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Abstract
We propose a novel method, namely Gaussian
Smoothing with a Power-Transformed Objective
(GS-PowerOpt), that solves global optimization
problems in two steps: (1) perform a (exponen-
tial) power-N transformation to the not necessar-
ily differentiable objective f : Rd → R and get
fN , and (2) optimize the Gaussian-smoothed fN
with stochastic approximations. Under mild con-
ditions on f , for any δ > 0, we prove that with
a sufficiently large power Nδ, this method con-
verges to a solution in the δ-neighborhood of f ’s
global optimum point, at the iteration complexity
ofO(d4ε−2). If we require that f is differentiable
and further assume the Lipschitz condition on f
and its gradient, the iteration complexity reduces
to O(d2ε−2), which is significantly faster than
the standard homotopy method. In most of the ex-
periments performed, our method produces better
solutions than other algorithms that also apply the
smoothing technique.

1. Introduction
In this work, we consider the global optimization problem
of

max
x∈S⊂Rd

f(x), (1)

where S is a compact set and f : S → R is a continuous
and possibly non-concave function with a unique global
maximum point x∗ = arg maxx∈S f(x). The minimize-
version of this problem is often encountered in machine
learning, such as model trainings and adversarial attacks in
computer vision. The gradient-based algorithms are com-
monly used, such as the (stochastic) gradient descent. In
general, these methods only guarantee to approximate a lo-
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cally optimal solution (Mertikopoulos et al., 2020; Lei et al.,
2019; Choromanska et al., 2015).

Gaussian smoothing (e.g., Section 3 in (Nesterov &
Spokoiny, 2017)) refers to convolving f with a Gaussian
density to obtain a surrogate objective

f̂σ(µ) := Ex∼N (µ,σ2Id)[f(x)], (2)

where N denotes a multivariate Gaussian distribution, σ >
0 is called the scaling parameter, and Id denotes a d × d
identity matrix. The smoothing effect possibly eliminates
certain local extremes of the objective, and this technique
is applied by the widely used homotopy methods for global
optimizations.

Homotopy (e.g., (Mobahi & Fisher, 2015)), also called the
graduated continuation, is a class of methods that aim to find
a global solution to (1), with many applications in machine
learning (Xu et al., 2016; Iwakiri et al., 2022). It converts
the original problem to

max
µ∈Rd,σ≥0

Eξ[f(µ+ σξ)], (3)

where ξ is a random vector with a pre-selected distribu-
tion, such as a standard multivariate Gaussian distribu-
tion (Gaussian Homotopy, GH) or a uniform distribution
in a unit sphere. Based on the observation that µ∗σ :=
arg maxµ E[f(µ+σξ)] approaches1 x∗ as σ decreases to 0,
the standard homotopy method adopts a double-loop mech-
anism: the outer loop iteratively decreases σ, and for each
fixed value of σ, the inner loop solves maxµ E[f(µ+ σξ)],
with the solution found in the current inner loop as the
starting search point in the next inner loop.

The double-loop mechanism is costly in time. To tackle this
issue, (Iwakiri et al., 2022) proposes a single-loop Gaus-
sian homotopy (SLGH) method that updates both µ and
σ in each iteration. Although SLGH aims at the global
optimums, in theory, it only guarantees to approximate a
local optimum2, which is not necessarily a global one. A
time-efficient algorithm that aims at the global maximum is
still to be found.

1Note that E[f(µ+ σξ)] = f(µ) if σ = 0.
2Theorem 4.1 in (Iwakiri et al., 2022) shows that SLGH ap-

proximates a solution x̂ such that E[∇f(x̂)] = 0.
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Therefore, in this work, we propose a new method, namely
the Gaussian Smoothing with a Power-Transformed Objec-
tive (GS-PowerOpt), which adopts a single-loop mechanism
and aims at the global optimum. Specifically, with σ > 0
and a sufficiently large N > 0, it solves the surrogate prob-
lem of maxµ Ex∼N (µ,σ2Id)[fN (x)], where fN (x) modi-
fies f by putting more weight to its global maximum point
x∗. The functional form of fN (x) can be either fN (x) or
eNf(x). According to our theory (see Subsection 3.1 for a
preview), GS-PowerOpt converges to a neighborhood of the
solution x∗ to (1) at the iteration complexity of O(d4ε−2).
This complexity can be improved to O(d2ε−2) if the com-
monly assumed Lipschitz conditions hold. The majority of
experiments in Section 5 show that the GS-PowerOpt-based
algorithm (e.g., EPGS, introduced later) outperforms other
algorithms that also apply the smoothing technique.

RELATED WORK

The homotopy methods, firstly proposed in (Blake & Zis-
serman, 1987), are intensively studied in the field of ma-
chine learning for global optimization problems. (Mobahi
& Fisher, 2015) derives a bound for the worst scenario of
the GH algorithm in a deterministic setting (i.e., the expec-
tation E is computed accurately), while (Hazan et al., 2016)
provides a convergence analysis in a stochastic setting (i.e.,
E is estimated with samples). (Gao & Sener, 2022) changes
the distribution of the perturbation ξ from the commonly
used Gaussian or uniform to the distribution that minimizes
the estimation error of the gradient ∇µEξ[f(µ+ ξ)]. (Lin
et al., 2023) proposes an algorithm for learning the whole
solution path produced by the homotopy. Specifically, their
algorithm learns a model xφ(σ) that predicts (for any σ > 0)
the solution to minµ∇µEξ∼N (0,Id)[f(µ+ σξ)], where φ
is the set of model parameters to be trained.

The smoothing technique and the homotopy method have a
large number of successful applications in machine learning,
such as neural network training (Hazan et al., 2016), adver-
sarial attack on image classification models (Iwakiri et al.,
2022), solving L1-regularized least-square problems ((Xiao
& Zhang, 2012)), neural combinatorial optimization (Gao
& Sener, 2022), improving the optimization algorithms of
stochastic gradient descent and Adam (Starnes & Webster,
2024), and so on.

There are a few existing studies (Dvijotham et al., 2014;
Roulet et al., 2020; Chen et al., 2024) that replace the
original f with a surrogate objective that also involves
the exponential transformation eNf(µ+ξ) before smooth-
ing. But their works are different from ours. (Dvijotham
et al., 2014) proposes to minimize the surrogate objective of
G(µ) := 1

N log
(
Eξ∼N (0,Σ)[e

Nf(µ+ξ)]
)

+ 1
2µ

TRµ. The
theory3 that justifies this surrogate objective requires that

3According to Theorem 3.1 in (Dvijotham et al., 2014),

N,R, and Σ be selected so that NR − Σ−1 is positive
semi-definite. This indicates that our EPGS (see Section
2), for which R = 0 and Σ = σId, is not a special case
of theirs, since −σ−1Id is negative definite and violates
their requirement. Moreover, their theory on the distance
between the optimum point of the new surrogate and x∗

is incomplete (see Section 3.2 in (Dvijotham et al., 2014)).
For optimal-control problems, (Roulet et al., 2020) study
the surrogate objective that is similar to G(µ), and pro-
vide a theoretical analysis on the corresponding algorithm’s
convergence to a stationary point. However, the relation be-
tween this stationary point and the global optimum point x∗

is not revealed. The proposed surrogate objective in (Chen
et al., 2024) is (1−N)f(µ) + log

(
Eξ∼N (0,Σ)[e

Nf(µ+ξ)]
)
,

where N ∈ [0, 1]. This is very different from our require-
ment that N is sufficiently large (see Theorem 2.1). Also,
their theory (i.e., Theorem 10 in (Chen et al., 2024)) bounds
|f(x∗)− f(µ∗)| with O(Nσ2) +G(N, σ) where G(N, σ)
is in general nonlinear in N , which does not imply an im-
provement for increasing the value of N .

As shown later in Eq. (5), GS-PowerOpt iteratively gener-
ates solution candidates and update its internal state (i.e.,
µt) using candidates’ evaluations. This pattern is shared
by many evolutionary algorithms (EA), such as simulated
annealing (Van Laarhoven et al., 1987), particle swarm opti-
mization (PSO, e.g., (Miranda, 2018) and Section 3.1.5 in
(Locatelli & Schoen, 2013)), the cross-entropy method for
optimization (Boer et al., 2005), and the covariance matrix
adaptation evolution strategy (CMA-ES, (Hansen & Oster-
meier, 2001)). However, GS-PowerOpt is distinct from the
EA algorithms in its construction of the surrogate objective
Ex∼N (µ,σ2Id)[fN (x)] and its use of the stochastic gradient
method for optimization.

CONTRIBUTION

This paper introduces a novel zeroth-order method, GS-
PowerOpt, for solving global optimization problems, with
the contributions summarized as follows.

1. To our knowledge, this is the first work that proposes
the idea4 of putting sufficiently large weight on the
global maximum values of the objective, to decrease
the distance between the optimum point before and
after Gaussian smoothing (i.e., ‖x∗−µ∗‖). It provides
a theoretical foundation (Theorem 2.1 and Lemma 3.4),
as well as motivations, for future studies to find better
ways of weight shifting than power transforms.

2. In theory, compared to the iteration complexity of

minµG(µ,Σ) is a convex problem given that NR−Σ−1 is posi-
tive definite and C is convex.

4(Dvijotham et al., 2014; Roulet et al., 2020; Chen et al., 2024),
which involve power transforms, have not mentioned this idea.
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O(d2/ε4) of the standard zeroth-order (ZO) homo-
topy method analyzed in Theorem 5.1 of (Hazan et al.,
2016), GS-PowerOpt is much faster at the iteration
complexity of O(d2ε−2) under the Lipschitz condi-
tions (see Section 3.5) and does not require the strong
assumption of “σ-nice”. Compared to the ZO meth-
ods in (Ghadimi & Lan, 2013; Chen et al., 2019) and
ZO-SLGH, the main advantage of GS-PowerOpt lies
in its ability to approximate the global solution. The
majority of our experiments show that it ranks highest
among all these algorithms that apply smoothing (see
Section 5.4).

3. Our convergence analysis in Corollary 3.9 does not
require the Lipschitz condition on the original objec-
tive f , which is assumed in the theoretical analysis of
homotopy methods in other studies (Hazan et al., 2016;
Iwakiri et al., 2022). Therefore, our analysis applies to
more situations.

4. The theory derived in this work is on the distance be-
tween the found solution and the optimal one, while
the convergence analysis in other studies on homo-
topy (Hazan et al., 2016; Iwakiri et al., 2022) is on
the objective value of the found solution. Therefore,
our theory has a wider range of applications (e.g., for
problems that concern the distance between the found
solution and the true one, such as inverse problems
(Arridge et al., 2019) and adversarial attacks in image
recognitions).

ROAD MAP

Section 2 describes GS-PowerOpt and the intuition behind
it. Its theoretical convergence analysis is performed in Sec-
tion 3 and 4 (see Subsection 3.1 for a preview). Numerical
experiments are included in Section 5. Section 6 provides a
guidance on selecting values of the hyper-parameters, and
Section 7 concludes. The appendix includes a table of nota-
tions, proofs to all our theoretical results (lemma, theorem,
corollary and proposition), details of certain compared algo-
rithms, and hyper-parameter values used in our experiments.
All our codes can be found at http://github.com/
chen-research/GS-PowerTransform.

2. GS-PowerOpt: The Proposed Method
2.1. Motivation

Intuitively, if we modify f(x) to put sufficiently large
weight on its global maximum point x∗, then µ∗ :=
arg maxµ Ex∼N (µ,σ2Id)[f(x)] should get close enough to
x∗. One way of such modification is by taking (exponential)
powers of f , if f(x∗) > 1. The difference fN (x∗)−fN (x)
is positively related with the power N , which indicates that
more weight is put on x∗ as N increases. Figure 1 verifies

this intuition with an example. As shown in these two toy
examples, µ∗ approaches x∗ as N increases.
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(a) Gauss. Smooth of fN .
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(b) Gauss. Smooth of eNf .

Figure 1: Graph of approximated FN,σ(µ), where
FN,σ(µ) is defined as (a) Ex∼N (µ,σ2)[f

N (x)] or (b)
Ex∼N (µ,σ2)[e

Nf(x)], σ = 0.5, and f(µ) = − log((µ +
0.5)2 + 10−5)− log((µ− 0.5)2 + 10−2) + 10 for |µ| ≤ 1
and f(µ) = 0 for |µ| > 1. All function graphs are scaled to
have a maximum value of 1 for easier comparisons.

From the above intuition, we propose GS-PowerOpt for solv-
ing the global optimization problem (1). It is a new method
that places more weight on the objective f ’s maximum value
(by increasing the gap between f(x∗) and f -values at other
points) before performing Gaussian smoothing. Based on
GS-PowerOpt, we design two algorithms5, Power Gaus-
sian Smoothing (PGS) and Exponential Power Gaussian
Smoothing (EPGS), which are featured with replacing the
original objective f(x) with a (exponential) power transfor-
mation. Specifically, with σ andN as two hyper-parameters,
PGS solves maxµ Ex∼N (µ,σ2Id)[f

N (X)] and EPGS solves
maxµ Ex∼N (µ,σ2Id)[e

Nf(x)], both using a stochastic gradi-
ent ascent algorithm derived in this paper, which does not
require the differentiability of f .

2.2. Theoretical Justification of the Motivation

In Theorem 2.1, we lay the ground for justifying the intuition
that motivates GS-PowerOpt: Given σ > 0, for any δ > 0,
there exists a threshold such that whenever N exceeds this
threshold, the global maximum point arg maxµ FN (µ, σ)
lies within a δ-neighborhood of x∗, where FN (µ, σ) :=
Ex∼N (µ,σId)[fN (x)] and

fN (x) :=

{
fN (x), x ∈ S;
0, otherwise, (PGS setting);

fN (x) :=

{
eNf(x), x ∈ S;
0, otherwise.

(EPGS setting).
(4)

5See Algorithm 1 for the two algorithms.
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Theorem 2.1. Let f : S ⊂ Rd → R be a continuous func-
tion that is possibly non-concave (and non-negative only for
the case of PGS), where S is compact. Assume that f has
a global maximum x∗ such that supx:‖x−x∗‖≥δ f(x) <
f(x∗) for any δ > 0. For any σ > 0 and any N > 0, define

FN,σ(µ) :=
1

(
√

2πσ)d

∫
x∈Rd

fN (x)e−
‖x−µ‖2

2σ2 dx,µ ∈ Rd

where fN is defined in (4) for either PGS or EPGS. Then,
for any M > 0 and δ > 0 such that B̄(x∗; δ) := {x ∈
Rd : ‖x − x∗‖ ≤ δ} ⊂ S, there exists Nδ,σ,M > 0, such
that whenever N > Nδ,σ,M , for any ‖µ‖ ≤ M and any
i ∈ {1, 2, ..., d} we have that: ∂FN (µ,σ)

∂µi
> 0 if µi < x∗i −δ,

and ∂FN (µ,σ)
∂µi

< 0 if µi > x∗i + δ. Here, µi and x∗i denote
the ith entry of µ and x∗, respectively.
Remark 2.2. The inequalities in Theorem 2.1 imply that any
stationary point µ′ (if any) of FN,σ(µ) within the region
‖µ‖ ≤M satisfies |µ′i − x∗i ‖ ≤ δ for all i ∈ {1, 2, ..., d}.
Proposition 2.3. Given σ > 0 and N > 0, FN,σ(µ) in
Theorem 2.1 attains a global max at some µ∗ ∈ Rd.

2.3. Solution Updating Rule of GS-PowerOpt

For the optimization problem (1), based on Theorem 2.1,
with the pre-selected hyper-parameters N and σ > 0, GS-
PowerOpt follows a stochastic gradient ascent scheme to
solve maxµ FN,σ(µ). Specifically, the rule for updating the
solution candidate is

GS-PowerOpt : µt+1 = µt + αt∇̂FN,σ(µt), (5)

where ∇̂FN,σ(µt) := 1
K

∑K
k=1(xk − µt)fN (xk),

{xk}Kk=1 are independently sampled from the multivari-
ate Gaussian distribution N (µt, σ

2Id), and fN (xk) is de-
fined in (4). Note that ∇̂FN,σ(µt) is a sample estimate of
σ2∇FN,σ(µ), since

∇FN,σ(µ) = ∇µEx∼N (µt,σ2Id)[fN (x)]

= (
√

2π)−dσ−(d+2)

∫
x∈Rd

(x− µt)fN (x)e−
‖x−µt‖2

2σ2 dx

= σ−2Ex∼N (µt,σ2Id)[(x− µt)fN (x)],

(6)

where the interchange of differentiation and integral in the
second line can be justified by Lebesgue’s dominated con-
vergence theorem. A flowchart of the algorithm is given in
Figure 2.

Based on GS-PowerOpt, PGS and EPGS are designed in
Algorithm 1. They normalize the gradient before updating
the solution, which is a common practice to stabilize results.
An effective method to avoid computation overflows caused
by a large N -value can be found in Appendix B.

fN(x)f (x)
(Exp) power-N

transform
Gaussian
Smoothing FN;σ(µ)

Stochastic
Gradident
Ascent µ

∗

Figure 2: A Flowchart of GS-PowerOpt

Algorithm 1 PGS/EPGS for Solving (1)

Input: The power N > 0, the scaling parameter σ >
0, the objective f , the initial value µ0, the number K
of sampled points for gradient approximation, the total
number T of µ-updates, and the learning rate schedule
{αt}Tt=1.
for t from 0 to T − 1 do

Independently sample from the multivariate Gaussian
distribution N (µt, σId) and obtain {xk}Kk=1.
µt+1 = µt + αt∇̂FN,σ(µt)/‖∇̂FN,σ(µt)‖, where
∇̂F (µt) is defined in (5).

end for
Return {µt}Nt=1, from which µ∗ is selected to approxi-
mate x∗ (e.g., µ∗ := arg maxt∈{1,2,...,T} f(µt)).

3. Convergence Analysis
3.1. Preview of the Main Theoretical Results

In this section, we prove our main theoretical results,
Lemma 3.4 and Corollary 3.9, which indicate that GS-
PowerOpt converges to an arbitrarily small neighborhood
of x∗ := arg maxx∈S f(x). Specifically, we show that, for
any fixed δ > 0 and any fixed σ > 0, given N larger than
some (δ, σ)-dependent threshold, all the stationary points of
FN,σ(µ) lie in a δ-neighborhood of x∗ (Lemma 3.4), and
the stochastic gradient ascent in Eq. (5) converges to one
of these stationary points with the iteration complexity of
ON (d4ε−2) (Corollary 3.9 and Remark 3.10). This com-
plexity is derived from the bound given in Theorem 3.7,
whose proof requires Lemma 3.5 and 3.6.

Furthermore, with additional conditions on f , we prove that
the complexity is improved to ON (d2ε−2) in Subsection
3.5, and that the dependence of the O-factor on N can be
removed (Corollary 4.2).

3.2. Notations in Section 3

In this section, let δ > 0 and σ > 0 be fixed, and δ satisfies

Sx∗,δ := {µ ∈ Rd : |µi − x∗i | ≤ δ, i ∈ {1, 2, ..., d}} ⊂ S,
(7)

where i denotes the ith entry, x∗ := arg maxx∈S f(x), and
S is f ’s compact domain as specified in Assumption 3.1.
Let N > 0 be such that all the stationary points (if any) of
FN,σ(µ) within the region ‖µ‖ <

√
dM lie in Sx∗,δ , where

M is specified in Assumption 3.1. Such anN exists because
of Theorem 2.1 (see Remark 2.2), and its value depends on
δ, σ, and

√
dM . Unless needed for clarity, we omit the
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subscripts in FN,σ(µ) as they remain fixed throughout the
rest of Section 3, and write F (µ) instead. ∇F (µ) refers to
the gradient of F with respect to µ.

3.3. Assumptions and Lemmas

Assumption 3.1. Assume that f(x) : S → R is a function
satisfying the conditions specified in Theorem 2.1, where
S ⊂ SM := {x ∈ Rd : |xi| ≤ M, i ∈ {1, 2, ..., d}}, for
some M > 0.

Assumption 3.2. Assume that the learning rate αt satisfies

αt > 0,

∞∑
t=0

αt = +∞, and
∞∑
t=0

α2
t < +∞.

Lemma 3.3. Under Assumption 3.1, FN,σ(µ) and
∇FN,σ(µ) are well-defined for all µ ∈ Rd.

Lemma 3.4. Under Assumption 3.1, any stationary point
of FN,σ(µ) in Rd belongs to Sx∗,δ (defined in (7)).

Lemma 3.5. Under Assumption 3.1, for any σ > 0, the
objective function FN,σ(µ) is Lipschitz Smooth. That is, for
any µ1,µ2 ∈ Rd,

‖∇FN,σ(µ1)−∇FN,σ(µ2)‖ ≤ L‖µ1 − µ2‖,

where L = 2dσ−2fN (x∗), and fN (x∗) = fN (x∗) for
PGS and fN (x∗) = eNf(x∗) for EPGS.

Lemma 3.6. Under Assumption 3.1, for any σ > 0, let
∇̂FN,σ(µ) be defined in (5). Then, E[‖∇̂FN,σ(µ)‖2] < G,
where

G =

{
dσ2f2N (x∗), for PGS;

dσ2e2Nf(x∗), for EPGS.

3.4. Iteration Complexity

Theorem 3.7. Let {µt}Tt=0 ⊂ Rd be produced by following
the iteration rule of (5), with a pre-selected and determinis-
tic µ0 and all the involved terms defined as in Section 3.2.
Then, under Assumption 3.1 and 3.2, we have that

T−1∑
t=0

αtσ
2E[‖∇F (µt)‖2] ≤ fN (x∗)−F (µ0)+LG

∞∑
t=0

α2
t ,

where L and G are as defined in Lemma 3.5 and Lemma
3.6, respectively.

Remark 3.8. The inequality in Theorem 3.7 implies that
mint∈{0,1,...,T−1} E[‖∇F (µt)‖2] approaches 0 as T →∞,
since the right-hand side is finite and

∑∞
t=0 αt = ∞. Fur-

thermore, the iteration complexity of this convergence is
given in Corollary 3.9 when αt := (t+ 1)−(1/2+γ).

Corollary 3.9. Suppose Assumption 3.1 and 3.2 hold. Let
{µt} be produced by the stochastic gradient ascent rule (5)

of GS-PowerOpt, with a pre-selected and deterministic µ0.
Then, for any ε ∈ (0, 1), after

T > (C1C2d
2ε−1)2/(1−2γ) = ON ((d2ε−1)2/(1−2γ))

times of µt-updating by (5), we have that
mint∈{0,1,...,T} E[‖∇F (µt)‖2] < ε. Here, γ ∈ (0, 1/2) is
a parameter in the learning rate αt := (t + 1)−(1/2+γ),
C0 = fN (x∗) − F (µ0) + 2f3

N (x∗)
∑∞
t=1 t

−(1+2γ),
C1 = C0(1− 2γ)σ−2, and C2 = max{1, 2/C1}.
Remark 3.10. The iteration complexity is approximately
ON (d4ε−2) if γ is close to 0. Also, the dependence of
the big-O factor on N can be removed with an additional
assumption. See Corollary 4.2 for this point.

3.5. Improved Iteration Complexity under Lipschitz
Conditions

In Proposition 3.11, we re-derive the coefficientL in Lemma
3.5 under the Lipschitz condition on the objective f and its
first derivative ∇f . The new value of L does not depend on
the dimension d. With this result, the iteration complexity
in Corollary 3.9 becomes ON (d2ε−2) when γ is close to 0.

Proposition 3.11. Assume Assumption 3.1, f(x) = 0 on
the boundary of f ’s domain, the Lipschitz condition on f :
|f(x)−f(y)| ≤ L0‖x−y‖, and the Lipschitz condition on
∇f : ‖∇f(x)−∇f(y)‖ ≤ L1‖x−y‖. Then, the following
two statements are true.

1. ‖∇FN (µ1, σ)−∇FN (µ2, σ)‖ ≤ L‖µ1 −µ2‖ holds
for any µ1,µ2 ∈ Rd, where L = (NfN−1(x∗)L1 +
N(N − 1)L2

0f
N−2(x∗)) under the PGS setting, and

L = (NL1e
Nf(x∗) +N2L2

0e
Nf(x∗)) under the EPGS

setting.

2. The iteration complexity in Corollary 3.9 reduces to
ON ((dε−1)2/(1−2γ)).

Remark 3.12. “f(x) = 0 on the boundary of f ’s domain”
is assumed without loss of generality, since we can continu-
ously extend f to a larger domain to make it true.

The Lipschitz condition is common in literature. For ex-
ample, the convergence analysis for the standard homotopy
method requires the Lipschiz assumption on f (see Theorem
5.1 in (Hazan et al., 2016)), and the convergence analysis
for ZOSLGH requires the Lipschitz condition on both f and
∇f (see Assumption A1 in (Iwakiri et al., 2022)).

4. Removing the Iteration Complexity’s
Dependence on N

Lemma 3.4 and Corollary 3.9 imply that GS-PowerOpt con-
verges to a δ-neighborhood of x∗ at the iteration complexity
of ON (d4ε−2). To ensure the convergence to a smaller
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neighborhood of x∗, we need to decrease δ. However, this
possibly requires a larger N for Lemma 3.4 and Corollary
3.9 to hold (recall N ’s definition in Subsection 3.2), and in
turn increases the iteration complexity of ON (d4ε−2). The
following additional assumption removes the complexity’s
dependence on N , and guarantees an iteration complexity
of O(d4ε−2) regardless of how close the positive δ is to 0.

Assumption 4.1. f(x) ∈ [0, 1) for the PGS case, and
f(x) < 0 for the EPGS case.

In practice, this assumption can be realized if we know an
upper bound of the objective f(·). For example, if it is
known that f(·) < B, then we can proceed EPGS with the
new objective function f1 := f − B (f and f1 share the
same global maximum point x∗). Also, at least shown by
our experiments (Table 1 - 4), GS-PowerOpt works well for
objectives that do not necessarily satisfy this assumption.

Corollary 4.2. Under Assumption 3.1 and 4.1, the iteration
complexity in Corollary 3.9 becomes O((d2ε−1)2/(1−2γ)),
and the iteration complexity in Point 2 of Proposition 3.11
becomesO((dε−1)2/(1−2γ)), both of which are independent
from N .

Remark 4.3. Note that the two complexities approach
O(d4ε−2) and O(d2ε−2), respectively, as γ → 0.

5. Experiments
5.1. Effects of Increasing Powers

We illustrate the improvements made by increasing N for
PGS/EPGS through an example problem of maxx∈Rd f(x),
where

f(x) = − log(‖x−m1‖2+10−5)−log(‖x−m2‖2+10−2),
(8)

the global maximum pointm1 ∈ Rd has all its entries equal
to −0.5, and the local maximum pointm2 ∈ Rd has all its
entries equal to 0.5. The graph of its 2D-version is plotted
in Figure 3 (a).

With each value of N , we perform both the PGS and EPGS
in Algorithm 1 to solve this problem. The experiments are
done in two settings, one is two-dimensional (d = 2) and
the other is five-dimensional (d = 5). More details can be
found in Appendix E.

The results, plotted in Figure 4, show that, as N increases,
the distance between the produced solution µ∗ and the
global maximum point x∗ approaches zero (see the decreas-
ing MSE curve in the plot), which is consistent with Theo-
rem 2.1 and the idea that F (µ)’s maximum µ∗ approaches
the global maximum point x∗ of f as we put more weight
on f(x∗).
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Figure 4: Effects of Increasing N . For each N ,
we perform the algorithm 100 times to stabilize re-
sults, and obtain {µk}100

k=1. The average fitness∑100
k=1 f(µk)/100 and

∑100
k=1 MSE(m1,µk)/100 are plot-

ted, where MSE(m1,µk) :=
∑d
i=1(µki + 0.5)2/d, σ =

1.0, and f is defined in (8). Note that x∗ = m1 has all its
entries equal to −0.5.

5.2. Performance on Benchmark Objective Functions

In this subsection, we test the performance of PGS and
EPGS on solving (1), with the objective f being either of
the two popular benchmark objective functions, the Ackley
and the Rosenbrock (maximize-version).

The performances of other popular global algorithms
(maximize-version) are reported for comparison, including
(1) a standard homotopy method STD-Homotopy; (2) two
zeroth-order single-loop Gaussian homotopy algorithms,
ZOSLGHd and ZOSLGHr (see the determinsitic version6 of
Algorithm 3 in (Iwakiri et al., 2022)); (3) the gradient-ascent
version of the zeroth-order algorithm of ZOSGD (see Equa-
tion (1) in (Chen et al., 2019) and Section 2.1 in (Ghadimi
& Lan, 2013)) and ZOAdaMM (Algorithm 1 in (Chen et al.,
2019))7, which were also used for comparisons in (Iwakiri
et al., 2022); (4) as well as CMA-ES (Hansen & Oster-
meier, 2001; Hansen et al., 2019), one of the state-of-the-art
evolutionary algorithms.

More details and discussions on the compared algorithms
can be found in Appendix D. The selected hyper-parameter
values of all algorithms can be found in Appendix F.

6A deterministic version of SLGH is for solving the optimiza-
tion problem of maxx f(x), with f being a deterministic function.

7ZOSGD and ZOAdaMM were originally designed to solve
(3). We take their solutions to (3) as solutions to (1), and treat the
scaling parameter in (3) as a hyper-parameter.
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Figure 3: Graph of the Benchmark Objective Functions.

5.2.1. ACKLEY

The Ackley objective function is characterized by numer-
ous local optima and a single global optimum. We solve
the max-version of the corresponding problem, which is
max(x,y)∈R2 f(x, y) and f(x, y) = 20e−0.2

√
0.5(x2+y2) +

e0.5(cos(2πx)+cos(2πy)).The graph of this function is plotted
in Figure 3(b). From both the functional form and the graph,
it is not difficult to see that f(x, y) attains its maximum at
x∗ = (0, 0).

The solutions and their f -values found by each of the com-
pared algorithms are reported in Table 1. For each algo-
rithm, the total number T of iterations is set as 200, and
K = 100 samples are used for each solution update. The
hyper-parameters are selected by trials. For each set of
hyper-parameter candidates, we perform 100 experiments
and take the average to stabilize the results (so all the re-
ported numbers are averages). The initial solution value for
each experiment is drawn from a multivariate Gaussian with
mean µ0 = [5.0, 5.0] and covariance 0.01I2.

The results in the table show that all the algorithms perform
well and are close to each other, except STD-Homotopy.

5.2.2. ROSENBROCK

The Rosenbrock objective is known to be difficult to op-
timize, since its global optimum point x∗ = (1.0, 1.0)
is surrounded by a flat curved plane (see Figure 3(c)).
The problem to be solved is max(x,y)∈R2 f(x, y), where
f(x, y) = −100(y − x2)2 − (1− x)2.

The performance of each algorithm is recorded in Table 2,
which shows that the performances of CMA-ES and EPGS
are close, and are significantly better than those of other
algorithms.

Table 1: Performances on Maximizing Ackley. “Iter. Taken”
refers to the number of iterations taken to reach the best
found solution. All numbers are rounded to keep at most 3
decimal places.

Algorithm Iter.
Taken

Best Solution
Found (µ∗)

f(µ∗)

CMA-ES 116 (0.0, 0.0) 22.718
EPGS (N = 1) 143 (0.001, 0.0) 22.683
PGS (N = 20) 141 (0.001, 0.002) 22.678
ZOSLGHr 131 (0.001,−0.002) 22.621
ZOAdaMM 158 (0.005, 0.001) 22.613
ZOSLGHd 123 (−0.003,−0.001) 22.61
ZOSGD 174 (0.005, 0.007) 22.596
STD-Homotopy 194 (0.962, 0.946) 17.58

5.3. Performance on the Black-box Targeted
Adversarial Attack

Let C be a black-box8 image classifier. The targeted adver-
sarial attack on C refers to the task of modifying the pixels of
a given image a so that C(a+x) is equal to a pre-specified
target label T . We perform attacks in the most difficult case
- the target label T is pre-selected to be the one with the
smallest predicted probability. Another goal of this task is
to minimize the perturbation size ‖x‖. Hence, we set the
loss as

L(x) := max(max
i 6=T
C(a+ x)i − C(a+ x)T , κ) + λ‖x‖,

where C(a + x)i denotes the predicted logit (i.e., log
probability) for the ith class, κ is a hyper-parameter that
controls the certainty level of the attack, λ is a regular-
ization coefficient (we set λ = 1 in our experiments),
T := arg mini C(a)i, and ‖x‖ denotes the L2 norm of

8A black-box classifier refers to a classification model whose
parameters are not accessible.
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Table 2: Performances on Maximizing Rosenbrock. The
differences between this experiment and that in Table 1 are:
The number T of iterations is set as 1000, and the initial
solution candidate is taken as µ0 := [−3.0, 2.0]. For PGS,
the Rosenbrock is added by 20, 000 to ensure the search
agent only encounter positive values. The global maximum
point of the Rosenbrock function is (1,1).

Algorithm Iter.
Taken

Best Solution
Found (µ∗)

f(µ∗)

CMA-ES 72 (1.0, 1.0). 0.0
EPGS (N = 3) 487. (0.999, 1.000) −0.017
STD-Homotopy 624 (0.903, 0.885) −2.401
PGS (N = 1) 513 (0.773, 1.025) −22.84
ZOAdaMM 852 (0.004, 0.618). −39.206
ZOSLGHr 148 (0.105, 0.938). −88.477
ZOSGD 45 (0.272, 1.173). −121.14
ZOSLGHd 471 (−0.447, 1.991). −137.016

x (i.e., the square root of the sum of squares of entries in
x). This loss function resembles the popular one designed
in (Carlini & Wagner, 2017).

With EPGS and other compared algorithms, we perform ad-
versarial attacks on 100 randomly selected images from each
of two image datasets, the set of MNIST handwritten digits
(LeCun et al., 1998) and the CIFAR-10 set (Krizhevsky &
Hinton, 2009). Specifically, the goal is to solve:

max
x∈Rd

f(x) := −L(x),

where d is the total number of pixels in each image. For
Figure-MNIST images, d = 28 × 28, and for CIFAR-10
images, d = 32× 32× 3. We call f as the fitness function.

The classifier is a robust convolutional neural network
(CNN) trained using the technique of defensive distillation9.
The distillation temperature is set at 100, which leads to a
high level of robustness (Carlini & Wagner, 2017). In the
MNIST attacks, our trained classifier C has a classification
accuracy of 97.4% on the testing images. In the CIFAR-10
attacks, the trained C has a test accuracy of 86.2%.

The hyper-parameters of all the tested algorithms are se-
lected by trials and can be found in Appendix F. For
ZO-SLGHd, ZO-SLGHr, and ZO-AdaMM, the hyper-
parameters reported in Appendix E.1 of (Iwakiri et al., 2022)
are included in our candidate set, since they performed sim-
ilar tasks.

9We borrow the code by (Carlini & Wagner, 2017) for training
the classifier from https://github.com/carlini/nn_
robust_attacks, which applies TensorFlow (Abadi et al.,
2015) for model training. We changed the layer structure in the
neural network to either increase accuracy or to decrease computa-
tion complexity while maintaining the accuracy.

We choose EPGS over PGS for this task since the fitness
function f(x) can be negative, which makes EPGS more
convenient to apply. But note that we can modify f(x) by
adding a large positive constant to facilitate PGS.

5.3.1. MNIST

For each image am that is randomly drawn from the dataset,
where m ∈ {1, 2, ..., 100}, and each algorithm, we per-
form an attack (i.e., experiment) of Ttotal iterations. Let
{µm,t}Ttotal−1

t=0 denote all the perturbations (solutions) pro-
duced in these Ttotal iterations. We say that a perturbation
µ is successful if the predicted log probability of the target
label is at least κ = 0.001 greater than that of other classes
(i.e., C(a+µ)T −maxi 6=T C(a+µ)i > κ). We say that an
attack is successful if the produced {µm,t}Ttotal−1

t=0 contain
at least one successful perturbation. If the attack is suc-
cessful, let µ∗m denote the successful perturbation with the
largest R2-value among {µm,t}Ttotal−1

t=0 , and let Tm denote
the number of iterations taken by the algorithm to produce
µ∗m. We use R2(a,a+µ) := 1−

∑d
i=1 µ

2
i∑d

i=1(ai−ā)2
to measure

the similarity between a and the perturbed image a + µ,
where ai and µi denote the ith pixel (entry) of a and µ,
respectively, and ā denotes the mean of {ai}.

With the above notations, we construct four measures on the
performances of an algorithm. One is the success rate, which
refers to the ratio of successful image attacks out of the total
number of attacks (100). The second measure is the average
R2, which equals R̄2 :=

∑
m∈SR

2(am,am + µ∗m)/|S|,
where S denotes the set of indices of the successful attacks
and µ∗m denotes the optimal perturbation for the mth figure.
The third one is the average ‖µ∗‖ of {‖µ∗m‖}m∈S, where
‖ · ‖ denotes the L2-norm. The last measure is the average
T̄ of {Tm}m∈S.

The results are reported in Table 3, from which we see that
EPGS has a high R̄2-score of 87% (ranks among the top 2),
indicating that the perturbed image is closest to the original
one (R2 = 100% implies that a and a+ µ are identical).
Also, the average number of iterations taken by EPGS to
reach the optimal perturbation is 397, which is among the
two fastest algorithms.

5.3.2. CIFAR-10

With 100 randomly drawn images from the CIFAR-10 test
set, we repeat the per-image targeted adversarial attacks in
Section 5.3.1. Their results are reported in Table 4. These
results are in general better than those in the MNIST attacks,
which we believe is because of the lower accuracy of the
trained CIFAR-10 CNN (86.0% vs 97.8%).

The results show that EPGS produces a success rate of 98%
and scores in the top three with respect to R̄2. Specifically,
the R̄2-value of 98% indicates that the perturbed image
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Table 3: Targeted Adversarial Attack on 100 MNIST images
(per-image). For each image attack, we set the initial pertur-
bation µ0 = 0, and Ttotal = 1, 500. The success rate (SR)
is the portion of successful attacks out of the 100 attacks.
R̄2, ‖µ∗‖, and T̄ are defined in Section 5.3.1. The numbers
in the parentheses are sample standard deviations. STD-Htp
is STD-Homotopy for short. For EPGS, N is selected to
be 0.05. See Table 10 in the Appendix for the produced
adversarial images for four randomly selected images.

Algorithm SR R̄2 ‖µ∗‖ T̄

CMA-ES 100% 89%(4%) 2.81(0.61) 1489(12)
EPGS 100% 87%(5%) 3.01(0.60) 397(101)

ZOSGD 100% 85%(5%) 3.14(0.61) 1427(242)
ZOSLGHd 100% 74%(9%) 4.21(0.71) 1490(24)
ZOSLGHr 100% 65%(13%) 4.86(0.81) 476(658)
ZOAdaMM 100% 29%(27%) 6.88(1.15) 45(15)
STD-Htp 97% −4%(37%) 8.25(1.09) 530(264)

Table 4: Targeted Adversarial Attack on 100 CIFAR-10
images (per-image). For each image attack, we set µ0 = 0
and Ttotal = 1, 500. For EPGS, N is selected as 0.03.
See Table 11 in the Appendix for the produced adversarial
images for four randomly selected images.

Algorithm SR R̄2 ‖µ∗‖ T̄

ZOSLGHd 98% 99%(1%) 1.72(0.32) 1290(411)
ZOSLGHr 98% 98%(3%) 2.66(0.68) 456(345)

EPGS 98% 98%(2%) 3.05(0.57) 748(248)
CMA-ES 99% 75%(25%) 10.06(2.35) 158(399)
ZOAdaMM 100% 58%(39%) 13.13(2.71) 58(31)
ZOSGD 62% 99%(1%) 1.19(0.19) 764(349)
STD-Htp 52% 87%(13%) 7.54(1.57) 566(396)

produced by EPGS is very close to the original image, which
is consistent with our goal that the perturbation size ‖µ∗‖
should be small.

5.4. Summary on Experiment Results

Comparing to algorithms that use the smoothing technique
(which excludes CMA-ES), PGS and EPGS ranked among
the tops in all the tasks we performed. Specifically, in the
tasks of Ackley, Rosenbrock, and MNIST-attack (Table 1, 2
and 3), EPGS has the highest fitness value f(µ∗) than other
algorithms except CMA-ES. For CIFAR-10 attacks (Table
4), EPGS’s R̄2 score equals that of the best (ZOSLGHd).
In sum, EPGS outperforms other algorithms that also ap-
ply smoothing techniques in the majority of the performed
experiments.

While EPGS underperforms CMA-ES in experiments of

Ackley, Rosenbrock, and MNIST, it beats CMA-ES in the
CIFAR-10 task with a comparable success rate and a signifi-
cantly smaller perturbation norm (see Table 4). Moreover, to
the best of our knowledge, the theoretical convergence guar-
antee for CMA-ES on general non-convex objectives is less
developed, providing a competitive edge to GS-PowerOpt.

5.5. The Case of Multiple Global Maxima

Although the convergence theory (e.g., Theorem 2.1) re-
quires the condition that the objective f has a unique global
maximum, it is a sufficient rather than a necessary condi-
tion for GS-PowerOpt to work. To illustrate this point, we
perform an additional experiment with EPGS on an objec-
tive with two global maxima: f(x) = − log(‖x−m1‖2 +
10−5)− log(‖x−m2‖2 + 10−5), wherem1 = [−.5,−.5]
and m2 = [.5, .5]. A hundred trials are performed, where
N = 1 and each µ0 is randomly sampled around the ori-
gin. The mean square error between the found solution and
one of the two global maximum point is close to 0, with
its average (over the 100 trials) equal to 1.4 × 10−5 and
its sample standard deviation equal to 1.6 × 10−5. This
example indicates that GS-PowerOpt is capable of locating
at least one of the multiple global optima. We leave the
corresponding theoretical analysis in our future works.

6. Guidance on Choosing Hyper-parameters
Although a larger N guarantees a convergence of GS-
PowerOpt to a smaller neighborhood of x∗ in theory (see
Subsection 3.1), it also leads to a higher variance of of the
update term ∇̂FN,σ(µt) in Eq. (5), which in turn decreases
the efficiency of the algorithm in practice. Therefore, we
recommend to start from a moderateN and incrementally in-
crease its value during tuning. Although the proper starting
value of N may vary for different problems, based on our
experience, 5 for PGS and 0.1 for EPGS are good choices.

While a large σ increases the exploration range for each
µ update, it also increases the sample complexity of the
algorithm. Our experiments show that a σ-value of 10% of
the search radius for x is a good starting value for tuning.

7. Conclusion and Future Work
The convergence analysis and numerical results show
that the easily implemented optimization method of GS-
PowerOpt stands out among its peers that also apply smooth-
ing techniques. Our work provides a foundation for future
studies to explore more efficient ways to increase the gap
between f(x∗) and f values at other points before smooth-
ing.
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A. Table of Notations

Notation Description Reference
S A compact set in Rd. Theorem 2.1
f The real-valued objective function, which is further assumed to

be non-negative for PGS.
Eq. (1) or Theorem
2.1

x∗ The global maximum point of f .
x∗i The ith entry of x∗, where i ∈ {1, 2, ..., d}. (7)
µi The ith entry of µ ∈ Rd, where i ∈ {1, 2, ..., d}. (7)
N (µ, σId) A multivariate standard Gaussian distribution, where µ ∈ Rd,

σ > 0, and Id denotes the d× d identity matrix.
Eq. (2)

f̂σ(µ) Ex∼N (µ,σ2Id)[f(x)] (2)
N N > 0 and N ∈ R. In Section 3, it is assumed to be greater than

a threshold (see Section 3.2 for details).
fN (x) The (exponential) power of f , extended to Rd. Eq. (4)
FN,σ(µ) FN,σ(µ) = Ex∼N (µ,σ2Id)[fN (x)]. Theorem 2.1
F (µ) The abbreviation of FN,σ(µ), where N and σ are fixed. Section 3.2.
∇F (µ),
∇FN (µ, σ)

The gradient of FN,σ(µ) with respect to µ. Eq. (6).

F̂N,σ(µ) A sample estimate of σ2∇FN,σ(µ). Eq. (5)
Sx∗,δ A δ-neighborhood of x∗ in Rd, where δ > 0. Eq. (7)
L The Lipschitz coefficient of∇FN,σ(µ). Lemma 3.5.
G The upper bound of E[‖∇̂F (µ)‖2]. Lemma 3.6.

‖x‖ ‖x‖ =
√∑d

i=1 x
2
i , where x = [x1, x2, ..., xd] ∈ Rd.

B. PGS/EGPS with A Baseline to Avoid Computation Overflows
An effective method to avoid computation overflows caused by a large N -value in Algorithm 1 is to modify the gradient
estimate as ∇̂µF (µt) = 1

K

∑K
k=1(xk − µt)f (b)

N (xk), where f (b)
N (xk) = 0 if xk /∈ S, and

f
(b)
N (xk) =

{
fN (xk)/fN (µt), for PGS;
eN(f(xk)−f(µt)), for EPGS,

if xk ∈ S. This modification produces the same µ-updates as in Algorithm 1 because of the gradient-normalization step.
We call this algorithm as PGS (EPGS) with a baseline.

C. Proofs to Theoretical Results
C.1. Proof to Theorem 2.1 for EPGS

Theorem 2.1 Let f : S ⊂ Rd → R be a continuous function that is possibly non-concave (and non-negative only for the
case of PGS), where S is compact. Assume that f has a global maximum x∗ such that supx:‖x−x∗‖≥δ f(x) < f(x∗) for
any δ > 0. For σ > 0 and any N > 0, define

FN,σ(µ) := (
√

2πσ)−d
∫
x∈Rk

fN (x)e−
‖x−µ‖2

2σ2 dx, µ ∈ Rd,

where fN is defined in (4) for either PGS or EPGS. Then, for any M > 0 and δ > 0 such that B̄(x∗; δ) := {x ∈ Rd :
‖x−x∗‖ ≤ δ} ⊂ S , there existsNδ,σ,M > 0, such that wheneverN > Nδ,σ,M , for any ‖µ‖ < M and any i ∈ {1, 2, ..., d}
we have that: ∂FN (µ,σ)

∂µi
> 0 if µi < x∗i − δ, and ∂FN (µ,σ)

∂µi
< 0 if µi > x∗i + δ. Here, µi and x∗i denote the ith entry of µ

and x∗, respectively.

Here, we provides the proof for the EPGS setting, and the proof for the PGS setting is similar.

12
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Proof. Recall that for EPGS, fN (xk) :=

{
eNf(xk), x ∈ S;
0, otherwise.

For any given δ > 0, define Vδ :=

supx:‖x−x∗‖≥δ f(x) and Dδ := (Vδ + f(x∗))/2. Using this symbol, we re-write FN,σ(µ) as

FN,σ(µ) = eDδNGN,σ(µ) = eDδN (HN,σ(µ) +RN,σ(µ)), (9)

where

GN,σ(µ) :=(
√

2πσ)−d
∫
x∈Rd

e−NDδfN (x)e−
‖x−µ‖2

2σ2 dx,

HN,σ(µ) :=(
√

2πσ)−d
∫
x∈B(x∗;δ)

e−NDδfN (x)e−
‖x−µ‖2

2σ2 dx,

RN,σ(µ) :=(
√

2πσ)−d
∫
x/∈B(x∗;δ)

e−NDδfN (x)e−
‖x−µ‖2

2σ2 dx,

where B(x∗; δ) := {x ∈ Rd : ‖x − x∗‖ < δ}. The main idea of the proof is to first show that
∣∣∣∂HN,σ(µ)

∂µi

∣∣∣ dominates∣∣∣∂RN,σ(µ)
∂µi

∣∣∣ if N is sufficiently large, and then that the sign of ∂HN,σ(µ)
∂µi

satisfies the declared property in the theorem.

We derive an upper bound for
∣∣∣∂RN,σ(µ)

∂µi

∣∣∣. For any µ ∈ Rd,∣∣∣∣∂RN,σ(µ)

∂µi

∣∣∣∣ ≤ 1

(
√

2π)dσd+2

∫
x/∈B(x∗;δ)

|xi − µi|e−
‖x−µ‖2

2σ2 e−NDδfN (x)dx

≤ 1

(
√

2π)dσd+2

∫
x/∈B(x∗;δ)

|xi − µi|e−
‖x−µ‖2

2σ2 eN(f(x)−Dδ)dx

≤ 1

(
√

2π)dσd+2

∫
x/∈B(x∗;δ)

|xi − µi|e−
‖x−µ‖2

2σ2 eN(Vδ−Dδ)dx

≤ eN(Vδ−Dδ)

(
√

2π)dσd+2

∫
x∈Rd

|xi − µi|e−
‖x−µ‖2

2σ2 dx

≤ eN(Vδ−Dδ)

(
Πj 6=i

1√
2πσ

∫
xj∈R

e−
(xj−µj)

2

2σ2 dxj

)

· 1√
2πσ3

∫
xi∈R

|xi − µi|e−
(xi−µi)

2

2σ2 dxi

= eN(Vδ−Dδ) 1√
2πσ3

∫
y∈R

√
2σ|y|e−y

2

d(
√

2σy), y :=
xi − µi√

2σ
,

= eN(Vδ−Dδ)
√

2√
πσ
· 2
∫ ∞

0

ye−y
2

dy,

= eN(Vδ−Dδ)
√

2√
πσ
·
∫ ∞

0

e−y
2

dy2,

= eN(Vδ−Dδ)
√

2√
πσ
·
∫ ∞

0

e−zdz,

=

√
2eN(Vδ−Dδ)
√
πσ

(10)

where the third inequality sign is because ‖x− x∗‖ ≥ δ ⇒ f(x) ≤ Vδ , and the fifth inequality sign is from the separability
of a multivariate integral.

Since f is continuous, for εδ := f(x∗) − Dδ > 0 (because Vδ < f(x∗)), there exists δ′ ∈ (0, δ) such that whenever
‖x− x∗‖ ≤ δ′,

f(x) ≥ f(x∗)− εδ = Dδ > Vδ. (11)

13
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Using this result, we derive a lower bound for
∣∣∣∂HN,σ(µ)

∂µi

∣∣∣ when ‖µ‖ ≤M and |µi − x∗i | > δ.∣∣∣∣∂HN,σ(µ)

∂µi

∣∣∣∣ =
1

(
√

2π)dσd+2

∫
x∈B(x∗;δ)

|xi − µi|e−NDδfN (x)e−
‖x−µ‖2

2σ2 dx

=
1

(
√

2π)dσd+2

∫
x∈B(x∗;δ)

|xi − µi|e−
‖x−µ‖2

2σ2 eN(f(x)−Dδ)dx, since B(x∗; δ) ⊂ S,

≥ 1

(
√

2π)dσd+2

∫
x∈B(x∗;δ′)

|xi − µi|e−
‖x−µ‖2

2σ2 eN(f(x)−Dδ)dx

≥ 1

(
√

2π)dσd+2

∫
x∈B(x∗;δ′)

(δ − δ′)e−
‖x−µ‖2

2σ2 dx

≥ 1

(
√

2π)dσd+2

∫
x∈B(x∗;δ′)

(δ − δ′)e−
M2

σ2 e−
‖x‖2

σ2 dx, ‖x− µ‖2 ≤ 2(‖x‖2 + ‖µ‖2),

≥ (δ − δ′)e−
M2

σ2 V (δ′, d, σ)

(12)

where the fourth line is implied by

• eN(f(x)−Dδ) ≥ 1 because of (11);

• |xi − µi| = |(xi − x∗i ) + (x∗i − µi)| ≥ |x∗i − µi| − |xi − x∗i | > δ − δ′.

In the last line of (12),

V (δ′, d, σ) :=
1

(
√

2π)dσd+2

∫
x∈B(x∗;δ′)

e−
‖x‖2

σ2 dx.

The positive number Nδ,σ,M is constructed by solving the following inequality for N , which involves the two bounds in (10)
and (12).

√
2eN(Vδ−Dδ)
√
πσ

< (δ − δ′)e−
M2

σ2 V (δ′, d, σ).

The solution of this inequality is

N >
ln
(√

πσ√
2

(δ − δ′)e−
M2

σ2 V (δ′, d, σ)
)

Vδ −Dδ
,

where Vδ − Dδ < 0 and the numerator is negative for sufficiently large M > 0. Therefore, whenever ‖µ‖ ≤ M ,
|µi − x∗i | > δ, and

N > Nδ,σ,M := max

0,
ln
(√

πσ√
2

(δ − δ′)e−
M2

σ2 V (δ′, d, σ)
)

Vδ −Dδ

 ,

we have ∣∣∣∣∂RN,σ(µ)

∂µi

∣∣∣∣ ≤ √2eN(Vδ−Dδ)
√
πσ

< (δ − δ′)e−
M2

σ2 V (δ′, d, σ) ≤
∣∣∣∣∂HN,σ(µ)

∂µi

∣∣∣∣ . (13)

When N > Nδ,σ,M , ‖µ‖ ≤M , and µi > x∗i + δ,

∂GN,σ(µ)

∂µi
=
∂HN,σ(µ)

∂µi
+
∂RN,σ(µ)

∂µi

=
1

(
√

2π)kσk+2

∫
x∈B(x∗;δ)

(xi − µi)e−
‖x−µ‖2

2σ2 eN(f(x)−Dδ)dx+
∂RN (µ, σ)

∂µi

= −
∣∣∣∣∂HN,σ(µ)

∂µi

∣∣∣∣+
∂RN,σ(µ)

∂µi

<by (13) −
∣∣∣∣∂RN,σ(µ)

∂µi

∣∣∣∣+

∣∣∣∣∂RN,σ(µ)

∂µi

∣∣∣∣
= 0,

(14)
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where the third line is because the integrand of the first term is always negative in the integration region.

On the other hand, when N > Nδ,σ,M , ‖µ‖ ≤M , and µi < x∗i − δ,

∂GN,σ(µ)

∂µi
=
∂HN,σ(µ)

∂µi
+
∂RN,σ(µ)

∂µi

=

∣∣∣∣∂HN,σ(µ)

∂µi

∣∣∣∣+
∂RN,σ(µ)

∂µi

>by (13)

∣∣∣∣∂RN,σ(µ)

∂µi

∣∣∣∣− ∣∣∣∣∂RN,σ(µ)

∂µi

∣∣∣∣
= 0.

(15)

Then, (14) and (15) imply the result in the theorem since ∂GN,σ(µ)
∂µi

and ∂FN,σ(µ)
∂µi

share the same sign (see Eq. (9)).

C.2. Proof to Proposition 2.3

Proposition 2.3 Given σ > 0 and N > 0, FN,σ(µ) in Theorem 2.1 has a global max point µ∗.

Proof. Since σ > 0 and N > 0 are fixed, we denote FN,σ(µ) by F (µ) for convenience. Recall that F (µ) ≥ 0 because of
the definition of fN in (4). Our proof applies the following two results, whose proofs will be given later.

1. F (µ) is Lipschitz, which indicates the continuity.

2. lim‖µ‖→∞ F (µ) = 0.

From F ’s definition, it is trivial to see that there exists some µ′ ∈ Rd such that F (µ′) > 0. Define ε′ := F (µ′). From point
2, there exists M > 0 such that, whenever ‖µ‖ > M , F (µ) < ε′.

Now, consider the closed ball B(0;M ′) := {µ ∈ Rd : µ ≤M ′}, where M ′ > M and µ′ ∈ B(0;M ′). From the extreme
value theorem, the continuity of F and the compactness of B(0;M ′) indicate that F attains a maximum µ∗ on B(0;M ′).
That is, µ∗ ∈ Rd, and F (µ∗) ≥ F (µ) for any µ ∈ B(0;M ′). Therefore,

F (µ∗) ≥ F (µ′) = ε′ > F (µ), for any µ /∈ B(0;M ′).

This indicates that µ∗ is the global maximum point of F in Rd.

Finally, it remains to prove Point 1 and 2.

Proof to Point 1. From Lemma 3.3, the gradient∇F exists. Hence, from the mean value theorem (e.g., Theorem 5.10 in
(Magnus & Neudecker, 2019)), for any µ1,µ2 ∈ Rd, there exists v that lies on the line segment connecting µ1 and µ2 that

|F (µ1)− F (µ2)| = |∇F (v)(µ1 − µ2)|
≤ ‖∇F (v)‖‖µ1 − µ2‖, Cauchy Schwarz Inequality,

= σ−2‖Ex∼N (v,σ2Id)[(x− µ)fN (x)]‖‖µ1 − µ2‖, proof same as (6),

≤
√

2d

σ
√
π
fN (x∗)‖µ1 − µ2‖,

where the last inequality is derived using the last inequality derived in the proof for Lemma 3.3. This proves Point 1.

Proof to Point 2. Since S ∈ Rd is compact, it is bounded. Assume that S ⊂ B(0;M) for some M > 0. Then, fN (x) = 0
if ‖x‖ > M . Hence,

F (µ) =
1

(
√

2πσ)d

∫
‖x‖≤M

fN (x)e−
‖x−µ‖2

2σ2 dx

≤ fN (x∗)

(
√

2πσ)d

∫
‖x‖≤M

e−
(‖µ‖−M)2

2σ2 dx, whenever ‖µ‖ > M,

→ 0, as ‖µ‖ → ∞,
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where the second line is because ‖x−µ‖ ≥ ‖µ‖− ‖x‖ ≥ ‖µ‖−M , which further implies −‖x−µ‖2 ≤ −(‖µ‖−M)2

if ‖µ‖ > M .

C.3. Proof to Lemma 3.3

Lemma 3.3 Under Assumption 3.1, FN,σ(µ) and ∇FN,σ(µ) are well-defined for all µ ∈ Rd.

Proof. By the definition of FN,σ(µ) in Theorem 2.1, FN,σ(µ) = E[fN (x)] and∇FN,σ(µ) = E[(x−µ)fN (x)], where the
expectation is taken with respect to x ∼ N (µ, σ2Id). To prove that FN,σ(µ) and∇FN,σ(µ) are well-defined, it sufficies to
prove that E|fN (x)| < +∞ and E|(xi − µi)fN (x)| < +∞, for each i ∈ {1, 2, ..., d}. The former inequality holds since
|fN (x)| is bounded by Assumption 3.1 (the condition that f is continuous on its compact domain implies the boundedness
of |fN (x)|). The latter inequality holds because

E|(xi − µi)fN (x)|
≤ fN (x∗)E|xi − µi|

=
fN (x∗)√

2πσ

∫ ∞
−∞
|xi − µi|e−

(xi−µi)
2

2σ2 dxi

=
fN (x∗)√

2πσ

∫ ∞
−∞
|y|e−

y2

2σ2 dy, y := xi − µi,

=
fN (x∗)√

2πσ

∫ ∞
0

2ye−
y2

2σ2 dy,

=
fN (x∗)√

2πσ

∫ ∞
0

e−
y2

2σ2 dy2,

=
fN (x∗)√

2πσ

∫ ∞
0

e−
t

2σ2 dt, t := y2,

=
fN (x∗)√

2πσ

∫ ∞
0

(−2σ2)de−
t

2σ2 dt

=
√

2fN (x∗)σ/
√
π < +∞.

This finishes the proof for Lemma 3.3.

C.4. Proof to Lemma 3.4

Lemma 3.4 Under Assumption 3.1, any stationary point of F (µ) in Rd belongs to Sx∗,δ , which is defined in (7).
Remark C.1. Proposition 2.3 shows that F (µ) has at least one stationary point.

Proof. For any point µ /∈ Sx∗,δ , we show that ∇F (µ) 6= 0.

On one hand, µ ∈ SM − Sx∗,δ , then ‖µ‖ ≤
√
dM and ∇F (µ) 6= 0 because of the definition of N in Section 3.2.

On the other hand, if µ /∈ SM , there is at least one j such that |µj | > M . Then,

∂F (µ)

∂µj
=

∫
x∈Rd(xj − µj)e−

‖x−µ‖2

2σ2 fN (x)dx

(
√

2π)dσd+2

=

∫
x∈S(xj − µj)e−

‖x−µ‖2

2σ2 fN (x)dx

(
√

2π)dσd+2
, by (4),

=

{
negative, if µj > M ;
positive, if µj < −M,

where the last equality is because xj ∈ S ⇒ |xj | ≤M by Assumption 3.1. In sum, for any point µ /∈ Sx∗,δ ,∇F (µ) 6= 0,
which further implies that any stationary point of F (µ) belongs to Sx∗,δ .
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C.5. Proof to Lemma 3.5

Lemma 3.5 Under Assumption 3.1, for any σ > 0, the objective function FN,σ(µ) is Lipschitz Smooth. That is, for any
µ1,µ2 ∈ Rd,

‖∇FN,σ(µ1)−∇FN,σ(µ2)‖ ≤ L‖µ1 − µ2‖,

where L = 2dσ−2fN (x∗), and fN (x∗) = fN (x∗) for the case of PGS and fN (x∗) = eNf(x∗) for the case of EPGS.

Proof. The idea is to bound each entry of the difference, a vector in Rd, on the left-hand side (LHS). For each i ∈ {1, 2, ..., d},
define gi(µ) as the ith entry of∇FN,σ(µ) ∈ Rd. Then, for the ith entry of the difference on LHS,

|gi(µ1)− gi(µ2)| = |∇gi(v)(µ2 − µ1)|, by Mean Value Theorem (e.g., Theorem 5.10 in (Magnus & Neudecker, 2019)),
≤ ‖∇gi(v)‖‖µ2 − µ1‖, by Cauchy Schwarz Inequality,

≤ 2
√
dσ−2fN (x∗)‖µ2 − µ1‖, proof given later,

where v is some point on the line segment connecting µ1 and µ2, and ∇gi(v)(µ2 − µ1) denotes the inner product of the
two vectors in Rd. This further implies

‖∇FN,σ(µ1)−∇FN,σ(µ2)‖ ≤ 2dσ−2fN (x∗)‖µ2 − µ1‖,

which is the desired result.

Now, it remains to prove for each i ∈ {1, 2, ..., d} and each µ ∈ Rd that ‖∇gi(µ)‖ ≤ 2
√
dσ−2fN (x∗). It sufficies to

derive a bound for each entry of∇gi(µ) ∈ Rd. Specifically, for its jth entry:

∣∣∣∣∂gi(u)

∂µj

∣∣∣∣ =by (6)

∣∣∣∣∣∣ 1

(
√

2π)dσd+2

∂
∫
x∈Rd(xi − µi)fN (x)e−

‖x−µ‖2

2σ2 dx

∂µj

∣∣∣∣∣∣
=

∣∣∣∣∣∣−δij
∫
x∈Rd fN (x)e−

‖x−µ‖2

2σ2 dx+ σ−2
∫
x∈Rd(xi − µi)(xj − µj)fN (x)e−

‖x−µ‖2

2σ2 dx

(
√

2π)dσd+2

∣∣∣∣∣∣
≤ σ−2δijE[fN (x)] +

σ−2fN (x∗)
∫
x∈Rd |xi − µi||xj − µj |e

− ‖x−µ‖
2

2σ2 dx

(
√

2π)dσd+2
, fN (x) ≥ 0 by (4),

≤ σ−2δijfN (x∗) +
σ−2fN (x∗)

∫
x∈Rd((xi − µi)2 + (xj − µj)2)e−

‖x−µ‖2

2σ2 dx

2(
√

2π)dσd+2

= σ−2δijfN (x∗) +
σ−2fN (x∗)2

∫
xj∈R(xj − µj)2e−

(xj−µj)
2

2σ2 dxj

2
√

2πσ3

= σ−2δijfN (x∗) + fN (x∗)σ−4V ar(xj)

= σ−2(δij + 1)fN (x∗)

≤ 2σ−2fN (x∗),

where the interchange of differentiation and integral in the second line is by Lebesgue’s dominated convergence theorem,
and the fifth line is because of the separability of the multivariate integral. Here, δij = 1 if i = j, and δij = 0 if i 6= j. The

above bound for
∣∣∣∂gi(u)
∂µj

∣∣∣ implies ‖∇gi(µ)‖ ≤ 2
√
dσ−2fN (x∗). This finishes the proof for Lemma 3.5.

C.6. Proof to Lemma 3.6

Lemma 3.6 Under Assumption 3.1, for any σ > 0, let ∇̂FN,σ(µ) be defined in (5). Then, E[‖∇̂FN,σ(µ)‖2] < G, where

G =

{
dσ2f2N (x∗), for PGS;

dσ2e2Nf(x∗), for EPGS.
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Proof.

E
[
‖∇̂FN,σ(µt)‖2

]
=

1

K2

K∑
k=1

K∑
l=1

E[(xk − µt)(xl − µt)fN (xk)fN (xl)]

≤ f2
N (x∗)

1

K2

K∑
k=1

K∑
l=1

E[|(xk − µt)(xl − µt)|]

≤ f2
N (x∗)

1

K2

K∑
k=1

K∑
l=1

E[‖(xk − µt)‖‖(xl − µt)‖],

≤ f2
N (x∗)

1

K2

K∑
k=1

K∑
l=1

√
E[‖xk − µt‖2]E[‖xl − µt)‖2]

= f2
N (x∗)σ2d, d denotes the number of dimensions,

where (xk − µt)(xl − µt) denotes the inner product of the two vectors, the expectation E is over the random vectors
xk,xl ∼ N (µt, σ

2Id), and the fourth line is from the application of the Cauchy-Schwarz inequality to expectations.
Replacing f2

N (x∗) = e2Nf(x∗) for EPGS and f2
N (x∗) = f2N (x∗) for PGS gives the desired result.

C.7. Proof to Theorem 3.7

Theorem 3.7 Let {µt}Tt=0 ⊂ Rd be produced by following the iteration rule of (5), with a pre-selected and deterministic
µ0 and all the involved terms defined as in Section 3.2. Then, under Assumption 3.1 and 3.2, we have that

T−1∑
t=0

αtσ
2E[‖∇F (µt)‖2] ≤ fN (x∗)− F (µ0) + LG

∞∑
t=0

α2
t ,

where L and G are as defined in Lemma 3.5 and Lemma 3.6, respectively.

Proof. By the Gradient Mean Value Theorem, there exists νt ∈ Rd such that νt,i lies between µt+1,i and µt,i for each of
the ith entry, and

F (µt+1) =F (µt) + (∇F (νt))
′(µt+1 − µt),

=F (µt) + (∇F (µt))
′(µt+1 − µt) + (∇F (νt)−∇F (µt))

′(µt+1 − µt)
=F (µt) + αt(∇F (µt))

′(∇̂F (µt))− (∇F (µt)−∇F (νt))
′(µt+1 − µt)

≥F (µt) + αt(∇F (µt))
′(∇̂F (µt))− L‖vt − µt‖ · ‖µt+1 − µt‖, by Lemma 3.5,

≥F (µt) + αt(∇F (µt))
′(∇̂F (µt))− L‖µt+1 − µt‖2,

=F (µt) + αt(∇F (µt))
′(∇̂F (µt))− α2

tL‖∇̂FN (µt)‖2.

where ′ denotes the vector transpose, and the second inequality is because vt,i is between µt+1,i and µt,i. Taking the
expectation of the left-end and right-end of the above derived inequality gives

E[F (µt+1)] ≥E[F (µt)] + αtσ
2E[‖∇F (µt))‖2]− α2

tLE[‖∇̂FN (µt)‖2]

≥E[F (µt)] + αtσ
2E[‖∇F (µt))‖2]− α2

tLG,
(16)

where the second inequality is because of Lemma 3.6, and for the first inequality, note that

E[(∇F (µt))
′(∇̂F (µt))] =E

[
E[(∇F (µt))

′(∇̂F (µt))|µt]
]

=by (6) σ2E[‖∇F (µt))‖2].

Taking the sum from t = 0 to t = T − 1 on both sides of (16) gives

E[F (µT )] ≥ E[F (µ0)] +

T−1∑
t=0

αtσ
2E[‖∇F (µt))‖2]− LG

T−1∑
t=0

α2
t .
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Re-organizing the terms gives

T−1∑
t=0

αtσ
2E[‖∇F (µt)‖2] ≤ E[F (µT )]− E[F (µ0)] + LG

T−1∑
t=0

α2
t

≤ fN (x∗)− F (µ0) + LG

∞∑
t=0

α2
t

This finishes the proof for Theorem 3.7.

C.8. Proof to Corollary 3.9

Corollary 3.9 Suppose Assumption 3.1 and 3.2 hold. Let {µt} be produced by the stochastic gradient ascent rule (5) of
GS-PowerOpt, with a pre-selected and deterministic µ0 Then, for any ε ∈ (0, 1), after

T > (C1C2d
2ε−1)2/(1−2γ) = ON ((d2ε−1)2/(1−2γ))

times of µt-updating by (5), we have that mint∈{0,1,...,T} E[‖∇F (µt)‖2] < ε. Here, γ ∈ (0, 1/2) is a parameter in the
learning rate αt := (t + 1)−(1/2+γ), C0 = fN (x∗) − F (µ0) + 2f3

N (x∗)
∑∞
t=1 t

−(1+2γ), C1 = C0(1 − 2γ)σ−2, and
C2 = max{1, 2/C1}.

Proof. For any non-negative integer t, define

νt := min
τ∈{0,1,...,t}

E[‖∇F (µτ )‖2]. (17)

Then,

T−1∑
t=0

αtσ
2νT ≤

T−1∑
t=0

αtσ
2νt, since νt+1 ≤ νt for each t ≥ 0,

≤
T−1∑
t=0

αtσ
2E[‖∇F (µt)‖2], since νt ≤ E[‖∇F (µt)‖2] from (17),

≤ fN (x∗)− F (µ0) + LG

∞∑
t=0

α2
t , from Theorem 3.7,

≤ fN (x∗)− F (µ0) + 2d2f3
N (x∗)

∞∑
t=1

t−(1+2γ), d comes from L in Lemma 3.5 and G in Lemma 3.6,

≤

(
fN (x∗)− F (µ0) + 2f3

N (x∗)

∞∑
t=1

t−(1+2γ)

)
d2, since d > 1 and fN (x∗) ≥ F (µ0),

= C0d
2, where C0 := fN (x∗)− F (µ0) + 2f3

N (x∗)

∞∑
t=1

t−(1+2γ) <∞.

(18)

Therefore, we have

T−1∑
t=0

αtσ
2νT ≤ C0d

2.
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Since αt = (t+ 1)−(1/2+γ), dividing both the left-end and the right-end of the above inequality by
∑T−1
t=0 αtσ

2 gives

νT ≤
C0d

2

σ2
∑T
t=1 t

−(1/2+γ)

<
C0d

2

σ2
∫ T

1
t−(1/2+γ)dt

=
C0d

2

σ2(T
1
2−γ − 1)/( 1

2 − γ)

<
C0d

2

σ2(T
1
2−γ/2)/( 1

2 − γ)
, when T > 22/(1−2γ),

= C1
d2

T
1
2−γ

, where C1 :=
C0

σ2(1/2)/( 1
2 − γ)

.

In sum, we have

νT ≤ C1
d2

T
1
2−γ

, whenever T > 22/(1−2γ). (19)

Define C2 := max{1, 2/C1}. Given any ε ∈ (0, 1), whenever T > (C2C1d
2ε−1)2/(1−2γ) = O((d2ε−1)2/(1−2γ)), we

have
T > (C2C1d

2ε−1)2/(1−2γ) > (C1C2)2/(1−2γ) ≥ 22/(1−2γ),

and

νT ≤from (19) C1
d2

T
1
2−γ

< C1
d2

(C2C1d2ε−1)
2

1−2γ ( 1
2−γ)

=
ε

C2
≤ ε.

This implies that after T = O((d2ε−1)2/(1−2γ)) times of updating µt by GS-PowerOpt, vT =
mint∈{0,1,2,...,T} E[‖∇F (µt)‖2] < ε.

C.9. Proof to Proposition 3.11

Proposition 3.11 Assume Assumption 3.1, f(x) = 0 on the boundary of f ’s domain, the Lipschitz condition on f :
|f(x)− f(y)| ≤ L0‖x− y‖, and the Lipschitz condition on ∇f : ‖∇f(x)−∇f(y)‖ ≤ L1‖x− y‖. Then, the following
two statements are true.

1. ‖∇FN,σ(µ1) − ∇FN,σ(µ2)‖ ≤ L‖µ1 − µ2‖ holds for any µ1,µ2 ∈ Rd, where L = (NfN−1(x∗)L1 + N(N −
1)L2

0f
N−2(x∗)) under the PGS setting, and L = (NL1e

Nf(x∗) +N2L2
0e
Nf(x∗)) under the EPGS setting.

2. The iteration complexity in Corollary 3.9 reduces to ON ((dε−1)2/(1−2γ)).

Proof to Point 1. We extend the domain of f from S to Rd such that f(x) = 0 for any x 6= S. Clearly, after the domain
extension, the two Lipschitz conditions hold in Rd. From (4), with the extended f ,

fN (x) =

{
fN (x), (PGS setting);
eNf(x), (EPGS setting).

By definition,

FN,σ(µ) = Ex∼N (µ,σId)[fN (x)]

= (
√

2πσ)−d
∫
x∈Rd

fN (x)e
−‖x−µ‖2

2σ2 dx

= (
√

2π)−d
∫
ξ∈Rd

fN (µ+ σξ)e
−‖ξ‖2

2 dξ, x := µ+ σξ,

= Eξ∼N (0,Id)[fN (µ+ σξ)].
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Let∇ denotes the first derivative with respect to µ. Under the PGS setting,∇fN (µ+σξ) = NfN−1(µ+σξ)∇f(µ+σξ).
Then,

‖∇FN,σ(µ1)−∇FN,σ(µ2)‖
= ‖E[∇fN (µ1 + σξ)−∇fN (µ2 + σξ)]‖
= ‖E[NfN−1(µ1,ξ)∇fN (µ1,ξ)−NfN−1(µ2,ξ)∇f(µ2,ξ)]‖
= N‖E[fN−1(µ1,ξ)(∇fN (µ1,ξ)−∇fN (µ2,ξ)) + (fN−1(µ1,ξ)− fN−1(µ2,ξ))∇f(µ2,ξ)]‖
≤ NfN−1(x∗)E‖∇fN (µ1,ξ)−∇fN (µ2,ξ)‖+NL0E|fN−1(µ1,ξ)− fN−1(µ2,ξ)|
≤ NfN−1(x∗)L1‖µ1 − µ2‖+N(N − 1)fN−2(x∗)L0E|f(µ1,ξ)− f(µ2,ξ)|
≤ NfN−1(x∗)L1‖µ1 − µ2‖+N(N − 1)fN−2(x∗)L2

0‖µ1 − µ2‖
≤ (NfN−1(x∗)L1 +N(N − 1)L2

0f
N−2(x∗))‖µ1 − µ2‖,

where µ1,ξ := µ1 + σξ, µ2,ξ := µ2 + σξ, the first inequality sign is derived using the formula10 of ‖Ex‖ ≤ E‖x‖ and
the result that ‖∇f‖ ≤ L0 from the Lipschitz condition on f , and the second inequality sign is derived using the formula
aN−1 − bN−1 = (a− b)

∑N−2
n=0 a

nbN−2−n.

Under the EPGS setting, ∇fN (µ+ σξ) = NeNf(µ+σξ)∇f(µ+ σξ). Then,

‖∇FN,σ(µ1)−∇FN,σ(µ2)‖
= ‖E[∇fN (µ1 + σξ)−∇fN (µ2 + σξ)]‖
= ‖E[NeNf(µ1,ξ)∇fN (µ1,ξ)−NeNf(µ2,ξ)∇f(µ2,ξ)]‖
= N‖E[eNf(µ1,ξ)(∇fN (µ1,ξ)−∇fN (µ2,ξ)) + (eNf(µ1,ξ) − eNf(µ2,ξ))∇f(µ2,ξ)]‖
≤ NeNf(x∗)E‖∇fN (µ1,ξ)−∇fN (µ2,ξ)‖+NL0E|eNf(µ1,ξ) − eNf(µ2,ξ)|
≤ NeNf(x∗)L1‖µ1 − µ2‖+NL0Ne

Nf(x∗)L0‖µ1 − µ2‖, by mean-value theorem,

≤ (NL1e
Nf(x∗) +N2L2

0e
Nf(x∗))‖µ1 − µ2‖.

�

Proof to Point 2. Point 2 can be proved from a modified version of the proof to Corollary 3.9. Specifically, when deriving
(18), replacing Lemma 3.5 by Point 1 of Proposition 3.11 removes the dependence of L on d, which decreases the power of
d by 1 on the right-end of (18). This in turn replaces d2 by d in the rest of the proof to Corollary 3.9, and finally leads to the
desired iteration complexity in Point 2 of Proposition 3.11. Note that C0 needs to be redefined accordingly in (18). �

C.10. Proof to Corollary 4.2

Corollary 4.2 Under Assumption 3.1 and 4.1, the iteration complexity in Corollary 3.9 becomes O((d2ε−1)2/(1−2γ)), and
the iteration complexity in Point 2 of Proposition 3.11 becomes O((dε−1)2/(1−2γ)), both of which are independent from N .

Proof. The dependence of the iteration complexity ON ((d2ε−1)2/(1−2γ)) in Corollary 3.9 on N comes from C0 =
fN (x∗)−F (µ0)+2f3

N (x∗)
∑∞
t=1 t

−(1+2γ). Assumption 4.1 guarantees that Corollary 3.9 still holds true if C0 is redefined
as

C0 = 1 + 2

∞∑
t=1

t−(1+2γ).

This makes the iteration complexity in Corollary 3.9 become O((d2ε−1)2/(1−2γ)), which is independent from N .

To prove that Corollary 3.9 still holds true with the above new definition of C0, we only need to modify the last line of (18)
in the proof to Corollary 3.9:(

fN (x∗)− F (µ0) + 2f3
N (x∗)

∞∑
t=1

t−(1+2γ)

)
d2 ≤

(
1 + 2

∞∑
t=1

t−(1+2γ)

)
d2 = C0d

2,

10This inequality can be derived from Jensen’s inequality and the fact that the Euclidean norm ‖ · ‖ is convex.
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where the inequality can be justified by fN (x∗) ∈ [0, 1) (a result immediately implied by Assumption 4.1).

Next, we prove that the iteration complexity in Point 2 of Proposition 3.11 becomes O((dε−1)2/(1−2γ)) under Assumption
4.1. Let νt be defined as in (17).

T−1∑
t=0

αtσ
2νT ≤ fN (x∗)− F (µ0) + LG

∞∑
t=0

α2
t , from the third line in (18),

≤ fN (x∗)− F (µ0) + Ldσ2f2
N (x∗)

∞∑
t=0

α2
t , from Lemma 3.6,

≤ fN (x∗)− F (µ0) + Ldσ2
∞∑
t=0

α2
t , since fN (x∗) ∈ [0, 1),

≤ fN (x∗)− F (µ0) +B(L1 + L2
0)dσ2

∞∑
t=0

α2
t , from (20) given below,

≤ (1 +B(L1 + L2
0)σ2

∞∑
t=0

α2
t )d,

= C0d, where C0 := 1 +B(L1 + L2
0)σ2

∞∑
t=0

α2
t .

In sum, we have
∑T−1
t=0 αtσ

2νT ≤ C0d, where C0 = 1 + B(L1 + L2
0)σ2

∑∞
t=0 α

2
t is independent from N . This result,

and the rest of the proof (where the term d2 is replaced by d) to Corollary 3.9 after Eq. (18), gives the desired iteration
complexity of O((dε−1)2/(1−2γ)).

Finally, it remains to prove for some constant B > 0,

L ≤ B(L1 + L2
0). (20)

Under the PGS setting, from Point 1 of Proposition 3.11, L = (NfN−1(x∗)L1 + N(N − 1)L2
0f
N−2(x∗)). Since

f(x∗) ∈ [0, 1),

lim
N→+∞

NfN−1(x∗) = lim
N→+∞

N(N − 1)fN−2(x∗) = 0,

which implies both NfN−1(x∗) and N(N − 1)fN−2(x∗) are upper bounded by a constant B for all N ≥ 0. This implies
L ≤ B(L1 + L2

0).

Under the EPGS setting, from Point 1 of Proposition 3.11, L = (NL1e
Nf(x∗) +N2L2

0e
Nf(x∗)). Since f(x∗) < 0,

lim
N→+∞

NeNf(x∗) = lim
N→+∞

N2eNf(x∗) = 0,

which implies both NeNf(x∗) and N2eNf(x∗) are upper bounded by a constant B for all N ≥ 0. This implies L ≤
B(L1 + L2

0).

D. More Details and Discussions on Compared Algorithms
D.1. Zeroth-order Gradient Algorithms

The two zeroth-order gradient algorithms, ZO-SGD (Ghadimi & Lan, 2013)) and ZO-AdaMM (Chen et al., 2019), aim
to solve maxx E[x+ σξ]. Here, ξ denotes a random noise and we select it to be a standard multi-variate Gaussian vector.
For non-concave maximization problems, they are theoretically guaranteed to converge to stationary points of f . In our
experiments, we take the scaling parameter σ as a hyper-parameter.
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D.2. STD-Homotopy

STD-Homotopy is a standard homotopy algorithm for optimization. It has a double-loop mechanism. The inner loop updates
the solution µt with a fixed scaling parameter σ until no improvements of f(µt) are made, and the outer loop decays σ
iteratively. In this algorithm, the term ∇̂F (µ, σ) is an estimate of Ex∼N (µ,σId)[(x−µ)f(x)] = σ2∇µEx∼N (µ,σId)[f(x)],
which is used to update µ.

Algorithm 2 STD-Homotopy

Input: The maximum of iteration number Ttotal > 0, the initial scaling parameter σ > 0, the objective f , the initial
value µ0, the number K of sampled points for gradient approximation, the maximum number Nσ of times σ gets updated,
the maximum Tµ of the number of times µ gets updated for each value of σ, the tolerance number τ for no improvements
of f(µt) for any fixed σ, the decay factor γ ∈ (0, 1), and the learning rate αt > 0.
Initialize t1 = 0, nσ = 0.
while t1 ≤ Ttotal and nσ < Nσ do
t = 0, I = True.
while t < Tµ and I == True and t1 ≤ Ttotal do

Independently and uniformly sample K points {vk}Kk=1 from the uniform sphere in Rd. Compute xk := µt + σvk,
for each k.
Compute the gradient estimate ∇̂F (µt, σ) = 1

K

∑K
k=1(xk − µt)f(xk).

µt+1 = µt + αt∇̂FN (µt, σ)/‖∇̂FN (µt, σ)‖.
if max{f(µt+1), f(µt), ..., f(µt−τ+1)} ≤ f(µt−τ ) then
I = False.

end if
t1 = t1 + 1, t = t+ 1.

end while
σ = γσ, nσ = nσ + 1.

end while
Return(µt1 ).

D.3. ZO-SGD

The zeroth-order stochastic gradient ascent (ZO-SGD) is a maximize-version of Equation (1) in (Chen et al., 2019), whose
gradient estimate method is from (Nesterov & Spokoiny, 2017). The gradient-ascent version of this algorithm is in Algorithm
3.

Algorithm 3 ZO-SGD

Input:: The scaling parameter σ > 0, the objective f , the initial value µ0 ∈ Rd, the number K of sampled points for
gradient approximation, the total number T of µ-updates, and the learning rate schedule {αt}Tt=1.
for t from 0 to T − 1 do

Independently and uniformly sample K points {vk}Kk=1 from the uniform sphere in Rd.
Compute the gradient estimate

∇̂F (µt, σ) =
1

K

K∑
k=1

(f(µt + σvk)− f(µt))vkd

σ
.

µt+1 = µt + αt∇̂FN (µt, σ).
end for
Return(µT ).
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E. Details on the Experiments for Figure 4
The set of N -values is {10, 20, ..., 65} for PGS and {1.0, 1.5, 2.0, ..., 4.5} for EGS. For each N value and each algorithm,
we do 100 trials to stabilize the result. In each trial, the initial solution candidate µ0 is uniformly sampled from C :=
{x ∈ Rd|xi ∈ [−1.0, 1.0], i ∈ {1, 2, ..., d}}, where xi represents the ith entry of x. We set the initial learning rate as 0.1,
the scaling parameter σ as 0.5, and the total number of solution updates as 1000. The objective for PGS is modified to be
f1(x) := f(x) + 10 to ensure that the PGS agent will not encounter negative fitness values during the 1000 updates.

F. Hyper-parameters
For experiments on the benchmark test functions (Table 1 and 2), the set of hyper-parameter values with the smallest mean
square error (averaged over the 100 experiments) between the true and estimated solutions are selected. The set of candidate
values, as well as the selected values, are listed in Table 6 and 7.

For the image attacks (Table 3 and 4), for each set of the hyper-parameter candidate values, we randomly choose 10 images
to attack. The set with the highest average fitness value (average over the 10 image attacks) will be selected. Table 8 and 9
reports the candidate set and the selected values.

Table 6: Hyper-parameters for Optimizing Ackley. The candidate set for learning rates is L := {.1, .001}. The candidate
set for smoothing parameters is S := {.1, 1.0, 2.0}. t1 in ZO-SLGHd and ZO-SLGHr is the initial scaling parameter. µ in
ZO-AdaMM is the scaling parameter. The set of candidate values that lead to the minimum mean square error between the
true solution and the found solution will be selected. For CMA-ES, σ0 denotes the initial standard deviation.

Selected Values Candidates

CMA-ES σ0 = 1.5 σ0 ∈ {.5, 1.0, 1.5}.
EPGS α0 = .1, N = 1, σ = 1.0. N ∈ {1, 2, 3}, α0 ∈ L, σ ∈ S.
PGS α0 = .1, N = 20, σ = 1.0. N ∈ {5, 10, 20, 30}, α0 ∈ L, σ ∈ S.
STD-Homotopy α = .1, γ = .5, σ = 2.0,

Tµ = 500, τ = 100, Nσ =
10.

γ ∈ {.2, .5, .8}, α ∈ L, σ ∈ S.

ZO-SLGHd β = .001, η = .001, t1 =
2.0, γ = .99

β ∈ {.1, .001}, η ∈ {.1, .01, .001}, t1 ∈ S, γ ∈
{.99, .95}.

ZO-SLGHr β = .001, t1 = 0.1, γ =
.995

β ∈ L, γ ∈ {.999, .995}, t1 ∈ S.

ZO-AdaMM β1 = .5, β2 = .5, α = 0.1,
µ = 1.0.

α ∈ L, β1 ∈ {.5, .7, .9}, β2 ∈ {.1, .3, .5}, µ ∈ S

ZO-SGD α = .1, σ = 1.0. α ∈ L, µ ∈ S.

G. Adversarial Images
We randomly select four images {am}4m=1 from the test image set and perform a per-image adversarial attack on each of
them, using each of the compared algorithms. Table 10 and 11 report the adversarial image am + µ∗m with the highest R2

score, given that the attack is successful. That is, µ∗m = arg maxµm,t∈{µm,t}T−1
t=0

R2(am,am + µm,t), where {µm,t}T−1
t=0

denote the sequence of perturbations generated during the mth attack, and T is set at the same value (1,500) as in Table 3
and 4. According to the results in Table 10 and 11, the performances of the compared algorithms are consistent with the
statistics reported in Table 3 and 4.
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Table 7: Hyper-parameters for Optimizing Rosenbrock. The candidate set for learning rates is L := {.2, .1, .01, .001, .0001}.
The candidate set for smoothing parameters is S := {1.0, 2.0}. t1 in ZO-SLGHd and ZO-SLGHr is the initial scaling
parameter. µ in ZO-AdaMM is the scaling parameter. For EPGS and PGS, αt = 1,000α0

1,000+t . The set of candidate values that
lead to the minimum mean square error between the true solution and the found solution will be selected.

Selected Values Candidates

CMA-ES σ0 = .1. σ0 ∈ {.1, .5, 1.0}.
EPGS α0 = .1, N = 1, σ = 1.0. N ∈ {1, 2, 3}, α0 ∈ L, σ ∈ S.
PGS α0 = .1, N = 1, σ = 1.0. N ∈ {1, 3, 5}, α0 ∈ L, σ ∈ S.
STD-Homotopy α = .2, γ = .2, σ = 2.0,,

Tµ = 500, τ = 100, Nσ =
10.

γ ∈ {.2, .5, .8}, α ∈ L, σ ∈ S.

ZO-SLGHd β = .0001, η = .001, t1 =
2.0, γ = .999

β ∈ L, η ∈ {.1, .01, .001}, t1 ∈ S, γ ∈
{.99, .995, .999}.

ZO-SLGHr β = .0001, t1 = 2.0, γ =
.999.

β ∈ L, γ ∈ {.999, .995}, t1 ∈ S.

ZO-AdaMM β1 = .5, β2 = .5, α = .2,
µ = 2.0.

α ∈ L, β1 ∈ {.5, .7, .9}, β2 ∈ {.1, .3, .5}, µ ∈ S

ZO-SGD α = .001, σ = 2.0. α ∈ L, µ ∈ S.

Table 8: Hyper-parameters for MNIST Attack. The candidate set for (initial) smoothing parameters is S := {1.0, .1}. The
hyper-parameter symbols for each algorithm are the same as their source publications. For example, t1 in ZO-SLGHd
and ZO-SLGHr denotes the initial scaling parameter, µ in ZO-AdaMM is the scaling parameter, and α denotes a constant
learning rate. The number 784 equals the dimensional number d. It appears in the candidate set since it is taken from (Iwakiri
et al., 2022), who performed similar experiments. The set of candidate values that lead to the highest fitness (averaged over
the 10 image attackes) are be selected. For CMA-ES, σ0 denotes the initial standard deviation.

Selected Values Candidates (µ∗)

CMA-ES σ0 = .05. σ0 ∈ {.05, .1, .5}.
EPGS α = .1, N = .05, σ = .1. N ∈ {.02, .03, .04, .05}, αt ∈ {.1, .05}, σ ∈ S.
STD-Homotopy α = .5, γ = .5, σ = 1.0,,

Tµ = 500, τ = 100, Nσ =
10.

γ ∈ {.5, .8}, α ∈ {.5, .1}, σ ∈ S.

ZO-SLGHd β = 10−4, η = .1/784,
t1 = .1, γ = .995

β ∈ {1/784, 10−4, .1}, η ∈ {.1/784, 10−3}, t1 ∈
S, γ ∈ {.999, .995}.

ZO-SLGHr β = 10−4, t1 = .1, γ =
.995.

β ∈ {10−4, 1/784, .1}, γ ∈ {.999, .995}, t1 ∈ S.

ZO-AdaMM β1 = .9, β2 = .1, α = .1,
µ = .1.

α ∈ {100/784, .001, .1}, β1 ∈ {.5, .9}, β2 ∈
{.1, .3}, µ ∈ S

ZO-SGD α = 10−4, µ = .1. α ∈ {10−4, .1, 1/784}, µ ∈ S.
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Table 9: Hyper-parameters for CIFAR-10 Attack. The candidate set for (initial) smoothing parameters is S := {1.0, .1}.
The symbols are the same as those in Table 8. The set of candidate values that lead to the highest fitness (averaged over the
10 image attackes) are be selected.

Selected Values Candidates (µ∗)

CMA-ES σ0 = .05. σ0 ∈ {.05, .1, .5}.
EPGS α = .1, N = .03, σ = .1. N ∈ {.02, .03, .04}, αt ∈ {.1, .05}, σ ∈ S.
STD-Homotopy α = .5, γ = .8, σ = .1,

Tµ = 300, τ = 100, Nσ =
10.

γ ∈ {.5, .8}, α ∈ {.1, .5}, σ ∈ S.

ZO-SLGHd β = .01/3072, η = 10−5,
t1 = 1.0, γ = .999

β ∈ {.01/3072, .1}, η ∈ {10−4/784, 10−5}, t1 ∈
S, γ ∈ {.995, .999}.

ZO-SLGHr β = .01/3072, t1 = .1, γ =
.995.

β ∈ {.01/3072, .1}, γ ∈ {.999, .995}, t1 ∈ S.

ZO-AdaMM β1 = .9, β2 = .1, α = .1,
µ = .1.

α ∈ {.5/3072, .001, .1}, β1 ∈ {.5, .9}, β2 ∈
{.1, .3}, µ ∈ S

ZO-SGD α = .01/3072, σ = .1. α ∈ {.01/3072, 10−4, .05}, σ ∈ S.

26



Power Transform and Gaussian Smoothing

Table 10: Adversarial images for MNIST, produced by algorithms that apply the smoothing techniques. The adversarial
target label T := arg mini (C(a))i is the label with the minimum predicted probability. All attacks are successful.

Test Image ID 9953 3850 4962 3886

Original Image
Adversarial Target Label T 9 0 9 3

EPGS
R2(a,a+ µ∗) 90% 88% 78% 93%

ZO-SLGHd
R2(a,a+ µ∗) 70% 61% 41% 76%

ZO-SLGHr
R2(a,a+ µ∗) 68% 55% 14% 74%

ZO-SGD
R2(a,a+ µ∗) 85% 76% 61% 87%

ZO-AdaMM
R2(a,a+ µ∗) 50% 36% 15% 60%

STD-Homotopy
R2(a,a+ µ∗) 21% −15% −19% 61%
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Power Transform and Gaussian Smoothing

Table 11: Adversarial images for CIFAR-10, produced by algorithms that apply the smoothing techniques. The adversarial
target label T := arg mini (C(a))i is the label with the minimum predicted probability. Unsuccessful attacks (i.e., predicted
label is different from the adversarial target) are marked with ‘Unsuccessful’.

Test Image ID 9953 3850 4962 3886

Original Image
True Label T 7 (i.e., Horse) 9 (i.e., Truck) 3 (i.e., Cat) 8 (i.e., Ship)

Adversarial Target Label T 1(i.e., Automobile) 4 (i.e., Deer) 4 (i.e., Deer) 7 (i.e., Horse)

EPGS
R2(a,a+ µ∗) 96.0% 99.3% 99.0% 96.1%

ZO-SLGHd
R2(a,a+ µ∗) 99.2% 99.6% 99.6% 98.3%

ZO-SLGHr
R2(a,a+ µ∗) 97.7% 99.5% 98.8% 94.3%

ZO-SGD Unsuccessful.
R2(a,a+ µ∗) 99.6% 99.8% 99.1%

ZO-AdaMM
R2(a,a+ µ∗) 39.6% 92.0% 84.9% 39.7%

STD-Homotopy Unsuccessful. Unsuccessful.
R2(a,a+ µ∗) 93.2% 92.8%
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