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Abstract

Large language models (LLMs) have demonstrated remarkable performance, partic-
ularly in multilingual contexts. While recent studies suggest that LLMs can transfer
skills learned in one language to others, the internal mechanisms behind this ability
remain unclear. We observed that the neuron activation patterns of LLMs exhibit
similarities when processing the same language, revealing the existence and lo-
cation of key linguistic regions. Additionally, we found that neuron activation
patterns are similar when processing sentences with the same semantic meaning in
different languages. This indicates that LLMs map semantically identical inputs
from different languages into a "Lingua Franca", a common semantic latent space
that allows for consistent processing across languages. This semantic alignment
becomes more pronounced with training and increased model size, resulting in a
more language-agnostic activation pattern. Moreover, we found that key linguistic
neurons are concentrated in the first and last layers of LLMs, becoming denser
in the first layers as training progresses. Experiments on BLOOM and LLaMA2
support these findings, highlighting the structural evolution of multilingual LLMs
during training and scaling up. This paper provides insights into the internal work-
ings of LLMs, offering a foundation for future improvements in their cross-lingual
capabilities.

1 Introduction

In recent years, large language models (LLMs) have gained significant attention for their remarkable
performance. The multilingual capabilities of LLMs are a crucial area of research, especially as AI
technology spreads to people with diverse backgrounds and different native languages. Interestingly,
recent studies have shown that LLMs can develop cross-lingual abilities, transferring skills learned in
one language to others they have not been trained on (Chirkova, Nikoulina, 2024; Pires et al., 2019;
Wu, Dredze, 2019). However, the internal mechanisms by which multilingual LLMs function and
develop cross-lingual abilities remain an understudied topic.

In the field of neuroscience, research has shown some interesting findings. First, when polyglots
process different languages, their brains’ language networks exhibit distinct response patterns (Malik-
Moraleda et al., 2024). It is believed that different language capacities are stored in different
compartments of the human brain (Paradis, 1985, 2000). Second, while processing the same task in
different languages, the human brain exhibits similar activation patterns (Xu et al., 2021). Third, as
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Figure 1: LLMs encode inputs into a "Lingua Franca", a latent semantic space representation
shared by all languages, and then decode this "Lingua Franca" into the target language. As training
progresses and the models scale up, LLMs become better at mapping inputs to this common semantic
space.

individuals gain proficiency in a new language, the activation pattern for that language becomes more
similar to those of other languages (Nichols et al., 2021; Li et al., 2019). These findings raise the
question: Do these phenomena also manifest in LLMs? Our answer is yes. We found that LLMs use
different neurons to process inputs in different languages, and map inputs with the same semantic
meaning but in different languages into a "Lingua Franca", a common semantic latent space shared
by all languages.

First, by examining neuron activation in LLMs, we observe that neuron activation exhibits similar
patterns when processing different inputs in the same language. Zhang et al. (2024) indicates
that certain key parameters in LLMs correspond to linguistic competence, with language-specific
parameters existing for different languages. Our research supports this view. By probing the neurons
that contribute most to this similarity, we can identify the key linguistic region for a specific language.
This key linguistic region consists of neurons responsible for processing specific languages, with
each language having its own dedicated region. When the key linguistic region of a specific language
is deactivated, the LLM significantly loses its capacity for the specific language while maintaining its
capacity for others.

Second, we found that when processing inputs with the same semantic meaning but in different
languages, LLM neuron activation shows similar patterns. This indicates that multilingual LLMs
map inputs into a common semantic latent space, allowing them to process information similarly
across languages, facilitating cross-lingual ability transfer. We refer to this phenomenon as semantic
alignment.

Third, we found that as training progresses, the sizes of key linguistic regions become smaller, and the
activation pattern becomes more language-agnostic. At the same time, semantic alignment becomes
more significant. Similarly, as the model scale increases, the activation pattern of neurons become
more language-agnostic, but the semantic alignment becomes more pronounced. We defined metrics
to facilitate the comparison of linguistic region distinctions and semantic alignment.
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By examining the internal structure of LLMs, we found that the key linguistic region neurons are
generally located in the first and last few layers. As training progresses and model scale increases,
these key regions become denser in the first layers. Based on this information, we hypothesize that
LLMs encode inputs into a "Lingua Franca", a latent semantic space representation shared by all
languages, and then decode this "Lingua Franca" into the target language. As training or model size
increases, the model can more efficiently map inputs with the same semantic meaning to a common
semantic space and then perform reasoning.

The experiments were primarily conducted on BLOOM (Workshop, 2023), using their released
intermediate checkpoints to examine the evolution during the training process. To showcase the
extensibility of our results on other models, we equally performed the experiments on LLaMa2
(Touvron et al., 2023), and we obtained similar results.

The following is a summary of our observations:

Neuron Activation Patterns:

• Neuron activation exhibits similar patterns when processing the same language, revealing
the existence and location of key linguistic regions in LLMs. Deactivating these key neurons
significantly impairs performance in the corresponding language.

• Neuron activation exhibits similar patterns when processing sentences with the same seman-
tic meaning in different languages.

Dynamics with Training and Scaling Up:

• As the training process progresses, linguistic regions become smaller, while semantic
alignment becomes more significant, resulting in a more language-agnostic activation
pattern.

• As the model’s scale grows, the activation becomes more language-agnostic, and semantic
alignment becomes more pronounced.

• Important neurons are generally located in the first and last few layers. As training steps
increase and model scale grows, key regions become denser in the first layers.

2 Background

Large language models like GPT-4 (OpenAI, 2024), LLaMA (Touvron et al., 2023), and OPT
(Zhang et al., 2022) have revolutionized natural language processing with their ability to understand
and generate nuanced text. Additionally, multilingual large language models such as BLOOM
(Workshop, 2023) and XLM-R (Conneau et al., 2020) overcome language barriers by learning
universal representations from texts in multiple languages. Multilingual large language models
generally incorporate multilingual data in the pretraining stage for better alignment (Qin et al., 2024).
These models typically use the transformer architecture (Vaswani et al., 2023) and are decoder-only,
with each layer composed of an attention module and a multilayer perceptron module.

The attention module is crucial in transformer models, allowing the model to focus on different parts of
the input sequence, assigning varying importance to each token. It enables the model to dynamically
prioritize important information in the input, enhancing its ability to capture dependencies and
relationships, thereby improving performance.

A multilayer perceptron (MLP) consists of fully connected neurons with a nonlinear activation
function, organized in at least three layers, and is notable for its ability to distinguish data that is not
linearly separable. In BLOOM, the operations can be expressed as follows:

z = W1x+ b1, h = σ(z), y = W2h+ b2, (1)

where x is the input vector, Wi are the weight matrices, bi are the bias vectors, h is the hidden layer
output, y is the final output, and σ(·) is an activation function. In BLOOM, the activation is GeLU
(Hendrycks, Gimpel, 2023).

In LLaMA, the MLP module can be expressed as:

h1 = W1x+ b1, h2 = W2x+ b2, (2)
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SwiGLU(x) = Swish(h1)⊙ h2, (3)
y = W3 · SwiGLU(x) + b3, (4)

where Swish function is defined in Ramachandran et al. (2017).

As pointed out by Dai et al. (2022), MLP weights can store complex syntactical and semantic patterns,
which are the building blocks of language. Therefore, in the following parts of our paper, we refer to
neurons of BLOOM as h, representing the hidden layer output, and neurons of LLaMA as the output
of SwiGLU(x).

3 Methods

3.1 Measuring Activation Similarity of Neurons

In order to decouple the key linguistic regions and the "Lingua Franca", which is the latent semantic
space representation shared by all languages, we use a parallel corpus to activate the neurons of
the LLM. We record the neuron activation results (e.g. the hidden layer output h of MLP layer
in BLOOM or the output of SwiGLU(x) in LLaMA) as the LLM processes each token. We then
average these results across all tokens in each sample. By concatenating the averaged results from
all layers, we create an activation vector for each sample and normalize it. Finally, we calculate the
cosine similarity between each pair of samples to generate the similarity map.

Neuron Activation Extraction:

h
si
m =

1

Tsi

T∑
t=1

hsi
m,t, (5)

where hsi
m,t represents the activation of token t in layer m for sample si, and Tsi is the number of

tokens in the sample si. Motivated by Sentence-BERT Reimers, Gurevych (2019), we apply a mean
pooling strategy across all tokens to obtain the representation of a sample sentence.

Concatenation of Layer Activations:

asi =
1

||
[
h
si
1

∣∣∣ hsi
2

∣∣∣ · · · ∣∣∣ hsi
M

]
||

[
h
si
1

∣∣∣ hsi
2

∣∣∣ · · · ∣∣∣ hsi
M

]
, (6)

where M is the total number of layers.

Cosine Similarity Map:

Sij = Similarity(si, sj) =
asi · asj

∥asi∥∥asj∥ = asi · asj , (7)

as asi is normalized.

3.2 Metrics on the Development of Linguistic Regions and Semantic Alignment

To measure how closely related the activation is to language-specific information, we define Linguistic
Regions Development Scores (LRDS). Specifically, LRDS measures the difference between the
average similarity of samples in the same language and samples in different languages, with all
sample pairs having different semantic meanings. The sample numbers in each language are equal. A
lower LRDS indicates that the activation pattern is more language-agnostic.

LRDS = Average(Sij | lang(si) = lang(sj),
semantics(si) ̸= semantics(sj))

−Average(Sij | lang(si) ̸= lang(sj),
semantics(si) ̸= semantics(sj)).

(8)

The Size of Key Linguistic Regions (SKLR) is the sum of the sizes of the key linguistic regions for all
languages, which we will present further in Section 3.3. This metric evaluates how computationally
costly it is to align inputs in different languages to the semantic space.

To measure how closely related the activation is to the semantic meaning of the inputs instead of the
language of the inputs, we define Semantic Alignment Development Scores (SADS). Specifically,
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SADS measures the difference between the average similarity of samples with the same meaning
and samples with different meanings, with all sample pairs in different languages. A higher SADS
indicates that the activation pattern is more related to the semantic meaning of the inputs.

SADS = Average(Sij | semantics(si) = semantics(sj),
lang(si) ̸= lang(sj))

−Average(Sij | semantics(si) ̸= semantics(sj),
lang(si) ̸= lang(sj)).

(9)

3.3 Key Linguistic Region Probing

We believe that neurons activated in a similar pattern across different samples in one language are
key neurons for that specific language. Therefore, we assign a score to these neurons to evaluate their
contribution to the average similarity across the samples in that specific language.

The average similarity Sl of samples in one specific language l can be expressed by :

Sl =
2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

Sij

=
2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

asi · asj

=
2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

K∑
k=1

asi
(k) · a

sj
(k)

=
2

n(n− 1)

K∑
k=1

(

n−1∑
i=1

n∑
j=i+1

asi
(k) · a

sj
(k)),

(10)

where n is the total number of sample in language l asi(k) is the activation of neuron k (the k

component of activation vector asi) for a sample si, and K the total number of neurons (i.e. the
length of activation vector).

We may see that, the contribution of neuron k to the average cosine similarity can be quantified by
the term in the bracket. We thus define the contribution score S

(k)

l of a neuron k to one language l as:

S
(k)
l =

n−1∑
i=1

n∑
j=i+1

asi
(k) · a

sj
(k). (11)

Since some neurons are always activated, their contribution to the average similarity is consistently
large. Therefore, we need to identify neurons that contribute exceptionally to the average similarity
for a specific language. To do this, we calculate the standard score (z-scores, z(k)l ) of the contribution
score of a neuron k across different languages:

z
(k)
l =

S
(k)
l − µk

σk
, (12)

where µk and σk are the mean and standard deviation of the contribution scores of the neuron k
across all languages, respectively:

µk =
1

L

L∑
l=1

S
(k)
l , (13)

σk =

√√√√ 1

L

L∑
l=1

(S
(k)
l − µk)2. (14)

Here, L is the total number of languages. The value z
(k)
l represents the extent to which the neuron k

contribute exceptionally to language l. In practice, we set a threshold for the z-scores, and neurons
with z-scores higher than this threshold for a specific language are considered part of the key linguistic
region for that language. For example, if the threshold is set to 2, the neurons we select have activation
scores that are more than 2 standard deviations above their average scores.
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4 Experiments

We first examine the similarity of activation patterns within an individual model. To illustrate the
language-wise and semantic-wise similarity when LLMs process inputs, we plot the similarity map of
neuron activation while processing inputs in the same language or with the same semantic meaning.

Next, using the obtained similarity patterns, we locate the key linguistic region for each language.
By deactivating the key region of each language respectively, we assess the performance of LLMs,
demonstrating the existence and utility of these regions.

We then explore the dynamic changes during training and scaling up. We calculate Linguistic Regions
Development Scores (LRDS), Size of Key Linguistic Regions (SKLR), and Semantic Alignment
Development Scores (SADS) for different training checkpoints to illustrate the development of
linguistic regions and semantic alignment. We perform the same analysis for models of different
scales to show the evolution trend.

4.1 Experimental Setup

Models. The experiments were primarily conducted using the BLOOM (Workshop, 2023) model
family, which features a high percentage of multilingual training data and is well-balanced across
various languages. We tested various models within this family, including the 560m, 1.1b, 1.7b,
3B, and 7.1b models, as well as the intermediary checkpoints of BLOOM-7b1. Additionally, we
conducted complementary experiments on the LLaMA-2 model family to examine scenarios where
multilingual training data is limited.

Datasets & Language Selection. We used the Bible dataset (Christodouloupoulos, Steedman,
2015), a perfectly aligned parallel corpus, to activate the LLM. Each sample consists of a verse, and
we randomly selected 100 verses, taking translations in different languages from the dataset. To
evaluate multilingual perplexity, we employed the XL-Sum dataset (Hasan et al., 2021), following
the implementation of Zeng et al. (2024a). XL-Sum contains high-quality articles from the BBC
covering 45 languages. Our experiments focused on a subset of 9 languages available in both BLOOM
and XL-Sum: Arabic (ar), Chinese (zh), English (en), French (fr), Hindi (hi), Indonesian (id),
Portuguese (pt), Spanish (es), and Vietnamese (vi).

Evaluation. We evaluated the perplexity of the models separately for each language using XL-Sum.
Additionally, we designed a task to assess the cross-lingual reasoning ability of LLMs, employing
the widely recognized EleutherAI-eval-harness framework (Gao et al., 2023). For this, we used the
XStoryCloze dataset, which consists of a short story typically composed of four sentences and two
alternative endings. One ending logically completes the story, while the other does not. The task for
the model is to identify the more plausible ending. We prompted the story in various languages and
asked the model to choose between the two ending options in English. Prompting the stories and
endings in different languages helps us determine whether the model effectively "understands" the
stories and maps them into a mutual semantic space, rather than performing the reasoning process in
only one language. The prompt format and evaluation details are presented in Appendix B.

Perplexity
increase %↑

Full model
Perplexity

Random
10% ×en ×zh ×fr ×es ×pt ×ar ×vi ×hi ×id

en 13.94 12% 22% 6% 2% 2% 1% 55% 18% 7% 5%
zh 24.01 11% 3% 47% 2% 1% 1% 47% 16% 8% 4%
fr 9.62 10% 5% 5% 20% 4% 2% 49% 14% 8% 5%
es 10.84 10% 5% 5% 2% 17% 3% 48% 14% 8% 5%
pt 11.17 11% 5% 5% 2% 6% 27% 50% 15% 8% 6%
ar 14.45 12% 4% 5% 2% 2% 1% 309% 16% 6% 4%
vi 10.11 12% 4% 7% 2% 2% 1% 64% 83% 7% 6%
hi 11.14 10% 3% 4% 1% 1% 1% 109% 15% 220% 3%
id 20.55 13% 5% 7% 2% 2% 1% 80% 18% 12% 1498%
Key Neuron
Number 49152 15935 31185 14040 7182 8865 46313 45758 22285 15201

Key Neuron
Percentage 10% 3.2% 6.3% 2.9% 1.5% 1.8% 9.4% 9.3% 4.5% 3.1%

Table 1: Percentage increase in perplexity after deactivating key linguistic region neurons for each
language of BLOOM-7b1 model. Each column corresponds to the deactivation of the key region
for a specific language. The second column shows the results of deactivating a random 10% of
neurons in the LLM. We can see that the perplexity of the deactivated language (on the diagonal)
rises significantly, while the perplexity of other languages remains largely unchanged.
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Figure 2: Similarity map of the BLOOM-7b1 model. Each block of 100 samples is in the same
language. Samples in the same language form distinct light blocks, and samples with the same
semantic meaning form light bands along the diagonal of these blocks.

4.2 Observation I: Neuron activation exhibits similar pattern when processing different
inputs in the same language or with the same semantic meaning.

To illustrate the language-wise and semantic-wise similarity when LLMs process inputs, we used the
BLOOM-7b1 model as an example and plotted the similarity map of all the sample pairs, as shown in
Figure 2. Each block of 100 samples is in the same language, and sentences with the same semantic
meaning are placed in the same position across all sample blocks. Within each language block, the
similarity of neuron activation is significantly higher, indicating that LLMs’ neuron activation exhibits
similar patterns when processing inputs in the same language.

Additionally, we observed bright bands on the diagonal of the off-diagonal blocks. These represent
sentences in different languages but with the same semantic meaning. Even for languages like
Chinese and Arabic, which use different alphabets and share no common tokens with other languages,
the activation patterns are similar when processing semantically identical sentences. This suggests
that the LLM "understands" the semantic meaning of sentences, encoding the inputs into a common
semantic space shared by all languages, allowing it to process information similarly across languages.

Interestingly, we also observed that linguistically similar languages, such as French, Spanish, and
Portuguese, exhibit higher cross-lingual similarity compared to other language pairs. This could be
because these languages share more tokens and have similar grammatical syntax, leading the LLM to
process them in a similar way.

We conducted a layer-wise analysis of the BLOOM-7B1 model, calculating both Linguistic Regions
Development Scores (LRDS) and Semantic Alignment Development Scores (SADS) for each layer.
The results in Figure 3 show that the first and last layers have higher LRDS and lower SADS,
indicating a stronger focus on language-specific information with less emphasis on semantic alignment.
In contrast, the middle layers have lower LRDS and higher SADS, suggesting a shift towards greater
semantic alignment and more language-agnostic processing. This indicates that the first and last
layers are more language-specific and less semantically focused, whereas the middle layers are more
semantically oriented and language-agnostic.

4.3 Observation II: Similarity of activation patterns allows locating the Key linguistic region
of a specific language

To identify the key linguistic region for each language, we calculated the z-scores of each neuron for
each language and selected those neurons with a z-score higher than 2 (i.e., their activation scores
for a specific language are more than two standard deviations above the average). These selected
neurons contribute exceptionally to the specific language being analyzed. We then deactivated the
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Figure 3: Layer-wise Semantic Alignment Development Scores (SADS) and Linguistic Regions
Development Scores (LRDS) of BLOOM-7B1.

key neurons for one specific language and measured the perplexity of the model across all languages.
The results are shown in Table 1.

We found that after removing the key region for one language, the perplexity for that language
increased significantly, as shown in the diagonal blocks of the table. However, the perplexity for
other languages remained almost the same, as shown in the off-diagonal blocks. This indicates that
the neurons we identified are crucial for processing the specific language being researched, forming
the key linguistic region for that language.

4.4 Observation III: As the training process progresses, the linguistic regions become smaller,
and the activation patterns become more language-agnostic.

Figure 4: Comparison of the evolution of linguistic regions (left) and semantic alignment (right) with
training steps. As training progresses, the key linguistic regions become smaller, and the neuron
activation pattern becomes more language-agnostic. Meanwhile, semantic alignment becomes more
pronounced, and the model’s cross-lingual reasoning ability improves.

We can now compare the development of linguistic regions throughout the training process. Based on
Observation II, we can locate the key linguistic regions for each language, count the number of key
neurons, and thus determine the Size of Key Linguistic Regions (SKLR), which is the sum of the
sizes of the key linguistic regions for all languages. We can also calculate the Linguistic Regions
Development Scores (LRDS) using the similarity map. By applying these metrics to the training
checkpoints of BLOOM, we can observe the dynamics of key linguistic region development. The
results are shown in Figure 4 (left).

At the beginning of the training process, the size of the key linguistic regions is large, indicating a
high number of key neurons. At the same time, the LRDS is also high, signifying that the activation
pattern is highly language-specific. However, as training progresses, the size of the key linguistic
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regions decreases, and the LRDS drops. This indicates that the activation pattern becomes less
related to the specific language and more focused on the semantic meaning of the inputs. This shift
occurs because the model becomes more familiar with the languages and requires less effort to
"understand" the sentences and project them into the common semantic space.

If we examine the distribution of key neurons, we find that the key neurons are generally located in
the first and last few layers. As the number of training steps increases, these key regions become
denser in the first few layers, as shown in Figure 5. The first few layers are likely related to the
encoding process from the source language to the common semantic space, while the latter layers
correspond to the decoding process from the latent semantic representation to the target language. As
training progresses, the model can more efficiently encode information from different languages into
the semantic space and then decode this representation using fewer neurons into the target language.

4.5 Observation IV: As the training process progresses, the semantic alignment phenomenon
becomes more significant.

To examine the semantic alignment phenomenon throughout the training process, we evaluated the
Semantic Alignment Development Scores (SADS) and the cross-lingual zero-shot performance at
different checkpoints of BLOOM-7b1. The results are shown in Figure 4 (right). As the training
process progresses, the SADS increases, and the cross-lingual reasoning ability of the model improves.
This indicates that the activation becomes more strongly related to the semantic meaning of inputs
rather than linguistic information. Consequently, the model can gradually better align inputs into the
common semantic space of different languages.

Figure 5: Distribution of Key Neurons Across Different Layers. We may see that as the training steps
grows, the key regions become denser in the first layers, facilitating the encoding from inputs to the
"Lingua Franca".

By observing the size of the key linguistic region for each language (Figure 6), we can see that
languages with less similar linguistic features, such as Vietnamese, Arabic, and Chinese, which
belong to very different language families and use distinct writing systems, have significantly larger
key regions compared to their counterparts. This suggests that the model requires more effort to align
these languages due to their distinct representations and linguistic features, making them generally
more challenging to align within the mutual semantic space.

4.6 Observation V: As the model scale grows, the model aligns languages better to the
semantic space

We evaluated the LRDS, SADS, and cross-lingual zero-shot accuracy across different scales of
BLOOM models (Figure 7). We can clearly see that as the model scale grows, the neurons’ activation
patterns become less related to language and more focused on the semantic meaning of inputs. At the
same time, the cross-lingual reasoning ability of the model improves with larger scale. We conclude
that as the model scale grows, LLMs can better align inputs in different languages to the common
semantic space, enhancing their reasoning process within this shared semantic latent space.
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Figure 6: Distribution of Key Neurons Across Different Languages.

Figure 7: Metrics across different model scales of the BLOOM family.

4.7 Extension to LLaMA2

We performed the same experiments on LLaMA2. Since the intermediate checkpoints of LLaMA2
are not released, we conducted the analysis on different scales of the model, specifically on the 7b,
13b, and 70b models. We obtained similar results to the experiments performed on BLOOM, namely
the existence of linguistic regions, semantic alignment, and the effects of scaling up the model. The
results are shown in the Appendix C.

5 Related Work

Multilingual Large Language Models. Large language models (LLMs) such as GPT-4 (OpenAI,
2024), LLaMA (Touvron et al., 2023), and OPT (Zhang et al., 2022) have revolutionized natural
language processing by demonstrating the ability to understand and generate nuanced text. Multi-
lingual LLMs like BLOOM (Workshop, 2023) and XLM-R (Conneau et al., 2020) further extend
these capabilities by learning universal representations from texts in multiple languages. These
models typically use the transformer architecture (Vaswani et al., 2023), incorporating multilingual
data during pretraining to improve alignment and performance across languages (Qin et al., 2024).
To align different languages’ capacity, various alignment strategies have been proposed, including
alignment during pre-training Blevins, Zettlemoyer (2022); Briakou et al. (2023); Holmström et al.
(2023), supervised fine-tuning Gao et al. (2024); Fu et al. (2022); Cui et al. (2024), reinforcement
learning from human feedback Zeng et al. (2024b); Dong et al. (2023); Sun et al. (2024), downstream
fine-tuning Aggarwal et al. (2024); Rosenbaum et al. (2022); Shaham et al. (2024), prompt tuning
Qin et al. (2023) and contrastive learning Li et al. (2024).

Neuroscience. In the field of neuroscience, considerable research has been conducted to understand
how the human brain processes multiple languages. Studies have shown that polyglots—individuals
who speak multiple languages—exhibit distinct patterns of brain activation for different languages
(Malik-Moraleda et al., 2024). These findings suggest that different languages are stored and
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processed in different compartments of the brain (Paradis, 1985, 2000). Additionally, research by
Xu et al. (2021) has indicated that similar brain activation patterns can occur when processing the
same tasks in different languages, suggesting a common neural mechanism underlying multilingual
processing.

Linguistic and Semantic alignment. Previous research indicates that the representations generated
by multilingual encoder models are moderately language-agnostic Pires et al. (2019); Libovický et al.
(2020). Based on this assumption, Yoon et al. (2024) introduced a LangBridge model to connect a
multilingual encoder to a monolingual LLM, effectively achieving promising performance. They
found equally that the efficacy of LangBridge stems from the language-agnostic characteristics of
multilingual representations. Ding et al. (2022) proposes targets to transfer English embeddings to
virtual multilingual embeddings without semantic loss, thereby improving cross-lingual transferability.
Zhang et al. (2024) discovered a core region in LLMs that corresponds to linguistic competence,
freezing the core linguistic region during further pre-training can mitigate the issue of catastrophic
forgetting. Wendler et al. (2024) showcased that multilingual language models trained on unbalanced,
English-dominated corpora use an abstract "concept space" laying closer to English as an internal
pivot.

6 Conclusion

This paper explores the internal mechanisms of multilingual LLMs. We found that neuron activation
patterns in LLMs are similar when processing the same language, allowing us to identify key
neurons for specific languages. Deactivating these neurons significantly impairs performance in those
languages. Additionally, we discovered that neuron activation patterns are similar when processing
semantically identical sentences in different languages. This indicates that LLMs map these inputs
into a common latent space. As training progresses, key linguistic regions become smaller and
neuron activation becomes more focused on semantic meaning and less on language specifics. Key
neurons are mainly located in the first and last layers, becoming denser in the first layers with training.
Moreover, larger models align languages better, enhancing cross-lingual reasoning abilities. Our
findings provide insights into the structural evolution of multilingual LLMs during training and
scaling, offering a foundation for improving their cross-lingual capabilities.

Limitations

While our study provides valuable insights into the internal mechanisms of multilingual LLMs, it
has several limitations. Firstly, our analysis primarily focuses on the BLOOM and LLaMA2 models.
Although these models are representative, the findings may not fully generalize to other multilingual
LLM architectures. Future research should examine a broader range of models to validate our
conclusions. In particular, investigating the evolution of the capabilities of monolingual models as
they undergo continuous training with multilingual data could be a very interesting research subject.
Secondly, we rely on specific datasets, such as the Bible dataset and XL-Sum, for our experiments.
These datasets, while diverse, may not cover all linguistic nuances and complexities. Utilizing a
wider array of datasets, including those with more diverse and low-resource languages, would provide
a more comprehensive evaluation of model performance and neuron activation patterns. Thirdly, our
methodology for identifying key neurons and measuring their contributions is based on averaged
activation patterns and z-scores. This approach, while effective, may not capture all nuances of
neuron interactions and their contributions to language processing. More sophisticated techniques,
such as causal inference methods, could provide deeper insights into neuron functionality. Lastly,
while we observed significant patterns related to semantic alignment and linguistic region efficiency,
the underlying reasons for these patterns remain speculative. Further research is needed to establish
causal relationships and to better understand the specific mechanisms through which LLMs achieve
cross-lingual competence. These limitations highlight areas for future research to build upon our
findings and enhance the understanding and capabilities of multilingual LLMs.
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A Output examples after deactivating key linguistic region neurons

In this section, we analyze the effects of deactivating specific languages (English, Chinese, and French)
on BLOOM-7B1 (Table 2) and LLaMA2-7B (Table 3) models. For each language deactivation
scenario, we input three separate samples (0., 1., 2.), and generate 64 tokens per sample. While the
impact on English is minimal, likely due to its high-resource nature and the robust training models
receive in English, the effects on Chinese and French are quite striking.

For Chinese, both BLOOM-7B1 and LLaMA2-7B fail to generate correct characters when the
language is deactivated. The output consists of malformed or incomplete UTF-8 codes, indicating
that the models are unable to construct valid Chinese text. In contrast, the impact on French,
particularly in BLOOM-7B1, is even more interesting. When deactivated, the model produces a
mixture of incorrect French and Spanish, revealing interference between the two languages. On
LLaMA2-7B, deactivating French also corrupts the model’s ability to generate coherent text in the
language.

This demonstrates that while high-resource languages like English maintain some level of robustness
under deactivation, lower-resource or more specialized languages such as Chinese and French
experience a much more pronounced degradation in their generation capabilities. This observation
could have significant implications for multilingual model design and language-specific fine-tuning
strategies.

B Prompt format of XStoryCloze

We used a specific prompt to test the log likelihood of generating each option. If the log likelihood of
generating the correct ending is higher, we infer that the model has correctly understood the story.

Prompt:

[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4,
"The ending in English:" ]
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fr

en

Output after deactivation
Original outputInputLang

zh

、

誰

下了 誰 、 剩 下了 誰 、 剩 下了

了 一切 、 毀 滅 了 一切 、 剩

到 了 、 撒 但 就 進 來 、 敗 壞

、 黑暗 就 臨 到 了 、 黑暗 臨

叛 神 、

叛 神 。 撒 旦 進 來 、 使人 背

人 、 奪 奪 人 的 心 、 使人 背

到 了 、 撒 旦 就 進 來 、 迷惑

、 黑暗 就 臨 到 了 。 黑暗 臨

、 偷 盜 、

偶像 、 淫 亂 、 奸 淫 、 殺 人

。 凡 拜 偶像 、 拜 獸 、 拜 獸

罪 、 罪 、 就 要 歸 到 黑暗裡

、 黑暗就沒有了 。 黑暗 、 是

、 就 有 了 光

神說 、 要 有 光

(Totally blank)

宙 ．

靈 氣 充滿 宇宙 ． 靈 氣 充滿 宇

充滿 宇宙 ． 靈 氣 充滿 宇宙 ．

宇宙 ． 靈 氣 充滿 宇宙 ． 靈 氣

． 靈 氣 充滿 宇宙 ． 靈 氣 充滿

上 淵面 上 ．

在 天上 淵面 上 ． 靈運 行在 地

運 行在 地上 淵面 上 ． 靈運 行

在 地上 ． 靈運 行在 天上 ． 靈

． 靈運 行在 淵面 上 ． 靈運 行

靈

行在水面上 ． 靈運行在水面上 ．

面上 ． 靈運行在水面上 ． 靈運

． 靈運行在水面上 ． 靈運行在水

運行在水面上 ． 靈運行在水面上

水面上 ． 靈運行在水面上 ． 靈

． 靈 運行在水面上 ． 靈運行在

靈運 行在 水面上

淵面 黑暗 ． 神 的

地是 空虛 混沌 ．

娃。在第十一天，他

他休息，在第十一天，他开始创造夏

十天，他开始创造亚当。在第十天，

创造生命。在第九天，他休息，在第

第七天，他休息，在第八天，他开始

，在六天之内，完成了他的工作。在

豐富的，

的，祂的創造是豐富的，祂的創造是

祂的創造是豐富的，祂的創造是豐富

創造是豐富的，祂的創造是豐富的，

是豐富的，祂的創造是豐富的，祂的

萬物，祂的創造是美好的，祂的創造

尊榮的價值，有尊榮的價值

分就是有尊嚴的尊榮，有尊榮就是有

價值就是有尊嚴的身分，有尊嚴的身

有尊嚴就是有尊嚴的價值，有尊嚴的

萬物，祂的旨意是要人活得有尊嚴，

我們，祂創造了我們，

了我們，祂創造了我們，祂創造了

造了我們，祂創造了我們，祂創造

。祂的創造是無瑕疵的，因為祂創

造是豐富的，祂的創造是無瑕疵的

萬物，祂的創造是美好的，祂的創

起初 神 創造 天地

la terre produisit des êtres vivants selon

ce, et des oiseaux selon leur espèce. Et

des animaux aquatiques selon leur espè

animaux terrestres selon leur espèce,

tres vivants selon leur espèce, des

«Et Dieu dit: Que la terre produise des ê

premier jour.»

Il y eut un soir et il y eut un matin:

Y la luz fue. YHWH dijo: Que la luz sea

la luz fue. YHWH dijo: Que la luz sea!

luz fue. YHWH dijo: Que la luz sea! Y

fue. YHWH dijo: Que la luz sea! Y la

YHWH dijo: Que la luz sea! Y la luz

vivants, selon

Dieu dit: Que la terre produise des êtres

eut un matin: ce fut le premier jour.

bres il appela nuit. Il y eut un soir, et il y

Dieu appela la lumière jour, et les ténè

Dieu sépara la lumière des ténèbres.

Dieu vit que la lumière était bonne, et

«Et Dieu dit: Que la terre produise

eut un matin: ce fut le premier jour.»

il appela nuit. Il y eut un soir, et il y

appela la lumière jour, et les ténèbres

para la lumière d'avec les ténèbres. Il

Il vit que la lumière était bonne, et il sé

fut.

re soit! Et la lumière

Dieu dit: Que la lumiè

lumière fut.

Et Dieu dit: Que la lumière soit! Et la

tierra. Dios es el Creador de la

de la tierra. Dios es el Creador de la

Creador de la tierra. Dios es el Creador

Creador de todas las cosas. Dios es el

de la tierra fue obra de Dios. Dios es el

La Bible nous enseigne que la création

Génesis 1:2

soir, et il y eut un matin: ce fut le

ténèbres il appela nuit. Et il y eut un

èbres. Et il appela la lumière jour, et les

tait bonne, et il sépara la lumière des tén

lumière fut. Et Dieu vit que la lumière é

Et Dieu dit: Que la lumière soit! Et la

homme à son image. Il

La Bible nous dit que Dieu a créé l’

et sur la terre. Genèse 1.1

terre, et tout ce qui est dans les cieux

ciel et la terre. Il a créé les cieux et la

La Bible nous dit que Dieu a créé le

Genèse 1.2

dessus des eaux.

Dieu se mouvait au-

l`abîme, et l`esprit de

énèbres à la surface de

et vide: il y avait des t

La terre était informe

des ténèbres. Dieu appela la lumière

était bonne, et Dieu sépara la lumière

et la lumière fut. Dieu vit que la lumière

des eaux. Dieu dit : Que la lumière soit,

l’esprit de Dieu se mouvait au-dessus

bres couvraient la surface de l’abîme, et

La terre était informe et vide, les ténè

y la hizo crecer. Dios

verter sobre la tierra. Dios hizo la tierra

era buena. Dios hizo la luz y la hizo

vio. Dios contemplaba y vio que la luz

Dieu, cependant, la contemplaba y la

darkness couvrait la face de la abyss.

La terre était informe et sans forme, et

appela nuit. Il y eut

appela la lumière jour, et les ténèbres il

para la lumière des ténèbres. Dieu

que la lumière était bonne, et Dieu sé

la lumière soit, et la lumière fut. Dieu vit

bres couvraient l'abîme. Dieu dit : Que

La terre était informe et vide, et les ténè

Jour,

des ténèbres. Dieu appela la lumière

tait bonne ; et Dieu sépara la lumière

lumière fut. Dieu vit que la lumière é

Dieu dit : Que la lumière soit! Et la

Dieu se mouvait au-dessus des eaux.

bres couvraient l'abîme, et l'Esprit de

La terre était informe et vide, les ténè

la terre.

Dieu créa les cieux et

Au commencement,

heavens to divide

there be lights in the firmament of the

the midst of the waters. God said, "Let

waters," and there was a firmament in

be a firmament in the midst of the

there was darkness. God said, "Let there

God said, "Let there be darkness," and

there was a dry land above the waters.

land appear above the waters," and

together into one place, and let the dry

waters under the firmament be gathered

firmament. God said, "And let the

the midst of the waters," and there was a

God said, "Let there be a firmament in

plants that may produce fruit with seeds

"Then the Lord God said, "Let there be

dry land," and there was dry land."

"Then the Lord God said, "Let there be

water," and there was water."

"Then the Lord God said, "Let there be

"

together into one place," and

under the firmament be gathered

firmament. God said, "Let the waters

the waters," and there was a

there be a firmament in the midst of

there was darkness. God said, "Let

God said, "Let there be darkness," and

was light.

be light," and there

God said, "Let there

were the first day. And God said, "

Night. And the evening and the morning

the light Day, and the darkness called it

light from the darkness. And God called

light was good. And God divided the

there was light. And God saw that the

And God said, "Let there be light," and

the

good, and he separated the light from

Night. And God saw that the light was

the light Day, and the darkness he called

light from the darkness. And God called

light was good. And God separated the

there was light. And God saw that the

And God said, "Let there be light." And

water from the dry land. And the Spirit

And the Spirit said, we will separate the

make of the water and the dry land?

being. And the Spirit said, what shall we

we will make the man into a living

of this empty space? And the Spirit said,

And the Spirit said, what shall we make

day. And God said, "

evening and the morning were the first

darkness he called Night. And the

And God called the light Day, and the

divided the light from the darkness.

that the light was good. And God

And there was light. And God saw

And God said, "Let there be light."

surface of the waters.

hovering over the

God's Spirit was

surface of the deep.

Darkness was on the

formless and empty.

Now the earth was

darkness.

God separated the light from the

God saw that the light was good, and

Let there be light,” and there was light.

the face of the waters. And God said, “

deep. And the Spirit of God moved over

and darkness was over the face of the

The earth was without form and void,

the darkness

good, and God separated the light from

light. And God saw that the light was

said, “Let there be light,” and there was

upon the face of the waters. And God

deep. And the Spirit of God moved

and darkness was upon the face of the

The earth was without form and void,

And he called

separated the light from the darkness.

God saw that the light was good, and he

Let there be light, and there was light.

hovering over the waters. And God said,

water. And the Spirit of God was

and darkness was over the surface of the

The earth was without form and void,

from the darkness.

was good, and God divided the light

was light. And God saw that the light

said, “Let there be light,” and there

hovering over the waters. And God

deep. And the Spirit of God was

and darkness was upon the face of the

The earth was without form and void,

and the earth.

created the heavens

In the beginning God

Deactivating zhDeactivating frDeactivating en

Table 2: Examples of model output after deactivating the key linguistic neurons for English (en),
French (fr), or Chinese (zh) on BLOOM-7B1.
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fr

en

Output after deactivation
Original outputInputLang

zh

、
白 、 從 黑 變 成 白 、 從 黑

、 從 黑 變 成 白 、 從 黑 變 成

�

從 黑 到 白 、 從 白 到 黑 、 從

、 從 黑 到 白 、 從 白 到 黑 、

、 從 黑 變 白 、 從 黑 變 白

 、 從 黑 變 白 、 從 黑 變 白

、 就 有 了 光

神說 、 要 有 光

．
�水面上 ． 淵面 黑暗 ． 神 的 

． 淵面 黑暗 ． 神 的 靈運 行在

�淵面 ． 從 空虛 到 空虛 

． 從 黑暗 到 白暗 ． 從 淵面 到

�水面上 ． 淵面 黑暗 ． 神 的 

． 淵面 黑暗 ． 神 的 靈運 行在

靈運 行在 水面上

淵面 黑暗 ． 神 的

地是 空虛 混沌 ．

i i i i i i i i i i i

i i i i i i i i i i i i i i i i

i i i i i i i i i i i i i i i i
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�霧 雹 雹 雹 雹 雹 雹 雹 雹 

人 動物 植物 水 火 土 風 雷 雨

物 萬物 萬物 萬物 萬物 萬物 萬

萬物 萬物 萬物 萬物 萬物 萬物 萬

陽 陰陽

陰陽 陰 陽 陰陽 陰 陽 陰陽 陰

人 動物 植物 水 火 風 雷 陰 陽

起初 神 創造 天地

«Et la lumière fut,» répéta-t-

ta encore.

«Et la lumière fut,» répéta-t-il, et il s'arrê

«La lumière fut,» dit-il, et il s'arrêta.

* 1990: The

* 1990: The Gift of the Magi

* 1990: The Gift of the Magi

* 1990: The Gift of the Magi

### 1990

lumière. La lumière est la vie,

re. La lumière est la vie, et la vie est la

lumière est la vie, et la vie est la lumiè

La vie est, et la vie est la lumière. La

La lumière est, et la lumière est la vie.

La lumière de Dieu est la lumière

l'homme, parce que Dieu est l'homme.

La lumière de Dieu est la lumière de

l'homme.

re de Dieu, et qui est la lumière de

Il y a donc une lumière qui est la lumiè

fut.

re soit! Et la lumière

Dieu dit: Que la lumiè

[Note

[Note 3: _Voir la note de la page 12._]

[Note 2: _Voir la note de la page 11._]

[Note 1: _Voir la note de la page 10._]

2.1.2.1.2.1.2.1.2

1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.

###

le ciel

que c`était une lumière qui brillait dans

leva et courut vers la lumière, et il vit

brillante qui brûlait dans le ciel. Il se

veilla en sursaut, et il vit une lumière

La nuit suivante, le jeune homme se ré

la

le fit lumière. Il fit ensuite la terre, et il

d`abord, et il le sépara du chaos, et il

Dieu, et il les sépara. Il fit le ciel

Le ciel et la terre furent créés par

### La création du ciel et de la terre

dessus des eaux.

Dieu se mouvait au-

l`abîme, et l`esprit de

énèbres à la surface de

et vide: il y avait des t

La terre était informe

Bible. Elle est une in

expression qui ne se trouve pas dans la

«_Au commencement_,» est une

de la Bible.

Bible. Elle est une invention de l'auteur

expression qui ne se trouve pas dans la

«_Au commencement_,» est une

### La Venus

vivent les fées et les elfes.

La Luna est la planète sur laquelle

### La Luna

vivent les humains et les animaux.

La Terre est la planète sur laquelle

### La Terre

Dieu a fait.

monde, et il n'y a pas de fin à ce que

Il y a une infinité de choses dans ce

Dieu a fait.

monde, et il n'y a pas de fin à ce que

Il y a une infinité de choses dans ce

[Note 4: _Ibid

[Note 3: _Ibid._, p. 12.]

[Note 2: _Ibid._, p. 11.]

[Note 1: _Ibid._, p. 10.]

la terre.

Dieu créa les cieux et

Au commencement,

between the waters to

And God said, "Let there be a vault

the first day.

was evening, and there was morning,

darkness he called "night." And there

God called the light "day," and the

separated the light from the darkness.

God saw that the light was good, and he

in the midst of the waters

And God said, "Let there be an expanse

first day.

evening, and there was morning—the

darkness he called Night. And there was

God called the light Day, and the

separated the light from the darkness.

God saw that the light was good, and he

The light was the first thing that God

created.

The light was the first thing that God

created.

The light was the first thing that God

created.

The light was the first thing that God

created.

The light was the first thing that God

created.

The light was the first thing that God

expanse in the midst

4 And God said, "Let there be an

there was morning, the first day.

Night. And there was evening and

light Day, and the darkness he called

from the darkness. 3 God called the

good. And God separated the light

2 And God saw that the light was

was light.

be light," and there

God said, "Let there

And God said

first day.

evening, and there was morning, the

and the darkness "night." And there was

the darkness. God called the light "day"

good, and he separated the light from

was light. God saw that the light was

God said, "Let there be light," and there

God said,

first day.

was evening, and there was morning, a

and the darkness he called Night. There

the darkness. God called the light Day,

good, and he separated the light from

was light. God saw that the light was

God said, "Let there be light," and there

The Spirit of God was moving over

face of the deep.

The Spirit of God was moving over the

face of the deep.

The Spirit of God was moving over the

face of the deep.

The Spirit of God was moving over the

face of the waters.

The Spirit of God was moving over the

And

there was morning—the first day.

"night." And there was evening, and

"day," and the darkness he called

from the darkness. God called the light

was good, and he separated the light

there was light. God saw that the light

God said, "Let there be light," and

surface of the waters.

hovering over the

God's Spirit was

surface of the deep.

Darkness was on the

formless and empty.

Now the earth was

good: and God divided the light from

light. And God saw the light, that it was

said, Let there be light: and there was

upon the face of the waters. And God

the deep. And the Spirit of God moved

void; and darkness was upon the face of

And the earth was without form, and

light was good; and God separated the

there was light. And God saw that the

Then God said, “Let there be light”; and

hovering over the face of the waters.

the deep. And the Spirit of God was

void; and darkness was on the face of

And the earth was without form, and

all in six days

heavens and the earth. He created them

animals and the things that are in the

rivers and the seas and the birds and the

the stones and the mountains and the

animals and the plants and the trees and

and the angels and the jinn and the

He created the heavens and the earth

light, that it was good; and God

and there was light. And God saw the

Then God said, “Let there be light”;

hovering over the face of the waters.

the deep. And the Spirit of God was

void; and darkness was on the face of

And the earth was without form, and

and the earth.

created the heavens

In the beginning God

Deactivating zhDeactivating frDeactivating en

Table 3: Examples of model output after deactivating the key linguistic neurons for English (en),
French (fr), or Chinese (zh) on LLaMA2-7B.
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Choice:

[Ending 1 in English, Ending 2 in English]

We calculate the log likelihood of the model generating the two choice after the prompt.

Example:

1. La madre le dijo a sus hijos que comerían en quince minutos. (Mother told her children it
would be lunchtime in fifteen minutes.)

2. Pero, entonces, recibió una llamada importante. (But then she got an important phone call.)
3. Mientras hablaba, el perro llenó toda la cocina de barro. (While she was talking, the dog

dragged mud all over the kitchen.)
4. Los niños empezaron a fastidiar a su madre, que seguía al teléfono. (The kids started to

pester their mother, who was still on the phone.)

The ending in English:

1. The mother felt quite frustrated.
2. The children’s behavior calmed the mother down.

Correct Ending: 1

Example Prompt: La madre le dijo a sus hijos que comerían en quince minutos. Pero, entonces,
recibió una llamada importante. Mientras hablaba, el perro llenó toda la cocina de barro. Los niños
empezaron a fastidiar a su madre, que seguía al teléfono. The ending in English:

Choice 1 (Target choice): The mother felt quite frustrated.

Choice 2: The children’s behavior calmed the mother down.

The dataset supports evaluation on Arabic, Basque, Chinese, English, Hindi, Indonesian, Malay,
Russian, Spanish, Swahili and Telugu.

C Results of LLaMA2

C.1 Similarity maps

The similarity maps of the LLaMA2 family are presented in Figure 8. We can clearly see the light
blocks representing different languages and the light bands of semantically identical sentences. These
bands become increasingly pronounced as the models scale up. However, they are not as prominent
as in the BLOOM model family because LLaMA2 used only about 10% non-English data during
training.

Figure 8: The similarity maps of LLaMA2 family.

C.2 Layer-wise Semantic Alignment Development Scores (SADS) and Linguistic Regions
Development Scores (LRDS)

The results are presented in Figure 9. The SADS scores follow a similar trend to those observed in the
BLOOM-7b1 model. However, the LRDS scores exhibit more fluctuation: they are high in the final
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layers but relatively lower in the initial layer. This behavior may be attributed to the English-centric
nature of the LLaMA2 training data.

Figure 9: Layer-wise Semantic Alignment Development Scores (SADS) and Linguistic Regions
Development Scores (LRDS) of LLaMA2-7B.

C.3 Key Linguistic Regions

The percentage increase in perplexity after deactivating key linguistic region neurons for each
language in the LLaMA2-7b model is shown in Table C.3. As with the BLOOM models, we can
see that there are key linguistic regions in LLaMA2-7b. When these regions are deactivated, the
perplexity for the corresponding language increases significantly, while the perplexity for other
languages remains largely unchanged.

Perplexity
increase %↑

Full model
Perplexity ×en ×zh ×fr ×es ×pt ×ar ×vi ×hi ×id Random

17%
en 6.22 10% 9% 3% 7% 3% 6% 37% 15% 23% 31%
zh 4.40 5% 145% 3% 8% 3% 8% 69% 23% 29% 53%
fr 4.88 7% 10% 46% 13% 5% 7% 55% 17% 29% 46%
es 5.66 7% 9% 4% 67% 9% 7% 56% 16% 31% 48%
pt 5.55 6% 11% 5% 19% 101% 7% 67% 17% 36% 54%
ar 3.21 5% 15% 4% 8% 4% 223% 64% 57% 39% 62%
vi 3.34 5% 19% 3% 6% 3% 7% 1796% 18% 38% 51%
hi 2.34 3% 26% 3% 6% 3% 13% 48% 27093% 34% 54%
id 4.54 6% 9% 3% 12% 5% 8% 82% 22% 517% 56%
Key Neuron
Number 16817 23418 11343 20339 11007 20565 58145 40526 50881 59884

Key Neuron
Percentage 4.8% 6.6% 3.2% 5.8% 3.1% 5.8% 16.5% 11.5% 14.4% 17.0%

Table 4: Percentage increase in perplexity after deactivating key linguistic region neurons for each
language in the LLaMA2-7b model. Each column corresponds to the deactivation of the key region
for a specific language. The last column shows the results of deactivating a random 17% (slightly
higher than the maximum key neuron percentage, which is 16.5% for vi) of neurons in the LLM.

C.4 Comparison of Models of Different Scales

We evaluate the results on LLaMA2 on different scale (Figure 10). We may see that, as the models
scale up, the activation patterns become more language-agnostic and more semantically focused, as
in the BLOOM model family.
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Figure 10: Metrics across different model scales of the LLaMA2 family. As the models scale up,
activations become more language-agnostic and more semantically focused.

Figure 11: Distribution of Key Neurons Across Different Languages on LLaMA-7b.

19


	Introduction
	Background
	Methods
	Measuring Activation Similarity of Neurons
	Metrics on the Development of Linguistic Regions and Semantic Alignment
	Key Linguistic Region Probing

	Experiments
	Experimental Setup
	Observation I: Neuron activation exhibits similar pattern when processing different inputs in the same language or with the same semantic meaning.
	Observation II: Similarity of activation patterns allows locating the Key linguistic region of a specific language
	Observation III: As the training process progresses, the linguistic regions become smaller, and the activation patterns become more language-agnostic.
	Observation IV: As the training process progresses, the semantic alignment phenomenon becomes more significant.
	Observation V: As the model scale grows, the model aligns languages better to the semantic space
	Extension to LLaMA2

	Related Work
	Conclusion
	Output examples after deactivating key linguistic region neurons
	Prompt format of XStoryCloze
	Results of LLaMA2
	Similarity maps
	Layer-wise Semantic Alignment Development Scores (SADS) and Linguistic Regions Development Scores (LRDS)
	Key Linguistic Regions
	Comparison of Models of Different Scales


