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Abstract
Adaptive gradient methods, such as Adam, have shown faster convergence speed than SGD across
various kinds of network models at the expense of inferior generalization performance. In this
work, we proposed a Dimension-Reduced Adaptive Gradient Method (DRAG) to eliminate the
generalization gap. DRAG makes an elegant combination of SGD and Adam by adopting a trust-
region like framework. We observe that 1) Adam adjusts stepsizes for each gradient coordinate
according to some loss curvature, and indeed decomposes the n-dimensional gradient into n stan-
dard basis directions to search; 2) SGD uniformly scales gradient for all gradient coordinates and
actually has only one descent direction to minimize. Accordingly, DRAG reduces the high de-
gree of freedom of Adam and also improves the flexibility of SGD via optimizing the loss along
k (≪n) descent directions, e.g. the gradient direction and momentum direction used in this work.
Then per iteration, DRAG finds the best stepsizes for k descent directions by solving a trust-region
subproblem whose computational overhead is negligible since the trust-region subproblem is low-
dimensional, e.g. k = 2 in this work. DRAG is compatible with the common deep learning training
pipeline without introducing extra hyper-parameters and with negligible extra computation. More-
over, we prove the convergence property of DRAG for non-convex stochastic problems that often
occur in deep learning training. Experimental results on representative benchmarks testify the fast
convergence speed and also superior generalization of DRAG.

1. Introduction

Training neural networks can be seen as solving the following non-convex optimization problem

minx∈Rn f(x), (1)

where f is the loss function and x ∈ Rn is the variable. Among all optimizers, Adam [6] is one
of the most popular algorithm to solve problem (1). At each training iteration, Adam maintains an
exponential moving average (EMA) of first and second moments of stochastic gradient vt and ut as

vt = β1vt−1 + (1− β1)gt−1, ut = β2ut−1 + (1− β2)g
2
t−1,
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where β1, β2 ∈ [0, 1] are constant and gt−1 := ∇̃f(xt−1) is the stochastic gradient. It adaptively
scales the learning rates for each gradient coordinate, and actually minimizes the loss function along
n descent directions

xt = xt−1 − η
v̂t√

ût + ν
= xt−1 −

n∑
i=1

η√
ût,i + ν

(v̂t,iei), (2)

where v̂t, ût are bias-corrected vt,ut, ei is the standard basis vector with 1 for dimension i and
0 for all other dimensions. Specifically, Adam adopts a stepsize of η√

ût,i+ν
for the i-th gradient

descent direction −v̂t,iei.
While adaptive stepsize boosts the convergence of Adam, it weakens the generalization per-

formance due to noise and overfitting. In contrast, SGD generalizes well because it uses a single
stepsize for all gradient coordinates and indeed optimizes the loss function only along the gradient
direction. One interpretation for their different generalization performance is that Adam’s update
direction no longer falls into the subspace spanned by all stochastic gradients span{g0, · · · , gt}
[17, 23], while SGD do. Actually, Wilson et al. [17] proved that on a binary classification problem,
SGD converges to the max-margin solution because its update at each step is linear combination of
stochastic gradients, while adaptive gradient methods converge to solutions that generalize poorly
because adaptivity makes the algorithm susceptible to noises and therefore causes overfitting.

To overcome the issue just mentioned, motivated by DRSOM [22], we proposed DRAG algo-
rithm to optimize the loss function in (1) from the gradient direction and the momentum direction.
It maintains flexibility in the update direction while inheriting the generalization capacity of SGD.
At each step, it searches for the optimal stepsizes along these two directions by solving a two-
dimensional trust-region subproblem. Therefore, from the optimization perspective, it conducts the
optimal update within the two-dimensional subspace spanned by gradient direction and momen-
tum direction. Moreover, while DRAG adopts the trust-region framework, it is compatible with the
dominant deep learning training pipeline without introducing extra hyperparameters.

2. Method

As described in Algorithm 1, at each iteration DRAG first computes stochastic gradient gt−1, and
use it to update the first moment vt and second moment ut of stochastic gradient like Adam. Then,
we introduce the bias-corrected second moment ût to approximate the Hessian. In this way, DRAG
constructs the trust-region subproblem in line 9 of Algorithm 1. While solving this trust-region
subproblem in high-dimensional parameter space is computational expensive, DRAG solves it in
the two-dimensional subspace spanned by bias-corrected first moment direction v̂t and momentum
direction dt−1, making the computational overhead negligible. Here we intuitively set the trust-
region radius as η∥v̂t∥, and the benefits of this setting is described in Section 2.1. After calculating
the solution α1t and α2t of the subproblem, we get an optimal update p = −α1tv̂t +α2tdt−1 in the
two-dimensional subspace. Finally, we follow [9] and conduct a decoupled weight decay step. This
is the overall framework of our DRAG.

The only extra computational overhead of DRAG compared with Adam is solving the two-
dimensional trust-region subproblem in line 9 of Algorithm 1. The trust-region subproblem can be
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Algorithm 1 Dimension-Reduced Adaptive Gradient Method (DRAG)
1: Input: Total number of training epoch m, learning rate η, exponential moving average coeffi-

cients β1, β2, weight decay scale γ, margin coefficient ν.
2: Initialize: Set x0, v0 = 0, u0 = 0.
3: for t = 1, · · · ,m do
4: Compute stochastic gradient gt−1 = ∇̃f(xt−1).
5: vt = β1vt−1 + (1− β1)gt−1, v̂t = vt/(1− βt

1)
6: ut = β2ut−1 + (1− β2)g

2
t−1, ût = ut/(1− βt

2)
7: Ht = diag(

√
ût + ν)

8: dt−1 = xt−1 − xt−2 if t ≥ 2 else dt−1 = 0.
9: (α1t, α2t) = argminp{⟨v̂t,p⟩+ 1

2⟨p,Htp⟩ | ∥p∥ ≤ η∥v̂t∥, p = −α1v̂t + α2dt−1

}
.

10: xt = xt−1 − α1tv̂t + α2tdt−1

11: xt = xt − ηγxt−1 (Conduct weight decay)
12: end for
13: Output: x1, · · · ,xm

formally formulated as follows:

min
α1,α2

⟨v̂t,−α1v̂t + α2dt−1⟩+
1

2
⟨−α1v̂t + α2dt−1,Ht(−α1v̂t + α2dt−1)⟩

=
[
α1 α2

] [−v̂T
t v̂t

v̂T
t dt−1

]
+

1

2

[
α1 α2

] [ v̂T
t Htv̂t −v̂T

t Htdt−1

−v̂T
t Htdt−1 dT

t−1Htdt−1

][
α1

α2

]
s.t. ∥ − α1v̂t + α2dt−1∥ ≤ η∥v̂t∥,

where Ht = diag(
√
ût + ν) as defined in Algorithm 1. This two-dimensional subproblem can be

solved efficiently by using its global minimal condition. In Appendix A, we transform this subprob-
lem into a standard trust-region subproblem, and then an ϵ-global primal-dual solution satisfying
KKT condition can be found in O(log log(1ϵ )) time [10]. See more details in Appendix A.

2.1. Benefits of our algorithm

Flexibility of update As in Algorithm 1, DRAG updates the variable x along EMA of gradient
direction v̂t and momentum direction dt−1. This update direction choice acts as a trade-off between
the whole space search of Adam and one direction search of SGD. Moreover, the update of DRAG
lies in the subspace span{v̂t,dt−1} ∈ span{g0, · · · , gt−1}. This means that the parameter update
direction is always a combination of stochastic gradients. According to Wilson et al. [17], this prop-
erty makes DRAG always converge to the max-margin solution of the binary classification problem,
which has the best generalization capacity. This helps to explain DRAG’s excellent generalization
performance in practice.

Optimal stepsizes DRAG solves the dimension-reduced subproblem at each training epoch and
finds the best update along the gradient direction and momentum direction. This optimal update is
evaluated by the quadratic approximation to the loss function, where the Hessian is approximated
by second moment

√
ût and gradient is approximated by first moment v̂t. Since DRAG conducts

optimal update along gradient and momentum direction within the learning rate we set, it converges
faster than SGD on training dataset and is comparable with adaptive gradient methods.
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Heuristic trust-region radius We set the trust-region radius for the subproblem as η∥v̂t∥. The
intuition is that when gradient is large, we hope our algorithm can make a larger step to minimize
the loss function significantly. While when gradient is small, we hope our method to be stable and
don’t change the parameters too much. This heuristic design not only frees us from changing the
radius at each step as trust region method does, but also make our algorithm compatible well with
dominant deep learning training pipeline without introducing extra hyperparameters.

2.2. Convergence Analysis

For the analysis of stochastic non-convex algorithm, we follow the works Guo et al. [2], Zhuang
et al. [24] and make the following necessary assumption.

Assumption 1 For non-convex problem minx∈Rn f(x), we assume the loss f(x) satisfies

• f is L-Lipschitz smooth.

• The gradient estimation g is unbiased, namely E[gt] = ∇f(xt), and its variance can be
bounded as E[∥gt −∇f(xt)∥2] ≤ σ2.

Then we can derive the convergence of our proposed algorithm and also provide its stochastic gra-
dient complexity to find an ϵ-approximate first-order stationary point.

Theorem 1 Suppose Assumption 1 holds. Let βt = β and ηt = η for all t. Assume there exist
constants α,G > 0, such that α ≤ mint α1t and α1t ≤ ηG, |α2t| ≤ ηG. In addition, η ≤

min

{
1

2LG ,
(
(1−β)2α
8GL2

) 1
3
,
(

α2

96G2

) 1
4
,
(

α
48LG2

) 1
4 ,

(
α

192L2G3

) 1
5

}
. Then, if 1 − β ≤ ϵ2

3C2σ2 and T ≥

max
{

3C1
αϵ2

, 3C3
(1−β)ϵ2

}
, DRAG can achieve

1

T

T−1∑
t=0

E
[
∥∇f(xt)∥2

]
≤ ϵ2,

1

T

T−1∑
t=0

E
[
∥vt∥2

]
≤ 8ϵ2, (3)

where C1 = 4 (f(x0)− f(x∗)), C2 =
4ηG
α and C3 =

2ηGE[∥∇f(x0)−(1−β0)g0∥2]
α .

Remark 1 Theorem 1 with its proof in Appendix C demonstrates that by properly selecting constant
trust-region radius ηt and constant momentum parameter βt (correspond to β1 in Algorithm 1),
DRAG can converge to an ϵ-approximate first-order stationary point of the non-convex stochastic
problem with stochastic gradient complexity O(ϵ−4). Note that the assumptions on α1t and α2t

are mild with the design of DRAG, see details in Appendix B. The complexity of DRAG is of the
same order as the lower bound provided by Arjevani et al. [1]. A similar complexity has also been
obtained in, for example, LAMB [20], Adam-family [2]. In the analysis of DRAG, we only need a
unbiased and variance-bounded stochastic gradient, without any large mini-batch sizes requirement
as in LARS [19] and LAMB [20]. In addition, some previous works [8, 11, 14, 21] require the
momentum parameter βt to be very close or decreasing to zero. In contrast, DRAG requires βt to
be close to one, which is more consistent with the practice.

Proof of Theorem 1 and more convergence analysis of DRAG can be found in Appendix C.
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(a) VGG16 on CIFAR10. (b) ResNet34 on CIFAR10. (c) DenseNet121 on CIFAR10.
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(a) VGG16 on CIFAR10. (b) ResNet34 on CIFAR10. (c) DenseNet121 on CIFAR10.

Figure 1: Training and test accuracy of CNNs on CIFAR10 dataset.

3. Experiments

We conduct experiments on several representative benchmarks, including VGG [15], ResNet [3],
DenseNet [5] on CIFAR10, CIFAR100 dataset [7], and LSTM [4] on the Penn Treebank dataset [12].
We compare our algorithm DRAG with some popular deep learning optimizers, including SGD [13],
Adam [6], AdamW [9], AdaBound [11], AdaBelief [24], RAdam [8], Yogi [21]. Experimental re-
sults show that DRAG has faster convergence speed compared with SGD and it achieves state-of-
the-art generalization performance. We also conduct ablation study to show 1) two search directions
(DRAG) performs better than one direction and multiple directions and 2) DRAG is robust to dif-
ferent learning rate schedules. Details of the ablation study is in Appendix D.

3.1. CNNs on image classification

We conducted experiments for VGG16 with Batch Normalization, ResNet34, and DenseNet121 on
CIFAR10 an CIFAR100 dataset. The experimental setting is borrowed from AdaBelief [24] and we
also use their default setting for all the hyperparameters. For DRAG, we choose its learning rate to
be the same as in SGD, which is 0.1, and weight decay factor is 0.0015 for CIFAR10 and 0.0025
for CIFAR100. Other hyperparameters of DRAG is the same as the default setting (β1 = 0.9, β2 =
0.999, ϵ = 10−8). As Figure 1 shows, DRAG has convergence speed comparable with adaptive
gradient methods and it attains the best generalization performance. To be specific, DRAG obtains
more than 0.5% generalization accuracy gain over AdaBelief [24] on most tasks. The detailed test
accuracy is summarized in Table 1.

The possible reasons for this improvement on the convergence speed and generalization capacity
is 1) DRAG searches for the optimal update along two directions and thus converges faster, 2)
DRAG confines the search of update within the two-dimensional subspace spanned by gradient
and momentum direction to avoid overfitting and alleviating the influence of noises, therefore it
generalizes better.
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Table 1: Top-1 test accuracy (%) of VGG16, ResNet34, DenseNet121 on CIFAR10 and CIFAR100.

DRAG SGD Adam AdamW AdaBelief

CIFAR10
VGG16 94.0 92.7 92.2 92.4 93.6
ResNet34 95.6 94.5 93.3 94.5 95.4
DenseNet121 96.1 94.5 93.3 94.6 95.5

CIFAR100
VGG16 72.8 69.7 62.2 68.5 72.2
ResNet34 77.6 75.6 73.0 70.9 76.1
DenseNet121 79.2 77.8 73.7 74.3 78.2

Table 2: Test perplexity (lower is better) of 1-layer, 2-layer, and 3-layer LSTM on PTB dataset. All
results except DRAG and SGD are reported by Adabelief [24].

DRAG SGD AdaBound Adam AdamW AdaBelief RAdam Yogi
1-layer 82.5 83.0 84.3 85.1 87.7 84.8 86.5 86.5
2-layer 65.6 66.1 67.5 67.4 72.8 66.3 72.3 71.3
3-layer 61.0 61.8 63.6 64.3 69.9 61.8 70.0 67.5

3.2. LSTMs on language modeling

We experiment with LSTM on the Penn Treebank dataset and record the perplexity (lower is better).
We follow the exact experimental setting in Adabelief [24] and use their default hyperparameters
except for SGD. For SGD, we use the same hyperparameters as DRAG to make a fair comparison
between the two. For SGD and DRAG, we set their learning rate as 25, 75, 75 for 1,2,3-layer LSTM
and weight decay factor as 2.5 × 10−6. SGD’s generalization performance in our setting is better
than the results provided by Zhuang et al. [24]. From Table 2, we can see that DRAG attains more
than 0.5 less perplexity than other optimizers. The good generalization performance may be due to
DRAG’s two-direction search. The gradient direction inherits SGD’s good generalization property
and the extra momentum direction further improves its performance.

4. Conclusion

In this paper we propose the DRAG algorithm, which finds the optimal update of the parameters
along gradient and momentum directions at each iteration. Compared with Adam, DRAG reduces
the flexibility of update direction from searching in the whole parameter space to updating in a
two-dimensional subspace, therefore is less susceptible to overfitting and has better generalization
performance. Compared with SGD, DRAG inherits the gradient update direction and also update
along an extra momentum direction, thus it has faster convergence speed and comparable general-
ization capacity. Our algorithm can be further generalized to any number of search directions and
any choice of Hessian approximation.
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Appendix A. Solve the trust-region subproblem

Recall the trust region subproblem

min
α

⟨α,Ct⟩+
1

2
⟨α,Qtα⟩

s.t.
√
⟨α,Gtα⟩ ≤ η∥v̂t∥,

where α :=

[
α1

α2

]
, Ct :=

[
−v̂Tt v̂t
v̂Tt dt−1

]
, Qt :=

[
v̂Tt Htv̂t −v̂Tt Ht

−dTt−1Htv̂t dTt−1Htdt−1

]
, and Gt :=

[
v̂Tt v̂t −v̂Tt dt−1

−dTt−1v̂t dTt−1dt−1

]
,

Ht = diag(
√
ût + ν).

In order to solve this trust region subproblem, we transform it into a standard trust region sub-
problem with L2-norm constraint.

When matrix Gt is positive definite, we have

Gt = LtL
T
t (Cholesky Decomposition)√

αTGtα =
√
(LT

t α)
TLT

t α = ∥LT
t α∥ ≤ η∥v̂t∥.

So we let y = LT
t α, then α = L−T

t y and the subproblem becomes

min
y

⟨Ct, L
−T
t y⟩+ 1

2
⟨L−T

t y,QtL
−T
t y⟩

s.t. ∥y∥ ≤ η∥v̂t∥

⇐⇒ min
y

⟨L−1
t Ct, y⟩+

1

2
⟨y, L−1

t QtL
−T
t y⟩

s.t. ∥y∥ ≤ η∥v̂t∥.

In this way, the trust region subproblem is transformed to a standard spherical constrained quadratic
optimization problem and it can be solved efficiently [18].

When |Gt| = 0, this means v̂t is linearly dependent with dt−1. In this case, we solve the
one-dimensional subproblem as described in Section 2.

Appendix B. Mild assumptions on α1t, α2t

The trust-region subproblem to be solved in Algorithm 1 has global optimality condition [10] given
by 

(Qt + λGt)α+ Ct = 0

Qt + λGt ⪰ 0

λ(∥α∥Gt
− η∥v̂t∥) = 0, λ ≥ 0.

By its construction, we know that Gt is positive semidefinite. In practice, numerical issues
sometimes make it indefinite, leaving the trust-region subproblem insoluble. Thus, we make an
adjustment to Gt

Gt =

{
Gt if λmin ≥ ε0 or |Gt| = 0

ε0I o.w.
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where λmin is the smallest eigenvalue of Gt. In this way, when |Gt| ≠ 0, we have

∥α∥ ≤ ∥G−1/2
t ∥∥α∥Gt ≤ η∥G−1/2

t ∥∥v̂t∥ ≤ η
∥v̂t∥√
ε0

,

which means

|α1t

η
|, |α2t

η
| ≤ ∥v̂t∥√

ε0
.

With the common additional assumption that stochastic gradient gt = ∇̃f(xt) has bounded L∞
norm, i.e.∥gt∥∞ ≤ G∞, then v̂t as an moving average of gt also has bounded norm ∥v̂t∥. Therefore,
we can see that |α1t

η |, |α2t
η | are upper bounded by a constant.

When |Gt| = 0, which means dt−1 is parallel with v̂t. Then we only need to find the optimal
update within the trust-region along gradient direction v̂t. In this case, we manually set α2t = 0 in
our implementation of DRAG, and then α1 satisfies |α1| ≤ η.

From discussions above, we can see the assumption that |α1t
η |, |α2t

η | are upper bounded in The-
orem 1 and Theorem 2 is satisfied given the common assumption that stochastic gradient gt =
∇̃f(xt) has bounded L∞ norm. For the simplicity of notations, we directly make assumptions for
α1t and α2t in Theorem 1 and Theorem 2.

For the assumption that α1t is positive and α1t
η is lower bounded by a constant, we give an ex-

planation here by intuition and empirical results. Gradient direction is what we considered the most
important update direction locally, because by the training pipeline of neural networks, stochas-
tic gradients of training parameters are the new information we gain at each iteration. Thus, we
consider the update should at least move towards the gradient descent direction rather than move
towards the gradient ascent direction. Moreover, from the observations of α1t under all the experi-
mental settings, α1t is always positive and α1t

η is always larger than 0.1. Therefore, this assumption
on α1t is reasonable based on common sense and holds true in practice.

Appendix C. Convergence analysis in non-convex stochastic optimization

To clarify Assumption 1, we give the following definitions.

Definition 1 For a differentiable function f , x is said to be an ϵ-approximate first-order stationary
point if it satisfies ∥∇f(x)∥ ≤ ϵ.

Definition 2 For a differentiable funtion f(x), it is called L-Lipschitz smooth if it statisfies ∥∇f(x)−
∇f(y)∥ ≤ L∥x− y∥ for a constant L > 0 and any x,y in domain of f .

Except for Theorem 1, we also have the following result which establishes an O(log T/
√
T )

sub-linear convergence rate for DRAG.

Theorem 2 Suppose Assumption 1 holds. Assume there exist constants δ,G > 0, such that 0 <

δ ≤ α1t
ηt

≤ G, |α2t|
ηt

≤ G. Set ηt =
cη√
t+2

, 1− βt =
Ccη√
t+1

, for any cη and C satisfying C ≥ L
√

8G
δ ,

and cη ≤
{

1√
2LG

,
(

δ2

96G2

) 1
2
,
(

δ
48LG2

) 1
3 ,

(
δ

192L2G3

) 1
4

}
. Then there exist two constant C1 and C2

which are independent with T , such that

1

T

T−1∑
t=0

E[∥∇f(xt)∥2] ≤
C1√
T

+
C2 log T√

T
,

1

T

T−1∑
t=0

E[∥vt+1∥2] ≤ 8C1√
T

+
8C2 log T√

T
.

10
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Given a tolerance ϵ > 0, if T ≥ Õ( 1
ϵ4
), we have

1

T

T−1∑
t=0

E[∥∇f(xt)∥2] ≤ ϵ2,
1

T

T−1∑
t=0

E[∥vt+1∥2] ≤ 8ϵ2.

Remark 2 Theorem 2 establishes an O(log T/
√
T ) sub-linear convergence rate for DRAG by

choosing a decreasing ηt and 1 − βt with the order O(1/
√
t). Similar sub-linear convergence

rates are also established by Zou et al. [25] for Adam and Guo et al. [2] for Adam-type optimizers.
While Zou et al. [25] has restrictions on the second moment momentum parameter β2. In Theorem
2, we only need βt (corresponds β1 in Algorithm 1) to increase to one.

One key ingredient in our analysis is an existing variance recursion of the stochastic estimator
based on moving average, which is given by the following lemma.

Lemma 3 (Variance Recursion [16]) Suppose Assumption 1 holds, then we have

Et[∥vt+1 −∇f(xt)∥2] ≤ β∥vt −∇f(xt−1)∥2 + 2(1− β)2Et[∥gt −∇f(xt)∥2] +
L2∥dt∥2

1− β
,

where Et[·] denotes the conditional expectation with respect to all randomness before gt.

Before proving Theorem 1, we need to prove the following auxiliary lemma.

Lemma 4 Suppose Assumption 1 holds. Assume there exist α, η, δ,G > 0, such that α ≤ mint α1t,
maxt ηt ≤ η, and 0 < δ ≤ α

η ≤ α1t
ηt

≤ G, |α2t|
ηt

≤ G, (δ,G) are constants independent with t.

In addition, η ≤ min

{
1

2LG ,
1−β
2L

√
δ
2G ,

δ
4
√
6G

,
(

δ
48LG2

) 1
3 ,

(
δ

192L2G3

) 1
4

}
. Then there exist positive

constants C1, C2 and C3, which are all independent with T , such that the following estimation
holds:

1

T

T−1∑
t=0

E
[
∥∇f(xt)∥2

]
≤ C1

Tα
+ C2(1− β)σ2 +

C3

T (1− β)
,

1

T

T−1∑
t=0

E
[
∥vt∥2

]
≤ 8C1

Tα
+ 8C2(1− β)σ2 +

8C3

T (1− β)
.

(4)

Proof Since F is L-smooth, we have

f(xt+1) ≤ f(xt) + ⟨∇f(xt),−α1tvt+1 + α2tdt⟩+
L

2
∥ − α1tvt+1 + α2tdt∥2

= f(xt)− α1t⟨∇f(xt), vt+1⟩+ α2t⟨∇f(xt), dt⟩+
Lα2

1t

2
∥vt+1∥2 +

Lα2
2t

2
∥dt∥2 − Lα1tα2t⟨vt+1, dt⟩

= f(xt) +
α1t

2
∥∇f(xt)− vt+1∥2 −

α1t(1− Lα1t)

2
∥vt+1∥2 −

α1t

2
∥∇f(xt)∥2 + α2t⟨∇f(xt), dt⟩

+
Lα2

2t

2
∥dt∥2 − Lα1tα2t⟨vt+1, dt⟩.

(5)

11
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By Lemma 3, we can obtain

T∑
t=1

E[∥∇f(xt−1)− vt∥2] ≤
1

1− β
E[∥∇f(x0)− v1∥2] + 2(1−β)Tσ2+

L2

(1− β)2
E

[
T∑
t=1

∥dt∥2
]
.

(6)
Taking expectation for both sides of (5) and taking summation among t = 0, ..., T − 1, combining
with (6), we have

E [f(xT )− f(x0)]

≤ηG

2

[
E[∥∇f(x0)− v1∥2]

1− β
+ 2(1− β)Tσ2 +

L2

(1− β)2

T∑
t=1

E[∥dt∥2]

]
−

T−1∑
t=0

α1t

2
E[∥∇f(xt)∥2]

−
T−1∑
t=0

α1t(1− Lα1t)

2
E[∥vt+1∥2] +

T−1∑
t=0

(
E[α2t⟨∇f(xt), dt⟩] +

Lα2
2t

2
∥dt∥2 − E[Lα1tα2t⟨vt+1, dt⟩]

)
.

By AM-GM inequality,

α2t⟨∇f(xt), dt⟩ ≤
α1t

4
∥∇f(xt)∥2 +

α2
2t

α1t
∥dt∥2,

−Lα1tα2t⟨vt+1, dt⟩ ≤
α1t(1− Lα1t)

4
∥vt+1∥2 +

L2α1tα
2
2t

1− Lα1t
∥dt∥2.

(7)

Combining all together, we have

T−1∑
t=0

α1t

4
E[∥∇f(xt)∥2]

≤f(x0)− f(x∗) +
ηG

2(1− β)
E[∥∇f(x0)− v1∥2] +

T∑
t=1

ηGL2

2(1− β)2
E[∥dt∥2]

+ ηG(1− β)Tσ2 +

T−1∑
t=0

(
α2
2t

α1t
+

Lα2
2t

2
+

L2α1tα
2
2t

1− Lα1t

)
E[∥dt∥2]−

T−1∑
t=0

α1t(1− Lα1t)

4
E[∥vt+1∥2],

(8)
where x∗ is one of the global minimizer of F . Since α1t ≤ ηG ≤ 1

2L , we have α1t(1−Lα1t)
4 ≥ α1t

8 .

By the conditions for η and α, we have α1t
16 ≥ α

16 ≥ η3GL2

2(1−β)2
≥ ηGL2η2t+1

2(1−β)2
, α1t

96 ≥ α
96≥

η4G2

α ≥
α2
2,t+1η

2
t+1

α1,t+1
, α1t

96 ≥ α
96 ≥ Lη4G2

2 ≥ Lα2
2,t+1η

2
t+1

2 , and α1t
96 ≥ α

96 ≥ 2L2η5G3 ≥ L2α1,t+1α2
2,t+1η

2
t+1

1−Lα1,t+1
. By

∥dt∥ ≤ ηt∥vt∥. Since v0 = 0, we have

T−1∑
t=0

(
α2
2t

α1t
+

Lα2
2t

2
+

L2α1tα
2
2t

1− Lα1t

)
∥dt∥2 +

T∑
t=1

ηGL2

2(1− β)2
∥dt∥2 −

T−1∑
t=0

α1t(1− Lα1t)

4
∥vt+1∥2

≤− α

8

T−1∑
t=0

∥vt+1∥2 +
T−1∑
t=0

(
α2
2tη

2
t

α1t
+

Lα2
2tη

2
t

2
+

L2α1tα
2
2tη

2
t

1− Lα1t

)
∥vt∥2 +

T−1∑
t=0

ηGL2η2t+1

2(1− β)2
∥vt+1∥2

≤− α

32

T−1∑
t=0

∥vt+1∥2.

(9)
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Combining (8) and (9), we can obtain

T−1∑
t=0

α1t

4
E[∥∇f(xt)∥2] ≤ f(x0)− f(x∗) +

ηG

2(1− β)
E[∥∇f(x0)− v1∥2] + ηG(1− β)Tσ2,

α

32

T−1∑
t=0

E[∥vt+1∥2] ≤ f(x0)− f(x∗) +
ηG

2(1− β)
E[∥∇f(x0)− v1∥2] + ηG(1− β)Tσ2.

Dividing the above two inequalities by αT
4 and αT

32 respectively, we have

1

T

T−1∑
t=0

E[∥∇f(xt)∥2] ≤
4 (f(x0)− f(x∗))

Tα
+

2GE[∥∇f(x0)− v1∥2]
δ(1− β)T

+
4G(1− β)σ2

δ
,

1

T

T−1∑
t=0

E[∥vt+1∥2] ≤
32 (f(x0)− f(x∗))

Tα
+

16GE[∥∇f(x0)− v1∥2]
δ(1− β)T

+
32G(1− β)σ2

δ
,

which completes the proof by letting C1 = 4 (f(x0)− f(x∗)), C2 = 4G
δ , C3 = 2GE[∥∇f(x0)−v1∥2]

δ .

Proof of Theorem 1
Proof By the selections of α and ηt in Theorem 1, let δ = α/η. By Lemma 4, we have

1

T

T−1∑
t=0

E
[
∥∇f(xt)∥2

]
≤ C1

Tα
+ C2(1− β)σ2 +

C3

T (1− β)
.

The conditions 1 − β ≤ ϵ2

3C2σ2 and T ≥ max
{

3C1
αϵ2

, 3C3
(1−β)ϵ2

}
lead to C1

Tα ≤ ϵ2

3 , C2(1 − β)σ2 ≤
ϵ2

3 ,
C3

T (1−β) ≤
ϵ2

3 . This completes the proof.

Proof of Theorem 2
Proof From (5) in Lemma 4, we have

f(xt+1) ≤ f(xt) +
α1t

2
∥∇f(xt)− vt+1∥2 −

α1t(1− Lα1t)

2
∥vt+1∥2 −

α1t

2
∥∇f(xt)∥2 + α2t⟨∇f(xt), dt⟩

+
Lα2

2t

2
∥dt∥2 − Lα1tα2t⟨vt+1, dt⟩.

(10)
By Lemma 3, we have

(1−βt)∥vt−∇f(xt−1)∥2 ≤ ∥vt−∇f(xt−1)∥2−Et[∥vt+1−∇f(xt)∥2]+2(1−βt)
2Et[∥∇f(xt)−gt∥2]+

L2∥dt∥2

1− βt
.

Taking expectation and summation for t = 1, ..., T , we get

T−1∑
t=0

E[(1−βt+1)∥∇f(xt)−vt+1∥2] ≤ E[∥v1−∇f(x0)∥2]+
T∑
t=1

(
2(1− βt)

2σ2 +
L2E[∥dt∥2]

1− βt

)
.

(11)

13
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Note that 1 − βt+1 = Cηt, so α1t
2 ≤ G

2 ηt =
G
2C (1 − βt+1). Taking expectation for both sides of

(10) and taking summation among t = 0, ..., T − 1, combining with (11), we can obtain

E [f(xT )− f(x0)]

≤ G

2C

[
E[∥v1 −∇f(x0)∥2] +

T∑
t=1

(
2(1− βt)σ

2 +
L2∥dt∥2

1− βt

)]
−

T−1∑
t=0

α1t(1− Lα1t)

2
E[∥vt+1∥2]

−
T−1∑
t=0

α1t

2
E[∥∇f(xt)∥2] +

T−1∑
t=0

(
E[α2t⟨∇f(xt), dt⟩] +

Lα2
2t

2
∥dt∥2 − E[Lα1tα2t⟨vt+1, dt⟩]

)
.

(12)
From (7) and (12), we can get

T−1∑
t=0

α1t

4
E[∥∇f(xt)∥2]

≤f(x0)− f(x∗) +
G

2C
E[∥∇f(x0)− v1∥2] +

T∑
t=1

G

C
(1− βt)

2σ2 +
T∑
t=1

GL2∥dt∥2

2C(1− βt)

+

T−1∑
t=0

(
α2
2t

α1t
+

Lα2
2t

2
+

L2α1tα
2
2t

1− Lα1t

)
E[∥dt∥2]−

T−1∑
t=0

α1t(1− Lα1t)

4
E[∥vt+1∥2],

(13)

By the conditions for cη and C, we have α1t ≤ ηtG ≤ 1
2L , α1t(1−Lα1t)

4 ≥ α1t
8 . By similar arguments

in the proof of Lemma 4, we have α1t
16 ≥ δηt

16 ≥ η2t+1GL2

2ηtC2 =
GL2η2t+1

2(1−βt+1)C
, α1t

96 ≥ δηt
96 ≥ α2

2,t+1η
2
t+1

α1,t+1
,

α1t
96 ≥ δηt

96 ≥ Lα2
2,t+1η

2
t+1

2 , and α1t
96 ≥ δηt

96 ≥ 2L2η5t+1G
3 ≥ L2α1,t+1α2

2,t+1η
2
t+1

1−Lα1,t+1
. By ∥dt∥ ≤ ηt∥vt∥.

Since v0 = 0, we can get

T−1∑
t=0

(
α2
2t

α1t
+

Lα2
2t

2
+

L2α1tα
2
2t

1− Lα1t

)
∥dt∥2 +

T∑
t=1

GL2

2C(1− βt)
∥dt∥2 −

T−1∑
t=0

α1t(1− Lα1t)

4
∥vt+1∥2

≤−
T−1∑
t=0

α1t

8
∥vt+1∥2 +

T−1∑
t=0

(
α2
2tη

2
t

α1t
+

Lα2
2tη

2
t

2
+

L2α1tα
2
2tη

2
t

1− Lα1t

)
∥vt∥2 +

T−1∑
t=0

GL2η2t+1

2C(1− βt+1)
∥vt+1∥2

≤−
T−1∑
t=0

α1t

32
∥vt+1∥2.

(14)
Combining (13) and (14), we can obtain

T−1∑
t=0

δηt
4

E[∥∇f(xt)∥2] ≤
T−1∑
t=0

α1t

4
E[∥∇f(xt)∥2] ≤ f(x0)− f(x∗) +

GE[∥∇f(x0)− v1∥2]
2C

+

T∑
t=1

Gσ2

C
(1− βt)

2,

T−1∑
t=0

δηt
32

E[∥vt+1∥2] ≤
T−1∑
t=0

α1t

32
E[∥vt+1∥2] ≤ f(x0)− f(x∗) +

GE[∥∇f(x0)− v1∥2]
2C

+

T∑
t=1

Gσ2

C
(1− βt)

2.

Then, the final assertion can be obtained by
∑T

t=1
1

t+1 = O(log T ). This completes the proof.
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Appendix D. Ablation Study

Different search directions We compare the performance of algorithms that solve the trust-region
subproblem in one-dimensional, two-dimensional (DRAG), and three-dimensional subspaces as de-
scribed in Section 2. As show in Table 3, DRAG generalizes better than its one search direction and
three search direction counterparts. The reason is that DRAG updates in more directions than the
one search direction counterpart while its subproblem can be solved more accurately than the three
direction counterpart, since low-dimensional subproblem can be solved with less numerical errors
in single precision arithmetic by GPU.

Table 3: Test accuracy of algorithms solving the trust-region subproblem with one, two, and three
search directions on CIFAR10.

VGG16 ResNet34 DenseNet121
1 direction 93.8 95.3 96.0
DRAG 94.0 95.6 96.1
3 directions 93.8 95.4 95.7

Robustness to learning rate schedule DRAG is robust to different choices of learning rate sched-
ule. Except for letting the learning rate decay at epoch 150 as in Section 3.1, we also conduct ex-
periments on decaying the learning rate at epoch 120 and adopting cosine annealing learning rate
schedule. The only change of hyperparameter setting from Section 3.1 is we increase the learning
rate of DRAG from 0.1 to 0.12 in cosine annealing schedule. The intuition is that when the trust-
region radius is decreased during the training process, we need a larger initial radius to converge to a
better local minima. We compared DRAG’s test performance with other optimizers with VGG16 on
CIFAR10, details are presented in Table 4, which shows that DRAG enjoys the best generalization
performance for all the learning rate schedules.

Table 4: Test accuracy of VGG16 on CIFAR-10 with three different learning rate schedules.

DRAG SGD Adam AdamW Adabelief
Cosine Annealing 94.3 94.0 92.2 92.4 94.1
Decay at 120 epoch 93.8 92.5 91.8 92.6 93.6
Decay at 150 epoch 94.0 92.7 92.2 92.4 93.6
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