
LaDiC: Are Diffusion Models Really Inferior to Autoregressive
Counterparts for Image-to-text Generation?

Anonymous ACL submission

Abstract

Diffusion models have demonstrated remark-001
able capabilities in text-to-image generation.002
However, their performance in image-to-text003
generation, specifically image captioning, has004
trailed behind Auto-Regressive (AR) models,005
casting doubts on their suitability for such tasks.006
In this work, we reexamine diffusion models,007
highlighting their capacity for holistic context008
modeling and parallel decoding. These ad-009
vantages address the inherent limitations of010
AR methods, such as slow inference speed, er-011
ror propagation, and unidirectional constraints.012
Additionally, We identify the lack of an effec-013
tive latent space for image-text alignment and014
the discordance between continuous diffusion015
processes and discrete textual data in previous016
works limit their performance. In response, we017
introduce a novel architecture, LaDiC, featur-018
ing a split BERT to create a dedicated latent019
space for captions and a regularization module020
to manage varying text lengths. Our framework021
further incorporates a diffuser for semantic022
image-to-text conversion and a Back&Refine023
technique to enhance token interactivity during024
inference. LaDiC achieves a state-of-the-art025
performance for diffusion-based methods on026
the MS COCO dataset with a BLEU@4 score027
of 38.2 and a CIDEr score of 126.2, demonstrat-028
ing exceptional performance without pretrain-029
ing or ancillary modules. This indicates strong030
competitiveness with AR models, revealing the031
previously untapped potential of diffusion mod-032
els in image-to-text generation.033

1 Introduction034

Recently, we have witnessed a multitude of impres-035

sive and exciting applications of diffusion models036

in text-to-image generation tasks (OpenAI, 2023;037

Podell et al., 2023; Dai et al., 2023). Neverthe-038

less, the inverse process of image-to-text genera-039

tion remains less explored. Some pioneering ef-040

forts (Li et al., 2022b; Yuan et al., 2022) have041

(a) Auto-Regressive model

(b) Diffusion-based model

Figure 1: (a) Token-by-token generation manner of AR-
based image captioning model. (b) Gradually denoising
generation manner of diffusion-based model (Ours).

aimed to integrate diffusion models into text gen- 042

eration or Seq2Seq tasks, and they have largely 043

followed the traditional Encoder-Decoder frame- 044

work in NLP, utilizing the diffusion model as a text 045

decoder. However, their scope has been limited 046

to handling unimodal data. Although subsequent 047

research (He et al., 2023b; Liu et al., 2023a) which 048

focused on the image-to-text task introduces vi- 049

sual capability into this paradigm by treating visual 050

embedding as a special token or encoded hidden 051

states, their performance has consistently trailed 052

behind that of Auto-Regressive (AR) models. Only 053

through intricate architecture (Luo et al., 2022) or 054

external data (Zhu et al., 2022) can they barely 055

achieve comparable results, raising doubts about 056

whether diffusion models have inherent limitations, 057

potentially making them less suitable for the image- 058

to-text task. 059

In this study, we aim to dispel this doubt by 060

deeply reexamining the diffusion-based image-to- 061

text paradigm and unveiling its distinct benefits. 062

Unlike conventional AR approaches that sequen- 063

tially generate captions token by token (Fig. 1a), 064

diffusion-based models take Gaussian noise as in- 065
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Figure 2: (a) Inference time of AR model (BLIP) and our diffusion model (LaDiC) as generated caption length
increases. (b) BLEU score of BLIP and LaDiC with increasing generated caption length. (c) LaDiC’s ability of
custom generation.

put and iteratively denoise it under image guid-066

ance to simultaneously produce the entire caption067

(Fig. 1b). Thus our diffusion-based model ex-068

hibits three key advantages: (1) Parallel Decoding:069

Diffusion-based models emit all tokens in parallel,070

significantly reducing inference time for lengthy071

target captions. As illustrated in Fig. 2a, the infer-072

ence time of AR models like BLIP (Li et al., 2022a)073

proliferates as text length grows, while our model074

can set a maximum length in advance and emit all075

tokens concurrently. For instance, when the cap-076

tion length reaches 16, our model is approximately077

3× faster than BLIP. (2) Holistic Context Consid-078

eration: Unlike the single-directional information079

flow of AR models (left to right), diffusion-based080

models can consider more holistic contexts, miti-081

gating error accumulation. As depicted in Fig. 2b,082

the BLEU metric of BLIP-generated captions de-083

clines rapidly with increasing text length, whereas084

our diffusion-based model maintains performance.085

(3) Flexible Generation: AR models adhere to a086

fixed unidirectional generation manner, whereas087

our model demonstrates much greater flexibility.088

We can custom generate captions based on tokens089

in nearly any position, as shown in Fig. 2c, a capa-090

bility challenging for AR image captioning models.091

Hence, we are convinced that diffusion-based092

image-to-text generation offers unique advantages093

and merits further exploration. Upon examining094

prior diffusion-based models, we deduce that their095

unsatisfactory performance primarily stems from096

two factors: (I) Two significant gaps exist in trans-097

lating between images and text, namely the gap098

between visual information and textual represen-099

tation, and the gap between high-level text seman-100

tics and specific words. Simultaneously addressing101

both gaps within the previous paradigm as shown102

in Fig. 3, proves to be a challenging task for dif-103

Image Space Discrete Text Space 

Discrete Text 
Space 

Image Latent 
Space 

Text Latent Space 

Sample

Ours data flow

Previous works’ data flow

Image encoder Text encoder
Text 

decoderDiffuser

Diffuser 
(decoder)

Figure 3: Comparison of the pipeline between our
LaDiC and that of previous diffusion-based models.

fusion models. (II) Substantial discrepancies ex- 104

ist between text and other continuous modalities 105

like images or audio. For instance, classical con- 106

tinuous diffusion models naturally align with the 107

pixel space but struggle to transition directly to 108

the discrete text space. Additionally, generated 109

images have a fixed size, while caption lengths 110

vary, presenting another challenge for diffusion 111

models in determining the boundaries of generated 112

captions. Given these considerations, we meticu- 113

lously design a novel architecture LaDiC, a Latent 114

Diffusion-based Captioner, for further amplifying 115

the capability of diffusion models in image-to-text 116

generation. As depicted in Fig. 3, rather than di- 117

rectly generating text from image representation, 118

we treat the diffuser as an interface translating im- 119

age information to high-level text representation. 120

This approach alleviates the diffusion model’s bur- 121

den, enabling it to leverage its powerful generation 122

capabilities in high-level semantic spaces (Ramesh 123

et al., 2022), while the decoder retains its ability 124

to generate discrete tokens from latent space. Dur- 125

ing training, a text encoder is employed to generate 126

ground-truth text latent codes, and during inference, 127

it can be safely discarded. 128

In detail, we leverage a pre-trained language 129

model like BERT (Devlin et al., 2019) to gener- 130
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ate the text latent space, benefiting from its ability131

to capture semantic context for creating a more132

fluent caption. Recognizing the higher informa-133

tion density in text compared to images, we parti-134

tioned BERT into two parts, namely the main body135

of the text encoder and a Non-Auto-Regressive136

(NAR) decoder. Subsequently, we diffused on its137

middle layer characterized by a lower-level repre-138

sentation of text, to align more effectively with139

images. To regulate this latent space, we pro-140

pose a post-processing submodule after the text141

encoder, including normalization and reassignment142

procedures for addressing problems like variable143

length of text. Furthermore, the diffuser serves as144

a bridge between image and text, aiming to fit the145

distribution of the text latent space defined above146

conditioned on the image, wherein we utilize a147

cross-attention mechanism for better modality fu-148

sion. Lastly, during inference, inspired by the self-149

conditioning (Chen et al., 2022a) which enhances150

temporal dimension interaction, we propose the151

Back&Refine technique to provide more interac-152

tion between tokens in the spatial dimension, com-153

pensating for the information loss caused by the154

relatively independent prediction of each token in155

the diffusion-based model.156

We conducted experiments mainly on the COCO157

dataset (Lin et al., 2014) to validate our model’s158

capabilities. Remarkably, without pretraining or159

external modules, our model achieves a BLEU@4160

score of 38.2 and a CIDEr score of 126.2, sur-161

passing both diffusion-based methods and tradi-162

tional NAR models significantly. In addition to163

the unique advantages discussed earlier, our model164

also matches the performance of well-established165

pretrained AR models and outperforms BLIP in166

image paragraph captioning. These results under-167

score the potent generative ability and immense168

potential of diffusion models in image-to-text gen-169

eration. We aspire that our work offers a fresh170

perspective, fostering future research on diffusion171

models for image-to-text generation or even other172

text-centered multimodal generation tasks.173

2 Related Works174

2.1 Diffusion Models and their Applications175

Diffusion models have recently emerged as pow-176

erful generative models, with representative foun-177

dational architectures such as DDPM (Ho et al.,178

2020b) and DDIM (Song et al., 2020). These179

methods gradually transform samples into Gaus-180

sian noise and train a model to recover them, pre- 181

senting a simple and stable learning objective for 182

addressing issues like posterior and mode collapse 183

that challenge prior models like VAE (Kingma and 184

Welling, 2013) and GAN (Goodfellow et al., 2014). 185

The impressive generative capabilities of diffu- 186

sion models have led to their application across a 187

spectrum of fields, including image (Ramesh et al., 188

2022; Dai et al., 2023), audio (Liu et al., 2023b; 189

Shen et al., 2023), video (Blattmann et al., 2023; 190

Girdhar et al., 2023), 3D (Poole et al., 2022), and 191

human avatar (He et al., 2023a; Hu et al., 2023), 192

among others. Yet, their adaptation to discrete 193

text spaces is an ongoing challenge. Existing ap- 194

proaches generally fall into two categories: (1) dis- 195

crete diffusion models (Austin et al., 2021; Reid 196

et al., 2022; He et al., 2022) that directly corrupt 197

text with [MASK] tokens; and (2) continuous dif- 198

fusion models (Li et al., 2022b; Gong et al., 2022; 199

Dieleman et al., 2022; Yuan et al., 2022; Lin et al., 200

2022), which use continuous embeddings to repre- 201

sent each token. However, both approaches are con- 202

fined to unimodal and may omit high-level overall 203

semantics to some extent. Furthermore, we notice 204

the work (Lovelace et al., 2023), which explores 205

the concept of a text latent space. Yet its diffu- 206

sion model, designed for predicting BART’s (Lewis 207

et al., 2019) hidden states, still relies on an AR gen- 208

eration mechanism. 209

2.2 Image-to-text Generation 210

Image-to-text generation, or its most representa- 211

tive and general task, image captioning, aims to 212

describe the content of an image in natural lan- 213

guage. Other variants include dense captioning, 214

which illustrates each object in the picture (Johnson 215

et al., 2016), and paragraph captioning which gen- 216

erates a detailed, lengthy paragraph (Krause et al., 217

2016) and so on. Early AR approaches for cap- 218

tioning (Karpathy and Fei-Fei, 2017; Vinyals et al., 219

2014) employed an encoder-decoder architecture 220

with a CNN to encode images and an RNN to gen- 221

erate captions. Attention mechanisms were later 222

introduced (Huang et al., 2019; Xu et al., 2015) 223

and concurrently some researchers explored the use 224

of semantic attributes (You et al., 2016; Yao et al., 225

2017). With the advent of Transformer (Vaswani 226

et al., 2017) and large-scale pretraining methods, 227

pretrained vision-language models (Li et al., 2022a; 228

Zhang et al., 2021; Li et al., 2020) emerged and 229

achieved high performance. 230

In contrast to the unidirectional generation of 231
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Figure 4: An overview of our LaDiC model mainly consisting of Encoder, Diffuser and Decoder. On the left is the
diffusion process, and on the right is denoising process.

AR models, NAR models generate entire captions232

in parallel. MNIC (Gao et al., 2019) introduced the233

mask token strategy, and NAIC (Guo et al., 2020)234

employed reinforcement learning. A special class235

of NAR methods, diffusion-based models has re-236

cently emerged. Most models (Xu, 2022; He et al.,237

2023b; Liu et al., 2023a) follow the paradigm uti-238

lized in continuous diffusion models mentioned239

above. Additionally, Bit Diffusion (Chen et al.,240

2022a) encodes captions into binary bits, and DD-241

Cap (Zhu et al., 2022) applies a discrete diffusion242

model to captioning. SCD-Net (Luo et al., 2022)243

is the state-of-the-art diffusion-based model with244

a semantic-conditional diffusion process. How-245

ever, its cascaded architecture is relatively complex246

and requires an external retrieval module, limit-247

ing its further extension. Our work reexamines248

the diffusion-based paradigm and proposes a novel,249

compact architecture with improved performance.250

3 Methodology251

In this section, we introduce our diffusion-based252

image captioning model, LaDiC. In § 3.1, we253

present the overall architecture of LaDiC, including254

its training and inference pipeline. Subsequently,255

from § 3.2 to § 3.4, we offer a detailed illustration.256

3.1 Overview257

At a macroscopic level, depicted in Fig. 3, we em-258

ploy a text encoder to convert the discrete text space259

C into a continuous latent space X . Subsequently, a260

diffuser is trained to map the image representation261

space V to the latent space X . Specifically, in the262

context of Fig. 4, given paired data (v, c) — an im- 263

age and its corresponding caption, we encode the 264

caption c ∈ C into the latent space, yielding the la- 265

tent code x0 ∈ X . To model the distribution of X , 266

we adopt the diffusion models’ diffusion-denoising 267

procedure. Initially, various levels of noise (rep- 268

resented by t) are introduced to x0 to generate a 269

noisy version xt (left panel). Subsequently, the dif- 270

fuser acts as a denoiser, recovering x0 conditioned 271

on the images v (right panel). Once the diffuser is 272

sufficiently trained, a robust function f : xt
v−→ x0 273

is established, connecting the image space V and 274

the latent space X . During inference, given an im- 275

age v∗, xt is replaced with pure Gaussian noise 276

xT ∼ N(0, I) and iteratively denoised by f , result- 277

ing in xT
v∗−→ x̂∗0. Finally, the decoder converts the 278

acquired latent code back into discrete text ĉ∗ ∈ C. 279

3.2 Latent Space Tailored for Text 280

As discussed in § 1, the latent space X serves as a 281

crucial bridge between image representation V and 282

discrete text C, significantly alleviating the burden 283

on diffusion models. Therefore, it is paramount to 284

design a latent space that incorporates rich seman- 285

tic information and easy for the diffuser to adapt its 286

distribution. Earlier studies like (He et al., 2023b) 287

predominantly translate discrete text into continu- 288

ous space using an embedding matrix, completely 289

overlooking overall semantics, posing a challenge 290

in aligning images with these independent token 291

embeddings. In contrast, we utilize pre-trained lan- 292

guage models such as BERT (Devlin et al., 2019) to 293

construct a high-level semantic latent space through 294
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contextual embedding methods and meanwhile har-295

ness abundant inherent knowledge from the pre-296

trained corpus.297

Moreover, it is acknowledged that a significant298

information density gap exists between vision and299

language (He et al., 2021). Large portions of im-300

age pixels tend to be redundant while in natural301

language, the majority of tokens convey rich se-302

mantic information. To address this mismatch, we303

split the BERT model into two parts: the lower part304

serves as the main body of the text encoder, and305

the upper functions as the decoder. Through set-306

ting text latent space as the middle layer of BERT,307

which contains lower-level features of the text, we308

observed that it better aligns vision and language,309

thereby enhancing performance. In addition, to im-310

prove the decoder’s ability to reconstruct the text311

space, we make the parameters in the language312

model head trainable.313

However, this latent space is still deemed unsat-314

isfactory, prompting the addition of a postprocess315

submodule comprising two procedures: normal-316

ization and reassignment. Given that the embed-317

dings in the BERT space vary dramatically, it is318

unreasonable to add the same scale of noise to vari-319

ous norms of embeddings. Thus we collect a sub-320

set of all captions in the dataset and calculate the321

mean and standard deviation of their correspond-322

ing latent codes µ̂(x), σ̂(x). During training, these323

statistics are used to regularize the space as follows324

norm(x) = [x− µ̂(x)]/[σ̂(x) + ϵ] . During infer-325

ence, an unnorm module is applied to the predicted326

x̂0 before feeding it to the decoder. Moreover, a dis-327

crepancy between applying the diffusion model to328

text and image is the variable length of text, which329

forces the model to implicitly learn this supervised330

signal. In LaDiC, we extract all positions of special331

tokens like [CLS], [SEP], [PAD], whose represen-332

tations will be messy in contextual embeddings,333

forming a set S . We then reassign what we call an334

empty token to the latent code in these locations,335

namely pasting vectors with all 0s, as demonstrated336

in Equation 1. Here, xfinali represents the i-th po-337

sition of the final latent codes.338

xfinali =

{
[norm(x)]i i /∈ S
0, i ∈ S

(1)339

Through this technique, for short captions with pad340

tokens at the end, the diffuser can quickly iden-341

tify this repeated pattern and easily recover these342

unified zero vectors, implicitly learning sentence343

boundaries. This approach avoids the need for an 344

additional module for predicting sentence length, 345

as seen in DDCap (Zhu et al., 2022). Furthermore, 346

despite a fixed length given during inference, the to- 347

ken forecasted as a pad will be mapped to the empty 348

token defined above, and can be easily erased by 349

postprocessing. 350

3.3 Diffuser Mapping Image to Text 351

The caption diffuser serves as an interface trans- 352

forming the vision space V into the text latent 353

space X . To fit the distribution of space X 354

by classical diffusion models, firstly we sample 355

xt, the noisy version of the latent code x0, as 356

xt|x0 ∼ N (
√
ᾱtx0,

√
1− ᾱtI), where βt ∈ (0, 1) 357

is the variance schedule and ᾱt =
∏t

i=1 αi = 358∏t
i=1(1 − βi). A notable property of this setting 359

is that as T → ∞, xT is equivalent to an isotropic 360

Gaussian distribution, aligning with the starting 361

state of inference. Then for the denoising process, 362

we use a Transformer encoder and predict the orig- 363

inal x0 based on the image directly, denoted as 364

x̂0 = fϕ(xt, v, t), where ϕ represents the parame- 365

ters of the diffuser. A rigorous mathematical ex- 366

planation of the diffusion model can be found in 367

App. D if necessary. 368

Now, let’s delve into the architecture and train- 369

ing method of f . In contrast to some previous 370

approaches that inject image information by ap- 371

pending the [CLS] token of the vision encoder to 372

text (Xu, 2022; He et al., 2023b), our LaDiC model 373

adopts the cross-attention mechanism, treating text 374

as the query to extract information from related 375

image patches. We hypothesize that this approach 376

will inject vision information more effectively. Ad- 377

ditionally, we adapt classifier-free guidance (Ho 378

and Salimans, 2022) to this task by randomly ze- 379

roing out some images and feeding them into the 380

model together with normal training samples. Dur- 381

ing inference, a linear combination of the condi- 382

tional and unconditional estimates is performed: 383

x̂0 = (1 +w)fϕ(xt, v, t)−wfϕ(xt, ∅, t) where w 384

is a predefined hyperparameter. 385

Regarding the loss function, a natural compo- 386

nent is the Mean Squared Error (MSE) loss be- 387

tween x̂0 and x0. Moreover, considering that our 388

framework has already predicted x̂0, a loss based 389

on the softmax distribution can be calculated as 390

Ltext =
∏n

i=1 pθ(w
i|x̂i0), where θ represents the 391

parameters, to evaluate the distance of the pre- 392

dicted result to the ground truth in the discrete 393

caption space C. This approach makes the output 394
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of caption diffuser shrink faster, sharing the same395

intuition with XE loss in (Luo et al., 2022) and396

anchor loss in (Gao et al., 2022). Meanwhile, it397

also helps adjust the language model head in the398

decoder. Therefore, the loss utilized to train the399

caption diffuser in LaDiC is summarized as below,400

where x̂0 = fϕ(xt, v, t), and λ is a hyperparame-401

ter:402

L = ∥fϕ(xt, v, t)− x0∥+ λ

n∏
i=1

pθ(w
i|x̂i0), (2)403

3.4 Back & Refine Technique during404

Inference405

We observe that the diffusion model exhibits a cer-406

tain degree of independence in both spatial and407

temporal dimensions during the inference process.408

In the temporal aspect, (Chen et al., 2022a) found409

that the previously estimated x̂0 is simply discarded410

when estimating x0 from a new time step. They411

propose self-conditioning technique, utilizing the412

previously generated result to improve the sample413

quality. However, there is little exploration in the414

spatial dimension, i.e., the positions of each word in415

a sentence. In contrast to AR models with explicit416

sequential dependencies across tokens, the diffu-417

sion model emits all tokens in parallel. Undoubt-418

edly, this approach boosts the inference speed but419

partially loses the information flow between tokens.420

Considering that some tokens are easily recovered,421

such as the main objects in the picture, adding the422

same scale of noise to these well-restored tokens as423

the others is somewhat unreasonable and wasteful.424

On the contrary, we should leverage these infor-425

mative tokens. Therefore, we propose a technique426

named Back&Refine. As illustrated in Fig. 5, let’s427

say we want to predict a sentence with a sequence428

length L and a sampling step T . Then at time T/2,429

several tokens are considered good enough, mea-430

sured by the confidence scores of our model. We431

rank these scores and label tokens that fall in the432

lagging half. For these L/2 tokens that the model433

is not currently confident about, we try to repro- 434

duce them by noising them with complete Gaussian 435

noise, while the others remain unchanged as infor- 436

mation. Then we set the current t = T and start a 437

brand new denoising procedure. 438

4 Experiments 439

4.1 Experimental Settings 440

Dataset and Metrics We conduct our experi- 441

ments on MS COCO Karpathy split (Lin et al., 442

2014; Karpathy and Fei-Fei, 2014), which com- 443

prises 113,287 training images, 5,000 validation im- 444

ages, and 5,000 test images. Each image is associ- 445

ated with 5 reference captions.For evaluating model 446

performance, we use several metrics including 447

BLEU@4 (Papineni et al., 2002), CIDEr-D (Vedan- 448

tam et al., 2014), METEOR (Banerjee and Lavie, 449

2005), ROUGE-L (Lin, 2004), and SPICE (Ander- 450

son et al., 2016). Additionally, we employ two 451

model-based metrics: CLIP Score (Hessel et al., 452

2021) to assess semantic alignment between gener- 453

ated captions and images, and BERT Score (Zhang 454

et al., 2019) to evaluate text quality. 455

Implementation Details In our LaDiC model, 456

the encoder and decoder are frozen, except for 457

the LM-head. The initial weights are taken from 458

the bottom 6 layers and top 6 layers of BERTbase 459

for the encoder and decoder, respectively. For the 460

diffusion forward process, we employ the widely 461

used cosine β schedule and adopt the noise fac- 462

tor (Gao et al., 2022). The diffuser consists of 463

12 transformer encoder blocks with additional 464

cross-attention layer in each block and the weights 465

are randomly initialized. To extract image fea- 466

tures, we use the pretrained image encoder from 467

BLIPbase(Li et al., 2022a), which employs ViT- 468

B/16, for fair comparison with BLIP. The model 469

is trained on an 8-V100 node for 60 epochs with a 470

peak learning rate of 5e-5 and a warmup ratio of 471

0.1. Further details can be found in App. C. 472

4.2 Quantitative Analysis 473

We benchmark our LaDiC model against prior base- 474

lines, encompassing auto-regressive, traditional 475

non-autoregressive, and diffusion-based models, 476

leveraging the COCO dataset (refer to Tab. 1). Our 477

model achieves state-of-the-art performance across 478

various metrics for both diffusion-based and tradi- 479

tional NAR models. Specifically, LaDiC attains a 480

BLEU@4 score of 38.2 and a CIDEr score of 126.2, 481

marking improvements of 0.9 and 8.2, respectively, 482
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Model # Images B@4 C M S R CLIP-score BERT-score

Autoregressive

Show and Tell (Vinyals et al., 2014) - 31.4 97.2 25.0 18.1 53.1 69.7 93.4
CLIPCap (Mokady, 2021) - 33.5 113.1 27.5 21.1 - - -
OSCAR† (Li et al., 2020) 7M 36.5 123.7 30.3 23.1 - - -
ViTCap† (Fang et al., 2021) 4M 36.3 125.2 29.3 22.6 58.1 - -
VinVL† (Zhang et al., 2021) 6M 38.2 129.3 30.3 23.6 60.9 76.6 88.5
BLIP† (Li et al., 2022a) 129M 39.7 133.3 - - - 77.4 94.4
GIT† (Wang et al., 2022) 4M 40.4 131.4 30.0 23.0 - - -

Traditional Non-autoregressive
NAICKD (Guo et al., 2020) 0.1M 28.5 98.2 23.6 18.5 52.3 - -
MNIC (Gao et al., 2019) 0.1M 31.5 108.5 27.5 21.1 55.6 - -
FNIC (Fei, 2019) 0.1M 36.2 115.7 27.1 20.2 55.3 - -

Diffusion model based

DiffCap (He et al., 2023b) 0.1M 31.6 104.3 26.5 19.6 55.1 73.6* 92.2*
Bit Diffusion (Chen et al., 2022b) 0.1M 34.7 115.0 - - 58.0 - -
DDCap (Zhu et al., 2022) 0.1M 35.0 117.8 28.2 21.7 57.4 74.1* 93.4*
SCD Net (Luo et al., 2022) 0.1M 37.3 118.0 28.1 21.6 58.0 74.5* 93.4*
LaDiC (ours, step 5) 0.1M 35.1 115.2 27.4 21.3 56.7 77.1 93.8
LaDiC (ours, step 30) 0.1M 38.2 126.2 29.5 22.4 58.7 77.3 94.4

Table 1: Comparison results on COCO dataset, where B@4, M, R, C denote BLEU@4, METEOR, ROUGE-L,
CIDEr and SPICE scores. † indicates pretrained models and we gray them out. * represents results of models
trained by ourselves.For a fair comparison, all models will not incorporate results by CIDEr optimization.

compared to the previous state-of-the-art method,483

SCD-Net. Remarkably, a variant of our model, uti-484

lizing only 5 inference steps, even outperforms all485

prior diffusion-based models in both CLIP-Score486

and BERT-Score. Moreover, in addition to its dis-487

tinctive advantages over AR models, it is notewor-488

thy that LaDiC exhibits comparable performance489

with well-established pretraining auto-regressive490

frameworks such as ViTCap and VinVL, despite491

being trained on significantly less data.492

To evaluate our model’s capacity for considering493

holistic context, we tackle the task of image para-494

graph captioning (Krause et al., 2016) to generate a495

multi-sentence description of an image. Our model496

seamlessly adapts to paragraph captioning by ex-497

tending the predefined length without additional498

special designs. Training our model on the dataset499

from (Krause et al., 2016) yields a BLEU@4 score500

of 7.3, surpassing finetuned BLIP’s 6.1 and high-501

lighting our model’s advantage in mitigating error502

accumulation (refer to App. B.1 for more details).503

All these quantitative indicators above substanti-504

ate the accuracy and high quality of the captions505

generated by our model.506

4.3 Case Studies and Human Evaluation507

We conduct a case study to illustrate the faithful-508

ness and diversity of the captions generated by509

LaDiC. As depicted in Fig. 6, the generated cap-510

tions are not only reasonable and fluent but also511

BLIP: a baseball player holding a bat next to 
home plate.

GT 1: a baseball player is going to swing a bat.
GT 2: a man is at bat at a baseball game with 
a crowd watching.

Ours 1: a batter getting ready to swing at a 
baseball game.

Ours 3: a baseball player is swinging a bat at 
a game.

Ours 2: a baseball player standing near an 
umpire at home plate.

Figure 6: An example generated by our model.

exhibit inherent diversity due to the varied sam- 512

pling noises introduced at the start of inference. 513

Additional examples can be found in App. A.1. In 514

the context of image paragraph captioning genera- 515

tion, Fig. 7 reveals a notable difference. While each 516

sentence in the captions generated by BLIP demon- 517

strates good quality, they tend to appear somewhat 518

independent of each other, with many initiating 519

with ‘the man’ and occasionally featuring repeti- 520

tions. Conversely, by leveraging a broader context, 521

our model produces sentences with a more cohesive 522

logical relationship. 523

We conduct user studies to evaluate the gener- 524

ated captions of LaDiC, inviting volunteers to rate 525

captions on a five-point scale (1-5) for accuracy, 526

conciseness and fluency. The results, presented in 527

Tab. 2, demonstrate that our model surpasses the 528

previous diffusion-based state-of-the-art SCD-Net 529

in both aspects and achieves comparable results 530

with BLIP. Details can be found in App. B.2. 531
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Finetuned BLIP:
a man playing tennis. the man is wearing a 
white shirt and black shorts. the man is 
holding a tennis racket in his hand. the man 
is wearing a white shirt and black shorts.

Ours:
a man playing tennis is standing on a tennis 
court. there is a green tennis ball above him. 
he is wearing white shirt, and blank shorts. 
there is a white line on the court.

Figure 7: An example generated by fine-tuned BLIP
model and ours in image paragraph captioning.

Model SCD-Net BLIP Ours

Fluency 2.8 4.9 4.5

Accuracy 3.3 4.2 4.4

Conciseness 3.4 4.4 4.7

Table 2: Results of user study.

4.4 Unleashing the Speed of Diffusion Model532

Despite their powerful generative capabilities, dif-533

fusion models are notorious for their slow infer-534

ence speed. Most previous works require more535

than 50 inference steps, significantly slower than536

traditional NAR methods, which typically involve537

around ten refinement procedures. However, as538

shown in Tab. 1, our model achieves remarkable539

performance even with just 5 steps. We attribute540

this surprising convergence speed to specific tech-541

niques employed in our LaDiC model. Firstly, the542

direct prediction of x0 and the definition of text543

loss enable the model to rapidly learn the distribu-544

tion of discrete caption text, akin to the consistency545

model (Song et al., 2023). Secondly, the carefully546

selected noise schedule and noise factor signifi-547

cantly enhance the learning process of diffusion548

models. Regarding observed latency, the results549

in Tab. 3 (measured on a single A40 GPU with a550

batch size of 256) and Fig. 2a demonstrate that our551

model showcases a rapid inference speed, excelling552

not only in the domain of diffusion-based models553

but also when compared to auto-regressive models.554

4.5 Customizing the Generation Process555

In contrast to the unidirectional generation man-556

ner of AR models, our LaDiC model adeptly fills557

in empty words at almost any position within a558

sentence, harnessing its capability to capture more559

holistic information, as demonstrated in Fig. 2c.560

Technically, when provided with a caption contain-561

ing blanks, we extract contextual embeddings of562

the given tokens and mask the blank tokens with563

Gaussian noise. The standard denoising process564

Model DiffCap DDCap Ours

Inference latency(s/img) 0.625 0.113 0.049

Table 3: Inference latency of diffusion-based models.

#Row Cross-attention Text loss PLM Norm-Reass Split B&R B@4 C

a 15.4 46.3
b ✓ 20.3 59.1
c ✓ ✓ 22.8 76.3
d ✓ ✓ ✓ 26.9 91.8
e ✓ ✓ ✓ ✓ 31.6 103.5
f ✓ ✓ ✓ ✓ ✓ 33.4 110.0
g ✓ ✓ ✓ ✓ ✓ ✓ 34.1 113.4

Table 4: Ablation on COCO dataset.

is then applied, with the exception of reinserting 565

the embeddings of predefined tokens back to their 566

respective positions after each inference step, ensur- 567

ing that the given information is retained. Through 568

this method, our model functions as a customized 569

generator based on the provided tokens. Additional 570

results can be found in App. A.2. 571

4.6 Ablation study 572

To validate the effectiveness of our core designs, we 573

conduct ablation studies on COCO with 30 train- 574

ing epochs. We begin with a simple baseline that 575

appends only the [CLS] token of the image feature 576

to the end of text embeddings and then trains the 577

diffuser to recover them. Subsequently, we pro- 578

gressively incorporate our proposed techniques to 579

evaluate their performance. As depicted in Tab. 4, 580

all modules exhibit performance gains. The use of 581

PLM (BERT) and regularization in this space sig- 582

nificantly enhance performance, emphasizing the 583

importance of a refined latent space. Techniques 584

aimed at better capturing visual information, such 585

as cross-attention and splitting the BERT, also play 586

pivotal roles in improving performance. 587

5 Conclusion 588

In this paper, we reexamine the diffusion-based 589

image-to-text paradigm and introduce a novel 590

architecture, denoted as LaDiC. Our model at- 591

tains state-of-the-art performance among diffusion- 592

based methods and demonstrates comparable capa- 593

bilities with some pre-trained AR models. More- 594

over, our extensive experiments reveal the exciting 595

advantages of diffusion models over AR models in 596

considering more holistic contexts and emitting all 597

tokens in parallel. Consequently, we posit that dif- 598

fusion models hold substantial potential for image- 599

to-text generation and we anticipate that our work 600

will open new possibilities in this field. 601
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Limitations602

For simplicity and focus, this paper concentrates603

on the main research topic of image-to-text gen-604

eration. Nevertheless, we observe that our model605

can be readily adapted to other modalities or even606

pure text generation with minimal modifications.607

We leave these potential extensions for future work,608

and meanwhile, we hope this paper will inspire609

confidence among researchers engaging in text-610

centered multimodal generation tasks with diffu-611

sion models and look forward to exciting future612

works in this area. Furthermore, due to resource613

constraints, the model parameters and datasets em-614

ployed in our study are not extensive. Considering615

the remarkable emergent abilities demonstrated by616

scaling up autoregressive models like GPT, it be-617

comes an intriguing and worthwhile exploration to618

investigate whether our model or general diffusion619

models, can exhibit similar scalability.620

Risk Consideration: As a generative model, our621

model may inadvertently produce results that are622

challenging to distinguish from human-written con-623

tent, raising concerns about potential misuse. Em-624

ploying text watermark techniques could be benefi-625

cial in mitigating this issue. Additionally, diffusion626

models typically demand substantial computational627

resources for training, leading to increased carbon628

dioxide emissions and environmental impact.629
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A Additional Results917

A.1 Generated Samples from COCO Dataset918

Additional examples generated by our LaDiC919

model are presented in Fig. 10. It is shown that920

our model adeptly captures the main objects and921

their relationships in the depicted images. Simulta-922

neously, the generated captions exhibit a high level923

of fluency.924

A.2 Custom Generation925

Utilizing the partially adding noise technique de-926

scribed in § 4.5, we observed that, unlike the unidi-927

rectional generation approach of AR models, our928

LaDiC model can effectively insert words into al-929

most any position within a sentence. Fig. 11 offers930

additional examples to illustrate the generalization931

ability of this method.932

A.3 Gradual Denosing Procedure during933

Inference934

The inference of diffusion models involves grad-935

ually removing noise. To illustrate this process,936

we selected an image and showcased its caption937

generated at different time steps, as depicted in938

Fig. 8. Notably, the main objects initially emerge,939

and subsequently, more details are incrementally940

added, resulting in increasingly fluent sentences.941

This characteristic also serves as inspiration for our942

Back&Refine Technique, as discussed in § 3.4.943

B Additional Details in Experiments944

B.1 Details about Experiments on Image945

Paragraph Captioning946

The objective of image paragraph captioning is to947

generate comprehensive paragraphs that describe948

images, providing detailed and cohesive narratives.949

This concept was initially introduced in (Krause950

et al., 2016), where the authors proposed a dataset951

comprising 19,551 images from MS COCO (Lin952

et al., 2014) and Visual Genome (Krishna et al.,953

2016), each annotated with a paragraph description.954

An illustrative example is presented in Fig. 9.955

To assess our model’s ability to consider holistic956

context, we compare the performance of our model957

and BLIP on this task. For our model, we extend958

the predefined length to 60 and conduct training959

over 120 epochs. For BLIP, we fine-tune from960

BLIPbase using the same number of epochs and961

an initial learning rate of 1e-5. Subsequently, we962

evaluate the results using BLEU on the test set. In963

young girl holding a cat  
holding a cat.

a girl is a her her.

a young girl a a cat a cat.

a young girl holding a 
small cat.

T = 1

T = 3

T = 5

T = 10

Figure 8: Gradual denosing process of diffusion models.

A Hierarchical Approach for Generating Descriptive Image Paragraphs

Jonathan Krause Justin Johnson Ranjay Krishna Li Fei-Fei
Stanford University

{jkrause,jcjohns,ranjaykrishna,feifeili}@cs.stanford.edu

Abstract

Recent progress on image captioning has made it possible
to generate novel sentences describing images in natural
language, but compressing an image into a single sentence
can describe visual content in only coarse detail. While one
new captioning approach, dense captioning, can potentially
describe images in finer levels of detail by captioning many
regions within an image, it in turn is unable to produce a
coherent story for an image. In this paper we overcome these
limitations by generating entire paragraphs for describing
images, which can tell detailed, unified stories. We develop
a model that decomposes both images and paragraphs into
their constituent parts, detecting semantic regions in images
and using a hierarchical recurrent neural network to reason
about language. Linguistic analysis confirms the complexity
of the paragraph generation task, and thorough experiments
on a new dataset of image and paragraph pairs demonstrate
the effectiveness of our approach.

1. Introduction
Vision is the primary sensory modality for human percep-

tion, and language is our most powerful tool for communi-
cating with the world. Building systems that can simultane-
ously understand visual stimuli and describe them in natural
language is therefore a core problem in both computer vi-
sion and artificial intelligence as a whole. With the advent
of large datasets pairing images with natural language de-
scriptions [20, 34, 10, 16] it has recently become possible to
generate novel sentences describing images [4, 6, 12, 22, 30].
While the success of these methods is encouraging, they all
share one key limitation: detail. By only describing images
with a single high-level sentence, there is a fundamental
upper-bound on the quantity and quality of information ap-
proaches can produce.

One recent alternative to sentence-level captioning is the
task of dense captioning [11], which overcomes this limita-
tion by detecting many regions of interest in an image and
describing each with a short phrase. By extending the task
of object detection to include natural language description,

1) A girl is eating donuts with a boy in a restaurant

2) A boy and girl sitting at a table with doughnuts.

3) Two kids sitting a coffee shop eating some frosted donuts

4) Two children sitting at a table eating donuts.

5) Two children eat doughnuts at a restaurant table.

Sentences

Paragraph
Two children are sitting at a table in a restaurant. The 
children are one little girl and one little boy. The little girl is 
eating a pink frosted donut with white icing lines on top of it. 
The girl has blonde hair and is wearing a green jacket with a 
black long sleeve shirt underneath. The little boy is wearing a 
black zip up jacket and is holding his finger to his lip but is 
not eating. A metal napkin dispenser is in between them at 
the table. The wall next to them is white brick. Two adults are 
on the other side of the short white brick wall. The room has 
white circular lights on the ceiling and a large window in the 
front of the restaurant. It is daylight outside.

Figure 1. Paragraphs are longer, more informative, and more
linguistically complex than sentence-level captions. Here we show
an image with its sentence-level captions from MS COCO [20]
(top) and the paragraph used in this work (bottom).

dense captioning describes images in considerably more de-
tail than standard image captioning. However, this comes at
a cost: descriptions generated for dense captioning are not
coherent, i.e. they do not form a cohesive whole describing
the entire image.

In this paper we address the shortcomings of both tra-
ditional image captioning and the recently-proposed dense

ar
X

iv
:1

61
1.

06
60

7v
2 

 [
cs

.C
V

] 
 1

0 
A

pr
 2

01
7

Figure 9: An example from image paragraph captioning
dataset.

the case of BLIP, the maximum length is set to 60, 964

and the number of beams is 5 during inference. 965

B.2 Human Evaluation 966

As a generative task, in addition to automatic met- 967

rics, it is imperative to assess results through human 968

subjective evaluation. To this end, we utilize MOS 969

(Mean Opinion Score) as our metric and enlist the 970

feedback of 20 experienced volunteers, who were 971

tasked with rating results on a scale of 1-5. They 972

evaluated the results from three perspectives: flu- 973

ency, accuracy, and conciseness. Fluency gauges 974

the quality of generated captions in terms of lan- 975

guage, accuracy assesses whether the main objects 976

and actions in the caption accurately reflect the pic- 977
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ture, and conciseness evaluates the extent to which978

generative captions are informative and succinct,979

avoiding unnecessary details.980

To ensure evaluation quality, we randomly sam-981

pled 10 pictures from the COCO dataset and gener-982

ated corresponding captions for SCD-Net, BLIP1,983

and our LaDiC model. Subsequently, we shuffled984

the three captions and required volunteers to rate985

them. To guarantee the reliability of the evaluation,986

we randomly selected 2 evaluators and calculated987

their correlation on each metric. This procedure988

was repeated 5 times, and all results were found to989

be satisfactory.990

As depicted in Tab. 2, our model surpasses the991

previous diffusion-based state-of-the-art SCD-Net992

in all aspects, achieving comparable results with993

BLIP. A slight decrease in text quality compared to994

BLIP may be attributed to the substantial training995

data used in BLIP’s pretraining.996

C More Hyperparameters997

We list more hyperparameters for LaDiC model in998

Tab. 5.999

D Mathematical Details for Diffusion1000

Models1001

The training flow of the diffusion models is di-1002

vided into two phases: the forward diffusion pro-1003

cess and the backward denoising process. Given1004

a data point sampled from a real data distribu-1005

tion x0 ∼ q(x)2, we define a forward diffusion1006

process in which Gaussian noise is incrementally1007

added to the sample, generating a sequence of1008

noisy samples x1, ..., xT . The noise scales are1009

controlled by a variance schedule βt ∈ (0, 1),1010

and the density is expressed as q(xt|xt−1) =1011

N (xt;
√
1− βtxt−1, βtI). Based on the reparame-1012

terization trick (Ho et al., 2020a), a nice property1013

of the above process is that we can sample at any1014

1For BLIP, we utilized the following page for convenient
inference: https://replicate.com/salesforce/blip.

2We follow the notation and derivation process
of https://lilianweng.github.io/posts/2021-07-11-diffusion-
models.

Hyperparameters Values

Training

Batch size 64*8(GPUs)
Epoch 60

Peak Learning rate 5e-5
Learning rate schedule Linear

Warmup ratio 0.1
Optimizer AdamW

β1 0.9
β2 0.999

Inference

Method DDIM
Sampling Criterion Minimum Bayes Risk

Diffusion Process

Diffusion steps 1000
β minimum 0.0001
β maximum 0.02
β schedule Cosine

Classifier free probability 0.1
Classifier free weight 1

Self-conditioning probability 0.5

Loss

λ 0.2
Loss type l2

Image Encoder

Image size 224
Image Encoder BLIPbase

Diffuser Module

Sequence length 24
Hidden size 768

Layers 12
FFN size 3072

Attention heads 16

Table 5: More hyperparameters of our LaDiC model.
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Ours: a teddy bear sitting on a book 
shelf.

GT: there is a stuffed bear sitting on a 
book shelf.

Ours: a group of people riding skis 
down a snowy slope.

GT: people are skiing on the snowy 
slopes in a designated area.

Ours: a group of people sitting 
around a table with drinks.

GT: a bunch of people are sitting 
around a table.

Ours: a red fire hydrant on a sidewalk 
near a street.

GT: a red fire hydrant on a city 
sidewalk.

Ours: two boys sitting on the floor playing 
a video game.

GT: two young boys sit on the carpet 
playing a video game.

Ours: two children are sitting at a table 
eating pizza.

GT: two children sitting at a little table 
eating pizza.

Ours: a group of people riding waves in 
the ocean.

GT: a group of surfers in the ocean riding 
on the waves.

Ours: a plate of food next to a cup of 
coffee.

GT: a plate of food and a cup of coffee 
on table.

Ours: a dog sitting in the passenger seat 
of a car.

GT: an image of a dog sitting in the 
passenger seat of a car.

Ours: a bicycle parked in the grass near 
a lake.

GT: A bike is parked on the grass in 
front of the lake.

Figure 10: More examples generated by our model on COCO datasets.

arbitrary time step in a closed form:1015

xt =
√
atxt−1 +

√
1− αtϵt−1

=
√
at(

√
at−1xt−2 +

√
1− αt−1ϵt−2)

+
√
1− αtϵt−1

=
√
atat−1xt−2 + (

√
at(1− αt−1)ϵt−2

+
√
1− αtϵt−1)

=
√
atat−1xt−2 +

√
1− αtαt−1ϵt−2

=...

=
√
αtx0 +

√
1− αtϵ.

1016

where αt = 1− βt and ᾱt =
∏t

i=1 αi. Thus:1017

q(xt|x0) = N (xt;
√
ᾱtx0,

√
1− ᾱtI), (3)1018

Furthermore, from this equation, it becomes evi-1019

dent that as T → ∞, xT converges to an isotropic1020

Gaussian distribution, aligning with the initial con-1021

dition during inference.1022

However, obtaining the closed form of the re-1023

versed process q(xt−1|xt) is challenging. Notably,1024

if βt is sufficiently small, the posterior will also1025

be Gaussian. In this context, we can train a model1026

pθ(xt−1|xt) to approximate these conditional prob- 1027

abilities: 1028

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), 1029

where µθ(xt, t) and Σθ(xt, t) are parameterized by 1030

a denoising network fθ like U-Net (Ronneberger 1031

et al., 2015) or Transformer (Vaswani et al., 2017). 1032

Similar to VAE (Kingma and Welling, 2013), we 1033

can derive the variational lower bound to optimize 1034

the negative log-likelihood of input x0 (Ho et al., 1035

2020b), : 1036

Lvlb = Eq[DKL(q(xt|x0)||pθ(xT ))︸ ︷︷ ︸
LT

]− log pθ(x0|x1)︸ ︷︷ ︸
L0

+ Eq[
T∑
t=2

DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))︸ ︷︷ ︸
Lt−1

].

1037

With an additional condition on x0, the posterior 1038

of the forward process q(xt−1|xt, x0) can be cal- 1039

culated using Bayes theorem. Then in (Ho et al., 1040
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Input: there is a boy [UNK] 
[UNK] [UNK] cows

Output: there is a boy standing 
by several cows

Input:  a [UNK] [UNK] is 
holding a [UNK] in her hand

Output: a young girl is 
holding a cat in her hand.

Input: [UNK] [UNK] [UNK] 
[UNK] [UNK] on the grass

Output: An old blue car parked 
on the grass

Output: a cup of coffee sitting in 
front of a computer.

Input: [UNK] [UNK] [UNK] [UNK] 
[UNK] in front of a computer.

Figure 11: More examples of custom generation.

2020b) they derive:1041

Lt = Ex0,ϵ

[
1

2||Σθ(xt, t)||22
||µ̃t(xt, x0)− µθ(xt, t)||2

]
= Ex0,ϵ

[
1

2||Σθ(xt, t)||22
|| 1√

at

(xt − βt√
1− at

ϵt)

− 1√
at

(xt − βt√
1− at

ϵθ(xt, t))||2
]

= Ex0,ϵ

[
β2
t

2αt(1− αt)||Σθ||22)
||ϵt − ϵθ(xt, t)||2

]
= Ex0,ϵ

[
β2
t

2αt(1− αt)||Σθ||22)
×

||ϵt − ϵθ(
√
αtx0 +

√
1− αtϵt, t)||2

]

1042

Removing the coefficients, a much more simple1043

DDPM learning objective can be obtained:1044

Lsimple =
T∑
t=1

Eq

[
||ϵt(xt, x0)− ϵθ(xt, t)||2

]
,1045

where ϵt is the noise added in original data x0.1046

Applied to textual data, (Li et al., 2022b) introduces1047

an even simpler architecture to train a network to1048

predict x0 directly, with the loss function defined1049

as L = ||x0 − fθ(xt, t)||.1050

During inference, the reverse process com-1051

mences by sampling noise from a Gaussian dis-1052

tribution p(xT ) = N (xT ; 0, I) and iteratively de-1053

noising it using pθ(xt−1|xt) until reaching x0. In1054

DDIM (Song et al., 2020), a general form is derived1055

from Equation 3.1056

xt−1 =
√
αt−1x0 +

√
1− at−1ϵt−1

=
√

αt−1x0 +
√

1− αt−1 − σ2
t ϵt

+ σtϵ

=
√
αt−1x0 +

√
1− αt−1 − σ2

t

(
xt −

√
atx0√

1− αt
) + σtϵ

1057

qσ(xt−1|xt, x0) = N (xt−1;
√
at−1x0+√

1− αt−1 − σ2
t (
xt −

√
atx0√

1− αt
), σ2

t I).
1058

where σ2
t = ηβ̃t = η 1−αt−1

1−αt
βt, allowing us to ad- 1059

just η as a hyperparameter to control the sampling 1060

stochasticity. The special case of η = 0 renders 1061

the sampling process deterministic. This model 1062

is referred to as the denoising diffusion implicit 1063

model (DDIM). It is noteworthy that DDIM shares 1064

the same marginal distribution as DDPM. Conse- 1065

quently, during generation, we can sample only a 1066

subset of diffusion steps τ1, . . . , τS , and the infer- 1067

ence process becomes: 1068

qσ,τ (xτi−1 |xτt ,x0) = N (xτi−1 ;
√
ᾱt−1x0

+
√
1− ᾱt−1 − σ2

t

xτi −
√
ᾱtx0√

1− ᾱt
, σ2

t I)
1069

which, significantly reduces inference latency. 1070
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