataset

GPT-4o
Accoverall 0.83 ± .03 0.77 ± .09 0.75 ± .04 0.88 ± .03 0.79 ± .08
Accmismatch 0.67 ± .09 0.63 ± .12 0.69 ± .10 0.73 ± .07 0.65 ± .12
Accmatch 0.87 ± .02 0.81 ± .13 0.76 ± .03 0.92 ± .03 0.83 ± .06

Claude 3.5 Sonnet
Accoverall 0.83 ± .07 0.77 ± .04 0.81 ± .07 0.86 ± .02 0.76 ± .05
Accmismatch 0.70 ± .10 0.65 ± .08 0.66 ± .14 0.70 ± .02 0.67 ± .06
Accmatch 0.86 ± .09 0.81 ± .05 0.85 ± .04 0.91 ± .01 0.79 ± .05

Gemini 2.0 Flash
Accoverall 0.84 ± .03 0.83 ± .02 0.80 ± .06 0.90 ± .05 0.84 ± .04
Accmismatch 0.67 ± .10 0.70 ± .06 0.71 ± .13 0.75 ± .12 0.70 ± .05
Accmatch 0.89 ± .02 0.86 ± .03 0.83 ± .06 0.94 ± .03 0.87 ± .04

Llama 3.3
Accoverall 0.77 ± .08 0.80 ± .04 0.79 ± .06 0.83 ± .02 0.79 ± .04
Accmismatch 0.67 ± .03 0.55 ± .08 0.64 ± .07 0.75 ± .03 0.54 ± .07
Accmatch 0.79 ± .09 0.86 ± .04 0.83 ± .06 0.85 ± .02 0.86 ± .05

Diabetes Dataset

GPT-4o
Accoverall 0.85 ± .02 0.82 ± .02 0.84 ± .02 0.91 ± 0.07 0.81 ± .03
Accmismatch 0.53 ± .11 0.54 ± .07 0.67 ± .06 0.77 ± 0.13 0.53 ± .06
Accmatch 0.94 ± .02 0.95 ± .03 0.95 ± .02 0.98 ± 0.01 0.93 ± .03

Claude 3.5 Sonnet
Accoverall 0.84 ± .02 0.81 ± .03 0.78 ± .02 0.90 ± 0.07 0.80 ± .03
Accmismatch 0.57 ± .05 0.50 ± .08 0.55 ± .03 0.74 ± 0.15 0.50 ± .04
Accmatch 0.93 ± .04 0.96 ± .04 0.92 ± .03 0.98 ± 0.01 0.95 ± .03

Gemini 2.0 Flash
Accoverall 0.78 ± .02 0.78 ± .05 0.80 ± .01 0.91 ± 0.05 0.77 ± .04
Accmismatch 0.53 ± .14 0.56 ± .08 0.55 ± .07 0.82 ± 0.11 0.57 ± .06
Accmatch 0.85 ± .02 0.89 ± .08 0.95 ± .04 0.94 ± 0.04 0.86 ± .05

Llama 3.3
Accoverall 0.75 ± .05 0.75 ± .05 0.67 ± .09 0.89 ± 0.07 0.76 ± .04
Accmismatch 0.51 ± .11 0.51 ± .03 0.54 ± .05 0.75 ± 0.13 0.52 ± .04
Accmatch 0.81 ± .04 0.85 ± .06 0.75 ± .13 0.96 ± 0.02 0.87 ± .05

Car Dataset

GPT-4o
Accoverall 0.71 ± .04 0.73 ± .02 0.67 ± .08 0.85 ± .08 0.72 ± .03
Accmismatch 0.43 ± .06 0.52 ± .04 0.48 ± .10 0.70 ± .11 0.52 ± .05
Accmatch 0.77 ± .04 0.79 ± .05 0.75 ± .06 0.89 ± .09 0.78 ± .04

Claude 3.5 Sonnet
Accoverall 0.64 ± .07 0.74 ± .04 0.62 ± .10 0.80 ± .09 0.73 ± .03
Accmismatch 0.49 ± .13 0.57 ± .07 0.46 ± .04 0.67 ± .06 0.57 ± .06
Accmatch 0.68 ± .10 0.78 ± .04 0.67 ± .12 0.84 ± .09 0.78 ± .05

Gemini 2.0 Flash
Accoverall 0.72 ± .06 0.68 ± .07 0.62 ± .11 0.85 ± .09 0.68 ± .06
Accmismatch 0.54 ± .05 0.58 ± .13 0.54 ± .11 0.66 ± .11 0.59 ± .09
Accmatch 0.76 ± .08 0.71 ± .09 0.65 ± .11 0.89 ± .07 0.71 ± .08

Llama 3.3
Accoverall 0.60 ± .17 0.67 ± .07 0.57 ± .17 0.80 ± .08 0.66 ± .06
Accmismatch 0.62 ± .03 0.58 ± .08 0.51 ± .12 0.70 ± .13 0.57 ± .05
Accmatch 0.60 ± .21 0.69 ± .09 0.58 ± .21 0.82 ± .08 0.69 ± .06

Table 5: Evaluation metrics for DT models across different datasets. Each row includes the performance metrics for
an LLM, measured across Level 1 (15− 20%), Level 2 (20− 25%), Level 3 (25− 30%), Level 4 (20− 25% With
Models’ Internals), and Level 5 (20− 25% Without Model Type).
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LLM Metric Level 1 Level 2 Level 3 Level 4 Level 5

Blood Dataset

GPT-4o
Accoverall 0.82 ± .08 0.80 ± .03 0.72 ± .07 0.81 ± .04 0.79 ± .04
Accmismatch 0.67 ± .15 0.66 ± .10 0.56 ± .07 0.65 ± .09 0.69 ± .08
Accmatch 0.85 ± .06 0.83 ± .04 0.77 ± .06 0.85 ± .04 0.82 ± .05

Claude 3.5 Sonnet
Accoverall 0.80 ± .04 0.81 ± .04 0.70 ± .07 0.81 ± .06 0.84 ± .04
Accmismatch 0.72 ± .15 0.62 ± .09 0.62 ± .09 0.65 ± .08 0.64 ± .06
Accmatch 0.82 ± .07 0.85 ± .04 0.73 ± .07 0.84 ± .07 0.88 ± .05

Gemini 2.0 Flash
Accoverall 0.77 ± .05 0.82 ± .04 0.80 ± .02 0.86 ± .03 0.84 ± .03
Accmismatch 0.73 ± .14 0.66 ± .09 0.63 ± .04 0.68 ± .08 0.67 ± .06
Accmatch 0.78 ± .09 0.86 ± .05 0.86 ± .02 0.90 ± .02 0.88 ± .04

Llama 3.3
Accoverall 0.81 ± .02 0.82 ± .01 0.74 ± .06 0.87 ± .02 0.80 ± .04
Accmismatch 0.66 ± .08 0.62 ± .09 0.56 ± .06 0.61 ± .02 0.60 ± .11
Accmatch 0.84 ± .02 0.87 ± .01 0.80 ± .05 0.93 ± .01 0.85 ± .05

Diabetes Dataset

GPT-4o
Accoverall 0.82 ± .02 0.81 ± .03 0.78 ± .03 0.81 ± .04 0.79 ± .03
Accmismatch 0.63 ± .08 0.55 ± .04 0.60 ± .09 0.63 ± .02 0.55 ± .04
Accmatch 0.88 ± .02 0.90 ± .03 0.85 ± .03 0.88 ± .05 0.88 ± .04

Claude 3.5 Sonnet
Accoverall 0.81 ± .02 0.82 ± .01 0.78 ± .05 0.82 ± .01 0.80 ± .03
Accmismatch 0.60 ± .05 0.57 ± .09 0.51 ± .10 0.57 ± .04 0.58 ± .05
Accmatch 0.87 ± .02 0.90 ± .03 0.87 ± .01 0.90 ± .02 0.88 ± .03

Gemini 2.0 Flash
Accoverall 0.79 ± .03 0.79 ± .02 0.74 ± .05 0.80 ± .02 0.78 ± .03
Accmismatch 0.58 ± .04 0.58 ± .07 0.59 ± .17 0.62 ± .07 0.58 ± .06
Accmatch 0.86 ± .02 0.86 ± .01 0.81 ± .05 0.86 ± .04 0.84 ± .03

Llama 3.3
Accoverall 0.77 ± .03 0.73 ± .05 0.69 ± .08 0.81 ± .04 0.74 ± .04
Accmismatch 0.58 ± .05 0.53 ± .07 0.56 ± .07 0.60 ± .06 0.55 ± .05
Accmatch 0.82 ± .05 0.80 ± .10 0.72 ± .09 0.87 ± .06 0.81 ± .05

Car Dataset

GPT-4o
Accoverall 0.74 ± .02 0.68 ± .05 0.66 ± .02 0.63 ± .10 0.68 ± .04
Accmismatch 0.59 ± .07 0.51 ± .10 0.52 ± .09 0.63 ± .05 0.52 ± .05
Accmatch 0.76 ± .03 0.74 ± .05 0.72 ± .02 0.64 ± .13 0.73 ± .06

Claude 3.5 Sonnet
Accoverall 0.71 ± .03 0.60 ± .08 0.65 ± .08 0.62 ± .13 0.59 ± .05
Accmismatch 0.58 ± .04 0.47 ± .15 0.58 ± .07 0.61 ± .02 0.46 ± .06
Accmatch 0.75 ± .03 0.64 ± .08 0.69 ± .10 0.65 ± .17 0.62 ± .07

Gemini 2.0 Flash
Accoverall 0.70 ± .08 0.67 ± .07 0.68 ± .05 0.71 ± .09 0.69 ± .04
Accmismatch 0.59 ± .18 0.58 ± .13 0.64 ± .09 0.70 ± .05 0.60 ± .07
Accmatch 0.72 ± .08 0.70 ± .06 0.69 ± .07 0.71 ± .13 0.72 ± .06

Llama 3.3
Accoverall 0.63 ± .11 0.62 ± .07 0.60 ± .04 0.67 ± .11 0.62 ± .05
Accmismatch 0.55 ± .08 0.52 ± .14 0.53 ± .07 0.71 ± .09 0.52 ± .06
Accmatch 0.64 ± .11 0.64 ± .05 0.63 ± .06 0.64 ± .13 0.65 ± .06

Table 6: Evaluation metrics for MLP models across different datasets. Each row includes the performance metrics
for an LLM, measured across Level 1 (15− 20%), Level 2 (20− 25%), Level 3 (25− 30%), Level 4 (20− 25%
With Models’ Internals), and Level 5 (20− 25% Without Model Type).
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