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ABSTRACT

Large language models (LLMs) such as GPT-4 have exhibited remarkable per-
formance in a variety of tasks, but this strong performance often comes with the
high expense of using paid API services. In this paper, we are motivated to study
building an LLM cascade to save the cost of using LLMs, particularly for perform-
ing reasoning (e.g., mathematical, causal) tasks. Our cascade pipeline follows the
intuition that simpler questions can be addressed by a weaker but more afford-
able LLM, whereas only the challenging questions necessitate the stronger and
more expensive LLM. To realize this decision-making, we consider “answer con-
sistency” of the weaker LLM as a signal of the question difficulty and propose
several methods for the answer sampling and consistency checking, including one
leveraging a mixture of two thought representations (i.e., Chain-of-Thought (Wei
et al., 2022) and Program-of-Thought (Chen et al., 2022; Gao et al., 2023)).
Through experiments on six reasoning benchmark datasets, with GPT-3.5-turbo
and GPT-4 being the weaker and stronger LLMs, respectively, we demonstrate
that our proposed LLM cascades can achieve performance comparable to using
solely the stronger LLM but require only 40% of its cost. Our codes are available
at https://github.com/MurongYue/LLM_MoT_cascade.

1 INTRODUCTION

Large language models (LLMs) such as GPT-4 have exhibited remarkable performance in reasoning
tasks (Rae et al., 2021; Lewkowycz et al., 2022; Zhong et al., 2023). Because of the intensive
computing resources required for training and hosting the LLMs for inference, many such LLMs
are only accessible via paid API services, thus leading to high monetary costs. In this work, we
are motivated to study strategies for reducing the costs of using LLMs while not sacrificing task
performance, particularly for LLMs’ applications to reasoning tasks.

Different types and versions of LLMs often come with different capabilities and costs. Typically,
LLMs with better performance (termed “stronger LLMs”) are more expensive than those with rela-
tively worse overall performance (termed “weaker LLMs”). For example, GPT-4 (OpenAI, 2023) is
30 times more expensive than GPT-3.5-turbo for the output tokens.1 It thus implies a promising so-
lution to cost-saving. That is, simple questions could be answered by the weaker but more affordable
LLM, whereas only the difficult questions need to be tackled by the more expensive, stronger LLM.
Drawing inspirations from here, Chen et al. (2023a) explored the idea of “LLM cascades”, where a
question is always first answered by a weaker LLM, and then optionally routed to a stronger LLM
when the the weaker LLM’s answer is not accepted (Figure 1). To decide this routing, this work
suggested fine-tuning a smaller LLM to score each question along with its answer produced by the
weaker LLM. While this approach could work for some tasks, in practice, we observed that it did
not yield satisfying performance for intricate reasoning tasks. Intuitively, it is very challenging to
evaluate the difficulty and the answer correctness of a reasoning question solely based on its literal
expression, even with a large enough LLM, since the errors could be nuanced despite the reasoning
paths appearing promising (Madaan et al., 2023).

1https://openai.com/pricing.
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In this work, we proposed to devise this routing decision-maker from a different angle, i.e., the
“answer consistency” of the weaker LLM (Wang et al., 2023). This is inspired by the observation
that answers from the weaker LLM tend to be consistent in multiple sampling paths when the ques-
tion is easy, but inconsistent when the question is hard. To implement this idea, we proposed two
types of methods, a vote-based method that examines if the agreement of multiple answer samples
on the majority-voted answer surpasses a pre-defined confidence threshold, and a verification-based
method that checks if the majority-voted answers sampled from different prompts are consistent. To
realize the two methods in reasoning tasks, we further investigated multiple strategies for answer
sampling, including sampling from a single set versus two sets of task demonstrations. In particu-
lar, we proposed to leverage a “mixture of thought (MoT) representations”, which samples answers
from both Chain-of-Thought (Wei et al., 2022, CoT) and Program-of-Thought (Chen et al., 2022;
Gao et al., 2023, PoT) prompts, emulating how experts can provide diverse perspectives to the same
question. This follows the same spirit of ensembling (Rokach, 2010), but is applied to developing
LLM cascades for the first time. By pairing different sampling strategies with the two answer consis-
tency checking methods (i.e., vote and verification), we end up with ten approaches to implementing
the LLM cascade.

To evaluate the proposed approaches, we conducted experiments on six reasoning datasets, covering
mathematical, symbolic, and causal reasoning tasks, using GPT-3.5-turbo as the weaker LLM and
GPT-4 as the stronger one. The experimental results demonstrated the effectiveness of LLM cas-
cades based on answering consistency. That is, different approaches that we proposed for LLM cas-
cades can generally achieve performance comparable to or even better than fully using the stronger
LLM, while they require only half or less relative cost to the latter. In particular, our approaches
based on a mixture of thought representations achieved comparable task performance with only 40%
of the cost of GPT-4. Our results also underscored the effectiveness of sampling answers from di-
verse prompt settings, such as sampling from different task demonstrations or different thought rep-
resentations. Our further analysis revealed that different prompt settings can often provide different
opinions for the more complex questions while tending to be consistent for easier ones, which allows
us to distinguish questions at different difficulty levels more accurately for cascade decision-making.
Finally, we also compared our consistency-based approaches with fine-tuned smaller LLMs (Chen
et al., 2023a) as well as other variants that make the routing decisions based on the literal expressions
of the question and its answer. Our approaches exhibited strong advantages over all of them.

2 LLM CASCADES FOR COST-EFFICIENT REASONING

2.1 OVERVIEW OF LLM CASCADES

Query

Weaker
LLM

Answer
AnswerLLM Cascade

Decision Maker
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LLM

Accept

Reject

Final Answer

Final Answer

Figure 1: Illustration of LLM cascade chaining a
weaker but cheaper LLM with a stronger but more
costly one.

We leverage a cascade of LLMs to save the cost
of in-context LLM reasoning, as illustrated in
Figure 1. Specifically, we assume two LLMs.
The weaker LLM (denoted as LLMw) yields
relatively worse performance but is less costly,
whereas the stronger LLM (denoted as LLMs)
enjoys better task performance but is more ex-
pensive. Given a question Q, the LLM cascade
first employs the weaker LLM to obtain an ini-
tial answer Aw. This answer, along with other
metadata produced by the weaker LLM, will then be fed to a cascade decision maker to decide
whether the answer can be accepted as the final one. If the answer is rejected, the stronger LLM
should be invoked to provide a more reliable answer As. As a consequence, the total cost of answer-
ing the question becomes

C = Cw + Cd + 1reject C
s, (1)

where Cw and Cs indicate the costs from calling the weaker and the stronger LLMs, respectively,
Cd denotes any cost involved in the LLM cascade decision-making process, and 1reject = 1 holds
if and only if the decision maker rejects the answer.

Both LLMs solve the question via few-shot in-context learning, e.g., for the weaker LLM, an answer
Aw is produced by sampling from PLLMw(Aw |E1||E2|| . . . ||EM ||Q), where E1||E2|| . . . ||EM ||Q
denotes a concatenation of M task demonstrations and the input question Q, forming the “prompt
input” to the LLM (Brown et al., 2020). As M task examples are used to demonstrate the task,
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it indicates a “M -shot in-context learning” of LLM. For reasoning tasks, in practice, a LLM will
typically be prompted to elaborate on its reasoning process via “thought representations”, such as
Chain-of-Thought (Wei et al., 2022, CoT) and Program-of-Thought (Chen et al., 2022; Gao et al.,
2023, PoT), where the reasoning process is described step by step via natural language and program-
ming language, respectively. The answer (e.g., a numerical result of the mathematical calculation)
can then be extracted from the texts (for CoT) or obtained by executing the code (for PoT).

2.2 ANSWER CONSISTENCY-BASED CASCADE DECISION-MAKING

The core of our LLM cascade is the decision maker, which takes in the output from the weaker
LLM, and then decides whether to route to the stronger LLM or not. An ideal cascade decision
maker should call the stronger LLM only when the answer by the weaker LLM is wrong, such that
the total cost C can be minimized without degrading the overall task performance (compared with
using the stronger LLM all the time). To this end, we propose two methodologies based on the
“answer consistency” of the weaker LLM, which we elaborate on below.

Answer Consistency and Sources of Sampling Answer consistency has been found helpful for
improving the LLM performance in reasoning tasks (Wang et al., 2023). Instead of greedily de-
coding one answer for each question, Wang et al. (2023) sampled a diverse set of reasoning paths
(or thought processes) and then selected the most consistent answer by marginalizing out the sam-
pled paths. Drawing inspiration from the prior work, we make the following hypothesis: When the
weaker LLM samples highly consistent answers for a given question, it reveals a high “confidence”
in solving this question and its most consistent answer is likely to be correct; in this case, there is
thus no need to invoke the stronger LLM.

To realize this intuition, we generalize from Wang et al. (2023) and consider three sources of sam-
pling consistency:

• In-distribution sampling: As Wang et al. (2023), we consider sampling multiple answers given
the same prompt input to the weaker LLM. In practice, this can be achieved by setting a non-zero
temperature for the weaker LLM.

• Sampling from different in-context demonstrations: We further consider sampling answers
from two sets of task demonstrations under the same thought representation. For example, to
demonstrate the CoT process in mathematical reasoning tasks, Wei et al. (2022) annotated eight
math examples as the demonstrations and performed 8-shot in-context learning. We additionally
annotated another eight examples as the second set of demonstrations, which allowed us to further
diversify the sources of answer sampling.

• Sampling from different thought representations: While existing literature typically investi-
gated either CoT or PoT independently, in this work, we propose to leverage the synergy of both
thought representations in a single task. We hypothesize that an LLM obtains truly high confi-
dence in its problem-solving, only when it is able to produce a consistent answer agnostic to how
the intermediate steps are represented. Therefore, we propose to sample the weaker LLM answers
from a “mixture of thought (MoT) representations”, which includes both CoT and PoT prompts.

Below, we introduce our methodologies for consistency checking based on the answer samples.

Method 1: Vote-based decision-making The first method calculates the consistency of the
weaker LLM’s answer samples by voting. Formally, for a single prompt, we denote the set
of answers produced by the weaker LLM for each question Q as (Aw

1 , A
w
2 , ..., A

w
K), where K

is the pre-defined number of samples. When sampling from two different prompts, we denote
(Aw

11, A
w
12, ..., A

w
1K1

) and (Aw
21, A

w
22, ..., A

w
2K2

) as the answer samples produced by each of them,
where K1 and K2 represent the pre-defined sample size for each prompt setting, respectively. Note
that for this method, we do not distinguish answers sampled with a single prompt or multiple prompts
(e.g., samples from different prompts have exactly equal weights when voting). The most consis-
tent answer can then be selected as the one that most samples agree with, and this answer will also
be regarded as the final answer Aw by the weaker LLM. The decision maker measures the weaker
LLM’s consistency via the agreement score

s =

∑K
i=1 1Aw

i =Aw

K
or s =

∑K1

i=1 1Aw
1i=Aw +

∑K2

i=1 1Aw
2i=Aw

K1 +K2
. (2)
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Question: Kobe and Pau went to
a restaurant...
Answer: Pau ordered 5 x 2 = 10
fried chickens in total.Therefore,
Pau ate 10 x 2 = 20 pieces of fried
chicken. Ans = 20

#Question: Kobe and Pau went to
a restaurant...
#Python code, return ans
kobe_order=5
pau_order=kobe_order*2
pau_eaten =2*pau_order

#Question: Joelle has 5 orchids and
4 African daisies on her balcony...
#Python code, return ans
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Figure 2: An overview of our approaches (6 vote-based and 4 verification-based). We use to
represent the answers from PoT and to represent the answers from CoT. Demoi is the i-th set of
demonstrations.

The larger the s, the more consistent the weaker LLM’s answer samples. In conjunction with a
pre-defined threshold value τ , the decision maker accepts the weaker LLM’s most consistent answer
Aw when s ≥ τ and rejects it otherwise. As a result, the total cost of answering a question (Eq 1)
can vary depending on the threshold.

Method 2: Verification-based decision-making In the case of producing samples from two dif-
ferent prompt settings (i.e., different demonstrations or thought representations), we propose the
second method, which compares the most consistent answers produced by each prompt as the an-
swer verification. As previously mentioned, we could obtain two sets of answers from distinct
prompts: (Aw

11, A
w
12, ..., A

w
1K1

) and (Aw
21, A

w
22, ..., A

w
2K2

). Our method then verifies the most consis-
tent answers within each prompt, denoted as Aw′

1 and Aw′
2 respectively, as follows:

s = 1Aw′
1 =Aw′

2
. (3)

Only when s equals 1, i.e., when the two answers are the same, the weaker LLM’s answer will be
accepted by the decision maker. In this case, the final answer of the weaker LLM will be the same
as the two most consistent answers, i.e., Aw = Aw′

1 = Aw′
2 .

In comparison, these two methods have different applicable scenarios. The vote-based method is
well-suited for scenarios with pre-defined cost constraints. In such cases, we have the flexibility to
tune the threshold to ensure it aligns with the constraint. On the other hand, the verification-based
method is capable of producing relatively optimal results without the need for threshold tuning,
although it lacks flexibility. We will systematically compare the two methods in experiments.

2.3 LLM CASCADES FOR REASONING TASKS

We instantiate the proposed two methods in LLM reasoning tasks with different sampling sources,
resulting in 10 approaches, as summarized in Figure 2. Specifically, 6 approaches adopt vote-based
decision-making: CoT-1D-Vote collects K answers sampled from prompting the weaker LLM
with the CoT representation, and then calculates the answer consistency for decision-making, fol-
lowing Eq 2. Similarly, PoT-1D-Vote bases its decision-making on answers sampled from a
PoT prompt. To diversify the sources of the answers, for each thought representation, we further
consider sampling from two sets of CoT or PoT demonstrations, resulting in CoT-2D-Vote and
PoT-2D-Vote, respectively. Finally, the vote-based approaches also include two variants lever-
aging a mixture of thought (MoT) representations. For MoT-1D-Vote, K1 answers are sampled
from the CoT prompt and another K2 from the PoT prompt, and a union set of their answers are
then used to compute the consistency score s. For MoT-2D-Vote, the procedure is similar, except
that the CoT and the PoT prompts are annotated from two sets of demonstration examples.

The verification-based approaches assume answer samples from two different prompts. We
instantiate 4 variants, including CoT-2D-Verify, where we prompt the weaker LLM with
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two sets of CoT demonstrations, resulting in two answer sets for decision-making (Eq 3);
PoT-2D-Verify, where we similarly prompt the weaker LLM with two sets of PoT demonstra-
tions; MoT-1D-Verify, where we consider two sets of answers from two thought representation
prompts (but on the same set of task demonstration examples); and MoT-2D-Verify, which ad-
ditionally employs different sets of demonstrations when prompting the weaker LLM with different
thought representations.

Cost-Comparable Sample Size Configuration To fairly compare all approaches in terms of their
effectiveness in identifying easy (or correct) vs. hard (or correct) questions, we aim to configure
their costs to be comparable. Since we use the same prompt to the stronger LLM, Cs is agnostic
to the specific approach. However, different approaches may require varying costs in calling the
weaker LLM (i.e., Cw). For example, even with the same total sampling size (i.e., K = K1 +
K2), CoT-1D-Vote and CoT-2D-Vote result in different input token usages because the former
prompt the LLM once but the latter prompt it twice, doubling the token usages. Therefore, we unify
the Cw by a coarse-grained cost alignment. Our analysis suggests different configurations of K for
different approaches. We refer readers to Appendix A for more details. Since our configuration can
only yield comparable costs due to certain simplifications, rather than exact costs, we still report the
actual token cost for each approach.

3 EXPERIMENT

3.1 EXPERIMENTAL SETTING

We evaluate our LLM cascade approaches on six datasets, covering (1) mathematical reasoning,
including GSM8k (Cobbe et al., 2021), ASDIV (Ling et al., 2017), and TabMWP (Lu et al., 2023);
(2) symbolic reasoning from BIG-Bench Hard (bench authors, 2023), including DATE and Navi-
gate; and (3) causal reasoning, including CREPE (Zhang et al., 2023). In our pipeline, we leverage
the GPT-3.5-turbo (4k context) as the weaker LLM and the GPT-4 (8k context) with CoT self-
consistency (Wang et al., 2023, SC) as the stronger LLM. Throughout our experiments, we set the
number of task demonstrations as M = 8. We use the same demonstration examples as prior
work (Chen et al., 2022; Wei et al., 2022). When additional task demonstrations are needed (e.g.,
for 2D approaches), we randomly sample examples from the training data and manually annotate
them with thought representations. We set the number of sampling paths as K = 20 for GPT-3.5-
turbo and K = 3 for GPT-4. The sampling temperature by default is 0.4 for both LLMs. The
metrics we use are the task accuracy and the relative cost compared with the cost of GPT-4 with
CoT SC (denoted as GPT-4-CoT-SC). A lower relative cost and higher accuracy indicate bet-
ter performance. We also compared our approaches with baselines using only the weaker LLM
(i.e., GPT-3.5-CoT-SC, GPT-3.5-PoT-SC) or only the strong LLM in different ways (i.e.,
GPT-4-CoT-Greedy, GPT-4-PoT-Greedy, GPT-4-CoT-SC, GPT-4-PoT-SC). Our ex-
perimental details can be found in Appendix B and reproducible prompts in Appendix L.

3.2 MAIN RESULTS

Figure 3 illustrates the performance of our proposed approaches. For Vote-based approaches, we
draw curves by changing the pre-defined threshold τ varying from 0.4 to 1. A high value of threshold
signifies a more rigorous criterion for trusting the answers from the weaker LLM, making more
examples transferred to the stronger LLM. Our observations are as follows:

Our pipeline achieves comparable task performance with significantly reduced costs. On av-
erage, all of our cascade variants (Vote or Verify) demonstrate significant cost efficiency. In
particular, as shown in the average plot, the four MoT variants achieve comparable task perfor-
mance (∼0.929 accuracy) to GPT-4-CoT-SC (0.931) while demanding only 40% of its cost. On
CREPE, MoT variants even outperform GPT-4-CoT-SC (0.885 vs. 0.871) at 47% of its cost. Our
approaches based on CoT and PoT also exhibit the capability to save costs while maintaining the
overall task performance. For example, CoT-2D-Vote achieved 0.924 task accuracy on average
but demanded only 57% relative cost. These observations suggest the effectiveness of our cascade
decision maker via checking the answer consistency of the weaker LLM.

Sampling from diverse prompt settings helps cascade decision-making. Our results show
that variants involving diverse sources of sampling, such as CoT/PoT-2D-Vote and
MoT-1D/2D-Vote, can more precisely distinguish between easy and hard reasoning questions,
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Figure 3: Main experiment results over six reasoning datasets. The bottom figure represents the
average performance. The exact numerical results are included in Appendix C.

compared with their counterparts sampling from single sources, i.e., CoT/PoT-1D-Vote. For
example, between CoT-2D-Vote and CoT-1D-Vote, the former outperforms the latter by 1.4%
absolute accuracy under the same relative cost of 0.4 on average.

Mixing thought representations is particularly effective. Furthermore, we find that mixing the
two thought representations (i.e., MoT-1D/2D-Vote) outperforms decision-making using either
of them (i.e., CoT-1D/2D-vote and PoT-1D/2D-vote). This is illustrated by the gap in the
average plot and is consistent on most datasets except DATE, where many test questions are very
similar to the demonstration examples. Intuitively, this is because different thought representations
can bring in more diverse “opinions” of the weaker LLM on the same input question, resembling
how a group of experts with diverse perspectives could contribute to more effective results in collab-
orative work. It can also be viewed as “ensembling” LLMs, which utilizes the intuition that variants
of the same model typically share few mistakes (Rokach, 2010). We provide a further investigation
of this effect in Section 3.3. We also note that when using MoT, no obvious difference is perceived
between using one set (i.e., MoT-1D-Vote) or two sets (i.e., MoT-2D-Vote) of task demonstra-
tions. This result reveals that tuning the thought representations is more helpful for measuring an
LLM’s (un)certainty on its answer than tuning the task demonstrations.

Increasing the threshold yields marginal benefits for MoT-1D/2D-Vote. As costs increase,
the curves of MoT-1D/2D-Vote flatten out, showing that pushing the threshold to exceedingly
high is unnecessary. This is because even for an easy question, the weaker LLM may still have hal-
lucinations in a small set of answers. Setting the threshold too high can lead to the decision-making
being influenced by them. It may result in easy questions being sent to the stronger LLM incorrectly,
thus driving up the overall cost. In our practice, a threshold that can balance cost and accuracy typi-
cally falls between 0.5 and 0.6. When it comes to MoT-1D/2D-Verify, we can strike a balance
between cost and accuracy as the verification method can tolerate a few hallucinations.

3.3 ANALYSIS ON MIXTURE OF THOUGHT REPRESENTATIONS

To understand the effect of MoT, we analyze three vote-based approaches. We first group questions
into “easy” and “hard” based on whether the weaker LLM can answer them correctly (i.e., whether
the majority-voted answer Aw is correct or not). For all easy/hard questions, we then calculate
the average consistency score following Eq 2. We present the average consistency scores for each
approach, categorizing easy and hard questions based on whether the weaker LLM can answer them
correctly (i.e., Aw being correct). A higher average consistency score indicates our decision-maker
places greater trust in the answer from the weaker LLM. Hence, an effective cascade decision-
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Question: Blake and Kelly are having a contest to see who can run the most in 15 minutes. They decide to do it on a football field that is 100
yards long. Blake runs back and forth 15 times. Kelly runs back and forth once, and then decides that she doesn't want to run next to Blake, so
she starts to run to the 40-yard line and back. She does this 34 times. How much farther does the winner run than the loser?

Answer: [...(Ignored)] Kelly runs to the 40-
yard line and back 34 times, so she runs
34*80=2720 yards. Thus, Blake runs 3000-
2720=280 yards farther than Kelly.

Answer: [...(Ignored)] Kelly runs 34 x (40 x 2)
= 2720 yards. Blake runs 3000 - 2720 = 280
yards farther than Kelly.

# Python code, return ans
[...(Ignored)]
distance_covered_by_kelly =
(length_of_football_field *
num_of_laps_for_kelly * 2) + (40 *
num_of_laps_for_kelly * 2)
ans = abs(distance_covered_by_blake
- distance_covered_by_kelly)

CoT 1

CoT 2

PoT 1

Black runs 200 yards for each back and
forth because...He runs 3000 yards in total
because...Kelly runs 200 yards at first
because 100 x 2 = 200. She runs 80 yards
each time she does a back and forth to the
40-yard line because... She runs 2720 from
these back and forth. She runs 2920 in total
because...The winner ran 80 yards more
because 3000 - 2920=80.

Gold

(Answer via Python execution: 6520.0)
Logic Generation Error Value Grounding Error

Figure 4: Average consistency scores (Top) and case studies (Bottom; simplified for presentation
purposes) of various approaches showing the advantage of MoT. Shades highlight similar mistakes
by CoT even based on different task demonstrations, and dissimilar mistakes by PoT.

maker should reveal relatively higher consistency scores for easy questions and lower ones for hard
questions, leading to a larger ”gap” between them.

We show the results in Figure 4 (Top). It is observed that all approaches lead to higher consistency
scores on the easy questions than those on the hard questions, which explains their overall effec-
tiveness for cascade decision-making. Because of involving two different thought representations,
MoT-1D-Vote tends to have a lower consistency score compared with the two CoT approaches.
However, it still ends up with a larger “gap” in the consistency scores for the easy and the hard
questions, which is particularly prominent on the Navigate dataset where it gives the best perfor-
mance gain (Figure 3). In contrast, CoT-1D-Vote results in the smallest score gap, indicating
its weakness in distinguishing between the easy and the hard questions, particularly for Navigate.
This weakness is mitigated by diversifying the prompting with two sets of task demonstrations (i.e.,
CoT-2D-Vote), but it still underperforms mixing the thought representations.

Finally, in Figure 4 (Bottom) we show that when CoT cannot answer a hard question, prompting the
weaker LLM with another set of task demonstrations (but still under the CoT representation) often
yields the same mistaken answer, which thus results in a high consistency score. On the contrary,
PoT tends to make mistakes in a very different way and result in a different mistaken answer, which
explains the low consistency score of MoT-1D-Vote. More cases are shown in Appendix D.

3.4 ROBUSTNESS EVALUATION
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Figure 5: Robustness analysis with varying temperature T and sample size K.
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We further analyze if our results are sensitive to the change of the sampling temperature T or the
sample size K. We select datasets for each type of reasoning task and conduct experiments with
CoT-2D-Vote and MoT-1D-Vote. Our results are shown in Figure 5. We first look into the
effect when increasing the sampling temperature T from 0.4 (our default setting) to 0.8. For both
approaches, increasing their temperature yields comparable or slightly better performance. This is
owing to the increased answer diversity when the temperature gets higher. However, in any case,
MoT-1D-Vote consistently outperforms CoT-2D-Vote. Increasing the sample size K from 20
to 40, on the other hand, leads to a rightward shift of the curves, implying that it requires higher cost
to achieve the same task accuracy. This can be explained by the higher cost of the larger sample size,
whereas increasing the sample size does not contribute to the detection of easy vs. hard questions.
Like in the results of varying temperatures, MoT robustly outperforms CoT in any case.

3.5 COMPARISON TO EXTERNAL TEXT-BASED VERIFIERS
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Figure 6: Comparison with external verifiers showing the advantages of our approaches based on
answer consistency. We do not report finetuned verifiers for DATE as it does not have a training set.

As mentioned, prior work implemented the LLM cascade decision-maker by training an external
verifier, which scores a question and its answer (from the weaker LLM) based on their literal de-
scriptions (Chen et al., 2023a; Šakota et al., 2023). Related to the above work, Chen et al. (2023b)
and Madaan et al. (2023) also showed the promise of prompting LLMs to evaluate their own re-
sponses. To perform a general comparison with such external verifiers, we conducted experiments on
GSM8k, DATE, and CREPE with the following baselines: Finetuned-Q, which is a RoBERTa-
base model (Liu et al., 2020) fine-tuned to decide whether a question should be routed to the stronger
LLM based on its description; Finetuned-QA, which works similarly as Finetuned-Q but ad-
ditionally takes the majority-voted answer from the weaker LLM (GPT-3.5-CoT-SC) as input;
LLM-Q, where we instead prompt GPT-3.5-turbo as the verifier to judge based on the question de-
scription; and LLM-QA, which similarly employs GPT-3.5-turbo to decide upon the question and
the weaker LLM’s majority-voted answer. We leave details of the baselines in Appendix E.

The results in Figure 6 show that incorporating the external verifiers cannot achieve comparable
accuracy with GPT-4-CoT-SC. For example, on the GSM8k dataset, the highest accuracy with the
external verifiers is 0.892, which is way lower than the accuracy (0.958) of GPT-4-CoT-SC and
the accuracy (0.951) of our approaches. They also show lower task accuracies than our approaches
under the same cost. It indicates that the external verifiers cannot yield satisfying results in complex
reasoning tasks, which can be due to the intrinsic challenge of deciding question difficulty and
answer correctness solely based on their textual descriptions. For the calibration analysis, please
refer to the appendix I.

3.6 ADDITIONAL STUDIES

How weak can the weaker LLM be? We evaluate our approaches when adopting LLAMA2-13B
(Touvron et al., 2023) as the weaker LLM and GPT-4 as the stronger LLM. The results are shown
in the Appendix F. On the DATE dataset, our approaches still works. However, LLAMA2-13B
as the weaker LLM doesn’t yield ideal results on GSM8k and CREPE. That is because most of the
questions in GSM8k and CREPE are excessively complex for LLAMA2-13B. Therefore, LLAMA2-
13B often fails to answer the questions consistently across multiple samplings. Hence, the choice of
a weaker LLM should be contingent on the task’s level of difficulty. When the current weaker LLM
struggles with the task, it is advisable to consider switching to a more powerful LLM.

Can the stronger LLM benefit from the weaker LLM hints? In our LLM cascade, all questions
will obtain answers from the weaker LLM, no matter if they will be sent to the stronger LLM
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or not. Therefore, an interesting question is whether the answer produced by the weaker LLM
(correct or incorrect) can provide “hints” to enhance the stronger LLM. To answer this question, we
experimented with MoT-1D-Verify, where we additionally passed the two inconsistent answers
Aw′

1 and Aw′
2 as hints to the stronger LLM following the format of prior work (Zheng et al., 2023).

We observed that the hints can only yield slight improvement on DATE, but greatly hurt the model
performance on GSM8k and CREPE. Therefore, we conclude that hints from the weaker LLM,
when it is uncertain about the question, do not help the stronger LLM. Details are in Appendix G.

Can our method generalize to factual-based tasks? We also explored whether our method can
be generalized to factual-based reasoning tasks in Appendix J.

4 RELATED WORK

Earlier research has delved into techniques to enhance the cost efficiency of LLMs, including quan-
tization, pruning, and decoding methods(Bai et al., 2022; Kurtic et al., 2023; Leviathan et al., 2022).
While many LLMs are closed-source, certain studies have concentrated on how to utilize the API
efficiently. Chen et al. (2023a) proposed an LLM cascade, which sends a query to a list of LLMs
sequentially if the answers provided by the prior LLMs are regarded unacceptable. A concurrent
effort is made by Šakota et al. (2023), where the proposed approach determines which LLM to in-
voke prior to sending the query to any LLM. Both of these approaches employed external verifiers
fine-tuned from smaller LMs and therefore demanded substantial training data and additional model
learning. In our experiments, we showed the ineffectiveness of these approaches when they were
used to save costs for complex reasoning tasks, which echos the discovery of the shortcomings of
LLM fine-tuning in recent work (Ni et al., 2023). In contrast, we proposed a novel solution for
LLM cascades based on the answer consistency of the weaker LLM, which is training-free and is
not limited to a specific weaker LLM.

Reasoning with LLMs LLMs have demonstrated strong capability in solving reasoning
tasks (Rae et al., 2021; Lewkowycz et al., 2022; Zhong et al., 2023). The standard few-shot in-
context learning for LLMs is to feed the question to the LLM and let it generate the answer directly
(Brown et al., 2020). Wei et al. (2022) then proposed the Chain-of-Thought approach, showing that
prompting LLMs to think step by step can significantly improve their performance in solving reason-
ing problems, as it activates the built-in reasoning capabilities of LLMs (Madaan & Yazdanbakhsh,
2023). To further facilitate the mathematical steps in a reasoning task, Chen et al. (2022) and Gao
et al. (2023) proposed the Program-of-Thought prompting, using code as the intermediate step and
executing it with an external interpreter to entangle reasoning and numerical calculation. While
most existing works studied CoT and PoT independently as alternative approaches, several other
works have delved into the synergy between them, e.g., integrating code into CoT (Cheng et al.,
2023b; He-Yueya et al., 2023), ensembling algebraic and code representations (Imani et al., 2023;
Yue et al., 2023), or performing automatic selection between CoT and PoT (Zhao et al., 2023). Sim-
ilar to these works, our approaches employ CoT and PoT jointly; however, unlike them, we leverage
this synergy for the novel application of cost-saving for LLM reasoning. On the other hand, like our
LLM cascades, there are also recent works building pipelines chaining multiple LLMs (Varshney &
Baral, 2022; Xiong et al., 2023a; Li et al., 2023; Lin et al., 2023a), but these works have a different
focus on improving the task accuracy, rather than reducing the LLM costs.

Uncertainty of LLMs Our approach involves measuring the uncertainty of the results of LLMs.
Multiple concurrent works have investigated using the voting score to evaluate the answer’s uncer-
tainty (Xiong et al., 2023b; Si et al., 2023; Cai et al., 2023). However, they dismissed the potential
application for different representations of intermediate steps in the evaluation.

5 CONCLUSION

We introduce a simple yet efficient and universally applicable economical pipeline to dynamically
decide the LLMs in reasoning tasks, so as to save the token costs. Our approach based on checking
the answer consistency of the weaker LLM is novel and effective. Our discoveries emphasize that
leveraging prompts with a mixture of thought representations in weaker LLM achieves the best
performance as it introduces diverse answers. Compared with fully employing the stronger LLM,
our pipeline requires approximately 40% of expenses to achieve a comparable result. Future works
are listed in Appendix K.
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6 ETHICS STATEMENT

Our research endeavors to build a cost-efficient pipeline in solving reasoning problems in the LLM
era. The significance of this work holds the potential to benefit a diverse range of organizations,
particularly those with limited financial resources such as local businesses, educational institutions,
and non-profit organizations. By devising cost-effective solutions, we empower these resource-
constrained entities to harness the reasoning ability of LLMs cheaply, thereby fostering fairness
and inclusivity within the NLP community. This aligns with the broader goal of ensuring that ad-
vancements in NLP do not remain exclusive to a select few, but are accessible to a wider audience,
regardless of their financial constraints.

Moreover, for these industry giants, the cost savings facilitated by our findings can also be sub-
stantial, particularly when facing extremely large throughputs. By optimizing cost-efficiency, our
research contributes to not only economic savings but also environmental sustainability by mitigat-
ing the carbon footprint associated with running large-scale computations.

7 REPRODUCIBILITY STATEMENT

Our pipeline is simple to implement and reproducible. We have documented all the experimental
details, both in the main text and the appendix sections. While we cannot include the complete text of
every prompt due to their excessive length, we do provide examples of each prompt in Appendix L,
facilitating the reader’s comprehension of the style employed. All of our implementations (including
the complete prompt scripts, the code for training external verifiers, the code for approach evaluation,
etc.) are publicly available at https://github.com/MurongYue/LLM_MoT_cascade.
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A COST ANALYSIS OF LLM CASCADE APPROACHES

In Section 2.3, we introduced ten approaches to implement the LLM cascade decision maker. As
we are interested in saving the cost of LLM usage, we first analyze the token usage of each ap-
proach. While different thought representations of the same task example could induce different
token usages, the difference is very hard to quantify and also depends on the specific reasoning
task. For example, for GSM8k (Cobbe et al., 2021), the PoT representation of the same example is
typically shorter than its CoT counterpart, while a reversed comparison is observed for DATE and
Navigate (bench authors, 2023). In addition, different demonstration examples may also consist of
different numbers of tokens, which is hard to quantify as well. To provide a unified analysis, we
assume that every demonstration example for any task, regardless of the thought representation in
use, consumes Ntok tokens.

Based on our hypothesis, we conducted a cost analysis, with results summarized in Table 1. To
give an example, consider comparing the token costs of CoT-1D-Vote and CoT-2D-Vote. For
CoT-1D-Vote, the cost of calling weaker LLM is (MCw

i +KCw
o )×Ntok; for CoT-2D-Vote, it

is (2MCw
i +K1C

w
o +K2C

w
o )×Ntok. Here, Cw

i and Cw
o are the input and output per-token cost for

the weaker LLM, respectively, and M is the number of demonstrations in each prompt. In practice,
we set K1 = K2 = K2D/2, where K2D is the total sample size of two sets of demonstration
examples, and the total cost for CoT-2D-Vote can then be rewritten to (2MCw

i +K2DCw
o ). To

keep the costs of CoT-1D-Vote and CoT-2D-Vote consistent, we set K2D = K1D −M × Cw
i

Cw
o

.
Similarly, we can get the total sample size of different representations KMoT . The analysis guides
us in configuring each approach to be “cost-comparable” (i.e., leading to similar Cw’s). Finally,
we note that we do not change the number of task demonstrations (i.e., M ) because LLMs are very
sensitive to this configuration.

Method Certainty Value (s) Definition Cost Estimation

CoT-1D-Vote Agreement of K CoT samples on the majority-voted answer Aw, s =∑K
i=1 1Aw

i =Aw/K

(MCw
i +K1DCw

o )×Ntok

PoT-1D-Vote Agreement of K PoT samples on the majority-voted answer Aw, s =∑K
i=1 1Aw

i =Aw/K

(MCw
i +K1DCw

o )×Ntok

MoT-1D-Vote Agreement of KMoT /2 CoT and KMoT /2 PoT samples on the majority-voted
answer Aw, s =

∑KMoT
i=1 1Aw

i =Aw/KMoT

2×(MCw
i +KMoT

2
Cw

o )×Ntok

CoT-2D-Vote Agreement of K2D/2 CoT samples over 2 sets of task demonstrations on the
majority-voted answer Aw, s =

∑K2D
i=1 1Aw

i =Aw/K2D

2× (MCw
i + K2D

2
Cw

o )×Ntok

PoT-2D-Vote Agreement of K2D/2 PoT samples over 2 sets of task demonstrations on the
majority-voted answer Aw, s =

∑K2D
i=1 1Aw

i =Aw/K2D

2× (MCw
i + K2D

2
Cw

o )×Ntok

MoT-2D-Vote Agreement of KMoT /2 CoT samples on one set of task demos and KMoT /2
PoT samples on another set of task demos on their majority-voted answer A∗,
s =

∑KMoT
i=1 1Aw

i =Aw/KMoT

2×(MCw
i +KMoT

2
Cw

o )×Ntok

CoT-2D-Verify Agreement of the two majority-voted answers Aw′
1 and Aw′

2 over 2 sets of CoT
task demonstrations with K2D examples, s = 1Aw′

1 =Aw′
2

2× (MCw
i + K2D

2
Cw

o )×Ntok

PoT-2D-Verify Agreement of the two majority-voted answers Aw′
1 and Aw′

2 over 2 sets of PoT
task demonstrations with K2D examples, s = 1Aw′

1 =Aw′
2

2× (MCw
i + K2D

2
Cw

o )×Ntok

MoT-2D-Verify Agreement of the two majority-voted answers Aw′
1 and Aw′

2 over one set of
CoT and another set of PoT task demonstrations with KMoT /2 examples, s =
1Aw′

1 =Aw′
2

2×(MCw
i +KMoT

2
Cw

o )×Ntok

MoT-1D-Verify Agreement of the two majority-voted answers Aw′
1 and Aw′

2 for CoT and
PoT over the same set of task demonstrations with KMoT /2 examples, s =
1Aw′

1 =Aw′
2

2×(MCw
i +KMoT

2
Cw

o )×Ntok

Table 1: Investigated approaches and cost calculations. For simplicity, we assume M -shot demon-
stration prompting and that every demonstration example has Ntok tokens. Cw

i is the input price per
token and Cw

o is the output price per token. To keep consistent costs of using the weaker LLM, we
set KMoT = K2D = K1D −M × Cw

i

Cw
o

.

B MAIN EXPERIMENTAL DETAILS

Implementation Details We run each approach two times to reduce variance and report the aver-
age results. Since DATE and Navigate do not have a training set, before experiments we sampled 8
shots of examples randomly and annotated them to be the second set of task demonstrations (for 2D
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approaches). The remaining examples are used consistently across all experiments as the test set.
We adopt “Python code, return ans” in PoT prompt to let the LLM generate the Python code (Chen
et al., 2022). The interpreter we used for executing PoT is Python 3.10, with some packages, such
as DateTime2 to facilitate the execution of the generated code.

Metrics Details We evaluate the methods based on task accuracy and cost efficiency, with a lower
cost and higher accuracy indicating better performance. For accuracy, when the answer is a string,
we use exact matching. When the answer is a number, we relax the evaluation criteria due to po-
tential variations in the exact computations carried out by the external interpreter. Following prior
work (Chen et al., 2022), we adopt the tolerance to 0.001. For cost efficiency, we calculate the actual
token number based on the tiktoken3 and the total cost 4 for each method and get the relative cost by
comparing it with the total cost of GPT-4-CoT-SC.

C MAIN RESULT TABLES

In this section, we show the exact numerical results that are reported in Figure 3. The GSM8k result
is in Table 2. The ASDIV result is in Table 3. The TabMWP result is in Table 4. The DATE result is
in Table 5. The Navigation result is in Table 6. The CREPE result is in Table 7. The average results
are in Table 8.

Voting Method
CoT-1D-Vote PoT-1D-Vote CoT-2D-Vote PoT-2D-Vote MoT-1D-Vote MoT-2d-Vote

Threshold Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost
0.40 0.875 0.184 0.832 0.141 0.897 0.211 0.854 0.170 0.901 0.187 0.904 0.195
0.50 0.896 0.233 0.850 0.179 0.912 0.249 0.872 0.209 0.917 0.235 0.918 0.241
0.55 0.907 0.265 0.861 0.206 0.929 0.309 0.894 0.262 0.943 0.331 0.942 0.334
0.60 0.917 0.302 0.876 0.240 0.937 0.354 0.910 0.305 0.948 0.381 0.948 0.381
0.65 0.924 0.336 0.886 0.265 0.945 0.408 0.920 0.342 0.951 0.425 0.952 0.425
0.70 0.929 0.372 0.895 0.292 0.945 0.408 0.920 0.342 0.951 0.425 0.952 0.425
0.80 0.941 0.438 0.910 0.346 0.952 0.514 0.933 0.427 0.954 0.528 0.955 0.530
0.90 0.950 0.518 0.924 0.410 0.955 0.587 0.938 0.485 0.955 0.598 0.956 0.600
1.00 0.954 0.660 0.940 0.517 0.956 0.699 0.947 0.565 0.957 0.693 0.957 0.691
Verify Method

CoT-2D-Verify PoT-2D-Verify MoT-1D-Verify MoT-2D-Verify
Acc Cost Acc Cost Acc Cost Acc Cost
0.926 0.322 0.909 0.311 0.947 0.401 0.949 0.403

Without Cascade
GPT-3-CoT-SC GPT-3-PoT-SC GPT-4 CoT-Greedy GPT-4 PoT-Greedy GPT-4 CoT-SC GPT-4 PoT-SC
Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost
0.842 0.111 0.792 0.078 0.945 0.789 0.942 0.603 0.958 1.000 0.947 0.745

Table 2: Exact numerical results on GSM8k.

2https://pypi.org/project/DATETime/
3https://platform.openai.com/tokenizer
4https://openai.com/pricing
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Voting Method
CoT-1D-Vote PoT-1D-Vote CoT-2D-Vote PoT-2D-Vote MoT-1D-Vote MoT-2d-Vote

Threshold Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost
0.40 0.902 0.181 0.872 0.173 0.911 0.200 0.877 0.167 0.913 0.189 0.916 0.184
0.50 0.908 0.209 0.878 0.190 0.917 0.225 0.883 0.188 0.918 0.218 0.920 0.214
0.55 0.910 0.226 0.882 0.210 0.924 0.262 0.894 0.222 0.930 0.291 0.931 0.290
0.60 0.914 0.243 0.887 0.224 0.926 0.288 0.904 0.251 0.932 0.324 0.933 0.324
0.65 0.917 0.261 0.893 0.239 0.929 0.312 0.912 0.273 0.933 0.346 0.933 0.348
0.70 0.920 0.281 0.897 0.254 0.929 0.312 0.912 0.275 0.933 0.347 0.933 0.348
0.80 0.924 0.311 0.906 0.283 0.930 0.365 0.923 0.328 0.935 0.396 0.934 0.400
0.90 0.927 0.348 0.916 0.318 0.930 0.402 0.927 0.360 0.935 0.430 0.934 0.433
1.00 0.930 0.429 0.925 0.367 0.931 0.458 0.930 0.393 0.935 0.473 0.934 0.474
Verify Method

CoT-2D-Verify PoT-2D-Verify MoT-1D-Verify MoT-2D-Verify
Acc Cost Acc Cost Acc Cost Acc Cost
0.924 0.272 0.908 0.297 0.933 0.357 0.934 0.361

Without Cascade
GPT-3-CoT-SC GPT-3-PoT-SC GPT-4 CoT-Greedy GPT-4 PoT-Greedy GPT-4 CoT-SC GPT-4 PoT-SC
Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost
0.887 0.115 0.854 0.106 0.927 0.742 0.930 0.725 0.933 1.000 0.943 0.927

Table 3: Exact numerical results on ASDIV.

Voting Method
CoT-1D-Vote PoT-1D-Vote CoT-2D-Vote PoT-2D-Vote MoT-1D-Vote MoT-2d-Vote

Threshold Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost
0.40 0.868 0.141 0.883 0.150 0.900 0.152 0.892 0.151 0.902 0.155 0.912 0.149
0.50 0.880 0.169 0.894 0.177 0.909 0.183 0.897 0.179 0.919 0.193 0.924 0.185
0.55 0.890 0.191 0.899 0.195 0.934 0.273 0.916 0.238 0.951 0.324 0.952 0.329
0.60 0.899 0.216 0.905 0.214 0.941 0.318 0.925 0.288 0.952 0.370 0.952 0.381
0.65 0.910 0.245 0.910 0.236 0.945 0.355 0.935 0.327 0.954 0.409 0.952 0.421
0.70 0.917 0.273 0.915 0.254 0.945 0.355 0.935 0.327 0.954 0.409 0.952 0.421
0.80 0.927 0.327 0.924 0.292 0.950 0.448 0.946 0.411 0.957 0.484 0.956 0.496
0.90 0.935 0.393 0.934 0.345 0.950 0.513 0.952 0.460 0.955 0.531 0.956 0.548
1.00 0.946 0.535 0.947 0.425 0.950 0.601 0.955 0.524 0.955 0.610 0.955 0.630
Verify Method

CoT-2D-Verify PoT-2D-Verify MoT-1D-Verify MoT-2D-Verify
Acc Cost Acc Cost Acc Cost Acc Cost
0.940 0.333 0.920 0.262 0.950 0.342 0.951 0.357

Without Cascade
GPT-3-CoT-SC GPT-3-PoT-SC GPT-4 CoT-Greedy GPT-4 PoT-Greedy GPT-4 CoT-SC GPT-4 PoT-SC
Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost
0.844 0.092 0.849 0.072 0.958 0.819 0.933 0.728 0.961 1.000 0.941 0.849

Table 4: Exact numerical results on TabMWP.

Voting Method
CoT-1D-Vote PoT-1D-Vote CoT-2D-Vote PoT-2D-Vote MoT-1D-Vote MoT-2d-Vote

Threshold Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost
0.40 0.737 0.192 0.793 0.203 0.775 0.203 0.829 0.208 0.805 0.207 0.812 0.197
0.50 0.758 0.235 0.806 0.229 0.792 0.240 0.844 0.235 0.821 0.240 0.826 0.225
0.55 0.769 0.259 0.818 0.256 0.835 0.362 0.872 0.324 0.871 0.367 0.868 0.367
0.60 0.779 0.289 0.828 0.283 0.849 0.431 0.877 0.367 0.881 0.417 0.872 0.425
0.65 0.795 0.328 0.837 0.306 0.862 0.489 0.882 0.419 0.889 0.469 0.881 0.484
0.70 0.809 0.357 0.848 0.329 0.862 0.489 0.882 0.419 0.889 0.469 0.881 0.484
0.80 0.835 0.425 0.860 0.378 0.877 0.604 0.890 0.502 0.894 0.569 0.888 0.583
0.90 0.854 0.511 0.877 0.425 0.883 0.666 0.892 0.552 0.895 0.637 0.891 0.654
1.00 0.877 0.657 0.888 0.523 0.888 0.770 0.889 0.625 0.892 0.739 0.892 0.744
Verify Method

CoT-2D-Verify PoT-2D-Verify MoT-1D-Verify MoT-2D-Verify
Acc Cost Acc Cost Acc Cost Acc Cost
0.850 0.456 0.873 0.392 0.875 0.449 0.869 0.459

Without Cascade
GPT-3-CoT-SC GPT-3-PoT-SC GPT-4 CoT-Greedy GPT-4 PoT-Greedy GPT-4 CoT-SC GPT-4 PoT-SC
Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost
0.677 0.107 0.770 0.162 0.876 0.750 0.873 1.031 0.886 1.000 0.890 1.402

Table 5: Exact numerical results on DATE.
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Voting Method
CoT-1D-Vote PoT-1D-Vote CoT-2D-Vote PoT-2D-Vote MoT-1D-Vote MoT-2d-Vote

Threshold Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost
0.40 0.860 0.132 0.871 0.213 0.898 0.125 0.868 0.192 0.878 0.145 0.880 0.146
0.50 0.860 0.134 0.877 0.246 0.898 0.125 0.874 0.219 0.882 0.153 0.883 0.152
0.55 0.862 0.140 0.881 0.270 0.913 0.233 0.882 0.261 0.964 0.368 0.964 0.365
0.60 0.864 0.144 0.885 0.293 0.920 0.265 0.892 0.305 0.966 0.402 0.966 0.400
0.65 0.866 0.149 0.889 0.317 0.924 0.282 0.908 0.371 0.968 0.440 0.967 0.437
0.70 0.869 0.159 0.892 0.349 0.924 0.282 0.908 0.371 0.968 0.440 0.967 0.437
0.80 0.876 0.175 0.903 0.432 0.934 0.318 0.926 0.537 0.971 0.545 0.970 0.543
0.90 0.884 0.193 0.920 0.548 0.941 0.339 0.935 0.649 0.973 0.626 0.972 0.624
1.00 0.901 0.240 0.942 0.743 0.948 0.377 0.948 0.815 0.973 0.754 0.973 0.754
Verify Method

CoT-2D-Verify PoT-2D-Verify MoT-1D-Verify MoT-2D-Verify
Acc Cost Acc Cost Acc Cost Acc Cost
0.929 0.293 0.879 0.208 0.966 0.400 0.966 0.398

Without Cascade
GPT-3-CoT-SC GPT-3-PoT-SC GPT-4 CoT-Greedy GPT-4 PoT-Greedy GPT-4 CoT-SC GPT-4 PoT-SC
Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost
0.856 0.128 0.859 0.154 0.977 0.701 0.877 0.966 0.975 1.000 0.878 1.302

Table 6: Exact numerical results on Navigate.

Voting Method
CoT-1D-Vote PoT-1D-Vote CoT-2D-Vote PoT-2D-Vote MoT-1D-Vote MoT-2d-Vote

Threshold Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost
0.40 0.838 0.188 0.838 0.461 0.850 0.180 0.846 0.369 0.866 0.255 0.874 0.257
0.50 0.843 0.208 0.842 0.485 0.857 0.197 0.855 0.422 0.871 0.295 0.878 0.301
0.55 0.847 0.227 0.846 0.500 0.865 0.241 0.870 0.552 0.885 0.460 0.885 0.471
0.60 0.852 0.261 0.846 0.517 0.865 0.280 0.869 0.603 0.882 0.519 0.882 0.525
0.65 0.856 0.284 0.847 0.537 0.868 0.320 0.869 0.658 0.882 0.573 0.881 0.575
0.70 0.863 0.312 0.849 0.557 0.869 0.369 0.872 0.708 0.879 0.614 0.880 0.620
0.80 0.867 0.374 0.853 0.603 0.868 0.419 0.874 0.754 0.879 0.660 0.878 0.663
0.90 0.873 0.455 0.861 0.683 0.869 0.534 0.874 0.851 0.877 0.760 0.873 0.760
1.00 0.872 0.594 0.868 0.803 0.871 0.621 0.873 0.925 0.873 0.847 0.871 0.846
Verify Method

CoT-2D-Verify PoT-2D-Verify MoT-1D-Verify MoT-2D-Verify
Acc Cost Acc Cost Acc Cost Acc Cost
0.860 0.302 0.874 0.581 0.882 0.534 0.883 0.536

Without Cascade
GPT-3-CoT-SC GPT-3-PoT-SC GPT-4 CoT-Greedy GPT-4 PoT-Greedy GPT-4 CoT-SC GPT-4 PoT-SC
Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost
0.820 0.157 0.719 0.226 0.871 0.577 0.876 0.871 0.871 1.000 0.882 1.522

Table 7: Exact numerical results on CREPE.

Voting Method
CoT-1D-Vote PoT-1D-Vote CoT-2D-Vote PoT-2D-Vote MoT-1D-Vote MoT-2d-Vote

Threshold Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost
0.40 0.847 0.167 0.848 0.202 0.872 0.178 0.861 0.195 0.878 0.183 0.883 0.183
0.50 0.857 0.195 0.858 0.231 0.881 0.203 0.871 0.227 0.888 0.216 0.891 0.216
0.55 0.864 0.216 0.864 0.253 0.900 0.273 0.888 0.286 0.924 0.345 0.924 0.347
0.60 0.871 0.240 0.871 0.276 0.906 0.312 0.896 0.329 0.927 0.389 0.925 0.391
0.65 0.878 0.263 0.877 0.297 0.912 0.348 0.904 0.371 0.929 0.428 0.928 0.431
0.70 0.884 0.289 0.882 0.320 0.912 0.354 0.905 0.377 0.929 0.433 0.927 0.436
0.80 0.895 0.336 0.893 0.370 0.918 0.428 0.915 0.465 0.932 0.513 0.930 0.517
0.90 0.904 0.394 0.905 0.436 0.921 0.488 0.920 0.530 0.932 0.576 0.930 0.581
1.00 0.913 0.506 0.918 0.543 0.924 0.567 0.924 0.611 0.931 0.663 0.930 0.667
Verify Method

CoT-2D-Verify PoT-2D-Verify MoT-1D-Verify MoT-2D-Verify
Acc Cost Acc Cost Acc Cost Acc Cost
0.905 0.311 0.894 0.316 0.925 0.398 0.925 0.402

Without Cascade
GPT-3-CoT-SC GPT-3-PoT-SC GPT-4 CoT-Greedy GPT-4 PoT-Greedy GPT-4 CoT-SC GPT-4 PoT-SC
Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost
0.821 0.116 0.807 0.117 0.926 0.743 0.905 0.763 0.931 1.000 0.913 1.017

Table 8: Exact numerical results on average across all datasets.
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D CASE STUDY

In this section, we perform a case study to learn why MoT can achieve better performance. When
CoT makes a mistake, prompting the LLM with another set of CoT task demonstrations often leads
to the same mistake. In contrast, PoT more frequently either directly gives a correct answer or
makes a different mistake than CoT’s. Among those cases, 43% fall into the former category that
PoT can solve the question, while the remaining 57% fall into the latter that PoT can make a different
mistake. Here we use CoT1, CoT2, and PoT1 to represent the different prompts. CoT1 and CoT2
share the same representation but different demonstrations while CoT1 and PoT1 share the same
demonstration but different representations.

D.1 CASES POT CAN SOLVE

Here we show cases satisfying that PoT can solve the question. The first case shows that the PoT can
provide different reasoning paths to avoid the same mistake with CoT and the second case shows
that the PoT can avoid the computation errors.

D.1.1 CASE 1

Question: Juan and his brother Carlos are selling lemonade. For each gallon they make it costs 3
for lemons and 2 for sugar. They sell each glass for 0.50 and get 20 glasses per gallon. If they made
25 in profit, how much did they spend on lemons?

Gold Answer: Each gallon sells for a total of 10 because 20× 0.5 = 10
Each gallon costs 5 to make because 3 + 2 = 5
They make 5 off each gallon because 10− 5 = 5
They made and sold 5 gallons because 25/5 = 5
They spent 15 on lemons because 5× 3 = 15

CoT1: Answer: They make 10 on each gallon of lemonade because 20× 0.5 = 10
They made 2.5 gallons of lemonade because 25/10 = 2.5
They spent 7.5 on lemons because 2.5× 3 = 7.5
They spent 5 on sugar because 2.5× 2 = 5
They spent 12.5 in total because 7.5 + 5 = 12.5
ans = 7.5

CoT2: Answer: They make 10 per gallon because 20× 0.5 = 10
They sold 2.5 gallons because 25/10 = 2.5
They spent 7.5 on sugar because 2.5× 2× 1.5 = 7.5
They spent 7.5 on lemons because 2.5× 3 = 7.5
ans = 7.5

PoT1:
# Python code, return ans
cost_per_gallon = 3 + 2
num_of_glasses_per_gallon = 20
profit_per_gallon = num_of_glasses_per_gallon * 0.5 -\
cost_per_gallon
total_profit = 25
total_gallons = total_profit / profit_per_gallon
cost_of_lemons = total_gallons * 3
ans = cost_of_lemons
#ans = 15.0(This line is not generated by LLM.)

D.1.2 CASE 2

Question: Robert wants to buy a bookshelf and a sofa and has received two offers. Furniture
United’s offer includes a 1, 350 advance payment and 6 monthly installments of 350 each. Cozy
Homes’ offer includes a 1, 100 advance payment and 9 monthly installments of 250 each. What is
the cost difference between the two offers?
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Gold Answer: Furniture United’s offer is 1, 350 + (6 × 350) = 3, 450 Cozy Homes’ offer is
1, 100 + (9× 250) = 3, 350. The difference is 3, 450− 3, 350 = 100

CoT1: Answer: Furniture United’s total cost would be 1350+ 6× 350 = 3150. Cozy Homes’ total
cost would be 1100+9×250 = 3350. The cost difference between the two offers is 3350−3150 =
200. ans = 200

CoT2: Answer: The total cost of Furniture United’s offer is 1350 + (6 × 350) = 3, 150. The total
cost of Cozy Homes’ offer is 1100+(9×250) = 3, 350. The cost difference between the two offers
is 3350− 3150 = 200. ans = 200.

PoT1:
furniture_united_advance = 1350
furniture_united_monthly_installment = 350
cozy_homes_advance = 1100
cozy_homes_monthly_installment = 250
furniture_united_total_cost = furniture_united_advance + \

(6 * furniture_united_monthly_installment)
cozy_homes_total_cost = cozy_homes_advance + \

(9 * cozy_homes_monthly_installment)
ans = furniture_united_total_cost - cozy_homes_total_cost
# ans = 100.0(This line is not generated by LLM.)

D.2 CASES POT CANNOT SOLVE

In this section, we show some cases that PoT cannot solve but will make a different mistake. In
case 1, the CoT forgot to calculate the first 40-yard line but the PoT calculated the first 40-yard but
with an incorrect grounding value. In case 2, the CoT forgot to remove the lowest score. The PoT
removed the lowest score but grounded an incorrect number of total tests. We can see that although
both the CoT and PoT make mistakes, the reasons why they make mistakes are different, making
the final results different.

D.2.1 CASE 1

Question: Blake and Kelly are having a contest to see who can run the most in 15 minutes. They
decide to do it on a football field that is 100 yards long. Blake runs back and forth 15 times. Kelly
runs back and forth once, and then decides that she doesn’t want to run next to Blake, so she starts
to run to the 40-yard line and back. She does this 34 times. How much farther does the winner run
than the loser?

Gold Answer: Blake runs 200 yards for each back and forth because 100 x 2 = 200 He runs 3000
yards in total because 200 x 15 = 3000 Kelly runs 200 yards at first because 100 x 2 = 200 She runs
80 yards each time she does a back and forth to the 40-yard line because 40 x 2 = 80 She runs 2720
from these back and forth because 34 x 80 = 2720 She runs 2920 in total because 2720 + 200 = 2920
Blake won because 3000 > 2920 The winner ran 80 yards more than the loser because 3000 - 2920
= 80

CoT1: Answer: Blake runs back and forth 15 times, so she runs 15*100*2=3000 yards. Kelly
runs to the 40-yard line and back 34 times, so she runs 34*80=2720 yards. Thus, Blake runs 3000-
2720=280 yards farther than Kelly. ans = 280

CoT2: Answer: Blake runs a total of 15 x 100 x 2 = 3000 yards. Kelly runs 34 x (40 x 2) = 2720
yards. Blake runs 3000 - 2720 = 280 yards farther than Kelly. ans = 280.

PoT1:
# Python code, return ans
length_of_football_field = 100
num_of_laps_for_blake = 15
num_of_laps_for_kelly = 34
distance_covered_by_blake = length_of_football_field * \
num_of_laps_for_blake * 2
distance_covered_by_kelly = (length_of_football_field *\
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num_of_laps_for_kelly * 2) + (40 * num_of_laps_for_kelly * 2)
ans = abs(distance_covered_by_blake - distance_covered_by_kelly)
# ans = 6520.0(This line is not generated by LLM.)

D.2.2 CASE 2

Question: Brinley is in Mr. Bert’s math class. Mr. Bert gives six tests each semester. He allows the
students to remove the lowest score from the average each semester. If Brinley has scores of 89, 71,
92, 100 and 86 on the first five tests, what score does she need on the sixth test to get an average of
93?

Gold Answer: First, identify the lowest score, which is 71, and remove it. Since Brinley wants a
score of 93, we know her total score needs to be 93 (average) * 5 (tests) = 465 points So far, Brinley
has earned 89 + 92 +100 + 86 = 367 points The final test must be 465 - 367 = 98 points.

CoT1: First, we need to find Brinley’s current average by adding up her five test scores and dividing
by 5: (89 + 71 + 92 + 100 + 86) / 5 = 87.6 We know that Brinley wants her average to be 93, which
means she needs to have a total of 6 test scores (since one will be dropped). The total of these
6 scores needs to be 93 x 6 = 558 To find out what score Brinley needs on the sixth test, we can
subtract the total of her first five scores from the desired total: 558 - (89 + 71 + 92 + 100 + 86) =
120 So Brinley needs to get a score of 120 on her sixth test to have an average of 93 after dropping
her lowest score. ans = 120

CoT2: Answer: Brinley’s first five test scores add up to 438. To have an average of 93, Brinley
needs a total of 93 x 6 = 558 points for all six tests. To get 558 points after five tests, Brinley needs
to score 558 - 438 = 120 points on the sixth test. ans = 120

PoT1:
# Python code, return ans
num_of_tests = 6
total_of_first_five_tests_scores = 89 + 71 + 92 + 100 + 86
desired_average = 93
lowest_score = min(89, 71, 92, 100, 86)
sum_of_best_five_scores = total_of_first_five_tests_scores -\
lowest_score
ans = (desired_average * num_of_tests) - sum_of_best_five_scores
# ans = 191.0(This line is not generated by LLM.)

E IMPLEMENTATION DETAILS OF EXTERNAL VERIFIERS

Throughout these experiments, our choice of the weaker LLM remains GPT-3.5-turbo. We only per-
form our experiment with CoT representation because the finetuned model we utilize is not suitable
for understanding Python code.

The input to the verifier can be either the question alone or a concatenation of both the question and
the answer produced by the weaker LLM. The question texts include the context, e.g., the goal and
context in CREPE. The answer texts contain both intermediate thoughts and the final answer (e.g.,
an integer in mathematical reasoning). We have multiple generation results from the weaker LLM.
To avoid excessive input length, we only employ the majority-voted answer and its intermediate
thoughts in the test time. Specifically, in the test time, we extract the majority-voted answer from two
CoT prompts with different demonstrations as this setting shows better performance in our method,
and then randomly select one collection of intermediate thoughts that result in this majority-voted
answer.

We still use task accuracy and relative cost as the metric. Note that only the question as input doesn’t
need the answers from the weaker LLM necessarily. Therefore, the total cost C (Eq 1) for only the
question as input becomes:

C = Cd + (1− 1reject)C
w + 1reject C

s. (4)

To use an LLM as the verifier, we have designed two distinct prompts: one for “question diffi-
culty prediction”, which solely relies on the questions (LLM-Q), and another for “answer evalua-
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tion”, which incorporates both questions and answers (LLM-QA). The difficulty prediction (LLM-Q)
prompt entails the LLM’s determination of whether a question necessitates redirection to the stronger
LLM, based solely on the question’s complexity. If the LLM deems a question challenging for dif-
ficulty prediction, it triggers forwarding to the stronger LLM. The answer evaluation (LLM-QA)
prompt is to give the LLM both the question and the answer. We then let the LLM rethink the solv-
ing steps and generate feedback to evaluate whether the solution is correct. If not, the question will
be transferred to the stronger LLM. Both prompting methods are implemented with M = 8 shots of
demonstrations, and we keep the number of “easy” and “hard” questions or the number of “correct”
and “incorrect” answers balanced. We set the sampling path as K = 20 and temperature as T = 0.4
to sample the major answer and then use the self-consistency (SC) to decide the final “difficulty” or
“correctness of the answers”. The reproducible prompts are in the Appendix L. Notably, the cost
for decision Cd in Eq. 1 is no longer 0 with an external verifier. For the LLM as a verifier, we
use GPT-3.5-turbo as it’s much cheaper than GPT-4. We count the number of tokens used for the
approaches LLM-Q and LLM-QA.

For finetuning a smaller LLM (RoBERTa-base of Liu et al. (2020)) as the verifier, we similarly
tested two variants, when the input contains only the question (Finetuned-Q) or when it includes
both the question and the answers (Finetuned-QA), in which case we use a separation token to
split them. The training data for fine-tuning the models come from the original training split of
each benchmark dataset. Since DATE does not have a training split, we only performed experiments
on GSM8k and CREPE. In each training instance, we have K = 20 generated responses and we
label all of them. We label the generated responses where GPT-3.5-CoT-SC correctly predicts
the answer as positive. Notably, the number of total training cases is the number of sampling paths
K = 20 multiplied by the number of questions. To address the data imbalance issue (i.e., most of
the training cases are positive), we perform simple under-sampling over the GSM8k. For CREPE,
the resulting training set is relatively smaller, so we did not perform the under-sampling.

In the training process, we fine-tune RoBERTa-base with the learning rate 1 × 10−5 and batch size
32. We randomly split 10% of the training data to be the development set. The performance of the
best accuracy over the development set is shown in Table 9. One notable approach, predicting “all
positive”, is to assign a positive label to every example in the development set. We could learn that
the external verifier could achieve better performance than “all positive” but not significant enough.

Dataset Method Dev

GSM8k
All positive 0.5
Based on Question 0.592
Based on Question and Answer 0.615

CREPE
All positive 0.715
Based on Question 0.749
Based on Question and Answer 0.812

Table 9: Performance of finetuning RoBERTa as verifier over the dev set

Table 10 shows the exact numerical results of those presented in Figure 6. We can learn that the
external verifier could boost the performance but not that significant. Comparing LLM-Q with
LLM-QA, an interesting observation is that the latter costs less than the former. This may seem
counter-intuitive at first glance because LLM-QA includes a much longer input (a concatenation of
question and answer) than LLM-Q (only question). However, we found out that for both approaches,
their final costs are mainly determined by the number of cases transferred to the stronger LLM. That
is, when including both the question and the answer as input, LLM-QA tends to trust the weaker
LLM more frequently, leading to fewer cases being routed to the stronger LLM and hence the lower
cost. However, both approaches do not yield accuracy as high as our MoT-based approaches.

F LLAMA2-13B AS THE WEAKER LLM

Although GPT-3.5-turbo is considered to be weaker compared to GPT-4, it is still more powerful
and expensive than most of the open-source LLMs. In this section, we tested the performance of
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Dataset Method Accuracy Cost

GSM8k

GPT-3.5-turbo CoT-SC 0.842 0.111
LLM-Q 0.884 0.253
LLM-QA 0.862 0.135
Finetuned-Q 0.892 0.340
Finetuned-QA 0.882 0.262
CoT-2D-Vote with threshold=0.7 0.945 0.408
MoT-1D-Vote with threshold=0.5 0.917 0.235
MoT-1D-Vote with threshold=0.7 0.951 0.425
MoT-1D-Verify 0.947 0.401
GPT-4 CoT-SC 0.958 1.000

DATE

GPT-3.5-turbo CoT-SC 0.676 0.107
LLM-Q 0.750 0.367
LLM-QA 0.707 0.142
CoT-2D-Vote with threshold=0.65 0.862 0.489
MoT-1D-Vote with threshold=0.65 0.889 0.469
MoT-1D-Verify 0.875 0.449
GPT-4 CoT-SC 0.886 1.000

CREPE

GPT-3.5-turbo CoT-SC 0.820 0.157
LLM-Q 0.864 0.406
LLM-QA 0.846 0.169
Finetuned-Q 0.854 0.323
Finetuned-QA 0.847 0.322
CoT-2D-Vote with threshold=0.55 0.865 0.241
MoT-1D-Vote with threshold=0.55 0.885 0.460
MoT-1D-Verify 0.882 0.534
GPT-4 CoT-SC 0.871 1.000

Table 10: Exact numerical results of various external verifiers. Specifically, because DATE does not
have a training set, we do not report finetuned models’ performance on it.

Figure 7: The performance of using LLAMA2-13B as weaker LLM.

LLAMA2-13B (Touvron et al., 2023), an open-source and easy-to-deploy LLM, as the weaker LLM
and GPT-4 as the stronger LLM.

The result is shown in the Figure 7. Through experimentation, we observe that choosing LLAMA2-
13B as a weaker LLM and applying our strategy on GSM8k and CREPE did not yield ideal results,
but it performed well on the DATE dataset. On GSM8k and CREPE datasets, accuracy and cost
change approximately linearly and we cannot achieve a comparable result with a lower cost, but on
the DATE dataset, we obtain a curve similar to the curve using GPT-3.5-turbo as a weaker LLM.
To analyze the cause, we have selected cases in MoT-1D-Vote whose agreement score s (Eq 2) is
greater than the 0.6, 0.7, and 0.8. We report their task accuracy and proportion among all cases. A
lower accuracy in those cases is indicative of reduced overall task performance, while a diminished
proportion implies an increased cost.

The results are displayed in Table 11. Comparing LLAMA2-13B to GPT-3.5-turbo, we observe
that LLAMA2-13B exhibits a significantly lower proportion. This suggests that LLAMA2-13B is
less likely to provide consistent answers across multiple samplings. For example, only 16.3% of the
cases have an agreement score greater than the 0.6 threshold on GSM8k in LLAMA2-13B but 77.3%
in GPT-3.5-turbo. However, the difference in accuracy is slight in GSM8k and DATE. This outcome
aligns with our hypothesis that the LLM can consistently answer easy questions but is hesitant to the
hard questions. The lower proportions show that the number of easy questions for LLAMA2-13B is
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far fewer than that in GPT-3.5-turbo as LLAMA2-13B cannot solve these complex reasoning tasks
well. Therefore, LLAMA2-13B is not a suitable choice as a weaker LLM for particular tasks.

Threshold Dataset Weak LLM Accuracy Proportion

0.6

GSM8k GPT-3.5-turbo 0.964 0.773
LLAMA2-13B 0.923 0.163

DATE GPT-3.5-turbo 0.887 0.721
LLAMA2-13B 0.824 0.461

CREPE GPT-3.5-turbo 0.916 0.722
LLAMA2-13B 0.639 0.243

0.7

GSM8k GPT-3.5-turbo 0.981 0.707
LLAMA2-13B 0.946 0.093

DATE GPT-3.5-turbo 0.893 0.656
LLAMA2-13B 0.893 0.328

CREPE GPT-3.5-turbo 0.934 0.655
LLAMA2-13B 0.658 0.095

0.8

GSM8k GPT-3.5-turbo 0.985 0.639
LLAMA2-13B 1.000 0.070

DATE GPT-3.5-turbo 0.900 0.593
LLAMA2-13B 0.933 0.203

CREPE GPT-3.5-turbo 0.956 0.588
LLAMA2-13B 0.600 0.013

Table 11: The performance of cases where the percentage of the major answer under
MoT-1D-Vote be greater than the threshold with LLAMA2-13B as the weaker LLM.

G CAN THE STRONGER LLM BENEFIT FROM THE WEAKER LLM’S HINTS?

Dataset Method Accuracy

GSM8k W/o Hints 0.891
W/ Hints 0.867

DATE W/o Hints 0.892
W/ Hints 0.910

CREPE W/o Hints 0.774
W/ Hints 0.727

Table 12: The GPT-4-CoT-SC accuracy over the instances that Aw′
1 ̸= Aw′

2 in the
MoT-1D-Verify approach

We conducted an extended experiment to investigate whether progressive hints can further enhance
our pipeline. Previous works have proven that progressive hints in multiple iterations can enhance
the LLM’s reasoning performance (Zheng et al., 2023). For example, if the answer is 13 in the first
iteration and 14 in the second one, the hint for the third iteration can be “Hint: The answers may
be close to 13, 14”. In MoT-1D/2D-Verify, before the decision maker transfers a question to
a stronger LLM, we already have two different answers generated by the weaker LLM. However,
the answers from the weaker LLM will be discarded when using the stronger LLM. To incorporate
the answers in the leveraging process of the stronger LLM, we follow the prior work (Zheng et al.,
2023) to provide these two inconsistent answers as hints. For example, if the main answer is 5 with
CoT and 12 with PoT, the hint for the stronger LLM can be “Hint: The answers may be close to 5,
12”. We perform the exploration of whether using these answers as hints can improve the stronger
LLM’s performance. Prompts can be found in Appendix L. In the prompts, we acknowledge that
the hints may not always be correct. In our exploration, we choose the data that will be sent to the
stronger LLM by the MoT-1D-Verify approach. We then assess the GPT-4-CoT-SC accuracy
of these cases, both with and without the use of hints, respectively. We conduct our experiments on
GSM8k, DATE, and CREPE datasets.

The results in Table 12 reveal that progressive hints may not necessarily further enhance our pipeline.
Adding progressive hints only yields a slight improvement on the DATE dataset, with diminishing
returns on GSM8k and GREPE. The reason is that GPT-4 tends to be misled by the incorrect answer,
especially when both answers from GPT-3.5-turbo are incorrect.
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accuracy cost
w/o Batch Prompting 0.947 0.401
w Batch Prompting 0.924 0.325

Table 13: The GSM8k results with and without batch prompting

H CAN BATCHPROMPT FURTHER REDUCE THE COST?

Batch Prompting is a method to reduce costs by inputting multiple questions into LLM at
once (Cheng et al., 2023a; Lin et al., 2023b). In this section, we explore whether our method can be
used in conjunction with batch prompting. Our experiments are based on the basic batch prompt-
ing setup (Cheng et al., 2023a). We use MoT-1D-Verify for decision making. Specifically, we
grouped a batch of 4 test questions into each API call of the weaker LLM, in addition to the original
8-shot demonstrations. The prompt is shown in Figure 39. Like in our previous experiments, we
obtain multiple samples from running the weaker LLM, and the verification-based method (Eq 3)
can then be leveraged independently for each test question. For example, if two of four test instances
are rejected by the decision maker, we only feed the rejected two to the stronger LLM. We perform
the experiment on the GSM8k dataset.

We show the result in Table 13. The results show that adding batch prompting can indeed reduce
costs more. However, using batch prompting slightly affects the accuracy of both the weaker LLM
and the stronger LLM. The result indicates that our method is orthogonal to the batch prompting
approach.

I CALIBRATION ANALYSIS

In this section, we performed a calibration analysis comparing our approaches with baselines. For
our voting-based method, we take n/K as the confidence score. For LLM as an external verifier, we
followed the prior works’ prompting method (Kadavath et al., 2022) to let the LLM make the deci-
sion according to the textual contents.5 Following their setting, we consider two temperature setups,
i.e., T = 1 and T = 2, and donate the variants as LLM-QA T=1 and LLM-QA T=2, respectively.
The prompts are shown in Table 31. We also note that, in the original method of Kadavath et al.
(2022), the authors used the token probability of an LLM in predicting the answer to be “True”
as its confidence score. Since we cannot obtain the token probability of GPT-3.5-turbo, the confi-
dence score is obtained by sampling the True/False prediction K times and reporting the frequency
of “True” (n/K). This will induce significantly more costs than our approach, but we adopted the
strategy here for this calibration analysis. We perform the calibration analysis in the GSM8k dataset.

The calibration results on GSM8k are illustrated in Figure 8(Left). Our major observations are: (1)
All decision-making methods yield a monotone calibration curve, implying that when they have
higher confidence in a certain answer, the answer is generally more likely to be true. For our three
vote-based approaches, this upward trend also supports our initial hypothesis that a question is easy
if the weaker LLM exhibits consistency in its responses across multiple sampling paths; (2) LLM-QA
T=2 with a larger temperature can lead to the least calibrated decision maker; (3) However, there is
no a significant difference among other approaches in terms of their calibration degree (though all
our variants showed to be better than LLM-QA).

We wanted to note that achieving perfect calibration with n/K as the confidence score is not nec-
essary for our task. To give an extreme example, let us consider the case that whenever an answer
has n/K > 0.5, the answer from the weaker LLM is correct (accuracy 1.0). In this case, we would
have a very poor calibration curve, but our pipeline would actually perform very well, because any
majority-voted answer it accepts in this case is perfectly true. Another factor to note is the “size”
of each bin in the calibration plot (e.g., the number of instances that have confidence scores ranging
between 0.6 and 0.7). While this factor will also dramatically impact the LLM cascade performance
in practice, it cannot be shown in the calibration plot.

5In our experiments in Section 3.5, the LLM-QA model is additionally prompted to explain its decision
making, but we ignored this explanation following Kadavath et al. (2022) for the purpose of calibration analysis.
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Figure 8: The left figure is for the calibration analysis of different approaches. The number of each
method is the expected calibration error (ECE). The right figure plots the accuracy of the subset of
answers satisfying n/K greater than the confidence score.

To give a more direct comparison among different decision-making approaches, we plot Fig-
ure 8(Right), where for each approach we report the accuracy of a subset of answers satisfying
n/K greater than the confidence score, following the exact way how the approach will be applied
in the LLM cascade pipeline. As such, curves on this plot have taken into account the “bin sizes”
and can reflect their actual effectiveness. A similar analysis was also performed by Kadavath et al.
(2022). We first observed that as the confidence score grows, there is a consistent upward trend in
the subset accuracy for all approaches, which echoes the monotone curves in the calibration analy-
sis. The higher position of MoT compared with other variants and baselines also explains its superior
performance in the main experimental results.

J CAN OUR METHOD GENERALIZE TO FACTUALITY-BASED TASKS?

In prior studies, the efficacy of our approach in mathematical, symbolic, and causal reasoning has
been evidenced. This section explores its potential to be generalized to factual reasoning tasks.
Our investigation utilized StrategyQA (Geva et al., 2021), a factoid question answering dataset that
requires implicit reasoning over facts. We employed an open-domain question-answering format,
presenting only questions without context to the LLM. Our few-shot prompts are shown in Figure 27
and Figure 28.
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Figure 9: Performance of MoT-1D-Vote and baselines on the dev set of strategyQA.

The result is shown in Figure 9. It shows that our method is still effective on factual reasoning tasks.
That is again owing to the fact that using different prompt representations could trigger different
reasoning paths, which often results in more trustworthy answers when the two representations
agree with each other.
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Is a curling iron
necessary in curling?

Question
A curling iron is a tool used to make the hair curly using
heat. The sport of curling requires curling brooms, stones
(rocks), and curling shoes. A curling iron is not necessary
in curling.

Golden

Yes, a curling iron is necessary for
curling as it is the tool used to create
curls in the hair.

CoT necessary_equipment_for_curling = ["curling stone",
"curling broom"]
 equipment_used_in_curling_with_curling_iron = ["curling
iron"]
ans = ("curling iron" in necessary_equipment_for_curling)

PoT

Figure 10: An example showing that MoT helps in factual reasoning tasks such as strategyQA.

An example is shown in Figure 10. For the question “Is a curling iron necessary in curling?”, the
golden answer is “No, curling is an ice sport and doesn’t need a curling iron”. However, most of
the CoT answers are “yes” with hallucinations about the concept “curling”. In contrast, most of
the PoT answers are “No”. The PoT processes typically list the necessary equipment for curling,
such as “curling stone” and “broom”, and then check if “curling iron” is on the list. By checking
the consistency between CoT and PoT, MoT-1D-Vote is thus able to identify the incorrect or
untrustworthy answer. It is worth noting that, judging from the results of Figure 9, PoT is not better
than CoT, but the combination of CoT and PoT generates diverse thoughts and answers, instead of
leaning towards one kind of thinking, thus reducing errors in factual reasoning. Therefore, we can
still leverage consistency checking across MoT prompts in decision-making to check if the answer
from the weaker LLM is trustworthy in factual-based reasoning tasks.

K LIMITATIONS AND FUTURE WORKS

Our approach is still subject to some limitations. Firstly, its applicability is confined to tasks where
questions have clear answers, such as mathematical reasoning. Secondly, the utilization of our
pipeline might lead to increased latency in cases demanding a stronger LLM. Thirdly, our method is
based on the assumption that the intermediate steps could be expressed via different representations.
In addition, if weaker LLM has overconfidence in some incorrect beliefs, our method will fail in
these cases.

Considering these limitations, we identify some potential avenues for future research. In tackling
the initial challenge, we could integrate other metrics, such as semantic similarity, to evaluate the
consistency of the general textual generation tasks. To address the latency issue, it is essential to
establish a framework for making decisions early for some obviously easy or hard questions. For
the third one, we believe that how to represent the intermediate steps in a specific task relies on hu-
man designation. Recent research has shown some predefined programming interfaces effectively
manage complex tasks, even those that appear unrelated to traditional code generation tasks, such
as image understanding (Gupta & Kembhavi, 2023). If a task’s intermediate steps cannot be ex-
pressed directly via code, we can also introduce diverse answers by leveraging some programming
interfaces/tools.

Additionally, due to CoT and PoT being suitable for different tasks, the answer’s correctness with
different representations varies across tasks, e.g., the CoT answers are more reliable in GSM8k but
the PoT answers are more reliable in DATE. The incorporation of learning algorithms to perform
weighted voting for specific tasks yields a promising improvement.

L FULL PROMPTS

We show the prompts used for this paper according to Table 14. We show one example prompt in
each case.
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Prompt Type Dataset Prompt Table

CoT

GSM8k prompt 15
ASDIV prompt 17
TabMWP prompt 19
Date prompt 21
Navigate prompt 23
CREPE prompt 25

PoT

GSM8k prompt 16
ASDIV prompt 18
TabMWP prompt ??
Date prompt 22
Navigate prompt 24
CREPE prompt 26

LLM as External Verifier

GSM8k w/ Question prompt 29
GSM8k w/ Question and Answer prompt 30
DATE w/ Question prompt 32
DATE w/ Question and Answer prompt 33
CREPE w/ Question prompt 34
CREPE w/ Question and Answer prompt 35

Learning from hints
GSM8k prompt 36
Date prompt 37
CREPE prompt 38

Table 14: The index of each prompt.

GSM8k CoT

Complete t h e t e x t , s t a r t w i th ’ Answer ’ and t h e l a s t l i n e s t a r t s w i th
↪→ ’ ans = ’ .

Q u e s t i o n : Manny had 3 b i r t h d a y c o o k i e p i e s t o s h a r e wi th h i s 24
↪→ c l a s s m a t e s and h i s t e a c h e r , Mr . K e i t h . I f each of t h e c o o k i e p i e s
↪→ were c u t i n t o 10 s l i c e s and Manny , h i s c l a s s m a t e s , and Mr . K e i t h
↪→ a l l had 1 p i e c e , how many s l i c e s a r e l e f t ?

Answer : There i s a t o t a l o f 3 x 10 = <<3*10=30>>30 c o o k i e s l i c e s . There
↪→ a r e 24 + 1 + 1 = <<24+1+1=26>>26 p e o p l e who a t e t h e c o o k i e p i e c e s .
↪→ There i s 30 − 26 = <<30−26=4>>4 c o o k i e s l i c e s l e f t . ans = 4

. . .

Table 15: GSM8k CoT task demonstrations
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GSM8k PoT

# Q u e s t i o n : Manny had 3 b i r t h d a y c o o k i e p i e s t o s h a r e wi th h i s 24
↪→ c l a s s m a t e s and h i s t e a c h e r , Mr . K e i t h . I f each of t h e c o o k i e p i e s
↪→ were c u t i n t o 10 s l i c e s and Manny , h i s c l a s s m a t e s , and Mr . K e i t h
↪→ a l l had 1 p i e c e , how many s l i c e s a r e l e f t ?

# Python code , r e t u r n ans
n u m c o o k i e p i e s = 3
n u m s l i c e s p e r c o o k i e p i e = 10
t o t a l p e o p l e = 24 + 1 + 1
t o t a l s l i c e s n e e d e d = t o t a l p e o p l e * 1
t o t a l s l i c e s = n u m c o o k i e p i e s * n u m s l i c e s p e r c o o k i e p i e
ans = t o t a l s l i c e s − t o t a l s l i c e s n e e d e d
. . .

Table 16: GSM8k PoT task demonstrations

ASDIV CoT

P l e a s e answer t h e math q u e s t i o n and r e t u r n a number as t h e answer .
Q u e s t i o n : I s a b e l l a ’ s h a i r i s 18 i n c h e s long . By t h e end of t h e y e a r h e r

↪→ h a i r i s 24 i n c h e s long . How much h a i r d i d she grow ?
Answer : I s a b e l l a ’ s h a i r i s 18 i n c h e s long and 24 i n c h e s long .
So t h e l e n g t h she grow i n one y e a r i s 24 − 18 = 6
ans = 6
. . .

Table 17: ASDIV CoT task demonstrations

ASDIV PoT

# Q u e s t i o n : I s a b e l l a ’ s h a i r i s 18 i n c h e s long . By t h e end of t h e y e a r
↪→ h e r h a i r i s 24 i n c h e s long . How much h a i r d i d she grow ?

# Python code , r e t u r n ans
I s a b e l l a h a i r b e f o r e = 18
I s a b e l l a h a i r a f t e r y e a r = 24
h a i r g r o w t h = I s a b e l l a h a i r a f t e r y e a r − I s a b e l l a h a i r b e f o r e
ans = h a i r g r o w t h
. . .

Table 18: ASDIV PoT task demonstrations
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TabMWP CoT

Read t h e f o l l o w i n g t a b l e r e g a r d i n g ” Coins ” and t h e n answer a q u e s t i o n :
Name | Number o f c o i n s
Braden | 76
C a m i l l a | 94
Rick | 86
Mary | 84
H ec to r | 80
Devin | 83
Emily | 82
Avery | 87
Q u e s t i o n : Some f r i e n d s d i s c u s s e d t h e s i z e s o f t h e i r c o i n c o l l e c t i o n s .

↪→ What i s t h e mean of t h e numbers ?
E x p l a i n : Let ’ s t h i n k s t e p by s t e p .
The numbers o f c o i n s o f each one a r e i n [ 7 6 , 94 , 86 , 84 , 80 , 83 , 82 , 8 7 ] .
So t h e mean of t h e numbers i s (76+94+86+84+80+83+82+87) / 8 = 648 /8 = 81
Answer : 81
. . .

Table 19: TabMWP CoT task demonstrations

StrategyQA PoT

Q u e s t i o n : Are more p e o p l e t o d a y r e l a t e d t o Genghis Khan t h a n J u l i u s
↪→ C ae sa r ?

# Python code , r e t u r n ans
c h i l d r e n n u m o f J u l i u s C a e s a r = 3
c h i l d r e n n u m o f G e n g h i s K h a n = 6
ans = ( c h i l d r e n n u m o f G e n g h i s K h a n > c h i l d r e n n u m o f J u l i u s C a e s a r )

Table 20: StrategyQA PoT task demonstrations

DATE CoT

Q: Today i s C h r i s t m a s Eve of 1937 . What i s t h e d a t e tomorrow i n
↪→ MM/DD/YYYY?

E x p l a i n : Today i s t h e C h r i s t m a s Eve of 1937 , so t o d a y i s 1 2 / 2 4 / 1 9 3 7 .
Today i s 1 2 / 2 4 / 1 9 3 7 , t h e d a t e tomorrow i s 1 2 / 2 5 / 1 9 3 7 .
A: 1 2 / 2 5 / 1 9 3 7
. . .

Table 21: DATE CoT task demonstrations
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DATE PoT

# Wr i t e Python Code t o s o l v e t h e f o l l o w i n g q u e s t i o n s .
from d a t e t i m e i m p o r t da t e , t i m e d e l t a
from d a t e u t i l . r e l a t i v e d e l t a i m p o r t r e l a t i v e d e l t a

# Q: Today i s C h r i s t m a s Eve of 1937 . What i s t h e d a t e tomorrow i n
↪→ MM/DD/YYYY?

# t o d a y i s C h r i s t m a s Eve of 1937 , t h e n t o d a y i s 1 2 / 2 4 / 1 9 3 7
t o d a y = d a t e ( 1 9 3 7 , 12 , 24)
# tomorrow
d a t e t o m o r r o w = t o d a y + r e l a t i v e d e l t a ( days =1)
# The answer f o r m a t t e d wi th %m/%d/%Y i s
ans = d a t e t o m o r r o w . s t r f t i m e ( ’%m/%d/%Y’ )
. . .

Table 22: DATE PoT task demonstrations

Navigate CoT

F o l l o w i n g t h e s e i n s t r u c t i o n s , i f we r e t u r n t o t h e s t a r t i n g p o i n t , r e t u r n
↪→ ’ yes ’ ; e l s e r e t u r n ’ no ’ .

I n s t r u c t i o n : Take 1 s t e p . Take 2 s t e p s . Take 3 s t e p s . Turn a round . Take
↪→ 6 s t e p s . Turn l e f t .

E x p l a i n : s t a r t p o s i t i o n = [ 0 , 0 ] , assume t h e s t a r t f a c e i s t o x− p o s i t i v e
1 . Take 1 s t e p . The c u r r e n t p o s i t i o n i s [ 1 , 0 ]
2 . Take 2 s t e p s . The c u r r e n t p o s i t i o n i s [ 3 , 0 ]
3 . Take 3 s t e p s . The c u r r e n t p o s i t i o n i s [ 6 , 0 ]
4 . Turn around . The f a c e i s t o x− n e g a t i v e i n t h e f o l l o w i n g s t e p s .
5 . Take 6 s t e p s . The c u r r e n t p o s i t i o n i s [ 0 , 0 ]
6 . Turn l e f t . The f a c e i s y− n e g a t i v e i n t h e f o l l o w i n g s t e p s .
A f t e r a l l t h e s t e p s , t h e p o s i t i o n i s [ 0 , 0 ] , t h e same as t h e s t a r t i n g

↪→ p o i n t .
Answer : yes
. . .

Table 23: Navigate CoT task demonstrations
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Navigate PoT

F o l l o w i n g t h e s e i n s t r u c t i o n s , i f we r e t u r n t o t h e s t a r t i n g p o i n t , r e t u r n
↪→ ’ yes ’ ; e l s e r e t u r n ’ no ’ .

d e f l e f t r o t a t e ( f a c e d i r e c t ) :
f a c e d i r e c t = t u p l e ( f a c e d i r e c t )
m a p p i n g d i c t = { ( 1 , 0 ) : ( 0 , 1 ) , ( 0 , 1 ) : ( −1 , 0 ) , ( −1 , 0 ) : ( 0 , −1) ,

↪→ ( 0 , −1) : ( 1 , 0 ) }
r e t u r n l i s t ( m a p p i n g d i c t [ f a c e d i r e c t ] )

d e f r i g h t r o t a t e ( f a c e d i r e c t ) :
f a c e d i r e c t = t u p l e ( f a c e d i r e c t )
m a p p i n g d i c t = { ( 1 , 0 ) : ( 0 , −1) , ( 0 , 1 ) : ( 1 , 0 ) , ( −1 , 0 ) : ( 0 , 1 ) ,

↪→ ( 0 , −1) : ( −1 , 0 ) }
r e t u r n l i s t ( m a p p i n g d i c t [ f a c e d i r e c t ] )

d e f a r o u n d r o t a t e ( f a c e d i r e c t ) :
f a c e d i r e c t = t u p l e ( f a c e d i r e c t )
m a p p i n g d i c t = { ( 1 , 0 ) : ( −1 , 0 ) , ( 0 , 1 ) : ( 0 , −1) , ( −1 , 0 ) : ( 1 , 0 ) ,

↪→ ( 0 , −1) : ( 0 , 1 ) }
r e t u r n l i s t ( m a p p i n g d i c t [ f a c e d i r e c t ] )

d e f m o v e s t e p s ( c u r r e n t p o s i t i o n , f a c e d i r e c t , s t e p , s t e p d i r e c t = ’ ’ ) :
n e w l i s t = [ ]
i f s t e p d i r e c t == ’ l e f t ’ :

f a c e d i r e c t = l e f t r o t a t e ( f a c e d i r e c t )
e l i f s t e p d i r e c t == ’ r i g h t ’ :

f a c e d i r e c t = r i g h t r o t a t e ( f a c e d i r e c t )
e l i f s t e p d i r e c t == ’ backward ’ :

f a c e d i r e c t = a r o u n d r o t a t e ( f a c e d i r e c t )
f o r i i n r a n g e ( l e n ( c u r r e n t p o s i t i o n ) ) :

n e w l i s t . append ( c u r r e n t p o s i t i o n [ i ] + f a c e d i r e c t [ i ] * s t e p )
r e t u r n n e w l i s t

# I n s t r u c t i o n : Take 1 s t e p . Take 2 s t e p s . Take 3 s t e p s . Turn around .
↪→ Take 6 s t e p s . Turn l e f t .

# Python code , r e t u r n ans
s t a r t p o s i t i o n = [ 0 , 0 ]
c u r r e n t p o s i t i o n = s t a r t p o s i t i o n
# assume t h e s t a r t f a c e i s t o x− p o s i t i v e
f a c e d i r e c t = [ 1 , 0 ]
# Take 1 s t e p .
c u r r e n t p o s i t i o n = m o v e s t e p s ( c u r r e n t p o s i t i o n , f a c e d i r e c t , 1 )
# Take 2 s t e p s .
c u r r e n t p o s i t i o n = m o v e s t e p s ( c u r r e n t p o s i t i o n , f a c e d i r e c t , 2 )
# Take 3 s t e p s .
c u r r e n t p o s i t i o n = m o v e s t e p s ( c u r r e n t p o s i t i o n , f a c e d i r e c t , 3 )
# Turn around .
f a c e d i r e c t = a r o u n d r o t a t e ( f a c e d i r e c t )
# Take 6 s t e p s .
c u r r e n t p o s i t i o n = m o v e s t e p s ( c u r r e n t p o s i t i o n , f a c e d i r e c t , 6 )
# Turn l e f t . Now t h e f a c e i s t o y− p o s i t i v e
f a c e d i r e c t = l e f t r o t a t e ( f a c e d i r e c t )
ans = ’ yes ’ i f c u r r e n t p o s i t i o n == s t a r t p o s i t i o n e l s e ’ no ’
. . .

Table 24: Navigate PoT task demonstrations
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CREPE CoT

Answer t h e q u e s t i o n . The f i n a l answer s a r e ” more l i k e l y ” , ” e q u a l l y
↪→ l i k e l y ” and ” l e s s l i k e l y ” .

Goal : Wash s n e a k e r s
C u r r e n t C o n t e x t : Brush o f f d i r t from t h e s u r f a c e o f t h e s n e a k e r s . Remove

↪→ s h o e l a c e s . R inse t h e s h o e l a c e s i n soapy w a t e r and a i r d ry . Apply
↪→ mild d e t e r g e n t t o t h e s n e a k e r s and rub g e n t l y .

Q u e s t i o n : What ’ s t h e l i k e l i h o o d t h a t The s n e a k e r s a r e damp?
E x p l a i n :
For s t e p 1 , a f t e r b r u s h i n g o f f d i r t , t h e s n e a k e r s a r e damp i s ” e q u a l l y

↪→ l i k e l y ” b e c a u s e t h e r e i s no change f o r t h e dampness o f t h e s h o e s .
For s t e p 2 , a f t e r removing s h o e l a c e s , t h e s n e a k e r s a r e damp i s ” e q u a l l y

↪→ l i k e l y ” b e c a u s e t h e r e i s no change f o r t h e dampness o f t h e s h o e s .
For s t e p 3 , a f t e r r i n s i n g t h e s h o e l a c e s i n soapy w a t e r and a i r dry , t h e

↪→ s n e a k e r s a r e damp i s ” e q u a l l y l i k e l y ” b e c a u s e we removed t h e
↪→ s h o e l a c e from t h e s n e a k e r so we don ’ t change t h e dampness o f
↪→ s n e a k e r .

For s t e p 4 , a f t e r a p p l y i n g mi ld d e t e r g e n t t o t h e s n e a k e r s and r u b b i n g
↪→ g e n t l y , t h e s n e a k e r s a r e damp i s ” more l i k e l y ” b e c a u s e we p u t mi ld
↪→ d e t e r g e n t t o t h e s n e a k e r s .

T h e r e f o r e , i n t h e f i n a l s t e p , t h e e v e n t i s ” more l i k e l y ” .
Answer : more l i k e l y
. . .

Table 25: CREPE CoT task demonstrations
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CREPE PoT

# Answer t h e q u e s t i o n . The answer s a r e ” more l i k e l y ” , ” e q u a l l y l i k e l y ”
↪→ and ” l e s s l i k e l y ” .

# Goal : Wash s n e a k e r s
# C u r r e n t C o n t e x t : Brush o f f d i r t from t h e s u r f a c e o f t h e s n e a k e r s .

↪→ Remove s h o e l a c e s . R inse t h e s h o e l a c e s i n soapy w a t e r and a i r d ry .
↪→ Apply mi ld d e t e r g e n t t o t h e s n e a k e r s and rub g e n t l y .

# Q u e s t i o n : What ’ s t h e l i k e l i h o o d t h a t The s n e a k e r s a r e damp?
# Python code
c l a s s Wash Sneakers ( ) :

# I n i t from C u r r e n t C o n t e x t
# Brush o f f d i r t from t h e s u r f a c e o f t h e s n e a k e r s
# Remove s h o e l a c e s
# Rinse t h e s h o e l a c e s i n soapy w a t e r and a i r d ry
# Apply mi ld d e t e r g e n t t o t h e s n e a k e r s and rub g e n t l y .
d e f i n i t ( s e l f ) :

s e l f . e v e n t 0 = None # e v e n t 0 i s t h e l i k e l i h o o d t h a t The s n e a k e r s
↪→ a r e damp .

d e f b r u s h o f f d i r t ( s e l f ) :
# A f t e r b r u s h i n g o f f d i r t , e v e n t 0 becomes ” e q u a l l y l i k e l y ”
s e l f . e v e n t 0 = ” e q u a l l y l i k e l y ”

d e f r e m o v e s h o e l a c e s ( s e l f ) :
# A f t e r removing s h o e l a c e s , e v e n t 0 becomes ” e q u a l l y l i k e l y ”
s e l f . e v e n t 0 = ” e q u a l l y l i k e l y ”

d e f r i n s e s h o e l a c e i n w a t e r ( s e l f ) :
# A f t e r r i n s i n g i n water , e v e n t 0 becomes ” e q u a l l y l i k e l y ”
s e l f . e v e n t 0 = ” e q u a l l y l i k e l y ”

d e f a p p l y d e t e r g e n t s n e a k e r ( s e l f ) :
# A f t e r r i n s i n g i n water , e v e n t 0 becomes ” more l i k e l y ”
s e l f . e v e n t 0 = ” more l i k e l y ”

d e f c a l l a l l f u n c s i n o r d e r ( s e l f ) :
s e l f . b r u s h o f f d i r t ( )
s e l f . r e m o v e s h o e l a c e s ( )
s e l f . r i n s e s h o e l a c e i n w a t e r ( )
s e l f . a p p l y d e t e r g e n t s n e a k e r ( )

c = Wash Sneakers ( )
c . c a l l a l l f u n c s i n o r d e r ( )
ans = c . e v e n t 0
. . .

Table 26: CREPE PoT task demonstrations

StrategyQA CoT

Q u e s t i o n : Are more p e o p l e t o d a y r e l a t e d t o Genghis Khan t h a n J u l i u s
↪→ C ae sa r ?

E x p l a i n : J u l i u s Ca es a r had t h r e e c h i l d r e n .
Genghis Khan had s i x t e e n c h i l d r e n .
The c h i l d r e n number o f Genghis Khan i s l a r g e r t h a n J u l i u s Ca es a r .
Answer : Yes

Table 27: StrategyQA CoT task demonstrations
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StrategyQA PoT

Q u e s t i o n : Are more p e o p l e t o d a y r e l a t e d t o Genghis Khan t h a n J u l i u s
↪→ C ae sa r ?

# Python code , r e t u r n ans
c h i l d r e n n u m o f J u l i u s C a e s a r = 3
c h i l d r e n n u m o f G e n g h i s K h a n = 6
ans = ( c h i l d r e n n u m o f G e n g h i s K h a n > c h i l d r e n n u m o f J u l i u s C a e s a r )

Table 28: StrategyQA PoT task demonstrations

GSM8k Question Difficulty Prediction

P r e d i c t t h e h a r d n e s s l e v e l o f t h e q u e s t i o n s .
Q u e s t i o n : Shawna ’ s workout g o a l i s 30 s i t u p s . On Monday , Shawna was on ly

↪→ a b l e t o do 12 s i t u p s , so she d e c i d e d t h a t she would make up f o r
↪→ t h e r e s t on Tuesday . However , she was on ly a b l e t o do 19 s i t u p s on
↪→ Tuesday . How many s i t u p s would Shawna have t o do on Wednesday t o
↪→ meet h e r minimum g o a l and make up f o r t h e ones she didn ’ t do ?

Leve l : Hard
. . .

Table 29: GSM8k question difficulty prediction task demonstrations

GSM8k Question and Answer Difficulty Prediction

G e n e r a t e f e e d b a c k and p r e d i c t i f t h e g e n e r a t e d answer i s t r u s t f u l .
Q u e s t i o n : Shawna ’ s workout g o a l i s 30 s i t u p s . On Monday , Shawna was on ly

↪→ a b l e t o do 12 s i t u p s , so she d e c i d e d t h a t she would make up f o r
↪→ t h e r e s t on Tuesday . However , she was on ly a b l e t o do 19 s i t u p s on
↪→ Tuesday . How many s i t u p s would Shawna have t o do on Wednesday t o
↪→ meet h e r minimum g o a l and make up f o r t h e ones she didn ’ t do ?

Answer : Shawna ’ s g o a l i s 30 s i t u p s , and she has a l r e a d y done 12 + 19 =
↪→ <<12+19=31>>31 s i t u p s .\ nTo meet h e r goa l , she needs t o do 30 − 31
↪→ = <<30−31=−1>>−1 s i t u p s .\ nS in ce she can ’ t do n e g a t i v e s i t u p s , she
↪→ doesn ’ t need t o do any more s i t u p s t o meet h e r g o a l .\ nans = 0

Feedback : The answer i s i n c o r r e c t . The g o a l i s 30 s i t u p s e v e r y d a y . So
↪→ t h e t o t a l i s 3*30 = 90 r a t h e r t h a n 3 0 .

T r u s t f u l : No
. . .

Table 30: GSM8k question and answer difficulty prediction task demonstrations
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Calibration

Q u e s t i o n : Shawna ’ s workout g o a l i s 30 s i t u p s . On Monday , Shawna was on ly
↪→ a b l e t o do 12 s i t u p s , so she d e c i d e d t h a t she would make up f o r
↪→ t h e r e s t on Tuesday . However , she was on ly a b l e t o do 19 s i t u p s on
↪→ Tuesday . How many s i t u p s would Shawna have t o do on Wednesday t o
↪→ meet h e r minimum g o a l and make up f o r t h e ones she didn ’ t do ?

Proposed Answer : Shawna ’ s g o a l i s 30 s i t u p s , and she has a l r e a d y done 12
↪→ + 19 = <<12+19=31>>31 s i t u p s .\ nTo meet h e r goa l , she needs t o do
↪→ 30 − 31 = <<30−31=−1>>−1 s i t u p s .\ nS in ce she can ’ t do n e g a t i v e
↪→ s i t u p s , she doesn ’ t need t o do any more s i t u p s t o meet h e r
↪→ g o a l .\ nans = 0

I s t h e p r o p o s e d answer :
(A) True
(B) F a l s e
The p r o p o s e d answer i s : B

Table 31: Calibration task demonstrations

DATE Question Difficulty Prediction

P r e d i c t t h e h a r d n e s s l e v e l o f t h e q u e s t i o n s .
Q u e s t i o n : Today i s C h r i s t m a s Eve of 1937 . What i s t h e d a t e tomorrow i n

↪→ MM/DD/YYYY?
Leve l : Easy
. . .

Table 32: DATE question difficulty prediction task demonstrations

DATE Question and Answer Difficulty Prediction

G e n e r a t e f e e d b a c k and p r e d i c t i f t h e g e n e r a t e d answer i s t r u s t f u l .
Q u e s t i o n : Today i s C h r i s t m a s Eve of 1937 . What i s t h e d a t e tomorrow i n

↪→ MM/DD/YYYY?
E x p l a i n : Today i s t h e C h r i s t m a s Eve of 1937 , so t o d a y i s 1 2 / 2 4 / 1 9 3 7 .
Today i s 1 2 / 2 4 / 1 9 3 7 , t h e d a t e tomorrow i s 1 2 / 2 5 / 1 9 3 7 .
A: 1 2 / 2 5 / 1 9 3 7
Feedback : The answer i s c o r r e c t .
T r u s t f u l : Yes
. . .

Table 33: DATE question and answer difficulty prediction task demonstrations
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CREPE Question Difficulty Prediction

P r e d i c t t h e h a r d n e s s l e v e l o f t h e q u e s t i o n s .
Goal : Making Matcha Green Tea t h e T r a d i t i o n a l Way
C u r r e n t C o n t e x t : B o i l 3 / 4 cup (180 ml ) o f w a t e r and pour i t i n t o your

↪→ matcha bowl . Whisk t h e h o t w a t e r w i th a c ha se n . D i s c a r d t h e h o t
↪→ w a t e r from t h e bowl . Scoop 2 t s p ( 1 . 5 h e a p i n g t e a s p o o n s o r 10 g )
↪→ of matcha i n t o a f i n e mesh s t r a i n e r . S i f t t h e matcha i n t o your
↪→ empty , d ry bowl . Pour b o i l i n g w a t e r i n t o a t e a c u p . Add a s m a l l
↪→ amount o f h o t w a t e r i n t o t h e matcha bowl and whisk i t .

Q u e s t i o n : What ’ s t h e l i k e l i h o o d t h a t I d r i n k t h e matcha ?
Leve l : Easy
. . .

Table 34: CREPE question difficulty prediction task demonstrations

CREPE Question and Answer Difficulty Prediction

G e n e r a t e f e e d b a c k and p r e d i c t i f t h e g e n e r a t e d answer i s t r u s t f u l .
Goal : B o a t i n g i n l a k e
C u r r e n t C o n t e x t : Rent a b o a t . F ind a l a k e which a l l o w s b o a t i n g . Dr ive t o

↪→ t h e l a k e and s e t t h e b o a t i n l a k e .
Q u e s t i o n : What ’ s t h e l i k e l i h o o d t h a t t h e b o a t i s i n l a k e ?
E x p l a i n : For s t e p 1 , a f t e r r e n t i n g a boa t , t h a t t h e b o a t i s i n t h e l a k e

↪→ i s ” l e s s l i k e l y ” b e c a u s e t h e b o a t i s n o t y e t i n t h e l a k e .
For s t e p 2 , a f t e r f i n d i n g a l a k e which a l l o w s b o a t i n g , t h a t t h e b o a t i s

↪→ i n t h e l a k e i s ” e q u a l l y l i k e l y ” b e c a u s e we have found a l a k e b u t
↪→ t h e b o a t i s n o t y e t i n t h e l a k e .

For s t e p 3 , a f t e r d r i v i n g t o t h e l a k e and s e t t i n g t h e b o a t i n t h e l ake ,
↪→ t h a t t h e b o a t i s i n t h e l a k e i s ” more l i k e l y ” b e c a u s e we have s e t
↪→ t h e b o a t i n t h e l a k e .

T h e r e f o r e , i n t h e f i n a l s t e p , t h e e v e n t i s ” more l i k e l y ” .
Feedback : The answer i s c o r r e c t .
T r u s t f u l : Yes
. . .

Table 35: CREPE question and answer difficulty prediction task demonstrations

GSM8k Hints

Given t h e h i n t s ( may n o t be c o r r e c t ) , answer t h e q u e s t i o n .
Q u e s t i o n : Tara has a shoebox t h a t i s 4 i n c h e s t a l l and 6 i n c h e s wide .

↪→ She p u t s a s q u a r e b l o c k i n s i d e t h a t i s 4 i n c h e s p e r s i d e . How many
↪→ s q u a r e i n c h e s o f t h e box a r e l e f t uncove red ?

H i n t s : The answer may be n e a r t o 24 or 8 .
Answer : The shoebox i s 24 s q u a r e i n c h e s b e c a u s e 4 x 6 = <<4*6=24>>24
The b l o c k i s 16 s q u a r e i n c h e s b e c a u s e 4 x 4 = <<4*4=16>>16
There a r e 8 s q u a r e i n c h e s uncove red b e c a u s e 24 − 16 = <<24−16=8>>8
ans = 8
. . .

Table 36: GSM8k with hints task demonstrations
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DATE Hints

Given t h e h i n t s ( may n o t be c o r r e c t ) , answer t h e q u e s t i o n .
Q u e s t i o n : J ane was born on t h e l a s t day o f F e b u r a r y i n 2000 . Today i s

↪→ h e r 16− year − o l d b i r t h d a y . What i s t h e d a t e 24 h o u r s l a t e r i n
↪→ MM/DD/YYYY?

H i n t s : The answer may be n e a r 0 2 / 2 9 / 2 0 1 6 or 0 3 / 0 1 / 2 0 1 6 .
Answer : J ane was born on t h e l a s t day of F e b u r a r y i n 2000 , so she born

↪→ on 0 2 / 2 9 / 2 0 0 0 .
Today i s h e r 16− year − o l d b i r t h d a y . So t o d a y i s 0 2 / 2 9 / 2 0 1 6 .
The d a t e 24 h o u r s l a t e r t h a n t o d a y i s 0 3 / 0 1 / 2 0 1 6 .
A: 0 3 / 0 1 / 2 0 1 6
. . .

Table 37: DATE with hints task demonstrations

CREPE Hints

Given t h e h i n t s ( which may n o t be c o r r e c t ) , answer t h e q u e s t i o n wi th
↪→ ” more l i k e l y ” , ” e q u a l l y l i k e l y ” o r ” l e s s l i k e l y ” .

Goal : Buy a f l i g h t t i c k e t from SF t o Hawaii .
C o n t e x t : Open g oo g l e f l i g h t s and check t h e f l i g h t s a v a i l a b i l i t y d u r i n g

↪→ t h e d a t e s wanted . Choose non − s t o p f l i g h t s and check i f t h e t ime
↪→ s l o t s work . A f t e r d e c i d i n g r i g h t t ime s l o t s and p r i c e , p r o c e e d t o
↪→ buy t i c k e t s . Got an e m a i l c o n f i r m a t i o n o f r e s e r v a t i o n .

Q u e s t i o n : J ane was born on t h e l a s t day o f F e b u r a r y i n 2000 . Today i s
↪→ h e r 16− year − o l d b i r t h d a y . What i s t h e d a t e 24 h o u r s l a t e r i n
↪→ MM/DD/YYYY?

H i n t s : The answer may be n e a r ” more l i k e l y ” o r ” l e s s l i k e l y ” .
E x p l a i n : For s t e p 1 , a f t e r c h e c k i n g f l i g h t s a v a i l a b i l i t y , t h a t I can

↪→ r e f u n d t h e t i c k e t i f i t i s r e f u n d a b l e i s ” e q u a l l y l i k e l y ” b e c a u s e
↪→ I haven ’ t p u r c h a s e d t h e t i c k e t y e t .

For s t e p 2 , a f t e r c h o o s i n g non − s t o p f l i g h t s and c h e c k i n g i f t h e t ime
↪→ s l o t s work , t h a t I can r e f u n d t h e t i c k e t i f i t i s r e f u n d a b l e i s
↪→ ” e q u a l l y l i k e l y ” b e c a u s e I haven ’ t p u r c h a s e d t h e t i c k e t y e t .

For s t e p 3 , a f t e r d e c i d i n g on t h e r i g h t t ime s l o t s and p r i c e and
↪→ p r o c e e d i n g t o buy t i c k e t s , t h a t I can r e f u n d t h e t i c k e t i f i t i s
↪→ r e f u n d a b l e i s ” l e s s l i k e l y ” b e c a u s e I have a l r e a d y p u r c h a s e d t h e
↪→ t i c k e t .

For s t e p 4 , a f t e r g e t t i n g an e m a i l c o n f i r m a t i o n o f r e s e r v a t i o n , t h a t I
↪→ can r e f u n d t h e t i c k e t i f i t i s r e f u n d a b l e i s ” more l i k e l y ” b e c a u s e
↪→ I can check t h e t e r m s and c o n d i t i o n s o f t h e t i c k e t and s e e i f i t
↪→ i s r e f u n d a b l e o r n o t .

T h e r e f o r e , i n t h e f i n a l s t e p , t h e e v e n t i s ” more l i k e l y ” .
Answer : more l i k e l y
. . .

Table 38: CREPE with hints task demonstrations
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Batch Prompting

{
Q u e s t i o n 1 : A robe t a k e s 2 b o l t s o f b l u e f i b e r and h a l f t h a t much w h i t e

↪→ f i b e r . How many b o l t s i n t o t a l does i t t a k e ?
Q u e s t i o n 2 : Josh d e c i d e s t o t r y f l i p p i n g a house . He buys a house f o r

↪→ $80 , 0 0 0 and t h e n p u t s i n $50 , 0 0 0 i n r e p a i r s . Th i s i n c r e a s e d t h e
↪→ v a l u e o f t h e house by 150%. How much p r o f i t d i d he make?

Q u e s t i o n 3 : Every day , Wendi f e e d s each of h e r c h i c k e n s t h r e e cups o f
↪→ mixed c h i c k e n feed , c o n t a i n i n g seeds , mealworms and v e g e t a b l e s t o
↪→ h e l p keep them h e a l t h y . She g i v e s t h e c h i c k e n s t h e i r f e e d i n
↪→ t h r e e s e p a r a t e meals . In t h e morning , she g i v e s h e r f l o c k of
↪→ c h i c k e n s 15 cups o f f e e d . In t h e a f t e r n o o n , she g i v e s h e r
↪→ c h i c k e n s a n o t h e r 25 cups o f f e e d . How many cups o f f e e d does she
↪→ need t o g i v e h e r c h i c k e n s i n t h e f i n a l meal o f t h e day i f t h e s i z e
↪→ of Wendi ’ s f l o c k i s 20 c h i c k e n s ?

Q u e s t i o n 4 : Ky la r went t o t h e s t o r e t o buy g l a s s e s f o r h i s new a p a r t m e n t .
↪→ One g l a s s c o s t s $5 , b u t e v e r y second g l a s s c o s t s on ly 60% of t h e
↪→ p r i c e . Ky la r wants t o buy 16 g l a s s e s . How much does he need t o pay
↪→ f o r them ?

Answer1 : I t t a k e s 2/2=<<2/2=1>>1 b o l t o f w h i t e f i b e r \nSo t h e t o t a l
↪→ amount o f f a b r i c i s 2+1=<<2+1=3>>3 b o l t s o f f a b r i c

ans = 3
Answer2 : The c o s t o f t h e house and r e p a i r s came o u t t o

↪→ 80 ,000+50 ,000= $<<80000+50000=130000>>130,000\nHe i n c r e a s e d t h e
↪→ v a l u e o f t h e house by 80 ,000*1.5=<<80000*1.5=120000>>120 ,000\nSo
↪→ t h e new v a l u e o f t h e house i s
↪→ 120 ,000+80 ,000= $<<120000+80000=200000>>200,000\nSo he made a
↪→ p r o f i t o f 200 ,000 −130 ,000= $<<200000−130000=70000>>70,000

ans = 70000
Answer3 : I f each c h i c k e n e a t s 3 cups o f f e e d p e r day , t h e n f o r 20

↪→ c h i c k e n s t h e y would need 3*20=<<3*20=60>>60 cups o f f e e d p e r
↪→ day .\ n I f she f e e d s t h e f l o c k 15 cups o f f e e d i n t h e morning , and
↪→ 25 cups i n t h e a f t e r n o o n , t h e n t h e f i n a l meal would r e q u i r e
↪→ 60−15−25=<<60−15−25=20>>20 cups o f c h i c k e n f e e d .

ans = 20
Answer4 : The d i s c o u n t p r i c e o f one g l a s s i s 60 /100 * 5 =

↪→ $<<60/100*5=3>>3.\ n I f e v e r y second g l a s s i s cheape r , t h a t means
↪→ Kyla r i s go ing t o buy 16 / 2 = <<16/2=8>>8 c h e a p e r g l a s s e s .\ nSo
↪→ f o r t h e c h e a p e r g l a s s e s , Ky la r i s go ing t o pay 8 * 3 =
↪→ $<<8*3=24>>24.\nAnd f o r t h e r e g u l a r − p r i c e d g l a s s e s , Ky la r w i l l pay
↪→ 8 * 5 = $<<8*5=40>>40.\nSo i n t o t a l Ky la r needs t o pay 24 + 40 =
↪→ $<<24+40=64>>64 f o r t h e g l a s s e s he wants t o buy .

ans = 64
}
. . .

Table 39: Batch Prompting task demonstrations
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