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ABSTRACT

In this paper, we study the distributed experts problem, where n experts are
distributed across s servers for 7' timesteps. The loss of each expert at each
time ¢ is the £, norm of the vector that consists of the losses of the expert at
each of the s servers at time ¢. The goal is to minimize the regret R, i.e., the
loss of the distributed protocol compared to the loss of the best expert, amor-
tized over the all T times, while using the minimum amount of communica-

. . . > 1 a
tion. We give a protocol that achieves regret roughly R 2 VTpolylogmaT)’ US

ing O (& + ) -max(s'=%/7,1) - poly log(nsT) bits of communication, which
improves on previous work.

1 INTRODUCTION

Many modern applications require sequential decisions based on predictions from a large set of
distributed experts. For example, in hyperparameter optimization or model selection, each expert
corresponds to different architectures or pre-trained models evaluated across separate datasets, and
the algorithm must dynamically choose which to deploy. In recommendation systems, experts en-
code distinct ranking functions, with feedback only from selected actions, while in reinforcement
learning, experts correspond to policies trained on separate environments. Across these applications,
the decision-maker must aggregate information from multiple sources and adapt to evolving losses
in distributed systems. This setting is formalized by the online prediction with expert advice prob-
lem, where n experts incur losses at each step over 1" rounds, and the algorithm selects an expert
based on observed history to minimize cumulative regret, defined relative to the best expert in hind-
sight. Classical algorithms, including the Exponential Weights Algorithm (EWA) and Multiplicative

Weights Update (MWU), achieve optimal regret O <\ / 10&%”) in the full-information setting (Arora

nlogn
T

et al., 2012), while EXP3 attains near-optimal regret O in the bandit setting (Auer et al.,

2002). As the number n of experts and prediction rounds 7' grow, running these algorithms centrally
becomes computationally expensive, motivating the study of scalable models. Prior work has ex-
plored streaming approaches (Srinivas et al., 2022; Peng & Zhang, 2023; Woodruff et al., 2023;
Peng & Rubinstein, 2023; Aamand et al., 2023), which process expert losses sequentially while
maintaining only compact summaries of historical data.

In this work, we consider a complementary challenge: distributed online learning with experts.
Here, expert costs are partitioned across s servers, and a central coordinator aims to implement a
low-regret algorithm while minimizing communication with the servers. This distributed formula-
tion arises naturally in large-scale online optimization and hyperparameter tuning across multiple
datasets, or in settings where each server holds a private subset of data. For example, each expert
may correspond to a model trained on the aggregated data across servers, with the total loss com-
puted as a sum of per-server losses, as in the HPO-B benchmark (Pineda-Arango et al., 2021). Other
aggregation functions, such as the maximum loss across servers, can also be relevant when indi-
vidual server costs are constrained, highlighting the flexibility of the framework to accommodate
different practical objectives.

Our focus is on understanding the tradeoff between communication and regret in distributed on-
line learning with experts. Unlike memory-constrained streaming approaches, the coordinator can



maintain full information on all experts, so the primary challenge is minimizing communication.
We study this in the message-passing model, where the coordinator communicates privately with
each server in sequential rounds. Prior work has largely focused on ¢; loss (Jia et al., 2025), but
many applications—such as risk-sensitive optimization, robust model selection, and distributed con-
trol—require general £, losses with p > 1. Different values of p balance robustness and penalization
of large deviations: /., minimizes the maximum loss, intermediate values like {5 moderately penal-
ize large deviations, and values near ¢; emphasize outlier robustness. For example, /5 loss is exten-
sively studied in streaming settings due to connections with entropy (Harvey et al., 2008; Woodruff
& Zhou, 2021). We therefore develop algorithms that achieve near-optimal regret for general £,
losses while keeping communication provably low.

1.1 DISTRIBUTED ONLINE LEARNING WITH EXPERTS IN THE COORDINATOR MODEL

We consider the distributed online learning with experts problem in the coordinator (message-
passing) model. There are s servers, denoted [s] = {1,2,...,s}. Ateachround ¢t € [T}, each
server j € [s] receives a local loss vector (£1(4,t),...,¢,(j,t)) € R™. The goal is to minimize the
cumulative regret of the algorithm while using minimal communication between servers.

Online learning with experts. In the online learning with experts problem, there are n experts who
make predictions across a time horizon of length T'. For each time ¢ € [T], an algorithm selects an
expert i; € [n] and then observes the loss vector (L (t), ..., L,(t)), incurring loss L;, (t). The total
loss of the algorithmis ;7 Ly, (t), and the best expert i* incurs >, (5 Li(t). The regret of the

algorithm is defined by

1

te([T] te[T

which the algorithm aims to minimize. In the distributed setting, the losses L;(t) are not
given explicitly. Instead, the loss of each is computed across servers via the L, loss L;(t) =

1/p
(Z jeps) iy t)p> , where p > 1 is fixed and known in advance. This distributed formulation
captures scenarios where expert evaluations are partitioned across multiple servers or datasets.

Communication complexity. Since the losses L;(t) are not explicitly given, the servers must col-
lectively execute a distributed protocol II. Each server has private randomness, and all share pub-
lic randomness. In the coordinator model, servers communicate only with the coordinator; in the
message-passing model, direct server-to-server communication provides at most a constant-factor
improvement, so we treat the two interchangeably. We assume II is sequential and round-based: in
each round, the coordinator interacts with a subset of servers and waits for responses. The protocol
is self-delimiting so servers know when a round concludes. Let I1(r) denote the transcript of round
r, with |[II(r)| its communication cost. The total communication is ) |II(r)|. Designing proto-
cols that balance total communication with low regret is the central challenge in distributed online
learning with experts.

1.2 OUR CONTRIBUTIONS

In this paper, we study the distributed online learning with experts problem. As a warm-up, we show

that there exists a distributed protocol that achieves a nearly optimal regret of O <51/ Py 107%") , with

communication O (nT + sT):
Theorem 1.1. Let b > a > 0 be fixed constants and suppose £;(j,t) € [a,b] forallt € [T), i € [n]

and j € [s]. There exists an algorithm that achieves expected regret at most O <51/p\ / k’% and

with high probability, uses total communication at most O (sT') + nT - polylog(nsT) bits.

We remark that the choices of the losses being within the range [1, 5] in the statement of Theo-
rem 1.1 are arbitrary. The losses simply need to be within a constant factor of each other. By
comparison, the work of Jia et al. (2025) only achieved distributed protocols for general ¢, losses
for the broadcast/blackboard model, where servers can publicly broadcast information that is visible



to other servers and the communication cost of a protocol is then the total length of the broadcast
messages. This setting is “easier” than the message-passing model since sending the same message
to all servers in our setting would incur s communication multiplicative overhead. Thus the tech-
niques are fundamentally different. For instance, the £, loss algorithm by Jia et al. (2025) for the
broadcast model walks through all servers to find the server j € [s] with the largest loss for each
expert ¢ € [n]. While each server j only needs to send values larger than the previously broadcast
losses for each expert in the broadcast model, resulting in roughly total communication O (s + n),
such an approach would require O (ns) communication in our setting.

On the other hand, Jia et al. (2025) achieved a distributed protocol for the SUM problem in
the message-passing model, i.e., ¢1 loss, with O (nT) + O (T's) total communication, for regret

O <51/ p 10% . However, because ¢, loss is additive across servers, then standard techniques

such as sampling a number of losses to be communicated, with probability proportional to their
magnitudes, can work for ¢ loss but fail to work for sub-additive or super-additive losses such as ¢,
losses. In contrast, Theorem 1.1 is able to achieve optimal regret across all £, losses.

We remark that Jia et al. (2025) assumed the losses are normalized so that the total loss for a single
expert on a single time is at most 1. By comparison, if each server is permitted to have loss [a, b] by
our assumption, then all experts have loss (s'/?), which accounts for the difference in their stated
bounds and our referenced bounds. We can parameterize Theorem 1.1 to obtain a more general
communication-regret trade-off as follows:

Theorem 1.2. Let b > a > 0 be fixed constants and suppose {;(j,t) € [a,b] for all t € [T,

i €nlandj € [s]. Let R > ﬁ Then there exists an algorithm that achieves expected regret

at most O (Rsl/p\/log n) and with high probability, uses total communication at most (”1%"25) .
polylog(nsT) bits.

We emphasize that seeking regret R > ﬁ is standard, because it is information-theoretically im-

possible to achieve regret R < ﬁ (Cover, 1966).

In contrast to Theorem 1.2, Jia et al. (2025) achieved a distributed protocol for the SUM problem,
i.e., ¢1 loss, with O (%) + O (T's) total communication, for regret R. Thus not only does Theo-
rem 1.2 improve on the result of Jia et al. (2025) for general ¢, losses, but it also improves upon
the O (T's) dependency in the result of Jia et al. (2025) to parameterization across general regret R.
For example, with regret R = O (1), the protocol of Jia et al. (2025) still has dependency O (T's)
while our protocol has dependency O (s), which is substantially less for large time horizons 7. We
summarize this discussion in Figure 1.

’ Reference ‘ Loss function ‘ Communication cost (bits) ‘
Jia et al. (2025) £y loss (% + Ts) - polylog(nsT)
Theorem 1.2 ¢, loss (252) - polylog(nsT)

Fig. 1: Our work is the first to study £, loss in the coordinator model; for the special case of p = 1,
we obtain better regret-communication tradeoffs for regret R.

We enable the handling of /,, losses is to embed /,, into /-, through the use of exponential random
variables, similar to the blackboard protocol of Jia et al. (2025). However, the servers cannot easily
find the maximum in the coordinator model, so we require a careful analysis of subsampling and
thresholding to ensure that we find the maximum without too many servers sending low values.
Additionally, the variance of the resulting estimator is unbounded, so we utilize a geometric mean
estimator. These novelties form the basis of our main algorithmic contribution. Although similar
approaches have been used in other contexts such as norm estimation in the streaming model (Li,
2008; Woodruff & Zhou, 2021), this is the first time these techniques have been applied to online
learning in the distributed setting, to the best of our knowledge. As a result, we can handle £, losses,
which previous works cannot handle (Jia et al., 2025). We provide more details in Section 3 and
Section 4. Finally, we remove the assumption that the losses are between a range of constants [a, b].



Theorem 1.3. Suppose we have £;(j,t) < 1 forallt € [T|. There exists an algorithm that achieves
expected regret at most O (Rsl/ Py/log n) and with high probability, uses total communication at

most (%52) - max(s' =7, 1) - polylog(nsT) bits.

Finally, to complement our theoretical results, we conduct a number of empirical evaluations as a
simple proof-of-concept. These results appear in Section 6.

Algorithmic and technical novelties. The major challenge is that £, losses are significantly more
nuanced than ¢; losses. Observe that since ¢ loss is additive, then the total loss is the sum of the
individual losses. Thus, it is natural to sample individual losses with probability proportional to
their magnitude. For ¢, losses, it may be possible to perform some more nuanced sampling, but
it is not clear how to efficiently perform sampling in distributed models across all of the experts.
To overcome this barrier, we embed ¢, losses into an {, framework using random exponential
scalings, such that the largest scaled contribution approximates the original ¢, loss. However, due
to the probability density function of exponential random variables, the resulting distribution has
unbounded variance and thus we use a geometric mean of an independent number of random scalings
to acquire an unbiased estimator with bounded variance. We then interface these estimated losses
with a multiplicative weights update (MWU) algorithm for the purpose of online learning. Notably,
the use of a geometric mean estimator to reduce variance of estimators using exponential random
variables is both an algorithmic and a technical novelty for the distributed online learning with
experts problem that we believe may have independent interest to other applications. In principle,
the geometric mean estimator could be potentially replaced by other variance-reduction techniques;
the design of such algorithms is an interesting direction for future work.

2 PRELIMINARIES

We briefly discuss a number of relevant preliminaries necessary for our algorithms and analysis. We
first recall the following standard formulation of Chernoff bounds for concentration inequalities.

Theorem 2.1 (Chernoff Bounds). Let X1, Xo, ..., X, be independent Bernoulli random variables
with Pr[X; = 1] = p; and Pr[X; =0] = 1 — p;. Define X = Y. | X; and let n = E[X] =
> pi- Then for any 6 > 0, we have Pr (| X — p| > dp) < 2exp (f%).

We next define an exponential random variable.

Definition 2.2 (Exponential random variable). An exponential random variable with rate parameter
A > 0 is a continuous random variable X with probability density function (PDF) given by:

Ae ™M x>0,
0, z < 0.

Ix(z) =

We show the following max stability property of exponential random variables.

Lemma 2.3. [Max stability of exponential random variables] Let X; = {—/I, for i € [n], where

€1,...,€en are independent exponential random variables with rate 1. Then max;c|y {C—}p is dis-
€i
tributed as % where e is an exponential random variable with rate 1.

Finally, we recall the multiplicative weights update (MWU) algorithm. For n roughly %, the
following guarantees are known on the MWU algorithm in Algorithm 1:

Theorem 2.4. For a set of n experts with the second moment of the loss bounded by at most p
on each of T rounds, the multiplicative weights update (MWU) algorithm achieves expected regret

o (./P“)Tg”)
3 WARM-UP: SIMPLE ALGORITHM

We present a simple distributed algorithm that achieves near-optimal regret, using at most O (sT') +
nT - polylog(nsT) total bits of communication. The intuition for the algorithm is as follows.



Algorithm 1 Multiplicative weights update algorithm

Input: Learning rate 7, losses {¢;(¢)} for all times ¢ € [T, experts i € [n]
Output: Sequence of experts to play on each day
w; + 0 foralli € [n]

1:

2: for each time ¢ € [T] do

3:  foreachi € [n] do

4. w; — w; +4; (t)

5:  end for

6:  Sample i € [n] with probability proportional to exp(—nw;)
7: end for

Suppose for all experts ¢ € [n]| and times ¢ € [T, we have the loss of ¢ at time ¢, L;(t) =

1
(Zje[s] 4 (4, t)P) /p. Then by setting w;(t) = >, ., Li(t), we can run the standard Multiplicative
Weights Update (MWU) framework with weights w; (¢) by playing expert ¢ with probability propor-
tional to exp(—nw;(t)) for a fixed learning rate n > 0. Unfortunately, we do not have the losses
{L;(t)}. Instead, for time ¢ € [T'], each expert i € [n], and each server j € [s], we generate an ex-
ponential random variable ¢;(j,t). By the max-stability property of exponential random variables,
c.f., Lemma 2.3, we have

o 1/p
4i(j,t) (e :.07)
a. ~
jels] (ei(4,1))M/P el/r
where e is another exponential random variable. Note that the right-hand side is exactly the £,, loss

of 7 on time ¢. Moreover, we can compute the expected value of 51%’ so that if the servers can simply
£i(4,t)
(ei(g,))/P>

)

send the maximum of the scaled losses

. 1/p
¢y loss (Zje[s] 4 (7, t)p> .

Unfortunately, there are two challenges with this approach. First, the servers do not know how
to send the maximum. Second, the variance of the resulting random variable is unbounded. To
handle the first issue, we first show that with high probability, the maximum is above some threshold
that is roughly s'/? and moreover, there is only a small number of scaled losses that are above
this threshold. Hence, we can upper bound the total amount of communication. To address the
second issue, we use a standard estimator (Li, 2008) that takes the geometric mean of a constant
number of these estimators, which lowers the variance to a small amount. We again remark that this
pipeline serves as our main algorithmic contribution over previous works such as Jia et al. (2025);

then we can compute an unbiased estimate to the

the algorithm appears in full in Algorithm 2, where s;(¢) is the geometric mean estimator for the
loss L;(t) of expert 7 at time ¢ and w; (t) is the resulting weight for expert 7 input to MWU.

We first recall the following fact about probability density functions for polynomials of random
variables.

Fact 3.1. Suppose a random variable X has probability density function f(x), with support on the
non-negative reals. Then the random variable X ~'/? has probability density function pz—?~1 -

fa=?).

We now compute the expectation and upper bound the variance of our geometric mean estimator.

Lemma 3.2. [Expectation and variance of geometric mean estimator] Let p > 0 be fixed and
R > 3p be an integer. Let ey, . .., ep be independent exponential random variables with rate 1. Let

1/B
Iy = e;%for allb € [B), and let Z = (Hbe[B] Zb> be their geometric mean. Then there exists
a universal constant Cs 5 € (0,25] such that E [Z) = C5 > and E [ZQ] < 3B,

—

We now show a structural property showing how estimates s;(¢t) to losses L;(t) =

1/p
(Z jels] 4 (4, t)p) that are roughly unbiased and have small second moment facilitate an im-
plementation of the MWU algorithm with bounded regret.



Algorithm 2 Distributed protocol with near-optimal regret

Input: Losses {¢;(j,t)} for all times ¢ € [T, experts 7 € [n], servers j € [s], L, loss parameter p
Output: Sequence of experts to play on each day

I: B+ %
2: for each time ¢ € [T] do

3:  foreachi € [n] do

4 for each server j € [s] do

5 Let ¢;(34,t) be the loss of expert ¢ on server j at time ¢

6: Let e(b)( /, t) be independent exponential random variables for all b € [B]
7 q( )(j, t) % for b € [B] >Lemma 3.2
8: ifq ( )thhen

9: Send q( )( t) to coordinator
10: end if
11: end for
12:  end for
13:  foreachi € [n] do

— ), /B

4 i) T (maxjer o G0)

150 wilt) — wi(t — 1)+ 5:(2)

16:  end for

17:  Play MWU on {w;(¢)}

18: end for

Lemma 3.3. Suppose E [87(?)} = L;(t) and this random variable has second moment at most p
foralli € [n] and t € [T). Suppose the multiplicative weights update (MWU) algorithm is executed
with loss sequences s;(t) instead of L;(t) for all i € [n] and t € [T]. Then the sequence of resulting

plogn
T

choices achieves expected regret O on the sequence of losses {L;(t) }ic[n) te[T

Unfortunately, we cannot immediately apply Lemma 3.3 because we do not have E [s?(?)] = L;(¢).

. . 1/ .
Namely, in the case where max;e(y) ng) (J,t) < W(I;ST)’ then the value is not sent to the co-

ordinator. Fortunately, we show this only holds with probability m due to the distribution of
exponential random variables. As a result, the overall regret is only changed by lower-order terms.
Without loss of generality, we set the fixed constants b > a > 0 to be [1,5]; our proofs easily
generalize to intervals [a, b]. Using standard concentration inequalities, e.g., Theorem 2.1, we now
upper bound the expected regret of our simple algorithm and the total communication of our warm-
up distributed protocol.

Lemma 3.4. Suppose (;(j,t) € [1,5] forallt € [T], i € [n] and j € [s]. Then the expected regret

of Algorithm 2 is at most O <81/p\/ 10%")

Lemma 3.5. Suppose £;(j,t) € [1,5] forallt € [T), i € [n]and j € [s]. Then with high probability,
the total communication of Algorithm 2 is at most O (sT') + nT - polylog(nsT) bits.

Combining Lemma 3.4 and Lemma 3.5, we have Theorem 1.1.

4 COMMUNICATION-REGRET TRADE-OFF

In this section, we parameterize our warm-up algorithm to achieve a communication-regret trade-
off. Namely, we show that if the goal is to achieve regret R, then there exists a distributed protocol
that uses total communication at most (”*S) - polylog(nsT) bits.




The algorithm is quite similar to Algorithm 2. The main difference is that now at each time, each
server is sampled to run the previous protocol. That is, with probability o, each server independently
performs the same protocol as before. Otherwise, with probability 1 — p, the server does not speak.
We remark that the coordinator can also know the outcome of these events by using public random-
ness, so that the coordinator does not need to speak to each server to determine whether the server
was sampled. The algorithm appears in full in Algorithm 3.

Algorithm 3 Distributed protocol with communication-regret trade-off

Input: Target regret R, losses {;(j,t)} for all times t € [T, experts ¢ € [n], and servers j € [s],
L, loss parameter p
Output: Sequence of experts to play on each day
1: B+ EW 04 7hr
2: for each time ¢ € [T] do

3:  With probability 1 — p, continue to next time ¢
4:  Otherwise, with probability g, do the following:
5:  foreachi € [n] do
6: for each server j € [s] do
7: Let ¢;(j,t) be the loss of expert ¢ on server j at time ¢
8: Let egb) (4,t) be independent exponential random variables for all b € [B]
) ) - £:(5,) .
9: q; (J,t) G for b € [B] >Lemma 3.2
. b)/ - si/p
10: if ql( )(j, t) Z W(TL‘ST) then
11: Send ng) (4, ) to coordinator
12: end if
13: end for
14:  end for
15:  for eachi € [n] do
— @), . B
16: si(t) < 2 - [lherp (maxje[s] g (J, t))
17: wi(t) — wi(t — 1) + Sb(t)
18:  end for
19:  Play MWU on {w;(¢)}
20: end for

We first show the following property of exponential random variables.

Fact 4.1. Let e be an exponential random variable with rate 1. Then for all x > 2, we have
Pr[le (z,22]] € [£, %]

4z 22
We now analyze the expectation and upper bound the variance of our communication-regret trade-off
protocol, using the properties of exponential random variables.
Lemma 4.2. We have E [slf(?)} = L;(t) + #T) and E [(s:(\t))ﬂ < O (TR?) -38 - (Li(t))2

poly(

Again, we remark that we do not have the idealized expectation of E [sl(t)} = L;(t) because
st/p
1001log(nsT)”
resulting expectation calculation. However, since this event only occurs with probability %

poly(nT)
then the resulting claim follows. We then upper bound the regret and the total communication of
Algorithm 3 as follows:

Lemma 4.3. Suppose £;(j,t) € [1,5] forallt € [T), i € [n] and j € [s]. The expected regret of
Algorithm 3 is at most O (Rsl/p\/log n)

Lemma 4.4. Suppose £;(j,t) € [1,5] forallt € [T), i € [n] and j € [s]. Then with high probability,

the total communication is at most (“3%) - polylog(nsT) bits.

max;e[q qu) (j,t) may not be sent to the coordinator if it is less than which changes the

Putting together Lemma 4.3 and Lemma 4.4, we have Theorem 1.2.



5 FULL ALGORITHM

In this section, we build on our previous algorithms to present our main result, which achieves regret
roughly R while using (%%%) - max(s'~%/?, 1) - polylog(nsT') total bits of communication. Unlike
the previous sections, we do not require each loss to be within an interval [a, b] where b > a > 0
are fixed constants. Algorithm 4 differs from previous algorithms in that it permits the servers to
communicate more aggressively by sending smaller values, in particular the values larger than a

smaller threshold. However, this can only happen when a server is appropriately sampled.

Algorithm 4 Distributed protocol for the experts problem

Input: Target regret R, losses {¢;(j,t)} for all times t € [T, experts ¢ € [n], and servers j € [s],
L, loss parameter p
Output: Sequence of experts to play on each day
1: B+« [%—‘, 0+ zrr -max(s' 2P 1), A + [10log(nsT)]
2: for each time ¢ € [T] do
3:  With probability 1 — p, all servers simultaneously return 0 and proceed to the next time
4:  Otherwise, pick an integer a > 0 with probability 5%
5 gl/p

100-@0) U7 Tog(nsT) © the coordinator

All servers send values ng) (j,t) that are at least

>Lemma 3.2
—_—

(b)

),
6: Letg, '(j,t) = qbci(]t) if received by the coordinator, or set to zero otherwise
7. foreachi € [n] do
. o 1/B
8: 8;(t) + - Hbe[B] (maxje[s] q; (Ja t))
9: Let a* > 0 be the smallest non-negative integer such that .97(?) > (2%) 1/p
10: if s;(t) # 0 and a* < a then
11: w;(t) « wi(t — 1) + 2% R2T - 54(t)
12: end if
13:  end for
14:  Play MWU on {w;(t)}
15: end for

We first consider the expectation and variance of Algorithm 4. We use properties of exponential
random variables to show that up to a small perturbation, the expected valued of s;(t) is precisely
the loss L;(t) of expert 7 on time ¢. We use a similar argument for the second moment of s;(t).

Lemma 5.1. Suppose ng)(j, t) > 1001ﬁ for all b € [B]. Then we have E [57(?)} = L;(t) +

m and E [(t;-(;))z} < $2/7 . R2T.

Next, we upper bound the regret and total communication of Algorithm 4 as follows:

Lemma 5.2. Suppose we have ¢;(j,t) < 1forallt € [T]. The expected regret of Algorithm 4 is at

most O (Rsl/p\/log n)

Lemma 5.3. Suppose we have £;(j,t) < 1 forall t € [T]|. Then with high probability, the total

communication for Algorithm 4 is at most (”é';s) -max(s'=%/? 1) - polylog(nsT) bits.

Putting together Lemma 5.2 and Lemma 5.3, we have our main result:

Theorem 1.3. Suppose we have £;(j,t) < 1 forall t € [T]. There exists an algorithm that achieves
expected regret at most O (Rsl/ P{/log n) and with high probability, uses total communication at

most (%) - max(s'~2/? 1) - polylog(nsT) bits.




6 EMPIRICAL EVALUATIONS

In this section, we perform experimental evaluations on our distributed protocol, comparing it to
both the standard offline MWU algorithm and the previous protocol of Jia et al. (2025). Specifically,
we study the HPO-B dataset (Pineda-Arango et al., 2021), which is a benchmark designed to evalu-
ate and compare the performance of hyperparameter optimization (HPO) algorithms across various
machine learning tasks. We conducted our empirical evaluations using Python 3.11.5 on a 64-bit op-
erating system with an Intel(R) Core(TM) i7-3770 processor, featuring 4 cores, a base clock speed
of 3.4GHz, and 16GB of RAM. The dataset includes a diverse set of datasets and learning tasks,
such as classification and regression, to assess the effectiveness, efficiency, and computational cost
of different HPO methods. To support transparency and facilitate reproducibility of our results, we
provide a complete implementation of all algorithms, experimental setups, and data pre-processing
routines, which are included in the supplementary material for reference and verification.

As a black-box benchmark for hyperparameter optimization, we can treat the various models in
the HPO-B benchmark as distinct experts in the distributed experts problem, with different datasets
assigned to different servers. Each search step, which is random search for all model classes, can
be viewed as one day in the distributed experts scenario. The cost vector represents the normalized
negative accuracy of the models on the different datasets during a search step. We thus compared
our simple distributed protocol from Algorithm 2 against MWU and against the algorithm of Jia
et al. (2025). Our results in Figure 2a show that for p > 1, the total communication increases
as the threshold increases; however, the trend is reversed for p < 1. Figure 2b shows that our
algorithm surprisingly has better reward than the MWU algorithm; we believe the latter is an issue
of fine-tuning the learning rate of MWU. Finally, Figure 2c shows that for the special case of p = 1,
our algorithm achieves better communication than the algorithm of Jia et al. (2025). Additionally,
Figure 2c exhibits the communication-regret trade-off as expected from our theoretical analysis.

25 50 75 100 125 150 15 200 2 a 3 s 10 o 1 2 3 4 5
3

(a) Communication vs. p (b) Reward vs. p (c) Communication vs. Regret

Conclusion. In this paper, we studied the distributed online learning with experts problem in the
coordinator model, where each expert’s loss is implicitly defined across s servers. We introduced

. . > 1 . . .
the first protocol for general £, losses, achieving regret & 2 T poly 1og(msT) with communication

O((F+ =) max(s'=2/? 1) - polylog(nsT)). For the important special case where nonzero
server losses are bounded, our protocol attains regret O (Rsl/ Py/log n) using total communication

("};5) -polylog(nsT'), improving on prior bounds (Jia et al., 2025), which only handle p = 1. A key
technical contribution lies in our algorithmic framework for £, losses, which are significantly more
nuanced than ¢;. By embedding /,, losses into an £, structure using random exponential scalings,
we reduce the problem to tracking the largest scaled contribution to the loss across all experts. To
control the unbounded variance inherent in exponential random variables, we introduce a geometric
mean estimator over independent scalings, yielding an unbiased estimate with provably bounded
variance. This estimator is both an algorithmic and a technical novelty, and it may have broader
applicability beyond distributed online learning with experts. While the geometric mean is highly
effective, alternative variance-reduction techniques could also be explored, representing a promising
and fruitful direction for future work. Finally, our results highlight the fundamental tradeoff between
communication and regret in distributed online learning with general ¢, losses. Extending these
techniques to other structured loss functions, such as submodular objectives or /., (max) losses,
presents an exciting avenue for further advancing distributed sequential decision-making.
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A  RELATED WORKS

In this section, we provide a brief outline of previous literature on the learning with experts problem.
In Appendix A.1, we first describe a number of significant contributions to the problem in the central
setting, where all n experts and their predictions are available to an algorithm, and there are no
restrictions on the memory bounds of the algorithm. Since all information is central, there are also
no communication restrictions, unlike the setting we study. We then outline previous works for the
learning with experts problem in big data models in Appendix A.2.

A.1 CLASSIC LEARNING WITH EXPERTS

The problem of online learning with experts has a rich history with extensive connections to rein-
forcement learning and optimization. Early attempts to understand the problem first assumed the
existence of a “perfect expert” — one whose predictions are always correct. A folklore “halving”
algorithm achieves at most log, n mistakes given n experts in this setting by retaining the set of
experts who have not yet made a mistake and predicts based on a majority vote, eliminating all
disagreeing experts for each incorrect prediction.

11



Randomized weighted majority. However, the assumption of a perfect expert is often unrealis-
tic. The deterministic weighted majority algorithm relaxes this by assigning weights to each expert,
predicting based on the weighted majority, and reducing the weights of incorrect experts multiplica-
tively by (1 — ¢) for fixed any parameter ¢ € (0,1). Quantitatively, the number of mistakes by

logn
€

the deterministic weighted majority algorithm is at most 2(1 + &)m* + O ), where m™ is the

number of mistakes made by the best expert (Littlestone & Warmuth, 1994). In fact, a simple exam-
ple with two experts who always pick different outcomes at each time can force any deterministic
algorithm to be incorrect on every time, while each expert is only incorrect on half of the times.
Hence, no deterministic algorithm can do better than a multiplicative-factor of two compared to the
best expert, i.e., no deterministic algorithm can achieve sublinear regret.

To overcome the worst-case limitations of deterministic algorithms, Littlestone and Warmuth in-
troduced the randomized weighted majority (Littlestone & Warmuth, 1994). Instead of predicting
based on a strict weighted majority, randomized weighted majority predicts according to a proba-
bility distribution over the experts, where the probability of choosing an expert is proportional to
their weight. When an expert makes a mistake, their weight is again decreased multiplicatively by

1 — ¢), so that the algorithm makes a total of (1 + &)m™ + O logn mistakes, which translates
g c

to O (y/Tlogn) regret fore = © ( 10%”) and is known to be asymptotically optimal (Cover,
1966).

Other randomized variants. Besides these fundamental approaches, a variety of other algo-
rithms have been developed, each with separate benefits. For example, the well-known Multi-
plicative Weights Update (MWU) framework generalizes the weight update rule and can accommo-
date various loss functions (Brown, 1951). Notably, MWU has applications in boosting algorithms
like AdaBoost (Freund & Schapire, 1997) and approximately solving zero-sum games (Freund &
Schapire, 1999), and it can also efficiently approximate a wide class of linear and semi-definite pro-
grams (Clarkson, 1995), leading to fast approximations for various NP-complete problems such as
the traveling salesperson problem, scheduling problems, and multi-commodity flow (Plotkin et al.,
1995; Garg & Kodnemann, 2007).

Building upon the “Follow the Leader” principle, which naively selects the expert with the lowest
cumulative loss so far, Follow the Perturbed Leader (FTPL) introduces an element of randomness
by adding perturbations to the cumulative losses of experts before making a selection (Kalai &
Vempala, 2005). This randomization proves beneficial in avoiding worst-case scenarios often en-
countered by deterministic algorithms, leading to asymptotically optimal regret bounds similar to
randomized weighted majority and MWU. Moreover, for some structured problems, FTPL is more
computationally efficient than MWU. In contrast, Follow the Regularized Leader (FTRL) incor-
porates a regularization term into the decision process (McMahan, 2011), which penalizes drastic
changes, promoting stability against noise, and offers flexibility to incorporate prior knowledge by
choosing the regularization function.

A.2 LEARNING WITH EXPERTS IN BIG DATA SETTINGS

We remark that all of the algorithms discussed in Appendix A.l require storing the performance of
all experts across all times throughout the duration of the algorithm. However, in many real-world
applications, the number of experts n and the time horizon 7" can be substantial, so that storing and
processing all expert performances can be computationally demanding, either requiring significant
memory or communication. As a result, a line of recent work has focused on developing online
learning with experts algorithms that operate with memory usage that is sublinear in the number of
experts n.

Learning with experts on data streams. Srinivas et al. (2022) showed that any algorithm us-

ing S total space must achieve regret O ( %), implying that in order to achieve the optimal

O (\/TTogn) regret, the space used must be roughly linear, i.e., S = O (n). Srinivas et al. (2022)
also initially proposed an algorithm for online learning with experts in the random-order model,

achieving O (L) space for regret R. Subsequent work by Peng & Zhang (2023); Peng & Ru-
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binstein (2023) refined these bounds, culminating in Peng & Rubinstein (2023)’s algorithm with
@ (\/ nT) regret using polylogarithmic space in the arbitrary-order model.

Multi-armed bandits. Space complexity has also been studied for multi-armed bandits, a related
reinforcement learning problem with arms having fixed reward distributions, but only feedback for
a single arm is given on each time. Liau et al. (2018) showed that achieving near-optimal regret re-
quires only constant space. However, this approach is not immediately applicable to the our setting,
due to the adversarial nature of expert predictions, unlike the static rewards in bandits, and because
expert algorithms observe all “arms” each day. Thus, expert and bandit algorithms are not directly
comparable. Assadi & Wang (2020) showed that (k) space is necessary to identify the top k arms
in a streaming bandit model. These results indicate that the experts problem is inherently harder
than bandits, as low-regret bandit solutions can have constant space complexity.

Learning in streams. There is also significant research on the tradeoffs between space and sample
complexity for statistical learning and estimation in the i.i.d. streaming model, including studies on
matrix row inference (Raz, 2017; Garg et al., 2018; 2019) and parity learning (Kol et al., 2017; Raz,
2019). Another line of active work studies specific streaming learning problems such as correlation
finding (Dagan & Shamir, 2018), collision probability estimation, graph connectivity, and rank esti-
mation (Crouch et al., 2016). However, our work on the experts problem does not assume any data
distribution and focuses on prediction rather than inference. Thus, these works differs significantly
from our goal of proving general space complexity bounds for expert algorithms while maintaining
competitive regret against the best expert.

B MISSING PROOFS

B.1 MISSING PROOFS FROM SECTION 2

Lemma 2.3. [Max stability of exponential random variables] Let X; = % fori € [n], where

€1,...,€en are independent exponential random variables with rate 1. Then max;c|y {—}D is dis-
€i

tributed as ‘L{DZ{’ , where e is an exponential random variable with rate 1.

Proof. Let X = max;cy f—/p Then for any ¢ > 0, we have
€

Pr[X <t =Pr[X? <7
n p
=[[Pr { < tp}
. €i
=1
Hexp(—t” -9
i=1

exp (=17 - || f]}) -

, where e is an exponential random variable with rate 1, then

[L£1ln

el/p

Pr[Y <t]=Pr[Y? < 7] = exp (—t7 - | f||2).

By comparison, if Y =

Hence, max; ¢y e{% follows the same distribution as % O

B.2 MISSING PROOFS FROM SECTION 3

Lemma 3.2. [Expectation and variance of geometric mean estimator] Let p > 0 be fixed and
R > 3p be an integer. Let ey, . .., ep be independent exponential random variables with rate 1. Let

1/B
Zy = e;%for allb € [B), and let Z = (HbE[B} Zb> be their geometric mean. Then there exists
a universal constant Cs 5 € (0,28] such that E [Z) = C5 > and E [ZQ] < 3B,
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Proof. The probability density function for an exponential random variable with rate 1 is f(x) =
e~®. Thus by Fact 3.1, the probability density function for each term Z is pz—?~! - e~* " and
similarly, the probability density function for each term Z; /B in the geometric mean is p(z) =
Bpz—Br=1.¢==""" Therefore, we have Pr [Z;/B > t} < 5, so that for B = {%l

o0
E[Z;/B}:/ Pr|7,/% > 1] at
0
1 oo
:/ Pr[Z;/B>t} dt+/ Pr[Z;/B>t} dt
0 1
<1+ [ La
<1+/°°ldt<z
= L t3 ~ &

Since E[Z] = H;B:l E [Z; / B} , then we have IE [z] < 2B. Moreover, the probability density func-

tion for each term Zbl/B in the geometric mean satisfies p(z) = Bpz~5r~1. e 7> Bp- e=2%"

forall z € [%, 1].

E [Z;/B] - /oop(t) tdt

1

> / p(t) - tdt
1/2
1 .
> — . min p(t) -t
2 te[i]
1 1
> —- min Bp- e=27" . 2 = Q(1),
2 te[i] 2

sothat E [Z;/B} = Q(1) is bounded away from 0. Thus, E [Z] equals some constant C - € (0, 25].

By similar reasoning, we have

oo
E[Z2/ %) = / Pr |2,/ > 1) at
0
1 oo
S/ Pr |2,/ > 1] dt+/ Pr (7, > 1] at
0 1
S Y
s+ 1 tBp/2

<1 OOld<
_+1t3?t_3.

Hence, we have E [22] = [T, E [ 2], so that B [22] € [0,3], 0

—

Lemma 3.3. Suppose E [si(t)} = L;(t) and this random variable has second moment at most p

foralli € [n] and t € [T). Suppose the multiplicative weights update (MWU) algorithm is executed

—

with loss sequences s;(t) instead of L;(t) for all i € [n] and t € [T]. Then the sequence of resulting

choices achieves expected regret O pk’% on the sequence of losses { L;(t) }icin) te[7)-
Proof. Foreacht € [T],letp(t) € [0, 1]™ denote the probability distribution for the MWU algorithm

executed with loss sequences {s;(t)}icin)+e[r]- Since s;(t) is an unbiased estimate of L;(t), we

have E [57(?) | pt] = L,(t) for all realizations of p;. Let C; denote the loss at time ¢ on the loss
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sequences sj(?) and let C;{ denote the loss at time ¢ on the loss sequences {L;(t)}icn],cci7)- Then
the expected loss at time ¢ is

E(C, | pl=E | si(t)-pi(t) | pe

i€[n]
= > nlt) E[si0) | »i]
i€[n]

= > pilt) - Li(h)

i€[n]
=E[C} | p.
Taking expectations of both sides, we have E [C;] = E [C]]. By Theorem 2.4, the multiplicative
weights update (MWU) algorithm achieves expected regret O < ”1(7’,g"> on the sequence of losses
minje[n] Y4y wi(t). Therefore, its total cost is

E[C] =0 ( plogn) + min w;(t).

T 1€[n] telT)

On the other hand,
E | min 87(;) <minE Z 57(?)
i€[n] teT] i€[n] e

=minE ZLi(t) ,

i€ln] LtelT]

which is the best arm with the true losses. Hence, the expected regret of the algorithm on the true

losses is O (lengn)' O

Lemma 3.4. Suppose {;(j,t) € [1,5] forallt € [T], i € [n] and j € [s]. Then the expected regret
of Algorithm 2 is at most O <sl/p\ / 1072‘")

Proof. Since the loss on each server is in the range [1, 5], then the loss L;(¢) on each expert on each

day is at most O (s'/7). By Lemma 2.3, we have that s;(t) has the same distribution as ijgi) for

an exponential random variable e. By Lemma 3.2, s;(t) is an unbiased estimate of L; () + m

with second moment O (sl/ p). Thus by Lemma 3.3, the expected regret of Algorithm 2 is at most
1 It 1 _ 1 1
O(S /p Ojg«n)-‘rpoly(nT)'T—O(S /p O§n>. O

Lemma 3.5. Suppose {;(j,t) € [1,5] forallt € [T], i € [n] and j € [s]. Then with high probability,
the total communication of Algorithm 2 is at most O (sT') + nT - polylog(nsT) bits.

Proof. Consider Algorithm 2. Observe that at time ¢t € [T, server j € [s] will communicate
st/p
1001log(nsT) "
t € [T),i € [n] and j € [s]. Since ¢\” (j t) = % for b € [B], then for a fixed b € [B],

;) (j,t)1/P
server j € [s] will use communication only if (egb) (G, )P < %}fm

egb) (4, 1) < w Since (ez(.b) (4,1)) is an independent exponential random variable with rate
1, then we have

an expert ¢ € [n] only if ng) (j,t) >

By assumption, we have ¢;(j,¢) < 5 for all

or equivalently, if

500 log(nsT) < log? (nT)

®) ;)\ 1/p
PI' (e' (]7t)) S Sl/p ~ s
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Now for a fixed ¢ € [n], let Y7,...,Ys denote indicator random variables for whether ql(b) (4, 1)

triggers a message from the server to the coordinator. In other words, Y; = 1 if server j sends a
message due to ¢ and Y; = 0 otherwise. Then we have

E[Y1 + ...+ Ys] < logP(nsT).
By standard Chernoff ~ bounds, cf, Theorem 2.1, we have that
Pr([Yi+...+Y, 2 log"™ (nsT)] < (marymo- By a union bound overall b € [Bl,i € [n], t € [T],

it follows that the total number of samples sent to the coordinator is at most nT - polylog(nsT).
On the other hand, the coordinator needs to sync with every server for all ¢ € [T, inducing
O (sT) communication. Hence, with high probability, the overall communication is at most
O (sT) + nT - polylog(nsT). O

B.3 MISSING PROOFS FROM SECTION 4

Fact 4.1. Let e be an exponential random variable with rate 1. Then for all x > 2, we have
Pr[le (z,22]] € [£, %]

4x 2z

Proof. By Fact 3.1, the probability density function for % isp(z) = %2 e~ /% We have

1 2x 2x 1 "
Pr |- 27]| = dr = — e hdw.
r [e € (z, x]} /Jj p(x) dz /;c ¢ x

Note that for zz > 2, we have e!/% € ( , 1}. Hence

and

—

Lemma 4.2. We have E {5/(\75)} = Li(t) + and E [(si(t))ﬂ < O(TR?)-3E - (Li(t))2.

1
poly(nT)

Proof. Let g be the probability of sampling each time ¢ € [T']. Observe that with probability 1 — o,
we have s;(t) = 0. Otherwise, we continue as before.

Lete,eq,...,ep be independent random variables. Then by Lemma 2.3, we have
- 1 B o 1/B
E{sit}:@ -E (maxq j,t>
0] =e-5 & |IT {maxa Gt

) B 1/B

=0 - K
e 171;[1 (Ci )eb )

_ 1 ﬁ E Li(t) B

- o ;3 O 0et/P

-2 (e[ )
= Li(t),

where the last equality follows by the definition of C5 , = (E [61/%?} )B in Lemma 3.2.

Similarly, we have

- I e U0
E [(Sz(t))2:| =p-—-E H <(Z/p>

& 5 \(Coope
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Il
| =
—
=
/N
&
=
LT
~__—
~

b=1 O:;.z)wb
1 H (Li(t))? 1
o ;4 (C3.0)2 2/ Br
B
By Lemma 3.2, we have C; » = ©(1) and E [ T } < 38, Moreover, we set ¢ = 75z, so that
L — TR2. Therefore,
E |(s:()*] <TR? 370 (1) (Li())*,

as desired. O

Lemma 4.3. Suppose ¢;(j,t) € [1,5] forallt € [T], i € [n] and j € [s]. The expected regret of
Algorithm 3 is at most O (Rsl/p\/log n)

Proof. Since the loss on each server is in the range [1, 5], then the loss L;(¢) on each expert on

each day is at most O (s'/?). By Lemma 5.1, we have that E {s?(?)} = L;(t) + and

1
poly (W)
E {(sz(t))ﬂ = O (TR?)-35 - (L;(t))% Thus by Lemma 3.3, the expected regret of Algorithm 3 is

atmostO(Rsl/”\/?)Blogn) W T = O(Rsl/p\/Z}Blogn). O

Lemma 4.4. Suppose £;(j,t) € [1,5] forallt € [T), i € [n]and j € [s]. Then with high probability,
the total communication is at most (”*S) polylog(nsT) bits.

Proof. Consider Algorithm 3. Observe that at time ¢t € [T, server j € [s] will communicate

®) S/7
(]’ ) = 100log(nsT) "

By assumption, we have ¢;(j,t) < 5 forallt € [T],4 € [n] and j € [s]. Since q(b)( t) =
4i(J,t)
(e (3,0)"/? L
(egb) (j, )P < %}:m or equivalently, if el(-b) (3,t) < M Since (el(-b) (4,t)) is an

independent exponential random variable with rate 1, then we have

500log(nsT) | _ log? (nT)
sl/p ~ s '

an expert ¢ € [n] only if first it is sampled with probability ¢ and then g,

for b € [B], then for a fixed b € [B], server j € [s] will use communication only if

Pr (" (j,1)"/? <

Now for a fixed i € [n], let Y,...,Ys denote indicator random variables for whether q( )( t)
triggers a message from the server to the coordinator. In other words, Y; = 1 if server j sends a
message due to ¢ and Y; = 0 otherwise. Then for each j € [s], we have

log? (nT
IE[YJ-]<Q-¥,

~

since the event of probability o must occur first. Then by linearity of expectation, we have
EY1+...+ Y] < p-logf(nsT).

Similarly, we have that over all times and over all experts, the total expected amount of communi-
cation due to these events is at most O (o - nT - log? (nsT)). Recall that Algorithm 3 sets 0 = 3.
By standard Chernoff bounds, c.f., Theorem 2.1, it follows that the total number of samples sent to
the coordinator is at most & - polylog(nsT'), with high probability. On the other hand, the coordi-
nator needs to sync with every server for all selected days, in case the server does not communicate
anything. This process induces 35 - polylog(nsT’) communication with high probability, by a sim-
ilar Chernoff bound argument. Therefore, with high probability, the total communication is at most
(252) - polylog(nsT), as claimed. O
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B.4 MISSING PROOFS FROM SECTION 5

Lemma 5.1. Suppose ng) (4, t) > 1001\/27 forall b € [B]. Then we have E [sj(?)] = L;(t) +

sy @nd B [(s:(0)?] < 57 - BT,

—

Proof. Let a* > 0 be the smallest integer such that s;(t) > (55
with probability g, := 5% . Moreover, we require that a* < a to set w;(t) = w;(t—1)+ 29" . 54(t).

Consider a hypothetical process P where ng)( Jj,t) is reported by all servers if a* < a. We shall

ultimately show that P holds with high probability so that the expected regret is also slightly affected
by the actual process.

. Observe that we have a* < a

)1/P

—

Now, in this process, s;(t) is nonzero with probability g,.. Recall that B = [%—‘ Then by
Lemma 2.3,

where the last equality follows by the definition of Cs » = (E [ /55| )B in Lemma 3.2.

Similarly,
- 1 X 2/B
E[(5:0)2] = o0 - ] (maqu ’(m))
Oax 7 \JEls]
1 (b) "
=E maxq, ,t
ga*b_Hl(je[s} g (j )) 1
We have
—— \ /B 1/ 1/
(b) ) S p S p
) t _— —0 .
I (ya”o0) < [G)" ()]

be[B

We also have g, = 5% . Therefore,




Now, for p < 2, we have (2¢°)'=2/? < 1 and o = T max(s'=%/P 1) = g7 SO that
E[(s:(0)?] < BT

_ st—2/p

“R2ZT so that

Similarly, for p > 2, we have ¢ = &1= - max(s' ~%/7,1)

— (Qa*)1—2/p .§2/p . R2T
sy < L R
Since 2% < s, then it follows that E [(sj(?))ﬂ < §2/P . R2T, as desired. O

We upper bound the regret of Algorithm 4.
Lemma 5.2. Suppose we have {;(j,t) < 1 forallt € [T]. The expected regret of Algorithm 4 is at

most O (Rsl/p\/log n)

Proof. Since the loss on each server is at most 1, then the loss L;(¢) on each expert on each day is
at most O (s'/7). By Lemma 5.1, we have that E {sl(t)} =Li(t) + - and E {(sl(t))ﬂ <

poly(nT)
s?/P. R?T. Thus by Lemma 3.3, the expected regret of Algorithm 4 is at most O (Rs'/P\/Iogn) +
W~T:O(Rsl/pvlogn). O

It remains to upper bound the total communication of Algorithm 4.

Lemma 5.3. Suppose we have £;(j,t) < 1 for all t € [T|. Then with high probability, the fotal
communication for Algorithm 4 is at most (%5 ) - max(s'=2/?, 1) - polylog(nsT) bits.

Proof. Consider Algorithm 4 and a fixed a € [A]. Attime ¢t € [T], server j € [s] will com-
municate with expert ¢ € [n] only if it is first selected with probability 5%, and then qi(b) (4, t) >

100-(2"’)f;1/°p10g(nsT)' By assumption, we have ¢;(j,t) < 1forallt € [T], i € [n], and j € [s].
£i(4,t)

: ®) s 4y —
Sinee a7 1) = miGays
only if (ez(»b) (j, )P < 100'(2(1)5120%(”@), or equivalently, if egb) (4, t) < w Since

(v)

(€

for b € [B], for a fixed b € [B], server j € [s] will communicate

(4, 1)) is an independent exponential random variable with rate 1, we have

b, . 100 - (29)'/P log(nsT)
Pr (e (j.1)/” < 7

a P
< 2% -log?(nT)

~

S
Now, for a fixed ¢ € [n], let Y7,...,Ys denote indicator random variables indicating whether

ng) (4,t) triggers a message from the server to the coordinator. In other words, ¥; = 1 if server
Jj sends a message due to 7, and Y; = 0 otherwise. Then, for each j € [s], we have
log? (nT")

B[]S0 2,

since the event with probability 3% must occur first. By linearity of expectation, we have
EYi+...+ Y] < o-logP(nsT).

Similarly, over all times and experts, the total expected communication due to these events is at
most O (o - nT - log?(nsT)). Recall that Algorithm 4 sets o = 4 - max(s'~2/7,1). By standard
Chernoff bounds, as in Theorem 2.1, the total number of samples sent to the coordinator is at most
%= - polylog(nsT') - max(s'~2/P 1), with high probability. On the other hand, the coordinator must
sync with every server for all selected days in case the server does not communicate anything. This
process induces %5 - polylog(nsT') - max(s'~2/P, 1) communication with high probability, by a
similar Chernoff bound argument. Thus, with high probability, the total communication is at most

(2%52) - max(s'=%/?,1) - polylog(nsT'), as desired. O
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POTENTIAL BROADER IMPACT

This work contributes to the theoretical understanding of distributed online learning. The techniques
developed for handling general loss functions and reducing communication may have implications
for the design of distributed learning algorithms in resource-constrained environments. Further re-
search could explore the practical applicability of these findings.
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