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Figure 1: An example of ECA using motion generated by our STARGATE network. This illustrates its capabilities of generating
different types of gestures such as iconic gestures as depicted in this example. "I’m not used to" is illustrated with hand motion
"pushing back" from the avatar. "I was walking in" is partially illustrated by a horizontal motion of both arms, although the
gesture itself is "aborted" and not complete. "a huge tourist area" is illustrated by a wide opening from both arms. "Surrounded
by" is illustrated by an horizontal opening from both arms.

ABSTRACT
Co-speech gestures synthesis is a growing field of research. How-
ever, new systems often use complex or heavy architecture, making
them unsuitable for incorporation into Embodied Conversational
Agents (ECAs) or for interpretation in other research fields such
as linguistics, where the link between speech and gestures is dif-
ficult to investigate manually. This paper presents STARGATE, a
novel architecture for Spatio-Temporal Autoregressive Graph from
Audio-Text Embeddings. The model takes advantage of autoregres-
sion to provide fast generation capabilities. Additionally, it employs
graph convolutions coupled with attention to incorporate explicit
structural prior knowledge and enable efficient spatial and tempo-
ral processing. The model was evaluated against a state-of-the-art
model in both perceptive and quantitative studies.We demonstrated
that our model is capable of generating convincing gestures in the
same range as state-of-the-art. Furthermore, we conducted in-depth
analysis that show how our model actually produces gestures from
its input.

CCS CONCEPTS
• Computing methodologies → Procedural animation; Natu-
ral language processing; Motion processing; • Human-centered
computing → Human computer interaction (HCI).
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1 INTRODUCTION
Co-speech gesture synthesis is an emerging field that has garnered
significant attention in recent years. While the precise mechanisms
underlying human gesture generation and its relationship to speech
remain elusive, researchers have made considerable strides in de-
veloping techniques for generating gestures from speech data, en-
compassing both spoken transcripts and acoustic signals [2, 9, 21].
Despite the lack of a definite understanding of the correlation be-
tween speech and gestures, the ubiquitous presence of gestures in
human communication underscores their importance in replicating
natural human interactions [16, 27, 29].

To capture the essence of human gestures and incorporate them
into artificial communication systems, several works were analyz-
ing and classifying gestures. Initially, rule-based systems were used
to develop Embodied Conversational Agents (ECA) [6], drawing
upon insights from neuroscience and linguistics. The early systems
were rudimentary and often inconsistent with findings from diverse
literature sources. The lack of a unified classification scheme for
gestures [5, 17, 28] and the disparate conclusions regarding the
relationship between gestures and speech ([8, 19, 30]) within these
frameworks hindered the development of consistent and reliable
rules.

https://doi.org/10.1145/3686215.3688819
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In recent years, data-driven approaches have emerged as a promis-
ing avenue for implicitly extracting the intricate patterns and rules
governing the relationship between speech and gesture. These ap-
proaches use a variety of architectures, ranging from simple autoen-
coders [20, 31] to variational autoencoders (VAEs) and conditional
VAEs [23, 25], to cover a broader distribution of gestures and a
better conditioning from speech input.

In the literature, the work of Alexanderson et al. [2], StyleGes-
tures, stands out for its innovative autoregressive architecture using
normalising flow [13]. This particular network structure has gained
widespread recognition as an effective benchmark for evaluating
the performance of gesture synthesis systems, as evidenced by
its extensive adoption in subsequent research [3, 4, 23]. Notably,
it was selected as the baseline model for the GENEA Challenge
[22], a challenge aimed at advancing the state of the art in gesture
synthesis.

Diffusion-based systems [3, 9, 33, 34] have also garnered signifi-
cant attention, producing high-quality gesture sequences but suffer
from a complex architecture leading to slower processing times,
giving a real trade-off between quality and speed.

In addition, while different theoretical frameworks propose di-
verse gesture classification, the deep learning community predom-
inantly adopts McNeil’s taxonomy [28], which encompasses the
following gesture categories :

• Iconic gestures: Concrete illustrative movements that rep-
resent characteristics of elements present in the semantic
content of speech.

• Metaphoric gestures: Abstract illustrative movements that
metaphorically represent characteristics of the semantic con-
tent within discourse.

• Deictic gestures: Referential movements, often involving
pointing to abstract or concrete elements, imparting linguis-
tically relevant directionality through movement within dis-
course.

• Beat gestures: Rhythmic and undulatory movements that
lack specific semantic meaning but contribute to interaction
and are linked to speech.

The principal objective of gesture synthesis is to generate ges-
tures that appear natural and human-like, encompassing all gesture
categories. However, as beat gestures constitute the majority of
produced gestures and are relatively simpler in form, most deep
learning-based models tend to focus primarily on generating beat
gestures. This emphasis on beat gestures is understandable given
their prevalence in human communication. Nevertheless, the re-
maining part of the gesture spectrum holds immense significance
in conveying meaning and enhancing the overall effectiveness of
communication.

Despite the extensive research on co-speech gesture synthesis,
there is a concerning lack of investigations into the underlying
mechanisms that enable these methods to generate gestures, re-
gardless of their coherence or complexity. This lack of explainability
poses a significant challenge in a field that seeks new theoretical
frameworks to delve deeper into the intricate relationship between
speech and gesture. Deep neural networks have proven adept at ex-
tracting meaningful representations from complex data. However,
in the realm of gesture synthesis, the intricate nature of gestures
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Figure 2: An overview of the STARGATE network with its
encoder-decoder structure. Our network use 3 separate en-
coders to process all 3 modalities separately and a unique
decoder to generate motion from a multimodal latent repre-
sentation. Numbers between brackets depicts tensor shapes:
𝑇 being the half-window length, 𝑉 the number of joints, 𝑡
the chunk size,𝐶𝑥 the latent feature size, 𝐼𝑥 the input feature
size.

and the often opaque architectures of deep neural networks hinder
our understanding of the underlying mechanisms responsible for
the gesture generation. To address this challenge, one can consider
exploring simpler and more interpretable mechanisms, such as
graph convolutions [18]. Motivated by their successful application
in the related field of locomotion synthesis, where motion is gen-
erated without the involvement of speech (e.g., walking, dancing,
fighting), graph convolutions hold promise to inject a prior struc-
tural information for both enhancing our understanding of deep
learning network behavior and enabling the creation of meaningful
latent representations of gestures.

Inspired by these advancements, we propose a novel network
architecture that aims to address the aforementioned limitations
in gesture synthesis. Our contribution seeks to achieve three key
objectives:

• Exploiting graph convolutions for explicit gesture structure,
by integrating it into a deep neural network for gesture
generation

• Efficient design using an autoregressive architecture, to ac-
commodate speed-critical applications, such as in ECAs.

• In-depth interpretability analysis to understand how such
architecture generate gestures.

In the following sections, we describe our novel architecture and
the mechanisms used, followed by a comprehensive evaluation of
our model against StyleGestures model using both quantitative met-
rics and subjective studies. While this architecture was presented
in our previous work [1], this work describes it more completely
and proposes a novel in-depth exploration of the behavior of our
model and how gestures are produced by it, discovering hidden
mechanism produced by our self-supervised model. We conclude
by discussing potential future directions for our model.

2 METHODS
We propose a novel architecture named STARGATE (for Spatio-
Temporal Auto-Regressive Graph from Audio-Text Embeddings),
an overview is depicted in Figure 2. We follow an encoder-decoder
structure, with a chunked-autoregressive approach. This translates
to a network that takes 3 different modalities as input :

• Audio: A window of 1s of past and 1s of future speech.
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Figure 3: The speech encoder, used for both audio and text
encoding separately. Conv1D parameters have the following
meaning : input channels, output channels, kernel size, dila-
tion size.

• Text: A window of 1s of past and 1s of future words.
• Motion: A history of 1s of past motions.

Having such a long context window is motivated by the fact that
gestures are a slow modality, with an average gestures duration
of 1-2s depending on if the gestures refers to a single word or a
full sentence [11]. Moreover, most gestures are prepared by an-
ticipation, which requires a broader context window than more
traditional audiovisual synthesis such as lipsync or voice synthe-
sis. Each modality as a dedicated encoder to produce a particular
latent space representation, which is then fused together to create
a multimodal representation of speech/gestures. This representa-
tion is finally decoded into a 𝑡 frames long chunk of next gesturer
poses. We chose chunk output instead of frame-by-frame output
to provide the network with greater flexibility in generating ges-
tures, avoiding excessive reliance on autoregressive motion history,
while also ensuring more efficient computations. The first second
of motion is a sequence of zeros to start the autoregressive loop.

2.1 Speech encoders: audio and text
Speech can be separated in two principal components: acoustic
and linguistic content. The acoustic signal produced during speech
carries a lot of information including prosody (comprising energy,
pitch, rhythms, etc.) and emotional state. While the linguistic con-
tent, is acoustically expressed in the speech signal, its explicit rep-
resentation in textual representation enables easy exploitation.

Such representation conveys more information about the se-
mantics content of the speech than raw acoustic informations,
text a crucial source of information to model iconic, deictic and
metaphoric gestures which are all directly linked to this semantics
content, while the latest gesture category, beat gestures, are linked
to the acoustic signal. Both modalities are thus needed to generate
both dynamic and meaningful gestures. In our architecture we use
those two modalities through two similar but separate CNN-based
encoders, its implementation is depicted in Figure 3. The input
feature is first passed through a batch normalization layer before
going through one of the seven residual blocks. Each block consists
of one classic convolution and a dilated convolution, progressively
compressing the temporal dimension of the input to a single vector
representation. While encoders follow the same architecture, audio

input and text input are not the same size, thus only convolution
channels are different between the audio and text encoder.

2.1.1 Audio encoder. For the audiomodality, we extracted 27MFCC
coefficients at a temporal resolution of 120Hz to match dataset
temporal resolution, but are downsampled at 60Hz as such high
resolution is not needed to generate a slow modality such as ges-
tures. We then fed the encoder a 2s sliding window, with 1s of past
information and 1s of future information. Beat gestures are heavily
linked to the acoustic signal thus it is the role of the audio encoder
to extract a latent vector that enables the decoder to understand
audio-controlled parameters such as speed and range of motions.
The channels used for each convolution in the audio encoder are
the following, first one being 𝐶𝑖𝑛 in Figure 3, latters being 𝐶ℎ : 27
(input), 64, 96, 128, 128, 256, 256.

2.1.2 Text encoder. For the text, we choose to replace each word
of the transcription by its BERT embeddings [10], as it has been
shown that they are a powerful and compact way to represent text
content. However such embeddings represent only words with their
context, but without any rhythm information, which expose the
problem of features synchronization. For the model to effectively
uses both audio and text modality together we needed to align
BERT embeddings with audio features extracted at 60Hz. To do that
we duplicated those embeddings with respect to each words timing
using forced alignment, in our case with Montreal Forced Aligner
[26]. This allows the network to have both meaningful semantic
features from the BERT embeddings, but also the pace of the text
itself. The same 2s context window, with 1s of past embeddings and
1s of future embeddings is then fed to the encoder. This explicit
semantic information is crucial for generating complex gestures
such as metaphoric, iconic or deitic gestures that directly refer to
the linguistics content of the speech. As they can depict particular
concept or shapes, a deep understanding of language, gestures and
the link between both is thus needed by the network to create
such gestures. The channels used for each convolution in the text
encoder are the following : 768 (input), 768, 768, 512, 512, 396, 396.

2.2 Motion encoder
One of the benefits of using an autoregressive approach is that
motion, being the output, can also be part of the input. Having
motion as the third modality helps to keep a good consistency
for the gestures trajectories but also to create a speech-gestures
multimodal representation. Our motion encoder is based on the
work of [35], an overview of the motion encoder can be seen in
Figure 4. The input motion is represented as exponential maps [12]
as they have the advantage of being a continuous representation
of rotation in comparison of Euler angles, and are more compact
than quaternions. It goes through a batch normalization layer and
then through 3 ST-GCN (which stands for Spatio-Temporal Graph
Convolution Network [35]) chained together to process motion data
using graph convolution network. Such structure allows producing
strong embeddings capturing both the spatial and the temporal links
inherent to motion data. To our knowledge this is the first work in
the field of co-speech gestures synthesis using graph convolutions
to inject a more explicit representation of gesture.
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Figure 4: The motion encoder consists of 3 chained ST-GCN
blocks, each of them using the same adjacency matrices. V
is the number of nodes in the graph, see Figure 5. Next to it
is an ST-GCN block, which chains a spatial transformation
through a self-attention mechanism before a graph convolu-
tion and a temporal transformation. See Figure 3 for Conv2D
parameters meaning.

2.2.1 Graph Neural Network. In order to both generate convincing
gestures and provide insight into the network’s process for produc-
ing gesture latent representation, we used multiple mechanisms
within our motion encoder. The first mechanism involves the use of
Graph Convolution Networks (GCNs) [18] instead of classic CNNs.
This clearly contrast with classic approach of using CNNs without
constraints on the spatial organization of information. Our aim is
to force the network to understand the anatomical and physical
constraints of the human skeleton, potentially leading to a more
explicit and comprehensible gesture latent space.

GCNs represent a specific type of convolutional neural network
that treats data not as a grid layout in N dimensions, but as an
undirected graph. This approach enables the incorporation of ex-
plicit neighboring information to emphasize the significance of
adjacency within a graph. Unlike classic convolutions, where the
network must discern and establish relevant connections between
data, GCNs possess prior knowledge of these connections through
the graph structure. Consequently, only relevant nodes are ag-
gregated by the convolutional process directly from the outset of
training. In practice, this translates to the use of the graph adja-
cencymatrix to determine which nodes to use for each computation,
rendering GCNs as efficient as CNNs.

In our case we used the ST-GCN block from [35], depicted in the
Figure 4, it performs both a spatial transformation using a graph
convolution, and a temporal processing using a Temporal Convo-
lution Network (TCN). This network makes the use of multiple
adjacency matrices, each of them with a particular set of links
between nodes to model a special relationship :

• Self-link: this matrix allows information to stay in the same
node during computation.

• Neighborhood: this models the direct neighborhood be-
tween nodes, the further away the neighbor is from a node,
the less impact it has on it during the computation, so we
want only the direct neighbors to contributes to the next
state of a node.
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7 - Head
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Figure 5: The graph we used, with 17 nodes, neighborhood
links (direct links) are in solid lines while symmetric links
are in dashed lines. Self-link are omitted for a simpler repre-
sentation.

• Symmetric: this last matrix is for symmetrical neighbor-
hood, this symmetrical adjacency allows direct flow of infor-
mation between the left and right arm. Note that symmetric
links does not forces the network to output symmetric ges-
tures, its simply allows information to goes from left to right
part of the body more directly.

We illustrate the graph used in our network in the Figure 5, with
17 nodes and links between the nodes. Motivated by the fact that
we want to create new gesture representation, those matrices are
initialized at the start of the training, as a prior knowledge, but are
left unfrozen and as parameters for the network to make changes
in matrices according to the task of gesture synthesis, potentially
creating interesting new links between nodes.

The second advantages of using graph is its robustness to po-
tential changes in the skeleton, both in terms of physical changes
(e.g., multi-speaker training with different body) but also in layout
changes (e.g., changing dataset). The graph convolution will make
the extracted features a lot more invariant to those changes as a
human skeleton will always keep a similar layout (shoulder linked
to an arm, then forearm, ...).

2.2.2 Attention mechanism. In the ST-GCN implementation of [35]
and ours, there is a self-attention mechanism on adjacency matri-
ces before the graph convolution. The input motion data is passed
through a scaled dot-product self-attention block, to create an ’at-
tention matrix’, one for each adjacency matrix. Those ’attention
matrices’ are added on top of the base adjacency matrices to pro-
duce what we call ’dynamic adjacency matrices’. This is motivated
by the fact that even if we let the network make small changes to
adjacency matrices during the training, at inference time it would
remain static. This attention mechanism allows introducing dy-
namic modification at inference, to make the network pay more
attention to particular parts of the body for each chunk of generated
frames.

2.3 Motion decoder
Audio, text and gesture latent space are then combined, in our case
simply by concatenation, to produce a 𝑡-frames multimodal latent
space which is fed to the motion decoder. The decoder, which con-
sists of stacked RNNs (in our case Gated Recurrent Units, GRUs,
networks [7]), will output the next chunk of 𝑡-frames skeleton pose,
those frames are then used to compute the next batch of frames.
This decoder is depicted in Figure 6 The major drawback of autore-
gression is to work only with previous information, and not being
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Figure 6: Our decoder uses a stacked GRUs approach. We
implemented bidirectionality using buffers at first layer (L1)
GRUs, the forward one storing forward L1 hidden features,
the backward one storing longer latent sequence. Only for-
ward L1 GRU reuse its hidden states during computation as
others do not have continuity in their inputs.

able to analyze a full sequence of gestures. As a consequence we
could not use bidirectional GRUs to get an in-depth comprehension
of the whole gestures sequences. But motivated by the benefits that
it could bring and as we are generating batch of frames, we can
use bGRUs on those partial sequence. In fact, we can also extend
the processed sequence by storing previous generations inside a
forward and a backward buffer, in our case both buffer store 128
frames of previous information. As continuity cannot be kept on
later layers, we only keep track on the first forward GRU layer
hidden state. This bidirectional implementation should allow the
network to learn relationship between past and future information
present in the multimodal representation.

3 TRAINING
3.1 Dataset : BEAT
We trained all our models on the BEAT [24] gesture dataset. It
provides both high quality and large volume of multimodal data,
ranging from audio, word and phoneme-level transcriptions, motion
capture data for body, hands, and facial expressions. We used the
data corresponding to the speaker 1, giving us 4 hours of data,
which we split into training, validation and test sets using a 90/5/5
ratio. Audio and motion data preprocessing follows the protocol
and code proposed by StyleGestures [2]. We also augmented data
by using the same mirroring strategy, which allow us to double the
amount of data.

3.2 Loss
Our model is trained to minimize two terms : one Huber [15] loss
on exponential map and one Huber loss on positions, which are
computed from the exponential maps. This is motivated by the fact
that only minimizing the exponential map error as the network
objectivewill give an equal importance to each joints in the skeleton,
however, as the skeleton is inherently a hierarchy, we want a near-
perfect control of the hips and spine, as they will have an impact
on all end effectors. The loss is thus defined as follows:

𝐿𝑜𝑠𝑠 = H(𝑟, 𝑟 ) + H (𝑝, 𝑝)

With 𝑝 and 𝑟 respectively, the positions and exponential map of the
reference sample, 𝑝 and 𝑟 respectively the positions and exponential
map of the generated sample andH the Huber loss.

4 EVALUATION
4.1 Quantitative metrics
This section presents evaluations of our proposed model and a
variant, "Audio Only," which excludes the text encoder. Those two
models are compared against state-of-the-art model. We compare
the performance of these models against a well-established bench-
mark in the field, StyleGestures [2]. This choice is motivated by
StyleGestures’ autoregressive architecture and its frequent adop-
tion as a reference model for gesture synthesis research [22], while
it is not the current SOTAmodel compared to more recent diffusion-
based approach, it allows fair comparison between 2 similar archi-
tectures. We show enhancements on a well known autoregressive
approach which have the advantage to be more tractable than dif-
fusion, known to be slow both at training and inference.

Frechet Gestures Distance (FGD). Evaluation in the field of
gesture synthesis is heavily reliant on subjective assessments. As
we are dealing with generative models and gesture is a complex
modality where a single gesture can be used in multiple contexts
and a single speech segment can be accompanied by one or more
gestures, traditional metrics (such as Mean Angle Error or Root
Mean Square Error) designed for one-to-one or one-to-many map-
pings cannot be applied effectively in this many-to-many setting.

The best attempt to get an objective metric for gesture synthesis
is inspired by the Frechet Inception Distance (FID) in image synthe-
sis [14]. The FID is calculated by measuring the Frechet distance
between latent features extracted from a set of ground-truth sam-
ples and generated ones produced by an Inception network. This
score has been adapted for the task of gesture generation in [32],
now known as the Frechet Gestures Distance (FGD). To compute
the FGD, we needed to retrain the Inception network proposed
by [32] with our dataset as it differed significantly from what the
available network has been trained on. As a result, our FGD results
cannot be directly compared to those of other papers that report
FGD values for StyleGestures. The advantage of this method is
that the Inception network behaves as an unbiased evaluator, re-
sulting in a metric that is more closely aligned with actual human
perception.

As we can see in Table 1, both STARGATE variants outperforms
StyleGestures. Interestingly, the Audio Only variant of our system
exhibit lower FGD values compared to our baseline model. This
behavior could be attributed to the fact that our baseline model is
the only variant capable of generating convincing non-beat gestures
(such as the ones depicted in Figure 1, see Section 5.1), albeit in
small numbers. These gestures are significantly more challenging to
master and often deviate significantly from the reference gestures,
contributing to higher FGD scores despite not providing superior
perceptual quality due to their limited occurrence.

Performance.While performance should not be a primary con-
cern when designing a model for gesture synthesis, we aimed to
develop a network capable of running in scenarios where speed is
critical(e.g. for ECAs), generating convincing gestures as quickly
as possible. To assess performance in this context, we conducted
benchmarks that consider preprocessing steps, as they can signifi-
cantly impact computational overhead (such as BERT embedding
computations). Therefore, all reported timings are based on raw
waveform/sentence input, with a batch size of 1. We conducted
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Nb params Graph? Audio? Text? FGD ↓ Inference time ↓ [Time per frame ↓]
5s 10s 30s 80s

StyleGestures 82M ✗ ✓ ✗ 14.15 7.76s [90ms] 12.90s [70ms] 31.05s [50ms] 80.07s [50ms]

STARGATE 43.5M ✓ ✓ ✓ 10.58 6.51s [37ms] 8.31s [17ms] 13.40s [8ms] 23.78s [5ms]

STARGATE
Audio Only

30.9M ✓ ✓ ✗ 8.61 3.49s [19ms] 3.98s [8ms] 6.13s [3ms] 10.68s [2ms]

Table 1: Results of quantitative comparison using FGD and models benchmarks according to the duration of the utterance (5s
to 80s). Note that StyleGestures outputs 20fps while our model outputs 60fps. Bold values depict best model. Benchmark used
the following hardware configuration: i7-11850H and NVIDIA RTX A3000 Laptop.

benchmarks for different sample lengths as some neural network ar-
chitectures exhibit performance advantages over longer sequences.
For each sample length, we performed multiple runs and report
the average. To account for the fact that both systems generate
gestures of different lengths (depending on framerate, computation
windows, etc.), we also report execution time per frame to facilitate
a fairer comparison.

As for the FGD, both STARGATE variants provide the output con-
sistently faster than StyleGestures. In short 5s sequence generation,
our model performs up to 1.4x faster than the input length, while
in 80s long sequence generation, our model performs up to 7.5x
faster than the input length. In comparison, StyleGestures is 1.5x
slower in the first scenario and remains neither faster nor slower
in the second scenario. However, this model outputs 20fps gesture
sequences, whereas ours output 3 times more frames at 60fps. Thus,
when considering the time per frame, our model is 4.7x faster than
StyleGestures per frame generated in the short sequence scenario,
and in long sequence generation, our model takes advantage of
parallel processing of input modalities (as audio and text are not in
the autoregressive loop), becoming 25x faster per frame generated
for our Audio Only variant, and 10x faster for our standard model
(audio + text).

In both audio-only and text-integrated cases, this implies that
integration into ECAs can be achieved, allowing for more natural
interaction with future human machine interaction with gestures-
enabled avatars in low latency scenarios.

4.2 Subjective Evaluation
To further evaluate our model, we conducted a Mean Opinion Score
(MOS) evaluation. to assess the overall quality of gestures generated
by our novel architecture. We rendered 3D animations using the
GENEA Challenge model [22] to align with their evaluation proto-
col as closely as possible. All stimuli were presented at a frame rate
of 60 fps. The study were conducted using Prolific, a crowdsourcing
platform that facilitates easy recruitment of participants. The study
incorporated control samples to identify and eliminate participants
who failed attention checks. All participants were selected from
the United States, had English as their native language, and were
compensated for their participation in our studies.

Inspired by the GENEA Challenge evaluation protocol, we eval-
uated both the "human-likeness" and "appropriateness" of the gen-
erated gestures, using slightly modified questions to gain a clearer
understanding of the strengths and weaknesses of our model’s
gesture generation capabilities.

The evaluation was divided into two parts. The first part in-
volved viewing videos without audio and answering the question,

Model Human-like ↑ Credibility ↑ Consistency ↑

Reference 6.19 ± 0.28 5.27 ± 0.23 5.16 ± 0.23
Mismatch N/A 4.92 ± 0.20 4.77 ± 0.22
StyleGestures 5.97 ± 0.25 4.87 ± 0.22 4.70 ± 0.23
STARGATE 5.89 ± 0.28 5.0 ± 0.20 4.85 ± 0.22

Table 2: Results of our MOS evaluation, we report the mean
and a 95% confidence interval for each aspect.

"How human-like does the gesture motion appear?" The second part
involved watching videos with audio and responding to two ques-
tions: "How credible are the gestures with respect to the speech?"
and "How consistent are the gestures with respect to the speech?"
Participants were asked to rate each question on a scale of 1 to 7. We
evaluated four gesture generation systems in this study: Reference
(ground truth), Mismatch, StyleGestures, and STARGATE.

Mismatchwas created by using syntheticmotions from the STAR-
GATE network and pairing themwith audio from a different sample.
As a result, it was not included in the first part of the evaluation,
where no audio was present. We presented 30 videos for each sys-
tem, each lasting 9 seconds and we had a total of 25 participants
(12 female and 13 male).

The results are shown in Table 2. As can be seen, StyleGestures
achieved slightly higher score than our STARGATE model in the
overall human-likeness aspect, but our model is slightly better
in both consistency and credibility when audio is available. We
attribute this difference without audio to the presence of non-beat
gestures in our model, which are not always produced clearly (as
evident in the aborted gestures in Figure 1). This inconsistency
sometimes results in a mix of iconic and beat gestures, leading to a
perception of unnaturalness when the gestures are not accompanied
by audio cues.

Table 2 also corroborate findings from previous research [22],
where Mismatch exhibits higher ratings compared to StyleGestures
and our model. We attribute this observation to the high prevalence
of beat gestures in the dataset and the generated gestures. Beat
gestures are inherently consistent and credible when they align
with the audio rhythm. This is true for both mismatch and non-
mismatch motions, as they both originate from the same model
output, which is capable of matching the overall pace of the dataset.
Consequently, the gestures in both scenarios were able to convince
users. In contrast, the referencemotion exhibits more consistent and
credible gestures due to the presence of highly semantic gestures
presented to the users. This highlight the problematic of evaluating
complex gestures generation by novice who can be fooled by simple
beat gestures.
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a)

b)

c)

Figure 7: This illustration showcases three iterations of the sentence "To take down an evil king" generated by different variants
of the STARGATE model. Each gesture lasts 1 second. a) Utilizes the standard STARGATE architecture and generates an iconic
gesture representing "take down" with precise timing. b) Utilizes a text-only variant and produces identical gestures. c) Utilizes
an audio-only variant and generates a beat gesture, indicating a lack of semantic understanding by the network in this instance.

which  | (is) |         a          |                huge                |     tourist     |      area

a)

b)

Figure 8: a) illustrates the generation of the sentence "Which is a huge tourist area" using STARGATE. b) depicts the generation
of each individual word, with its BERT embeddings stretched over 2 seconds, as it is the minimum input length for STARGATE.
Nearly the same poses are generated, demonstrating how STARGATE makes the relationship between a word and a pose.

5 INTERPRETABILITY
As we collaborate with researchers in more theoretical fields such
as linguistics and cognitive science, one of our objectives was to
develop a model whose behavior we could analyze thoroughly,
understanding its internal workings to advance these fields and
introduce new theoretical frameworks to our community. This led
us to create a deterministic model instead of a more advanced
probabilistic one. While the latter could produce a wider range of
gesture outputs, its interpretability would be significantly more
complex.

In this section, we will present the results and findings obtained
from conducting a set of exploratory tests on our STARGATEmodel.
To our knowledge, this is the first time that a co-speech gesture
synthesis model has been analyzed in such a manner.

5.1 Importance of text and rhythm
Our first experiment aimed to understand the type of information
extracted from each input modality. To achieve this, we generated
our test set with multiple variants of our network. We tested net-
works trained with all modalities but some modalities set to zero,
and networks trained with only one modality. Our observations
revealed that regardless of the configuration, our STARGATE net-
work predominantly utilizes the text input in conjunction with the
rhythm from the forced alignment step. Interestingly, the rhythm
appears to be the sole information extracted from the audio input.
We attempted replacing MFCC with alternative audio features like
F0 and energy, yet achieved similar outcomes. Thus, our model
relies solely on text and rhythm to generate both beat and iconic
gestures. We can see in Figure 7 that only variants utilizing the text

Tiny
Large
Big

Huge

Figure 9: On the right is the stroke pose of the sentence
"Which is a huge tourist area" in blue and "Which is a tiny
tourist area" in red, in between colors are the generation of
the interpolation between BERT embeddings. On the left we
found the same in-between gestures with concepts such as
"large" and "big" instead of huge.

are able to produce iconic gestures, while the audio-only leads to
pure beat gestures.

5.2 Word to pose
We then investigate why text and rhythm sufficed for the model.
We observed that altering the rhythm by stretching or compress-
ing certain BERT embeddings did not result in quicker or slower
gestures. Since the training data established a precise pace for ges-
tures, the network learned this dynamic. Consequently, artificially
changing the word rhythm led to gestures maintaining a particular
pose if the stretch was too prolonged or no gestures at all if the
compression was too severe.

However, when we generated gestures using only one word
(and thus one BERT embedding, still computed with the entire
sentence context) stretched over a 2-second sequence (to match our
minimal input length), we discovered that our model assigned a
particular pose for each BERT embedding vector. In essence, our
model generates gestures by creating a pose for each different
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a) Sentences:
  I'm not used to
  I'm not accustomed to
  I'm used to

b)

c)

  Ran out of the bar
  Walked out of the bar
  Ran away from the bar
  Jumped out of the bar
  Flew from the bar

  I found myself
  I met myself
  I discovered myself
  I found mine

Figure 10: Examples of generation with slightly varied sentences to illustrate that similar concepts yield similar iconic gestures.
a) This demonstrates that our network struggles with negation, as blue and green depict the same gesture despite conveying
inverted concepts. b) This illustrates that distinct concepts such as jumping and walking result in dissimilar gestures, while
running and fleeing elicit the same gesture. c) In this example, the same hand gesture is depicted in blue and orange, but no
gesture is produced in green, as the word "discovered" alters the context significantly. Additionally, in the case of red, the
gesture is delayed and synchronized with "mine," whereas others are tied to the verb.

BERT embedding and links them through interpolation based on
the word rhythm. We illustrated this phenomenon in Figure 8,
where we display both a gesture generated from a sequence of
BERT embeddings for the entire sentence and multiple generations,
each with only one BERT embedding for one word.

5.3 From word interpolation to gesture
interpolation

As our model assigns a specific pose to each BERT embedding, we
can interpolate between two BERT embeddings, indirectly interpo-
lating in the final gesture space. In Figure 9, we use the example
sentence "Which is a huge tourist area" from our test set. This sen-
tence triggers an iconic gesture linked to the word "huge"; however,
replacing "huge" with "tiny" results in our model not generating
such an iconic gesture. By interpolating between the embeddings
of "huge" and "tiny," we generate a continuous spectrum of gestures
ranging from a wide opening to no gesture at all.

Further exploring this behavior, we discovered that this inter-
polation unveils other semantic concepts. When we substituted
synonyms of "huge," such as "large" or "big," we obtained similar
gestures positioned perfectly in the middle of the interpolation. De-
spite carrying the same meaning, these words have a lesser impact
than "huge," resulting in a narrower arm opening.

It is noteworthy that we did not observe a specific iconic gesture
for "tiny" (compared to a beat gesture). This might be explained by
the fact that the concept of "tiny" or a similar iconic gesture had
not been encountered during training, even though the BERT em-
bedding adequately encoded the "tiny" concept within its context.

5.4 From similar words to similar gestures
This revealed a clustering effect between the BERT embeddings
and their associated poses, wherein similar words are interpreted
as the same concept by our network, leading to the generation of a
consistent group of poses. To validate this observation, we gener-
ated variants of sentences from our test set sequence containing
iconic gestures. Different samples are illustrated in Figure 10.

We observed that altering the sentence while preserving the
same meaning resulted in the reproduction of identical gestures.
Just as the BERT encoder generates close embeddings for similar
words in the same context, our network replicates this effect with
gestures, portraying synonyms and semantic concepts through
similar gestures.

However, due to the limitations of our training data, numerous
concepts lack associated iconic gestures (refer to Figure 10b). Simi-
larly, certain linguistic transformations, such as negation, result in
the production of identical gestures (as seen in Figure 10a), despite
significant differences in semantics.

6 CONCLUSION
We introduce STARGATE, a novel chunked autoregressive archi-
tecture that uses three input modalities to construct a unified la-
tent representation of speech-gestures and subsequently generate
gestures. This architecture represents a significant advancement
by using graph convolutions instead of traditional convolutions,
thereby explicitly integrating prior knowledge of the human skele-
ton structure. By integrating anatomical and structural constraints,
it ensures the avoidance of potential unnatural gestures. and po-
tentially enhancing interpretability.

Our evaluation, encompassing both quantitative metrics and sub-
jective studies, demonstrates the model’s capability in generating
diverse gestures, spanning from basic beat gestures to more intri-
cate ones like iconic and metaphorical gestures. This may suggest
that the model effectively combines linguistic information with
learned insights into the coordination of speech and gestures. The
comprehension and interpretability of our network pave the way
for advanced training methodologies that leverage the word-to-
pose effect. Furthermore, this enhances our understanding of the
mechanisms underlying the generation of co-speech gestures in hu-
man speech. These pioneering results will undergo further in-depth
analyses, particularly utilizing a larger and more diverse corpus of
co-verbal gestures, to ensure robust validation of the findings.

We are now working on extending our model to include both
finger gestures and multi-speaker generalization.
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