
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AUTOMODEL: AUTONOMOUS MODEL DEVELOPMENT
FOR IMAGE CLASSIFICATION WITH LLM AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Computer vision is a critical component in a wide range of real-world applications,
including plant monitoring in agriculture and handwriting classification in digital
systems. However, developing high-quality computer vision systems traditionally
requires both machine learning (ML) expertise and domain-specific knowledge,
making the process labor-intensive, costly, and inaccessible to many. To address
these challenges, we introduce AutoModel, an LLM agent framework that au-
tonomously builds and optimizes image classification models. By leveraging the
collaboration of specialized LLM agents, AutoModel removes the need for ML
practitioners or domain experts for model development, streamlining the process
and democratizing image classification. In this work, we evaluate AutoModel
across a diverse range of datasets consisting of varying sizes and domains, includ-
ing standard benchmarks and Kaggle competition datasets, demonstrating that it
consistently outperforms zero-shot LLM-generated pipelines and achieves human
practitioner-level performance.

1 INTRODUCTION

Computer vision has emerged as a powerful tool for addressing many complex real-world problems,
from plant monitoring in agriculture to handwriting classification in digital systems. However, the
process of training computer vision models has grown increasingly complex, involving many differ-
ent steps such as data augmentation, architecture selection, and hyperparameter tuning. As a result,
developing high-performing models is labor-intensive and often demands machine learning (ML)
expertise, as well as domain-specific knowledge. Each component must be manually calibrated
based on prior experience and detailed analysis of training statistics.

To simplify this process, tools such as Weights & Biases have been developed, offering ML
practitioners the ability to track, organize, and optimize model training workflows. Similarly,
many approaches in Automated Machine Learning (AutoML), such as hyperparameter optimiza-
tion (Bergstra & Bengio, 2012; Bergstra et al., 2011; Snoek et al., 2012; Springenberg et al., 2016;
Falkner et al., 2018) and neural architecture search (Elsken et al., 2017; Kandasamy et al., 2018),
aim to automate parts of the ML pipeline. While these platforms and methods provide valuable
support, they tend to address isolated aspects of the model development process and still require
substantial involvement from human experts.

Recent advancements in large language models (LLMs) have shown their ability to serve as capa-
ble code generators and emulate expert agents in collaborative environments. For instance, Hong
et al. (2024) introduced MetaGPT, a multi-agent framework for autonomous software development,
where agents assume roles like product managers, software engineers, and quality assurance (QA)
engineers. Similarly, Du et al. (2024) proposed Cross-Team Collaboration, where LLM agents work
across design, coding, and testing phases in a coordinated multi-team framework.

Inspired by these advances, we propose AutoModel - an LLM agent framework designed to fully
automate the model generation process for image classification tasks. AutoModel is an end-to-end
framework that requires only a dataset as input. It autonomously handles the entire model develop-
ment workflow, optimizing various components in parallel, such as data augmentation, architecture
selection, and hyperparameter tuning, to produce high-performing models without requiring any
user intervention. By assigning specialized roles to LLM agents, AutoModel replicates the col-
laborative approach of a human expert team, enabling individuals with no ML expertise to train
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state-of-the-art image classification models. For experienced ML practitioners, AutoModel can also
reduce the time and effort required to develop high-performance models.

Our experiments demonstrate that AutoModel consistently outperforms zero-shot LLM-generated
training pipelines and achieves near-human-level performance on standard datasets such as CIFAR-
10, TinyImageNet, and various Kaggle competition datasets. This establishes AutoModel as an ideal
solution for both domain experts and ML practitioners who seek a streamlined, efficient approach to
model development.

Our contributions in this work are as follows

• We present AutoModel, an end-to-end image classification framework that leverages multiple
specialized LLM agents to achieve human-level performance in model training.

• We design a fully automated pipeline for code generation, model training, and performance eval-
uation, which iteratively improves models without any human intervention after initialization.

• We conduct comprehensive experiments on a wide range of datasets, including standard bench-
marks and real-world datasets, demonstrating that AutoModel consistently outperforms zero-shot
prompting LLMs and matches the performance of expert human practitioners.

2 RELATED WORKS

2.1 LARGE LANGUAGE MODELS AND LLM AGENTS

Large language models (LLMs) are pre-trained on massive text corpora, often with millions to tril-
lions of parameters. Some of the most well-known LLMs today include GPT-3.5 and GPT-4 (Ope-
nAI et al., 2024) from OpenAI, Claude 3.5 from Anthropic, Mixtral from Mistral, and Llama 3
from Meta. While LLMs can be used directly after pre-training, they often undergo additional train-
ing stages, such as supervised fine-tuning (SFT) and reinforcement learning from human feedback
(RLHF) (Ouyang et al., 2022). These stages aim to align LLMs with specific behaviors and ob-
jectives, resulting in models capable of performing tasks such as general-purpose chatbots, code
generation, and information retrieval.

A subset of LLMs specializes in code generation. Codex (Chen et al., 2021), for example, is a GPT
model fine-tuned on publicly available GitHub code with a focus on Python programming. Fol-
lowing Codex, Code Llama was introduced, extending coding capabilities to various programming
languages such as Python, C++, Java, PHP, and TypeScript. More recently, larger natural language
focused LLMs, including GPT-3.5 and Llama 3-8B, have also demonstrated significant coding pro-
ficiency across multiple languages, without needing to be explicitly fine-tuned on code.

LLMs have also been used to create human-like agents capable of executing complex instructions
autonomously. Examples of such LLM-based agents include ReAct (Yao et al., 2023), Reflex-
ion (Shinn et al., 2023), and SwiftSage Lin et al. (2023), which have demonstrated effectiveness in
complex reasoning and decision-making tasks. Expanding on this, works like AutoGPT (Signifi-
cant Gravitas) enabled LLM agents to move beyond reasoning and autonomously perform actions,
such as executing code and receiving feedback from outputs. Another line of research explores the
collaboration of multiple LLM agents, each with specialized roles (Hong et al., 2024; Du et al.,
2024; Park et al., 2023). These multi-agent frameworks have shown that LLMs can effectively as-
sume distinct roles (Tseng et al., 2024), and role specialization enhances their ability to retrieve
relevant knowledge, outperforming single-agent systems on tasks requiring reasoning and strategic
planning (Sreedhar & Chilton, 2024).

2.2 AUTOMATED MACHINE LEARNING

Automated Machine Learning (AutoML) is a field of research seeking to automate various stages
of the machine learning pipeline, making it more efficient to develop ML models. Most AutoML
works focus on automating specific parts of the process, such as data preparation, model architecture
selection, and hyperparameter optimization (He et al., 2021).

For instance, works like AutoAugment (Cubuk et al., 2019), Faster AutoAugment (Hataya et al.,
2019), DADA (Li et al., 2020), and TrivialAugment (Müller & Hutter, 2021) concentrate on au-
tomating the data augmentation component of image classification by applying search strategies
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over predefined search spaces. Another major focus in AutoML is neural architecture search (NAS),
which aims to find the most optimal model architecture from a given search space. A prominent
example is Elsken et al. (2017), where a hill-climbing algorithm is used to identify the best Con-
volutional Neural Network (CNN) architecture. More advanced approaches, such as those by Kan-
dasamy et al. (2018), leverage Bayesian optimization and optimal transport to refine this search.

In addition to NAS, hyperparameter optimization (HPO) is a closely related area that seeks to iden-
tify the best set of hyperparameters for a fixed architecture. Random search (Bergstra & Bengio,
2012) is a simple yet efficient method that outperforms traditional grid search (Bergstra et al., 2011)
by exploring the search space more effectively. To further enhance the search process, many works
incorporate Bayesian optimization in HPO (Snoek et al., 2012; Springenberg et al., 2016; Falkner
et al., 2018), enabling better use of past information to guide future decisions.

2.3 AUTOML WITH LLMS

With the recent advancement of LLMs, many researchers have started exploring using LLMs to
tackle problem in AutoML, as LLMs offer much greater flexibility and in the search space over
traditional methods. One of the earliest works in this direction is Yu et al. (2023), which utilizes
a fine-tuned Generative Pre-Trained Transformer (GPT) model to create new architectures using
crossover, mutation, and selection strategies. Later, many works took advantage of the pre-training
of LLMs, which grants them an immense amount of implicit knowledge on neural architectures.
GENIUS (Zheng et al., 2023) is one such work, where NAS is performed by simple prompting GPT-
4 to generate different configurations, which are evaluated iteratively for a pre-determined number
of iterations. In a different direction, Hollmann et al. (2024) proposed the CAAFE method that uses
LLMs to automate feature engineering by generating semantically meaningful features for tabular
dataset. Zhang et al. (2023) worked on a more comprehensive pipeline, attempting to simultaneously
tackling many tasks including object detection, object classification and question answering with
LLM-based AutoML. Notably, not only did they use LLMs to improve data augmentation and model
architecture components, they also did so based on a LLM-predicted training log, although there
were no experimental comparison that demonstrates the method’s effectiveness.

3 METHOD

3.1 BACKGROUND

In image classification tasks, the engineering workflow typically begins with a high-level assessment
of the dataset. This initial step focuses on understanding the size and complexity of the dataset,
ensuring that the subsequent steps are aligned with the specific characteristics of the data.

Next, the workflow moves to data processing, a critical phase that prepares the raw data for model
training. This involves standardizing the input images, resizing them to consistent dimensions, and
possibly augmenting the dataset through techniques such as rotation, flipping, or color adjustments.
These pre-processing steps are essential to ensure that the model can generalize well across different
variations of the input data.

Once the data is pre-processed, the focus shifts to model selection and engineering. Engineers
consider various architectures and select the one with the most potential to achieve good perfor-
mance in the context of the given dataset. This phase may also involve incorporating regularization
techniques, such as Dropout (Srivastava et al., 2014), as necessary to better suit the specific charac-
teristics of the dataset.

Following model selection, the training process is initiated. This involves configuring the training
hyperparameters, such as learning rate, batch size, and optimization algorithms.

After the model is trained, it is evaluated on a test set to measure its performance. Based on the
evaluation results, engineers may revisit earlier stages of the workflow - adjusting data process-
ing techniques, exploring alternative model architectures, or refining training parameters - to it-
eratively improve the model’s accuracy and robustness. This cyclical process continues until the
model achieves satisfactory performance, ensuring that the final output is well-suited for the object
classification task at hand.
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Figure 1: The architecture of the AutoModel Framework

While effective, this traditional workflow is labor-intensive, requiring constant supervision from ML
experts at every stage of development. These ML experts must consider the training performance and
manually adjust components like data augmentation, model selection, and hyperparameter tuning,
which poses a significant barrier to non-experts and limits the scalability of model development.

3.2 AUTOMODEL

To address the challenges with traditional model tuning, we wish to design and develop an automate
system that simulates the above process with a team of LLM agents. Thus, we introduce AutoModel,
an end-to-end framework that utilizes a team of specialized Large Language Model (LLM) agents
to autonomously generate a high-performing model, requiring only a dataset as input and no human
intervention. We provide a diagram of the workflow of Automodel in 1.

The framework is designed to streamline the machine learning pipeline by assigning specific roles
to each agent, ensuring every aspect of model development is handled efficiently and effectively.
Each agent is provided with a detailed profile that includes the overall project goal, team structure,
individual responsibilities, and instructions for collaboration. To further enhance their effectiveness,
each agent is embedded with explicit prompts that guide them in applying advanced techniques and
methods that may not be intuitively utilized by LLMs without direct prompting, despite their implicit
knowledge of these techniques.

The key agents in the AutoModel framework are as follows:

• Project Architect: This agent is responsible for the initial analysis of the dataset, evaluating
its size, structure, and any supplementary information provided. Based on this analysis, the
Project Architect generates a comprehensive technical design that outlines the data processing
steps, model architecture, and training strategies. This design serves as the foundation for the
entire workflow.

• Data Engineer: The Data Engineer handles the implementation of the data processing pipeline
according to the specifications laid out by the Project Architect. This involves tasks such as data
standardization, augmentation, and transformation, ensuring that the dataset is optimally prepared
for model training.

• Model Engineer: The Model Engineer is tasked with selecting and configuring the model ar-
chitecture. This agent chooses the most appropriate model, applies necessary modifications, and
incorporates techniques such as regularization to maximize performance.

• Training Engineer: This agent is responsible for configuring the model training process. Key
tasks include setting the hyperparameters, such as learning rate and batch size, and selecting opti-
mization algorithms to ensure efficient training.

• Performance Analyst: After the model is trained, the Performance Analyst reviews the entire
history of pipeline configurations and training logs. This agent identifies areas for improvement
and provides targeted feedback to the relevant engineering agent, guiding the next iteration of
model development.

Each agent in the AutoModel framework is equipped with knowledge of its role, the team’s goals,
and how to collaborate effectively. The prompts provided to each agent embed expert-level knowl-
edge specific to their domain. For example, the Model Engineer is aware of effective pre-trained
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models like ConvNeXt (Liu et al., 2022), while the Data Engineer is familiar with advanced data
augmentation techniques such as MixUp (Zhang et al., 2018) and CutMix (Yun et al., 2019). Al-
though LLMs like GPT-4o implicitly understand these techniques, they rarely apply them unless
explicitly prompted. By specifying these techniques in the prompts, AutoModel ensures that the
agents select and experiment with highly effective methods when generating the training pipeline.

These specialized agents collaborate to develop and improve models iteratively. The development
process begins with the Project Architect, who reviews the dataset and additional context to produce
a technical design. This design is then passed to the Data Engineer, Model Engineer, and Training
Engineer, who collaboratively build their respective components according to the plan.

Once the data pipeline, model architecture, and training configurations are in place, the system
integrates these components and trains the model. The Performance Analyst then reviews all past
and current pipeline configurations, along with their associated training logs, to identify areas for
improvement. It provides targeted feedback to the most relevant engineering agent, who adjusts
their component accordingly. The updated system is then retrained and re-evaluated.

This iterative cycle continues, with each round focusing on refining the model based on the feedback
loop. In particular, configurations that lead to performance gains are saved, while those that degrade
performance will be discarded. The process runs for a predefined number of iterations, after which
the best-performing configuration and its corresponding model checkpoint are selected as the final
output.

AutoModel optimizes multiple aspects of the training pipeline, including data augmentation, opti-
mization strategies, and hyperparameters, all in a single iterative process. Unlike traditional AutoML
methods such as hyperparameter optimization and neural architecture search, which focus on spe-
cific components, AutoModel’s flexibility allows it to explore a wider search space by adjusting
nearly all components within the training pipeline. Additionally, AutoModel optimizes the com-
ponents sequentially rather than simultaneously. This stepwise approach is essential because many
components, such as learning rate and batch size, are interdependent. Adjusting these parameters
together without considering their interactions can result in suboptimal performance. By focusing
on one component at a time, AutoModel effectively identifies and builds upon successful changes,
leading to more reliable improvements in future iterations.

3.3 IMPLEMENTATION

With the architecture and roles of the AutoModel framework introduced, we now discuss its imple-
mentation. In particular, we will discuss how the framework processes dataset inputs, autonomously
generates and executes code, and employs iterative refinements to optimize model performance.

Dataset Information Input A key advantage of the LLM agents framework is its ability to under-
stand any natural language description of the dataset, enabling the system to make more informed
decisions. Optionally, the user can supply a brief description of the dataset, detailing aspects such as
the image domain (e.g., real-life objects, digits, synthetic images), whether the images are grayscale
or colored, their dimensions (same or varying sizes), and their quality (high or low). This infor-
mation is passed to both the Project Architect and Performance Analyst and is factored into the
initial technical design and performance analysis. The impact of including this dataset information
is discussed further in Section 4.4.

Autonomous Code Execution The AutoModel framework autonomously generates, executes, and
refines code over multiple iterations to improve model performance. The code-generating agents
(i.e., Data Engineer, Model Engineer, and Training Engineer) operate according to a pre-defined
interface. This interface specifies the required input arguments and expected return values for each
component. The agents have flexibility in how they implement their code, but they must adhere to
these interface guidelines. Once the agents produce the code, it is parsed, extracted, and saved into
Python files. The system then uses a pre-defined pipeline to integrate these components and execute
the full model training process. The execution outputs, including model performance metrics, are
captured at the shell level and stored in a training log for analysis.

Zero-shot Initialization The Project Architect agent leverages the zero-shot generation capabilities
of LLMs to produce a strong baseline training pipeline, ensuring a foundation of good performance
from the outset. As discussed in the ablation studies in Section 4.3, generating the data, model,
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and training components sequentially in separate calls leads to suboptimal results, even when the
LLM has access to previously generated components. To address this issue, the Project Architect
generates a single, coherent pipeline in one step, which is then divided into the necessary compo-
nents (data, model, and training) required by AutoModel. This approach allows the framework to
be more efficient by starting from a solid baseline, reducing the need for extensive corrections and
minimizing wasted iterations on poor initial configurations.

Performance Analysis with Summarized History To ensure informed decision-making and pre-
vent redundancy, all previous pipeline configurations (e.g., data augmentation methods, model ar-
chitectures, hyperparameters) and their corresponding training logs are passed to the Performance
Analyst. However, passing the entire history of code and logs could quickly exceed the LLM’s max-
imum context length. To address this, after each successful iteration, the system uses an LLM to
summarize the key aspects of the data, model, and training code, highlighting critical details such as
the methods and hyperparameters used. The summarized configuration history, along with the cor-
responding training performance data, is then provided to the Performance Analyst to guide further
iterations and improvements.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Datasets We evaluated AutoModel using two widely recognized object classification datasets:
CIFAR-10 (Krizhevsky & Hinton, 2009) and TinyImageNet (Deng et al., 2009). CIFAR-10 con-
tains 60,000 32x32 color images across 10 distinct classes, while TinyImageNet, a subset of Ima-
geNet1K, includes 100,000 images across 200 classes, resized to 64x64 pixels. Both datasets feature
commonly seen objects such as vehicles and animals.

To test AutoModel’s robustness, we also incorporated CIFAR-10-C (Hendrycks & Dietterich, 2019),
a variant of CIFAR-10 designed to assess model performance under common corruptions. CIFAR-
10-C introduces 15 corruption types, grouped into four categories: noise, blur, weather, and digital
distortions. These corruptions are applied at two severity levels (1 and 5), resulting in 30 distinct
versions of the dataset. For experimental efficiency, we created two subsets, CIFAR-10-C-1 and
CIFAR-10-C-5, where the number indicates the severity level. These subsets were generated by
uniformly sampling one image from each corrupted dataset for every test image.

Additionally, we evaluated AutoModel on two smaller datasets from different domains: SVHN and
dSprites. SVHN is a digit classification dataset containing real-world images of house numbers, with
variations in resolution and background complexity. dSprites is a synthetic dataset of 2D shapes,
with latent factors controlling the shapes’ properties. Specifically, we used the dSprites Orientation
dataset, where each shape is rotated into one of 40 possible orientations within the [0, 2π] range.
Both datasets are part of the Visual Task Adaptation Benchmark (VTAB) (Zhai et al., 2020).

To further assess AutoModel’s versatility across different real-world domains, we also evaluated it
on four diverse datasets from Kaggle, a leading platform for machine learning competitions. These
datasets span a range of sizes and represent various data domains, including:

• Cassava Leaf Disease Classification (Mwebaze et al., 2020): This dataset consists of 21,367
photos of cassava plant in Uganda, mostly taken using inexpensive cameras. The model must
identify whether the plant has one of the four diseases: Mosaic Disease, Green Mottle Brown
Streak Disease, Bacterial Blight Disease, or no disease, with 5 classes in total.

• Kitchenware Classification (ololo, 2022): This dataset has 9,367 photos of 6 types of common
kitchenware, including cups, glasses, plates, spoons, forks and knives. These photos are taken in
households with various lighting and scene conditions.

• Arabic Letters Classification (Khalil, 2023): This dataset contains 53,199 images of 65 writ-
ten Arabic letters, each exhibiting positional variations based on their occurrence within a word
with four possible forms: isolated, initial, medial and final. These letters were collected from 82
different users.

• 4 Animal Classification (Lee et al., 2022): This dataset comprises a total of 3,529 images, cat-
egorized into four distinct animal classes: cats, deer, dogs, and horses. Each class represents a
diverse range of images capturing various poses, environments, and lighting conditions.
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Table 1: Average classification accuracy of models generated by AutoModel and zero-shot prompt-
ing LLMs on standard datasets from three trials. We report the accuracy after the first iteration,
as well as the final accuracy after 20 iterations to show improvement. The best accuracy on each
dataset is bolded.

Dataset LLM Zero-shot AutoModel First Iter. AutoModel Final Acc.

CIFAR-10 0.9290 0.9171 0.9533
CIFAR-10-C-1 0.5425 0.9121 0.9476
CIFAR-10-C-5 0.6218 0.9359 0.9422
TinyImageNet 0.4815 0.4225 0.7875

Three key criteria guided our selection of Kaggle datasets to ensure a streamlined and fair evaluation.
First, we excluded datasets with more than a million images to maintain computational feasibility.
Second, we prioritized datasets from public competitions, allowing for direct comparison between
AutoModel’s performance and that of human ML practitioners. Third, we focused on competitions
that used top-1 accuracy as the primary evaluation metric, avoiding those that relied on metrics
such as the area under the ROC curve, F1 score, or multiclass log loss. After applying these filters,
these four datasets were among the few that met all the criteria and aligned with the goals of our
evaluation.

For all datasets, we use the provided test set when available. If no test set is provided, we designate
the validation set as the test set. In cases where only a single unsplit dataset is available, we manually
split the dataset into training and test sets using an 80-20 ratio. This ensures consistency across all
experiments while maintaining a fair evaluation process.

Baseline For VTAB datasets, namely SVHN and dSprites Orientation, we compare our results with
that of Visual Prompt Tuning (VPT) (Jia et al., 2022), a well-regarded method in the domain of fine-
tuning, since AutoModel usually chooses to fine-tune based on a pre-trained model. For all four
Kaggle datasets, we compare with the existing submissions on the leaderboard of the competition.
As one of the first works in the domain of fully automating model generation, there is little existing
work baseline we can compare to. Thus, to provide additional comparison, we choose to compare
the accuracy from models generated by AutoModel with the likely approach of a non-ML experts:
asking LLMs to directly generate a training script with zero-shot prompting. For this, we directly
ask the LLM to ”generate code for training a model on a dataset with x classes.” We run the code to
train a model, and evaluate the model on the test set.

Experimental Setup To ensure consistency, we used GPT-4o, a commercial LLM developed by
OpenAI, for all experiments. The experiments weres conducted over three trials, with the average
accuracy reported. For all AutoModel runs, we performed 20 iterations to balance optimization and
experimental efficiency. For the VTAB datasets (SVHN and dSprites Orientation), we specifically
instructed the Model Engineer to use the Vision Transformer (ViT), specifically the ViT-B/16 model,
to ensure a fair comparison with the VPT paper, which used the same model.

4.2 MAIN RESULTS

The results in Table 1 demonstrate that AutoModel consistently outperforms models generated by
zero-shot prompting LLMs, confirming its effectiveness as a superior alternative for non-ML ex-
perts seeking to train high-performing models. For simpler datasets like CIFAR-10, AutoModel
achieves a slightly higher accuracy (95.33%) compared to zero-shot prompting (92.90%). However,
its strength becomes more evident on challenging datasets like TinyImageNet, where AutoModel
reaches an impressive 78.75% accuracy, nearly 31% higher than the zero-shot baseline of 48.15%.
Additionally, AutoModel shows strong performance on the robustness datasets, namely CIFAR-10-
C-1 and CIFAR-10-C-5, highlighting its capability to generate models that are both high-performing
and robust under varying conditions.

Table 2 further illustrates AutoModel’s capabilities by comparing it to Visual Prompt Tuning
(VPT) (Jia et al., 2022), a well-regarded fine-tuning method. AutoModel not only surpasses VPT
but also outperforms the full-parameter fine-tuning baselines reported by the original work. On both

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

datasets, SVHN and dSprites Orientation, AutoModel shows clear improvements over zero-shot
prompting too.

Table 2: Average classification accuracy of models generated by AutoModel and zero-shot prompt-
ing LLMs on two VTAB datasets: SVHN and dSprites Orientation. We report the accuracy after the
first iteration, as well as the final accuracy after 20 iterations to show improvement. Full-parameter
fine-tuning and visual prompt tuning (VPT) results from Jia et al. (2022) are both included for com-
parison. The best accuracy on each dataset is bolded.

Dataset LLM Full VPT AutoModel AutoModel
Zero-shot Fine-tuning First Iter. Final Acc.

SVHN 0.9250 0.8740 0.7810 0.9419 0.9695
dSprites Orientation 0.6515 0.4670 0.4790 0.9150 0.9522

In addition to standard datasets, AutoModel’s performance on non-standard Kaggle datasets is pre-
sented in Table 3. These datasets vary in size, image quality, and domain, providing a more realistic
test of AutoModel’s adaptability in the real world. Across all four datasets, AutoModel consistently
achieves better results than zero-shot prompting. While AutoModel’s top-1 accuracy slightly lags
behind the best Kaggle leaderboard results, this is expected since AutoModel was set to run for only
20 iterations. Approximately half of these iterations encountered code issues that caused the code
to throw an error midway, such as undefined variables, package misuses, or tensor shape errors. As
a result, only around 10 iterations were fully executed and analyzed, limiting the opportunity for
refinement. This turns out to be comparable to the number of attempts made by human practitioners
in real-world competitions. Note that human code on Kaggle is often extensively tuned and error-
free before submission. Thus, AutoModel can be said to perform nearly on par with top human ML
practitioners in these Kaggle competitions, showcasing its potential as a powerful tool for model
development even under real-world constraints.

Table 3: Average classification accuracy of models generated by AutoModel and zero-shot prompt-
ing LLMs on four Kaggle datasets. We report the accuracy after the first iteration, as well as the final
accuracy after 20 iterations to show improvement. AutoModel’s competition rank, top accuracy on
Kaggle, and the average number of submission attempts in the top 5 positions are also reported.

Dataset LLM AutoModel AutoModel Kaggle Statistics
Zero-shot First Iter. Final Acc. Rank Top Acc. Top Attempts

Cassava Leaf Disease 0.7748 0.7493 0.8574 2892/3900 0.9152 98
Kitchenware 0.8581 0.9475 0.9793 25/115 0.9991 12

Arabic Letters 0.5946 0.8212 0.8403 85/177 0.9680 10
4 Animals 0.9196 0.8934 0.9518 184/221 0.9958 10

4.3 ABLATION STUDIES

Zero-shot Initialization As described earlier, the Project Architect generates a complete train-
ing pipeline in a single call using zero-shot prompting, which is then broken down into multiple
components. This strategy ensures a strong initialization configuration for the model. In contrast,
generating each component sequentially - first generating data augmentation code, passing it to the
Model Engineer, and then passing the data and model code to the Training Engineer - leads to less
coherent code and decreased model performance.

In Table 4, we compare the performance of AutoModel with and without zero-shot initialization.
Even though AutoModel without zero-shot initialization can still improve iteratively and outperform
the baseline LLM-generated model, the final accuracy is notably lower than that achieved using zero-
shot initialization. This highlights the importance of a strong initial configuration, which enables
AutoModel to converge to a high-performing model more efficiently.

Smaller LLMs In our experiments, we primarily utilized GPT-4o, a high-performing large lan-
guage model. However, to evaluate AutoModel’s robustness with smaller models, we also tested
its performance using GPT-4o-mini. GPT-4o-mini is designed as the official successor to GPT-3.5,
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Table 4: Classification accuracy of models generated by AutoModel (with and without zero-shot
initialization) and zero-shot LLMs on CIFAR-10-C-1 and CIFAR-10-5.

Dataset No Zero-shot Initialization AutoModel LLM Zero-shot

CIFAR-10-C-1 0.8297 0.9476 0.5425
CIFAR-10-C-5 0.7942 0.9422 0.6218

offering improvements in cost, speed, and computational efficiency while maintaining strong per-
formance.

Table 5: Average classification accuracy of
models generated by AutoModel and zero-
shot LLMs on CIFAR-10-C-1 and CIFAR-
10-5, using GPT-4o-mini.

Dataset AutoModel LLM Zero-shot

CIFAR-10-C-1 0.9557 0.6423
CIFAR-10-C-5 0.8607 0.6503

As shown in Table 5, AutoModel continues to de-
liver strong results even when using GPT-4o-mini.
Despite its smaller size, the model achieves classifi-
cation accuracies that are significantly higher than
those obtained by zero-shot LLMs. This demon-
strates AutoModel’s ability to perform well even
with limited budget.

4.4 UTILIZING DATASET INFORMATION

In our experiments, we investigated how providing additional dataset-specific information can in-
fluence the effectiveness of data augmentation strategies in AutoModel. When supplied with this
information, AutoModel is capable of selecting augmentations that are well-suited to the character-
istics of the dataset.

For instance, when training on the SVHN dataset, which consists of real-world images of house
numbers, AutoModel chose to apply the ColorJitter augmentation. The reasoning provided was
that ”Color jitter (brightness, contrast, saturation, hue) can help in robustifying the model against
variations in lighting conditions.” This augmentation is particularly appropriate for SVHN since
real-world images can be subject to inconsistent lighting, and this technique helps improve model
robustness in such conditions.

However, not all augmentations are universally beneficial. In some cases, certain augmentations
can harm model performance. For example, in the dSprites Orientation dataset, where orientation
is label for classification, applying any flipping augmentation like RandomHorizontalFlip can de-
grade performance by altering the class labels and confusing the model. AutoModel’s Performance
Analyst identified this issue, noting: ”RandomHorizontalFlip may not be useful for orientation clas-
sification tasks,” and ”Orientation-based tasks will not benefit from horizontal flipping; could even
confuse the model.”

This demonstrates AutoModel’s ability to intelligently adapt its augmentation strategy based on the
specific characteristics of the dataset. By recognizing which augmentations enhance performance
and which are detrimental, AutoModel fine-tunes the model more effectively, leading to better and
faster optimization.

5 CONCLUSION

In this paper, we introduced AutoModel, an end-to-end LLM agent framework designed to au-
tonomously generate high-performing image classification models. As a part of the framework,
we designed an automated code generation and execution pipeline, eliminating the need for human
intervention, requiring only a dataset as input. By leveraging the expertise of specialized agents,
AutoModel replicates the workflow of human practitioners, to iteratively improve on tasks such as
data augmentation, model selection, and hyperparameter tuning.

Our experiments demonstrated that AutoModel consistently outperforms models generated by zero-
shot LLM prompting. AutoModel is capable of handling both corrupted datasets and adapt to vary-
ing domains, showcased through its evaluation on Kaggle competition datasets, where it performed
comparably to top human ML practitioners.
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In summary, AutoModel represents a significant advancement in automating model development for
image classification. Its ability to perform on par with expert human practitioners while being fully
autonomous demonstrates its potential to democratize access to machine learning and streamline
model development for both experts and non-experts alike.
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