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ABSTRACT

We propose LogicVista, an evaluation benchmark that examines multimodal large
language models’ (MLLMs) integrated Logical reasoning capacities in Visual
contexts. Recent advancements in MLLMs have demonstrated various fascinating
abilities such as crafting poetry based on an image to engaging in mathematical
reasoning. Despite these feats, there remains a gap in the systematic examina-
tion of MLLMs’ proficiency in logical reasoning tasks. These skills are routinely
invoked in navigation, puzzle-solving, etc. Thus we present LogicVista, which
evaluates general logical cognition abilities across a spectrum of 5 logical reasoning
tasks with 3 broad capabilities and 11 specific capabilities through a sample of
448 multiple-choice questions. Each is annotated with not only the correct answer
but also the human-written reasoning behind the selection, allowing for rich open-
ended evaluation as well as MCQ evaluation. A total of 11 MLLMs undergo com-
prehensive evaluation using LogicVista. We are also introducing a crowdsourced
annotation tool to further scale LogicVista with support from the community. Code
and Data Available at https://anonymous.4open.science/r/LogicVista.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) are gradually turning the vision of a
generalist AI agent into reality. These models exhibit near-human expert-level performance across a
variety of tasks and have recently been augmented with visual understanding capabilities, enabling
them to tackle even more complex visual challenges. This branch of work, led by both proprietary
projects such as Flamingo (Alayrac et al., 2022) and GPT-4 (OpenAI et al., 2024) and open-source
works such as LLaVA (Liu et al., 2023a), Mini-GPT4 (Zhu et al., 2023) enhances existing LLMs by
incorporating visual comprehension. These models, known as Multimodal Large Language Models
(MLLMs), utilize LLMs as the foundation for processing information and generating reasoned
outcomes (Yin et al., 2023), bridging the gap between language and vision. Recent MLLMs have
demonstrated a range of such intriguing abilities, such as writing poems based on an image (Fu
et al., 2023a), engaging in mathematical reasoning (Alayrac et al., 2022), and even aiding in medical
diagnosis (Zhang et al., 2023).

Challenges Many works have benchmarked MLLM’s performance on common multimodal tasks
such as recognizing objects (Antol et al., 2015), understanding the text in an image (Singh et al.,
2019a), or performing math (Yu et al., 2023; Lu et al., 2024). However, there are two major concerns
with existing benchmarks: lack of evaluation of explicit logical-visual-language reasoning skills and
potential data leakage in benchmarking data.

Evaluating explicit logical-visual-language reasoning is essential, as it reflects a key aspect of human
creativity and intelligence. Proficiency in reasoning skills is widely recognized as a reliable indicator
of cognitive ability across various domains (Kahneman, 2012; Träff et al., 2019). While many datasets
and benchmarks have been designed to assess the logical reasoning capabilities of AI agents, most
are limited to text-based formats, leaving visual reasoning largely underexplored (Liu et al., 2023;
Xu et al., 2023; Yang et al., 2023; Lin, 2024; Yang et al., 2024). While some datasets like GLoRE,
MathVista, MM-vet, and RAVEN (liu et al., 2023; Lu et al., 2024; Yu et al., 2023; Zhang et al.,
2019) have explored aspects of visual logical reasoning, they focus primarily on specific tasks such
as mathematical reasoning, spatial reasoning, or world knowledge retrieval, with logical reasoning
only partially embedded and not directly analyzed. General-purpose visual question answering and
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captioning datasets like TextVQA and VQAv2 (Goyal et al., 2017a; Singh et al., 2019a) contain even
fewer examples of visual logical reasoning, concentrating instead on the recognition and identification
of visual details. Similarly, specialized benchmarks such as MMMU and OlympiadBench (Yue et al.,
2024; He et al., 2024) focus on academic domain questions in subjects like math, science, or history,
without directly evaluating the visual logical reasoning capabilities of modern MLLMs.

Moreover, many existing benchmarks rely on publicly available data from the internet, which can
easily be included in the training datasets of various models due to its low friction for scraping
(as demonstrated in Appendix K). This increases the likelihood that many benchmarking samples
are inadvertently leaked into the training data, leading to unfair comparisons of models that do not
effectively isolate their reasoning capabilities. In Appendix A, we provide a more comprehensive
overview of the gaps in the current literature on MLLM benchmarks.

Recently, MLLMs have demonstrated impressive problem-solving and understanding capabilities
across various domains. Researchers have aimed to strengthen these models’ logical reasoning
abilities through novel pre-training techniques, such as directly embedding logical reasoning, as
demonstrated with IDOL (Xu et al., 2023). However, their capacity for explicit visual logical
reasoning remains largely untested in a comprehensive, systematic way. Thus, developing a scalable
and thorough benchmark to assess MLLMs’ visual logical reasoning abilities is essential. This would
drive advancements in logical reasoning systems within visual contexts, especially as VQA agents
gain traction in fields like robotics, biology, and software engineering (Muennighoff et al., 2024;
Hong et al., 2023; Xiao et al., 2024), while also providing a framework to evaluate progress in visual
understanding and reasoning in MLLMs.

Q: Is the girl touching the ground?

A: No

Reasoning Skill: None

Capability: Recognition

Q: Which function is monotonic in range [0, pi]?

A: the blue one

Reasoning Skill: Numerical

Capability: OCR

Q: What will the girl on the right write?

A: 14

Reasoning Skill: Numerical

Capability: OCR

Q: Which of the boxes comes next?

A: E

Reasoning Skill: Inductive

Capability: Diagram
Q: Which of these are the top view?

A: B

Reasoning Skill: Spatial

Capability: 3D Shape

Q: What is the weight if balanced?

A: C

Reasoning Skill: Mechanical

Capability: Physics

Figure 1: Capabilities and reasoning skills of different existing benchmarks. The top row shows
examples from VQAv2, MathVista, and MM-vet in order from left to right, while the bottom row
contains examples from our LogicVista. Unlike previous benchmarks, LogicVista focuses on visual
reasoning capacities explicitly.

This Work With these motivations, we propose a comprehensive benchmark for general visual
logical reasoning to address these challenges. Our benchmark utilizes rigorously sourced data
to ensure high quality and fair evaluation of the explicit visual-logical reasoning skills of current
state-of-the-art MLLMs. We argue that an effective universal evaluation benchmark should have
the following characteristics: (1) coverage of a broad range of human logical reasoning skills,
including deductive, inductive, numeric, spatial, and mechanical reasoning; (2) presentation of
information in various formats such as Optical Character Recognition (OCR), graphs, charts, and flow
diagrams to accommodate diverse data inputs; (3) responses structured for convenient quantitative
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analysis, enabling rigorous assessment and comparison of model performance; and (4) scalability to
accommodate community feedback and growth, ensuring sustainability and effective evaluation of
the benchmark for future models and formats.

To this end, we collect a comprehensive MLLM evaluation benchmark, named LogicVista, which
fulfills all the criteria:

• LogicVista covers the examination of 5 representative categories of logical reasoning tasks:
inductive (sample = 107), deductive (sample = 93), numerical (sample = 95), spatial
(sample = 79), and mechanical (sample = 74).

• LogicVista covers 3 broad capabilities and 11 specific capabilities to give a comprehensive
view of how well MLLMs reason with various visual formats.

• All images- instructions-solution-reasoning are rigorously manually annotated and validated
using our robust annotation pipeline.

• Benefiting from our instruction design “please select from A, B, C, D, and E." and our
LLM answer evaluator, we can evaluate different reasoning skills and capabilities and easily
perform quantitative statistical analysis based on the natural language output of MLLMs.
We also provide more in-depth human-written explanations for why each answer is correct
for more through open-ended evaluation.

• To ensure the scalability and sustainability of LogicVista for future evaluations, we introduce
the annotation tool used for community crowdsourcing, as detailed in Appendix L.

As shown in Figure 3, LogicVista covers a broad range of reasoning skills, evaluating both open- and
closed-source SOTA MLLMs. For example, the question “Which of these images is the top view of
the given object" in Figure 1(b) requires spatial reasoning from a different perspective, not just object
recognition. Since these questions and diagrams are presented without real-world context, they test
the MLLM’s core reasoning abilities.

We perform comprehensive evaluations on 11 representative open- and closed-source MLLMs, using
448 samples across 5 key logical reasoning categories, providing the first in-depth assessment of
visual logical reasoning in state-of-the-art models like GPT-4 Omni, Claude-3.5 Sonnet, and Gemini-
Pro. LogicVista’s evaluation framework breaks down each model’s performance by reasoning skill
and capability, offering more nuanced insights than a single overall score. We employ two evaluation
methods: MCQ for quick assessments and open-ended chain-of-thought (CoT) for a deeper analysis
of the reasoning process, identifying where models succeed or fall short. This approach offers a
clearer understanding of each model’s strengths and weaknesses.

Our findings indicate that LogicVista is a highly challenging benchmark, with top-performing models
averaging 65% in deductive reasoning but scoring below 30% in other reasoning categories. Notably,
GPT-4o and Claude 3.5 Sonnet exhibit state-of-the-art performance on LogicVista, as detailed in
Table 2. We observe that most models struggle the most with inductive, numerical, and spatial
reasoning, while performing better in deductive and mechanical visual reasoning tasks. Additionally,
our analysis shows that MLLMs achieve higher accuracy with MCQ prompts compared to CoT-based
prompts, suggesting that MCQs rely more on educated guesses and require less in-depth reasoning.
In contrast, CoT prompts often lead to incorrect explanations and lower performance, as models
struggle with reasoning or generate hallucinated answers. This pattern reflects human behavior, where
selecting a single answer is generally easier than providing a detailed explanation.

2 THE LOGICVISTA DATASET

2.1 DATA SOURCES

Most multimodal evaluation benchmarks source images from the open internet, which risks data
leakage into MLLM training datasets, potentially giving some models an unfair advantage. To ensure
the integrity of LogicVista’s evaluations, we prevent data leakage by collecting and annotating our
samples from licensed IQ test sources, with permission from the test creators. These tests are not
publicly accessible and require either payment or registration, significantly reducing the likelihood
that LogicVista’s samples have been seen by MLLMs during training. Licensing details and sources
are also included in the dataset annotations. Additionally, we conducted Google reverse image
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searches on 50 randomly sampled LogicVista data points, finding that our dataset is not available
online, whereas many samples from existing benchmarks can be found on the open internet (detailed
in Appendix K).

2.2 ANNOTATION AND DATA COLLECTION GUIDELINES

Figure 2: LogicVista’s robust manual annotation pipeline ensures high-quality data through multiple
rounds of peer review and validation.

Motivation LogicVista comprises images designed to assess the underlying reasoning capabilities
of MLLMs. Real-life scenes can complicate explicit tests of logical reasoning because they often
provide contextual clues that enable an AI agent to deduce answers without engaging in direct
reasoning about the scene. To address this, LogicVista features multiple-choice questions across
3 broad capabilities and 11 specific capabilities, clearly specifying the type of reasoning required
without the additional context of real-life scenarios. Such question formats are commonly found
in intelligence and reasoning tests. Consequently, we initially reviewed over 50 intelligence test
distributors for suitable tests and formats, focusing on a diverse range of reasoning categories and test
sizes. This process led us to filter down to approximately 10 closed-source test banks, from which we
gathered our datasets, seeking permission from the test creators to use their materials for our project.

Annotation Process To ensure high-quality annotations, we established a rigorous data collection and
annotation pipeline involving six annotators and two project leads, all of whom are STEM students,
as detailed in Figure 2. The annotators were organized into pairs, each responsible for annotating the
same batch of images. They classified each image based on its logical reasoning, broad capability,
and specific capability, while also providing the correct answer and open-ended reasoning annotations.
Using an answer key as a reference, annotators developed in-depth explanations for why each answer
choice was correct.

To maintain accuracy and consistency in the open-ended reasoning annotations, the teams collaborated
to reach a consensus on the correct answers and reasoning for each sample in LogicVista. After
each annotation sprint, the teams conducted peer reviews, exchanging and refining their annotations.
Suggested edits were merged into a single batch for each group, which was then submitted to project
advisors who acted as independent reviewers to ensure the quality of the open-ended reasoning
annotations and correct answers. Each batch underwent cross-validation by an independent group
of annotators, providing an objective quality check before incorporation into the final LogicVista
dataset.

At the end of the project, the group reconvened to verify the robustness of all samples, ensuring that
key annotations, such as open-ended reasoning and question classifications, were both accurate and
comprehensive. This meticulous process spanned approximately four months. All data were collected
and annotated from closed sources requiring payment or registration for access, significantly reducing
the likelihood of the dataset being included in prior training or benchmarking datasets, as outlined in
Appendix K.

Annotation Categories To enable a thorough analysis of MLLM performance on visual logical
reasoning tasks, we provided fine-grained data annotations that allow for examination across various
aspects. With this goal in mind, we annotated each sample in LogicVista with the following details:
the question, the answer, the correct MCQ answer, an open-ended reasoning explanation for why
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the MCQ answer is correct, the reasoning skill used, the broad multimodal capability, the specific
multimodal capability, and licensing/data source information.

Annotation Tool Additionally, we developed an annotation tool, detailed in Appendix L, which we
will release for crowdsourcing. This will allow us to scale the pipeline to the broader community,
ensuring the sustainability and scalability of LogicVista for future developments.

2.3 LOGICVISTA ANALYSIS

Figure 3: Proportion of reasoning skills and capabilities. On the left is the proportion of questions
belonging to each reasoning skill. In the middle is the proportion of questions belonging to broad
visual capabilities. On the right is the proportion of questions belonging to specific visual capabilities

A detailed breakdown of the contents in LogicVista is shown in Figure 3. The dataset encompasses
5 core reasoning skills based on fundamental human reasoning capabilities, which we further
categorize into broad multimodal capability formats and specific formats for in-depth analysis of
MLLM performance in visual logical reasoning. The data is sourced from over 15 human intelligence
tests. Samples from the dataset, presented in Appendices I and J, illustrate the richness and diversity
of the logical reasoning skills and formats included in LogicVista.

Multi-modal Capabilities We define multi-modal capabilities as distinct from reasoning skills,
as these capabilities are essential for understanding a multi-modal scene and extracting relevant
information. Capabilities refer to the modes in which logical reasoning questions are presented.
To ensure comprehensive coverage in LogicVista, we have established a diverse array of 3 broad
capabilities and 11 specific capabilities for evaluation. This division into broad and specific categories
provides hierarchical insights into how well MLLMs perform in areas such as OCR versus diagrams at
a broader level, while also offering detailed insights into their performance across specific categories,
including various diagram presentation styles and formats. This diversity ensures that LogicVista
thoroughly evaluates a wide range of logical situations that an MLLM may encounter in everyday
reasoning, providing in-depth insights into each capability. Figure 3 illustrates that LogicVista
incorporates a balanced mix of various capabilities, including samples that leverage both to solve
problems effectively. We define these capabilities in detail in Appendix B.

Visual Logical Reasoning Skills The reasoning skills that were of interest for this benchmark were
based on common reasoning skills humans use for critical thinking and problem-solving in most
contexts derived from popular human intelligence tests. For our evaluation, we summarize these to
include the following 5 skills. As seen in Figure 3, LogicVista contains a wide, balanced range of all
core reasoning skills. We define these skills in detail in Appendix B.

3 EXPERIMENTS

3.1 EVALUATION MODELS

To evaluate the performance of MLLMs on LogicVista, we selected a range of representative models
detailed in Appendix C Table. 3. Specifically, we selected 11 models for evaluation, including
LLaVA (Liu et al., 2023a; 2024), MiniGPT4 (Zhu et al., 2023), Otter (Li et al., 2023a), variations
of OpenAI’s GPT-4 (OpenAI et al., 2024), variations of Anthropic’s Claude (Anthropic, 2023),
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variations of Google’s Gemini (Team et al., 2024), BLIP-2 (Li et al., 2023b), and InstructBLIP (Dai
et al., 2023) We also specifically included models pix2struct (Lee et al., 2023) as they have been
tuned to understand chart or diagram data.

We selected a diverse set of models that represent the current MLLM landscape in both open
and closed-source MLLMs. This selection encompasses various model sizes and architectures,
incorporating different visual encoders, backbone language models, and training datasets. Our goal
was to obtain a comprehensive understanding of MLLMs’ performance in visual logical reasoning
skills. The breakdown of models we selected for our experiments is detailed in Table 3.

Additionally, we incorporated baseline comparisons to provide a reference for interpreting the results
from MLLMs. First, we established a random baseline that selects answer choices by randomly
sampling from a Gaussian distribution. We also included a frequentist baseline, which selects the
most commonly seen option in the dataset as the response.

3.2 EVALUATION PROTOCOLS

We evaluate the models on LogicVista using two setups: MCQ-based prompting assessed with an
LLM-based answer choice extractor, and CoT-based prompting evaluated by an LLM-as-judge. We
chose an MCQ-only evaluation strategy for its straightforward and efficient approach to gauging
MLLM performance. The binary nature of MCQ answers (correct/incorrect) simplifies grading and
allows for easy comparisons across various tasks and datasets. This method is also used by several
other datasets, such as MathVista (Lu et al., 2024), establishing its reliability.

However, we recognize that MCQ-only evaluations have limitations, as they obscure the reasoning
processes of MLLMs by reducing the evaluation to a binary output without revealing the rationale
behind the answers. To address this, we also incorporate a chain-of-thought evaluation format, where
we ask an LLM judge (GPT-4o) to analyze CoT responses from MLLMs. This judge compares
these responses to the ground truth and explains which aspects were incorrect, providing a finer
understanding of whether MLLMs arrive at the correct answer with sound reasoning or if they
produce incorrect answers despite valid reasoning.

To calculate accuracy scores for each model, we use different methods depending on whether we are
evaluating with the MCQ or CoT approach. For MCQ, an LLM-based extractor isolates the selected
answers from the MLLMs’ outputs (which are often full sentences rather than single letters) and
compares them to the correct answers. In the CoT approach, an LLM judge assesses the open-ended
responses against the ground truth. In both cases, the overall logical reasoning score is determined by
dividing the number of correct responses by the total number of samples in that particular category,
whether it pertains to reasoning skills or capabilities.

4 EXPERIMENTAL RESULTS

4.1 VISUAL LOGICAL REASONING PERFORMANCE

Table 2 highlights the results for these models across five logical reasoning categories. We analyzed
models of different architectures and sizes, comparing them against random and frequentist baselines.

Our results show that most models struggle with inductive, numerical, and spatial reasoning, while
generally performing well in deductive and mechanical reasoning tasks.

Training Limitations: We believe this disparity arises from the limited exposure visual encoders
like CLIP (Dosovitskiy et al., 2021; Radford et al., 2021) have to inductive, numerical, and spatial
reasoning scenarios in their training data. These encoders are typically trained on standard computer
vision (CV) datasets focused on object recognition, classification, and segmentation using text labels.
While this equips models to excel in tasks like identifying and labeling objects or understanding
cause-effect relationships, it leaves them ill-prepared for reasoning on spatial dynamics or inductive
patterns.

For instance, LLaVA models, often fine-tuned with data capturing object names and coordinates,
show stronger spatial, inductive, and deductive reasoning than other open-source counterparts. This
underscores the need for vision encoders that capture detailed image information. Despite the
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capabilities of advanced backbone LLMs, MLLM reasoning is limited when visual encoders cannot
extract crucial logical information. The narrow focus of CV datasets further constrains these models’
ability to handle more complex reasoning tasks.

Table 1: LogicVista evaluation results on various multimodal LLMs on broad multi-modal capabilities.
Higher scoring models are highlighted green and lower scoring models are highlighted yellow.

Model Broad Capabilities
Diagram OCR Diagram and OCR

Frequentist 26.69% 23.20% 21.84%
Random 22.46% 24.80% 22.99%
Claude 3.5 Sonnet 36.02% 62.40% 39.08%
Claude 3 Opus 30.51% 40.80% 28.74%
Claude 3 Sonnet 30.08% 48.80% 29.89%
Claude 3 Haiku 27.12% 40.80% 16.09%
GPT4 26.63% 38.68% 25.29%
GPT-4o 33.47% 47.20% 26.44%
GPT-4o-mini 25.85% 47.20% 25.29%
Gemini-Pro 37.29% 54.40% 32.18%
Gemini-Flash 34.75% 45.60% 24.14%
otter9B 23.22% 22.17% 18.39%

Model Broad Capabilities
Diagram OCR Diagram and OCR

pix2struct 9.60% 6.60% 5.75%
miniGPTvicuna7B 11.15% 9.43% 6.90%
miniGPTvicuna13B 13.00% 16.98% 12.64%
instructBLIP-vicuna-7B 12.07% 20.28% 17.24%
instructBLIP-vicuna-13B 10.53% 13.21% 14.94%
instructBLIP-flan-t5-xl 20.74% 21.70% 17.24%
instructBLIP-flan-t5-xxl 20.12% 25.47% 18.39%
BLIP2 19.50% 23.11% 18.39%
LLAVA7B 29.72% 27.36% 26.44%
LLAVA13B 21.67% 24.06% 14.94%
LLAVANEXT-7B-vicuna 26.01% 23.11% 19.54%
LLAVANEXT-13B-vicuna 24.15% 23.58% 20.69%

Architectural Limitations: Inductive reasoning often involves identifying patterns across multiple
examples, which is not emphasized in standard visual training. In contrast, deductive reason-
ing—grounded in logical structures and patterns common in textual data—is a strength for LLMs
due to their extensive training on large text corpora. Numerical reasoning, another area of weakness,
requires an understanding of mathematical principles visually—something multi-modal models
struggle to integrate with both visual and textual information. Additionally, the architecture of these
models may favor certain reasoning types over others. For instance, while attention mechanisms
excel at sequential deduction, they may struggle to effectively capture visual spatial relationships.
Ultimately, these challenges in reasoning tasks arise from both the limitations in training data and the
architectural design of multimodal LLMs. We further elaborate on these points in Section 4.5.

Table 2: LogicVista evaluation results on various multimodal LLMs on each logical reasoning skill.
The higher scoring models are highlighted green and lower scoring models are highlighted yellow.

Model
Logical Reasoning Skills

Inductive Deductive Numerical Spatial Mechanical
Frequentist 25.23% 19.35% 27.37% 26.58% 25.67%
Random 21.50% 30.11% 16.84% 18.99% 29.73%
Claude 3.5 Sonnet 27.10% 65.59% 47.37% 29.11% 52.70%
Claude 3 Opus 21.50% 49.46% 26.32% 25.33% 45.95%
Claude 3 Sonnet 28.04% 53.76% 32.63% 27.85% 33.78%
Claude 3 Haiku 24.30% 47.31% 15.79% 24.05% 33.78%
GPT4 23.36% 54.84% 24.21% 21.52% 41.89%
GPT-4o 23.36% 58.06% 26.32% 26.58% 48.65%
GPT-4o-mini 22.43% 53.76% 26.32% 21.52% 35.14%
Gemini-Pro 28.97% 62.37% 32.63% 24.05% 60.81%
Gemini-Flash 32.71% 51.61% 25.26% 20.25% 50.00%
otter9B 31.78% 24.73% 18.95% 18.99% 21.62%
pix2struct 12.15% 6.45% 2.11% 7.59% 17.57%
miniGPTvicuna7B 10.28% 9.68% 7.37% 3.80% 27.03%
miniGPTvicuna13B 13.08% 23.66% 10.53% 10.13% 17.57%
instructBLIP-vicuna-7B 4.67% 21.51% 24.21% 2.53% 22.97%
instructBLIP-vicuna-13B 3.74% 10.75% 18.95% 5.06% 17.57%
instructBLIP-flan-t5-xl 23.36% 22.58% 22.11% 7.59% 33.78%
instructBLIP-flan-t5-xxl 17.76% 30.11% 24.21% 20.25% 22.97%
BLIP2 17.76% 23.66% 23.16% 24.05% 18.92%
LLAVA7B 29.91% 29.03% 26.32% 25.32% 36.49%
LLAVA13B 18.69% 31.18% 20.00% 27.85% 24.32%
LLAVANEXT-7B-vicuna 26.17% 21.51% 25.26% 27.85% 29.73%
LLAVANEXT-13B-vicuna 22.43% 22.58% 26.32% 26.58% 25.68%
LLAVANEXT-7B-mistral 16.82% 34.41% 23.16% 21.52% 22.97%
LLAVANEXT-34B-NH 20.56% 52.69% 30.53% 24.05% 40.54%
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4.2 VISUAL CAPABILITIES PERFORMANCE

We highlight the performance of MLLMs on various broad and specific visual capabilities in Appendix
J, Tables 1, 4, and 5.

Broad Capabilities Our results show that, on average, most models perform better on OCR-type
questions than on diagram-format questions within the broad capability category.

A possible reason why multi-modal LLMs (MLLMs) perform better on OCR-type questions compared
to diagram-based questions is the difference in visual reasoning complexity. OCR tasks mainly involve
recognizing and extracting textual information from images, which plays to the strengths of visual
encoders in object recognition and classification. The text in OCR tasks is typically structured, with
clear boundaries and minimal need for spatial or abstract reasoning. This allows the MLLM to focus
on straightforward text recognition, followed by reasoning using the LLM backbone, which has been
shown to excel at various textual reasoning tasks (liu et al., 2023; OpenAI et al., 2024; Touvron et al.,
2023). As a result, the multi-modal reasoning task is simplified into a more manageable text-based
reasoning process.

In contrast, diagram-based questions typically demand more complex spatial reasoning, pattern
recognition, and an understanding of relationships between visual elements. These tasks go beyond
merely recognizing objects or labels, requiring the ability to interpret how objects interact, and their
relative positions, and sometimes even apply inductive or deductive reasoning. Visual encoders,
often not optimized for spatial or abstract relationships, tend to struggle with these challenges. The
complexity of interpreting geometric shapes, spatial arrangements, and abstract concepts in diagrams
is much greater than the more straightforward task of recognizing and interpreting text in OCR
scenarios, as it requires more than simple recognition and identification of basic relationships.

Specific Capabilities We found that MLLMs generally perform well on tasks involving complex
OCR, common sense OCR, advanced mechanical reasoning, common sense mechanical reasoning,
and rotational patterns. However, they tend to struggle with tasks that require understanding 3D
patterns and sequential patterns.

This reinforces our earlier hypothesis that MLLMs excel in OCR and mechanical reasoning tasks
because these visual formats primarily focus on recognizing simple relationships and identifying
objects, rather than interpreting complex spatial interactions. Mechanical formats often depict real-life
scenes, making it easier to discern relationships compared to abstract patterns, where the spatial
relationships in 3D and sequential formats are more challenging to extract.

In contrast, tasks involving 3D and sequential pattern recognition require a more nuanced under-
standing of spatial relationships, movement, and order—capabilities that may be underdeveloped
in these models due to limitations in their training data and architectures. Spatial and sequential
diagram-based tasks, as well as 3D reasoning, demand an advanced ability to comprehend spatial
hierarchies and continuous pattern changes—areas where current visual encoders typically struggle.
This lack of spatial depth and temporal awareness contributes to the weaknesses observed in MLLMs
when addressing more complex reasoning scenarios.

4.3 CASE STUDIES ON LOGICVISTA

Our case studies (Figure 4, 9, 10) show that these errors often occur because MLLMs overlook
important details or hallucinate facts, yet still guess the correct solution. This underscores the
need for better visual encoders that can capture intricate spatial details beyond recognition. In our
MiniGPT-4 case study (Figure 4), while the model reaches the correct answer, the left-hand example
reveals a failure to grasp key spatial relationships, guessing "C" simply because the question mark
is unfilled. This likely stems from the visual encoder’s limitations in interpreting intricate spatial
details. Conversely, in the right-hand example, hallucinations lead to incorrect reasoning. Similarly,
MiniGPT-4 fabricates details about pipe sizes, resulting in inaccurate reasoning despite correctly
identifying certain image elements. Closed-source flagship models also suffer from these visual
encoder limitations, as seen in our SOTA model case studies in Appendix F. We also conduct a more
in-depth case study analysis of vision encoder performance of MLLMs in Appendix F.

4.4 FINE-GRAINED ANSWER ANALYSIS
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Figure 4: Case study of MiniGPT-4 outputs shows both examples providing correct answers but with
flawed CoT reasoning. On the left, the model fails to capture the spatial pattern—where the dot stays
constant and the square shifts right—leading to answer C. On the right, the model hallucinates facts
about the pipes, missing the key detail that narrower pipes result in faster exit velocity, making D the
correct choice.
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Confusion Matrix Analysis (Percentage)

Figure 5: Confusion matrix for performances
of SOTA flagship models: Claude 3.5 Sonnet,
Gemini Pro, GPT-4o, GPT-4o-mini, arranged
clockwise from the top left in each cell.

Using chain-of-thought (CoT) evaluations, where an
LLM acts as the judge to compare MLLM outputs to
ground truth reasoning, we find that most incorrect
responses from MLLMs arise from both incorrect an-
swers and flawed reasoning. This suggests the models
either fail to fully understand the problem or miss crit-
ical details needed to answer accurately. Interestingly,
many correct answers still exhibit faulty reasoning,
as shown in Figure 5. For example, Claude 3.5 Son-
net, the top-performing model across reasoning skills
and capabilities, gave incorrect answers with faulty
explanations 54% of the time and correctly answered
questions with incorrect explanations 7.9% of the
time. Other models, such as Gemini-Pro and GPT-4,
displayed similar patterns, with Gemini Pro leading
in faulty explanations at 16%. A manual review of
Claude 3.5 Sonnet’s responses revealed that over 46%
of its outputs included some form of hallucination,
either about the image contents (e.g., fabricating facts
about patterns or sequences) or general knowledge
(e.g., physics, deductive reasoning). Overall, GPT-
4o-mini performs the worst, frequently providing in-
correct answers and explanations, while Claude 3.5

Sonnet achieves the best results. We observed several instances where models gave correct answers
but incorrect explanations. We perform an additional analysis of how MCQ-based evaluation affects
evaluation accuracy compared to CoT-based evaluations in Appendix G.

4.5 MODEL COMPARISONS

Vision Component: In our evaluation, we considered only open-source vision models for benchmark-
ing. The primary vision encoders used were CLIP-ViT (428M) and EVA-ViT-G (1.13B). When paired
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with large language models (LLMs) such as Vicuna 7B and 13B, the LLaVA variants incorporating
CLIP-ViT demonstrated superior performance in spatial, deductive, and inductive reasoning tasks
compared to InstructBLIP, which utilized the EVA-ViT-G encoder. Despite these observations, it
is challenging to declare a definitive superior model for logical reasoning due to the absence of a
comprehensive ablation study, which would provide a more thorough analysis of the strengths and
weaknesses of each model configuration. We also present a case study of the failures of modern
visual encoders in Appendix F.

Language Modeling Component: A range of LLMs, including Vicuna, Flan-T5, and LLaMA, were
tested by LogicVista to evaluate their performance. With EVA-ViT-G as the vision encoder, the BLIP-
2-12B model combined with Flan-T5-XXL outperformed InstructBLIP, which used Vicuna-13B,
particularly in spatial reasoning tasks. This suggests that the Flan-T5 model may possess stronger
spatial language processing capabilities compared to Vicuna-13B. This observation highlights the
potential impact of different LLMs on the effectiveness of multimodal systems. The performance
difference indicates that the choice of LLM can significantly affect the effectiveness of multimodal
systems in specific reasoning tasks. Flan-T5’s demonstrated strength in spatial reasoning underscores
the importance of choosing LLMs that align with specific reasoning capabilities. However, a more
detailed analysis of how LLM logical reasoning performance relates to multimodal logical reasoning
could provide better insights into how different LLMs impact the overall performance of visual
reasoning systems.

Training Data: The comparison of training data performance reveals that MiniGPT, with its datasets
including CC3m, SBU, LAION-400M, and a custom set of 3500 images, excels particularly in
induction tasks. This suggests that MiniGPT’s training data could be highly effective for tasks
requiring the model to generalize from specific inductive examples to broader patterns. On the other
hand, InstructBLIP’s training data, which encompasses BLIP2 and 26 transformed datasets, shows
stronger performance in a broader range of evaluation categories. This indicates that the suitability of
training data may vary depending on the specific types of reasoning or tasks. Some of these datasets
may have more samples covering specific reasoning tasks causing different datasets to provide distinct
advantages for different reasoning skills.

Closed/Open-Source Models: The results suggest that closed-source models like GPT, Gemini,
and Claude significantly outperform open-source models in deduction and mechanical reasoning,
often with double the accuracy. This advantage likely stems from proprietary optimizations, training
techniques, model size, or undisclosed data. Additionally, the continuous updates and fine-tuning
specific to these models may contribute to their superior performance. However, in numerical, spatial,
and inductive reasoning tasks, both open- and closed-source models show similar effectiveness, with
accuracy rates between 22% and 31% across leading closed-source models (GPT, Claude, Gemini)
and open-source models (13B LLaVA, Yi models, InstructBLIP). While closed-source models excel
in deduction and mechanical reasoning, both model types struggle similarly with spatial and inductive
reasoning, suggesting the challenges lie more in the fundamental limitations of current MLLM
technologies for visual logical reasoning than in proprietary enhancements. Greater transparency
and research could clarify these performance differences and inform future advancements in both
open-source and closed-source models, potentially bridging the gap in reasoning capabilities.

5 CONCLUSION

In this work, we introduce LogicVista, a comprehensive benchmark designed to evaluate MLLM
performance on complex visual logical reasoning tasks, covering inductive, deductive, spatial,
numerical, and mechanical visual reasoning skills. We assess 11 state-of-the-art open and closed-
source MLLMs, offering insights into the current landscape of these models. Our detailed analysis
reveals that MLLMs often struggle with intricate spatial and logical details in images, as their visual
encoders are typically trained for broad object recognition. This focus leads to failures in tasks that
require a deep understanding of spatial relationships, particularly in inductive, spatial, and numerical
reasoning. Our fine-grained CoT case study underscores this limitation, showing that MLLMs tend to
generalize rather than capture precise spatial details in both abstract and real-life scenes. We also
find that MCQ evaluations often overestimate MLLM performance, as they fail to assess reasoning
as effectively as CoT methods. Therefore, we propose future benchmarks emphasize open-ended
evaluations that assess the reasoning process, not just final answers.
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Appendix: LogicVista: Multimodal LLM Logical Reasoning
Benchmark in Visual Contexts

LIMITATIONS

A limitation of our work is the absence of a human baseline for comparison. Having this baseline
would offer valuable insights into how MLLMs perform relative to humans. Although several of our
test sources suggest that average human performance is around 75%, this figure varies across different
reasoning skills, which is why we chose not to include it in our study for the sake of reliability and
accuracy. A more dependable approach would be to conduct multiple human trials to establish a
consistent average performance for comparison.

Additionally, while our dataset size is comparable to other multimodal benchmarks like MM-vet (Yu
et al., 2023), it is relatively smaller than some larger-scale benchmarks such as MMBench or
MMMU (Liu et al., 2023c; Yue et al., 2024). To address this, we will release a crowdsourcing
annotation tool, detailed in Appendix L, to further scale LogicVista in the future.

To address both concerns and promote further research, we have also open-sourced these reasoning
annotations. They are now publicly available for the community, providing a valuable resource for
training and improving the logical reasoning capabilities of multimodal LLMs. We encourage future
work to make full use of these annotations to develop more comprehensive and contextually rich
evaluation methods.

A RELATED WORKS

LLM-Based Evaluation. LogicVista adopts an open-ended LLM-based evaluation approach, which
facilitates the generation and assessment of diverse answer styles and question types beyond the
limitations of binary or multiple-choice responses. This innovative method leverages the capabilities
of large language models (LLMs) for comprehensive model evaluation, a technique that has been
effectively applied in natural language processing (NLP) tasks and other VQA benchmarks (Chiang
& yi Lee, 2023; Liu et al., 2023b; Fu et al., 2023b; Jin et al., 2024; Lu et al., 2024). Our findings
show that this LLM-based evaluation framework is both versatile and robust, providing a unified
and flexible assessment across different modalities, including open- and closed-ended responses.
By accommodating a broad range of answer styles and question types, this approach deepens and
expands model evaluation, leading to a more comprehensive understanding of model performance.

Vision-Language Benchmarks Traditional vision-language benchmarks have largely focused on
evaluating specific perceptual abilities. Datasets like MM-vet, RAVEN, CLEVR-X, and TextVQA
each address distinct aspects of visual recognition: TextVQA emphasizes recognition-based VQA,
testing how well models can caption and accurately describe key image details; MM-vet evaluates
world knowledge, basic math, detail capture, and OCR in recognition tasks and everyday scene
reasoning. Meanwhile, RAVEN and CLEVR-X assess spatial relation recognition in 2D and 3D
objects, providing insights into how well MLLMs understand spatial reasoning (Goyal et al., 2017b;
Yu et al., 2023; Zhang et al., 2019; Singh et al., 2019a; Sidorov et al., 2020; Salewski et al., 2022).
Image captioning and description generation have also been extensively studied (Chen et al., 2015;
Agrawal et al., 2019), along with more specialized tasks like scene text understanding (Singh et al.,
2019b; Sidorov et al., 2020; Yang et al., 2020) and integrating external knowledge (Marino et al.,
2019). Other benchmarks, such as OlympiadBench (He et al., 2024), focus on Olympiad-level math
and science challenges to compare MLLMs with human performance. Large-scale multidisciplinary
benchmarks like MMMU (Yue et al., 2024) assess MLLMs across a range of subjects, including
science, math, humanities, and history.

B DATASET DEFINITIONS

Here we define concretely what each of our capabilities and logical reasoning skill categories refer to.
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B.1 LOGICAL REASONING SKILLS

We define our 5 logical reasoning skills based on common human visual reasoning abilities. Our
goal is to assess how effectively MLLMs perform in general reasoning skills that humans rely on for
everyday problem-solving. These skills reflect the types of reasoning that MLLM agents are likely to
encounter in real-world settings where they may be deployed. Our definitions are largely inspired by
traditional human IQ and intelligence tests.

• Inductive Reasoning the ability to infer the next entry in a pattern given a pattern of
observations. It is the ability to make generalizations based on some observations and
make an educated guess. It moves from many specific observations to a generalization. An
example could be given observations that when John eats dairy products, he gets a stomach
ache. An inductive conclusion can be drawn that he is most likely lactose intolerant.

• Deductive Reasoning the ability to conclude a specific case when given a general principle
or pattern. It moves from the general to the specific. An example could be given the
statement “all men are mortal”, one can conclude that “John is mortal” because John is a
man.

• Numerical Reasoning the ability to read arithmetic problems in the image and solve the
math equations. An example could be given the equation “10 + 10 = ?”, the answer would
be “20”.

• Spatial Reasoning the ability to understand the spatial relationship between objects and
patterns and reason with those relationships. An example could be seeing an unfolded box
and understanding what the box could look like when it is folded up.

• Mechanical Reasoning the ability to recognize a physical system and solve equations based
on that system or answer questions about that system. An example could be seeing a set
of 3 gears and understanding which gears will turn clockwise and which ones will turn
counterclockwise.

B.2 BROAD AND SPECIFIC CAPABILITIES

We categorize our multi-modal capabilities into broad and specific classifications to gain hierarchical
insights into which information formats are better or worse understood by MLLMs.

Here we present our definitions for broad capabilities:

• Optical Character Recognition (OCR): refers to the ability to reason over text inside
images and scenes.

• Diagrams: refers to the ability to reason about diagrams that represent real-life scenes,
abstract logic, spatial relationships, and more.

• Mixed (Both OCR and Diagram): refers to an integration of both OCR and diagrams,
where comprehending the text and the visual elements within the image is essential for
accurately answering the question.

Here we present our definitions for specific capabilities:

• Chart: refers to numerical charts and graphs.
• Infographic: refers to infographic-style puzzles that illustrate both real-life and abstract

scenes.
• Table: refers to words and numbers only tables depicting some trend or concept.
• Common Sense OCR: refers to text questions describing common everyday situations

using common English words.
• Complex OCR: refers to text questions describing technical or highly abstract situations

using jargon and complex sentences.
• Rotation Pattern: Patterns and puzzles that necessitate an understanding of 2D and/or 3D

object rotations.
• 3D Pattern: Patterns that require 3D spatial relation understandings.
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• Rule Based Pattern: Patterns that require understanding of a set of externally defined rules.

• Sequence Pattern: Patterns presented in a strictly sequential format, typically involved
with induction.

• Common Sense Mechanical: Puzzles concerned with a common sense understanding of
basic physics and mechanics.

• Advanced Mechanical: Puzzles concerned with an advanced and specialized understanding
of physics and mechanics.

C SELECTED MLLMS FOR EVALUATION

Model Size Language Model Vision Model

Claude 3.5 Sonnet N/A1 N/A N/A
Claude 3 Opus N/A N/A N/A
Claude 3 Sonnet N/A N/A N/A
Claude 3 Haiku N/A N/A N/A

GPT-4 Vision N/A N/A N/A
GPT-4o N/A N/A N/A
GPT-4o-mini N/A N/A N/A

Gemini Pro N/A N/A N/A
Gemini Flash N/A N/A N/A

Otter-9B 9B MPT-7B CLIP ViT-L/14

Pix2Struct 1.3B ViT ViT

MiniGPT-4-7B 7B Vicuna-7B BLIP-2 Q-Former
MiniGPT-4-13B 13B Vicuna-13B BLIP-2 Q-Former

InstructBLIP-Vicuna-7B 7B Vicuna-7B BLIP-2 Q-Former
InstructBLIP-Vicuna-13B 13B Vicuna-13B BLIP-2 Q-Former
InstructBLIP-FLAN-T5-xl 3B FLAN-T5 XL BLIP-2 Q-Former
InstructBLIP-FLAN-T5-xxl 11B FLAN-T5 XXL BLIP-2 Q-Former

BLIP-2 2.7B OPT-2.7B EVA-ViT-G

LLaVA-Vicuna-7B 7B Vicuna-7B CLIP ViT-L/14
LLaVA-Vicuna-13B 13B Vicuna-13B CLIP ViT-L/336px

LLaVA-NeXT-Mistral-7B 7B Mistral-7B CLIP ViT-L/14
LLaVA-NeXT-Vicuna-7B 7B Vicuna-7B CLIP ViT-L/14
LLaVA-NeXT-Vicuna-13B 13B Vicuna-13B CLIP ViT-L/336px
LLaVA-NeXT-Nous-Hermes-Yi-34B 34B Nous Hermes 2-Yi-34B CLIP ViT-L/336px

Table 3: Summary of the MLLMs used for evaluations in this study. Model details for close-sourced
models like Claude, GPT, and Gemini are not open to the public.

D BROAD AND SPECIFIC VISUAL CAPABILITIES EVALUATION

We present tabular results evaluating various SOTA open-source and closed-source MLLM models in
Table 1, 4, and 5, analyzing their performance across different visual capabilities.

E SOTA MODEL EVALUATION RESULT

We present graphs illustrating the evaluations of key SOTA closed-source flagship models. Our
analysis shows that Claude 3.5 Sonnet consistently performs well across all categories of reasoning
and capabilities, with GPT-4o and Gemini Pro following closely in second place.

1N/A: Not disclosed
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Table 4: Model evaluation results on various multimodal LLMs for Specific Capabilities (Part 1). The
highest scoring models are highlighted green and lower scoring models are highlighted yellow.

Model 3D Pattern Rule Based Pattern Sequence Pattern Rotation Pattern Table Chart

Frequentist 27.91% 26.87% 17.07% 31.43% 30.77% 23.81%
Random 23.26% 20.90% 21.95% 14.29% 7.69% 23.81%
Claude 3.5 Sonnet 25.58% 32.84% 17.07% 34.29% 51.28% 50.00%
Claude 3 Opus 16.28% 25.37% 21.95% 28.57% 17.95% 33.33%
Claude 3 Sonnet 27.91% 31.34% 21.95% 28.57% 35.90% 40.48%
Claude 3 Haiku 23.26% 22.39% 24.39% 28.57% 25.64% 14.29%
GPT4 25.58% 26.87% 12.20% 20.00% 28.21% 26.19%
GPT-4o 27.91% 28.36% 19.51% 20.00% 17.95% 30.95%
GPT-4o-mini 27.91% 23.88% 19.51% 14.29% 23.08% 33.33%
Gemini-Pro 23.26% 26.87% 31.71% 25.71% 33.33% 38.10%
Gemini-Flash 13.95% 38.81% 21.95% 28.57% 25.64% 33.33%
otter9B 11.63% 37.31% 24.39% 25.71% 28.21% 11.90%
pix2struct 4.65% 7.46% 17.07% 14.29% 7.69% 0.00%
miniGPTvicuna7B 4.65% 8.96% 12.20% 2.86% 10.26% 7.14%
miniGPTvicuna13B 11.63% 14.93% 12.20% 5.71% 10.26% 14.29%
instructBLIP-vicuna-7B 4.65% 5.97% 2.44% 0.00% 23.08% 23.81%
instructBLIP-vicuna-13B 4.65% 4.48% 7.32% 0.00% 15.38% 21.43%
instructBLIP-flan-t5-xl 9.30% 26.87% 4.88% 20.00% 28.21% 19.05%
instructBLIP-flan-t5-xxl 23.26% 19.40% 14.63% 17.14% 33.33% 21.43%
BLIP2 20.93% 17.91% 14.63% 31.43% 28.21% 16.67%
LLAVA7B 27.91% 32.84% 24.39% 22.86% 23.08% 21.43%
LLAVA13B 27.91% 16.42% 24.39% 25.71% 25.64% 19.05%
LLAVANEXT-7B-vicuna 34.88% 26.87% 19.51% 25.71% 30.77% 19.05%
LLAVANEXT-13B-vicuna 27.91% 22.39% 17.07% 31.43% 30.77% 21.43%
LLAVANEXT-7B-mistral 13.95% 14.93% 21.95% 28.57% 20.51% 23.81%
LLAVANEXT-34B-NH 27.91% 19.40% 24.39% 17.14% 28.21% 19.05%

Table 5: Model evaluation results on various multimodal LLMs for Specific Capabilities (Part 2). The
highest scoring models are highlighted green and lower scoring models are highlighted yellow.

Model Infographic Complex OCR Common Sense OCR Advanced Mechanical Common Sense Mechanical

Frequentist 20.83% 17.65% 22.45% 25.00% 26.92%
Random 16.67% 35.29% 30.61% 25.00% 38.46%
Claude 3.5 Sonnet 37.50% 73.53% 63.27% 50% 57.69%
Claude 3 Opus 29.17% 58.82% 46.94% 37.50% 64.54%
Claude 3 Sonnet 16.67% 55.88% 55.10% 25.00% 50.00%
Claude 3 Haiku 12.50% 47.06% 48.98% 25.00% 50.00%
GPT4 67.65% 53.06% 31.25% 61.54% 31.25%
GPT-4o 73.08% 35.42% 73.08% 73.08% 73.08%
GPT-4o-mini 52.94% 63.27% 29.17% 46.15% 46.15%
Gemini-Pro 58.82% 69.39% 58.33% 65.38% 65.38%
Gemini-Flash 8.33% 50.00% 59.18% 41.67% 65.38%
otter9B 29.41% 20.41% 22.92% 19.23% 19.23%
pix2struct 8.16% 16.67% 19.23% 19.23% 19.23%
miniGPTvicuna7B 31.25% 19.23% 19.23% 19.23% 19.23%
miniGPTvicuna13B 32.35% 20.41% 16.67% 19.23% 19.23%
instructBLIP-vicuna-7B 32.35% 16.33% 25.00% 19.23% 19.23%
instructBLIP-vicuna-13B 17.65% 6.12% 25.00% 19.23% 19.23%
instructBLIP-flan-t5-xl 32.35% 16.33% 25.00% 19.23% 50.00%
instructBLIP-flan-t5-xxl 29.41% 28.57% 25.00% 19.23% 19.23%
BLIP2 17.65% 30.61% 22.92% 19.23% 11.54%
LLAVA7B 31.25% 26.53% 31.25% 46.15% 46.15%
LLAVA13B 18.75% 34.62% 18.75% 34.62% 34.62%
LLAVANEXT-7B-vicuna 23.53% 22.45% 27.08% 34.62% 34.62%
LLAVANEXT-13B-vicuna 20.83% 20.41% 20.83% 34.62% 34.62%
LLAVANEXT-7B-mistral 31.25% 18.75% 30.77% 34.62% 30.77%
LLAVANEXT-34B-NH 55.88% 59.18% 41.67% 38.46% 38.46%
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Figure 6: SOTA evaluation results of CoT evaluations on logical reasoning skills. As seen here,
Claude 3.5 Sonnet has superior performance.

Figure 7: SOTA evaluation results of CoT evaluations on broad visual capabilities. As seen here,
Claude 3.5 Sonnet has superior performance.
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Figure 8: SOTA evaluation results of CoT evaluations on specific visual capabilities. As seen here,
Claude 3.5 Sonnet has superior performance. However, it as bested by GPT-4o in some categories
like common sense mechanical formats and complex OCR.

F SOTA CLOSED-SOURCE MLLMS CASE STUDIES

Given that Claude 3.5 Sonnet is the top-performing MLLM across multiple of LogicVista’s question
types and formats, we conducted a case study to examine its shortcomings in capturing the spatial
and logical relationships essential for complex visual reasoning.

In Figures 9 and 10, Claude 3.5 Sonnet struggles to identify key spatial relationships, such as the shape
and number of stars, while also overlooking the logical context necessary for answering LogicVista
questions in a CoT format. Similarly, in Figure 10, Claude misinterprets the sequential movement
between the circle and triangle. These examples highlight a common issue with modern MLLM
vision encoders: they tend to focus on object recognition rather than understanding the relationships
between objects, which is essential for accurate visual logical reasoning.

Building on this insight, we conducted an additional experiment to assess the specific details a modern
SOTA MLLM can capture. Using Claude 3.5 Sonnet, the top-performing model for LogicVista,
we prompted it to provide detailed descriptions of LogicVista samples with a focus on spatial
relationships between objects. As shown in Figure 11, MLLMs excel at simpler recognition tasks,
such as identifying spring lengths, enabling the model to solve the problem easily. However, when
tasked with recognizing more complex spatial relationships, current MLLMs struggle. For instance,
in Figure 12, Claude misses intricate spatial patterns and instead focuses on broad features—reflecting
a limitation of traditional CV encoders, which are good at general visual recognition but struggle to
accurately capture specific spatial arrangements like the positioning of hexagons, squares, and circles.
Even in less abstract cases, such as the one on the right in Figure 12 depicting a sled, Claude fails to
distinguish key details like the width and size of runners, instead hallucinating differences in sled
sizes. When asked specifically about the runner sizes, Claude either misidentifies them as similar or
fabricates relationships. This demonstrates the need for vision encoders to be able to capture more
intricate spatial details and focus less on recognition, which it already excels at but focus rather more
on extracting these key spatial and visual-logical relations.
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Figure 9: An example of Claude 3.5 Sonnet’s failure to capture intricate spatial relationships is shown
here. The model recognizes the differently shaped stars but misses the key relationships needed to
solve the problem. It also focuses on irrelevant details, overlooking the fact that A contains an even
number of stars and B an odd number, which is essential for determining the correct solution.
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Figure 10: Another example of Claude 3.5 Sonnet’s failure to capture detailed visual logic is its
hallucination of spatial facts about the relationship between the triangle and the circle. Claude
incorrectly assumes that the circle is splitting in half, when in reality, this appearance results from a
sequential relationship between the images.
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Figure 11: Another example of Claude 3.5 Sonnet’s failure to capture detailed visual logic is its
hallucination of spatial facts about the relationship between the triangle and the circle. Claude
incorrectly assumes that the circle is splitting in half, when in reality, this appearance results from a
sequential relationship between the images.
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Figure 12: Another example of Claude 3.5 Sonnet’s failure to capture detailed visual logic is its
hallucination of spatial facts about the relationship between the triangle and the circle. Claude
incorrectly assumes that the circle is splitting in half, when in reality, this appearance results from a
sequential relationship between the images.

G MCQ VS COT EVALUATIONS

We found that when MLLMs are prompted to produce CoT reasoning, they often provide incorrect
reasoning, leading to lower scores, as open-ended evaluations account for the quality of the reasoning
itself.

According to the benchmark outcome, we show that MCQ-based evaluations consistently result in
higher raw scores compared to CoT-based evaluations in almost all categories for reasoning and
capabilities. This mirrors human behavior, where it is often easier to make an educated guess and get
the answer right without fully understanding the question or providing correct reasoning. Since MCQ
evaluations may overlook cases where MLLMs guess the answer correctly without valid reasoning,
we argue that CoT evaluations offer a more reliable measure of MLLM reasoning capabilities, as
they assess both the answer and the reasoning behind it.

H MODEL SIZE AND PERFORMANCE

We also observe that performance on LogicVista generally increases with model parameter sizes. As
illustrated in Figure 13, there is a positive correlation between model size and average LogicVista
performance. This trend suggests that larger models may possess greater capacities for learning and
understanding complex relationships, allowing them to better tackle the demands of visual logical
reasoning tasks. This improvement may be attributed to their ability to capture more intricate patterns
and nuances in data, which enhances their overall reasoning capabilities. However, it is important to
note that while larger models tend to perform better, this does not guarantee that all larger models
will excel equally, as other factors such as training data quality and model architecture also play
significant roles in determining performance.

I EXAMPLES OF LOGICVISTA LOGICAL REASONING DATA
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Table 6: Three samples requiring inductive logical reasoning skills.

(a)

Q: Which choice (A, B, C, or D) completes the series?
Answer: D

Reasoning: In this example, there are two rules to be applied. The first is that the circle moves counter-clockwise in the hexagon. It
follows that, in the following diagram, the circle will be in the upper corner of the hexagon, pointing to D as the answer.
To confirm this, the second rule can be applied, according to which the position of the black triangle alternates between
bottom left and top right. Thus, in the following diagram, the black triangle will need to be in the upper right corner of
the hex. The answer is therefore definitely D.

Logical Reasoning Skill: Inductive
Required capability Diagram

(b)

Q: Who is the odd-one-out? Select answers from A-I.
Answer: G

Reasoning: Element G constitutes the exception and is therefore the correct answer.
Logical Reasoning Skill: Inductive

Required capability Diagram

(c)

Q: Two grids containing colored symbols and following a common rule are presented. In the block on the right, four
additional grids are presented. The candidate must find the two grids that follow the same rule out of these four options.
What options (A, B, C, or D) follow this same rule?

Answer: B, D
Reasoning: In this example, it is easy to see that the rule governing the two grids on the left is: blue triangles are present in each of

the two bottom lines. This rule is followed in the two grids on the right.
Logical Reasoning Skill: Inductive

Required capability Diagram, OCR
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Table 7: Three samples requiring deductive logical reasoning skills.

(a)

Q: Which is the correct answer according to the image? Select from 1-5?
Answer: 3

Reasoning: Using deductive reasoning, the only logical answer is 3. To get to this answer, you
need to simplify the given facts. All famous sports players are footballers, and all
footballers are fit and healthy. We can not deduce that all footballers are famous
sports people, as we have not got that information. We can not deduce that all
famous people are fit and healthy, because the fact is about famous sports people.
This is the logical answer. This information is not given; all footballers are fit and
healthy but we can not logically link that all fit and healthy people are footballers.
This is obviously incorrect, as gender is not mentioned at all in the question.

Logical Reasoning Skill: Deductive
Required capability: OCR

(b)

Q: What is the correct answer to the question in the image? Select from A-D?
Answer: C

Reasoning: The vast majority of swallows are blue so the answer must be C: there is a blue
swallow.

Logical Reasoning Skill: Deductive
Required capability: OCR

(c)

Q: What is produced is determined by the people. Select from A, B and C. (A) True
(B)False (C)Insufficient Information?

Answer: A
Reasoning: Line 1 states that the people determine what is produced. Line 2 states that the

government is made up of the people. Therefore, the people determine what is
produced. This is a syllogism. Thus, this statement is true.

Logical Reasoning Skill: Deductive
Required capability: OCR
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Table 8: Three samples requiring numerical logical reasoning skills.

(a)

Q: Which share had the largest difference between highest and lowest price over the last 12 months? Select from A, B, C,
D and E. (A) Huver Co. (B) Drebs Ltd (C) Fevs Plc (D) Fauvers (E) Steapars

Answer: C
Reasoning: Step 1- Calculate the difference between the maximum and the minimum prices.Huver Co. = 1,360 - 860 = 500Drebs

Ltd = 22 - 11 = 11Fevs Plc = 1,955 - 1,242 = 713Fauvers = 724 - 464 = 260Steapars = 2,630 - 2,216 = 414. Tip: Notice
the wording of the question is asking for the share with the largest absolute change in price, NOT the largest percentage
change, which would have been Drebs Ltd. If the question had wanted the percentage change it would have used the
word percentage. Thus the correct answer is (C) Fevs Plc

Logical Reasoning Skill: Numerical
Required capability: OCR

(b)

Q: Reyes Heslop had a target for Leisure profits to be a quarter of their total profits. Assuming profits in other areas remain
the same, by how much did the Leisure profits miss this target? Select from A, B, C, D and E. (A) 31.8 million (B)
32.4 million (C) 32.7 million (D) 33.2 million (E) 33.4 million

Answer: D
Reasoning: Step 1- Calculate the total Reyes Heslop profits across all areas other than Leisure. (6.3 + 7.2 +5.0) + (3.8 + 5.8 +

4.4) + (3.6 + 5.9 + 4.5) + (6.2 +5.1 + 3.5) = 61.3million. Step 2- This needs to be / of all profits for the condition to
be met. Therefore all profits, across all sectors, would be 61.3 / 75% = 81.7333million. Step 3- Now we look at the
difference between actual and target Leisure profits. Actual = (4.6 + 7.4 + 5.2) = 17.2 Target = (81.7333 - 61.3) =
20.4333 Shortfall = 3.2333 (millions) Thus the correct answer is (D) 33.2million

Logical Reasoning Skill: Numerical
Required capability: Diagram, OCR

(c)

Q: Which space experienced the smallest reduction in kWh used between 1990 and 2000? Select from A, B, C, and D. (A)
Office Space (B) Print Room (C) Meeting Rooms (D) PC Room

Answer: D
Reasoning: Step 1- Calculate the value of kWh for 1990 and 2000 for each of the rooms. Room 1990 per kWh 2000 per kWh

Meeting Rooms 2.04 2.10 Office Space 6.97 5.85 Print Room 2.55 1.80 PC Room 3.40 3.15 Kitchen 2.04 2.10 Step 2-
Subtract the kWh for 2000 from that of 1990 for each of the rooms. Room change (1990 - 2000) kWh Meeting Rooms
-0.06 Office Space 1.12 Print Room 0.75 PC Room 0.25 Kitchen -0.06 Step 3- Look for the smallest positive value.
Negative values represent an increase between 1990 and 2000. Tip- You only need to perform 4 calculations, as two of
the rooms have the same values. Thus, the correct answer is (D) PC Room.

Logical Reasoning Skill: Deductive
Required capability: Diagram, OCR
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Table 9: Three samples requiring spatial logical reasoning skills.

(a)

Q: Which figure is a rotation of the object? Select from A, B, C, and D. (A) (B) (C)
(D)

Answer: B
Reasoning: The answer is B.

Logical Reasoning Skill: Spatial
Required capability: Diagram

(b)

Q: Which figure can be formed with the given piece? Select from A, B, C, and D. (A)
(B) (C) (D)

Answer: C
Reasoning: The answer is C.

Logical Reasoning Skill: Spatial
Required capability: Diagram

(c)

Q: To which object does the given top view correspond? Select from A, B, C, and D.
(A) (B) (C) (D)

Answer: A
Reasoning: The answer is A.

Logical Reasoning Skill: Spatial
Required capability: Diagram
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Table 10: Three samples requiring mechanical logical reasoning skills.

(a)

Q: A non-pressurised cylindrical metal tank filled with air is submerged underwater. As the air escapes, the tank gradually
moves deeper underwater. Which statement provides the best reason for this motion? Select from A, B, C, D, and E.
(A) The bubbles provide a downward thrust on the tank (B) The metal increases in density so it gets heavier (C) The
bubbles lower the density of the water which lowers its buoyancy (D) Water replaces the air in the tank which makes it
heavier (E) Impossible to tell

Answer: D
Reasoning: As air escapes the available space is quickly replaced with water, so the tank’s density becomes the same as that of the

water and with the added weight and density of the tank itself continues to sink.
Logical Reasoning Skill: Mechanical

Required capability: Diagram

(b)

Q: It is a cold winter outside and a well-insulated house has its heater turned on. The front door is opened and cold air
rushes in. If the wind speed outside is very low, how would the cold air enter the house? Select from A, B, C, D, and E.
(A) Scenario A, the cold air will flow towards the floor (B) Scenario B, the cold air will flow towards the ceiling (C) A
combination of A and B (D) The cold air will not enter the house (E) Impossible to tell

Answer: A
Reasoning: Cold air sinks, whereas hot air rises. The house and the air inside it are warmer than the outside air temperature, so if

these two systems (house and outside) were to be suddenly connected (door opening) the cold air would sink and the
hot air would sit above the cold air until the heat transferred between the two.

Logical Reasoning Skill: Mechanical
Required capability: Diagram

(c)

Q: In which direction does the orange gear rotate? Select from A, B, and C. (A) Clockwise (B) Counterclockwise (C) No
rotation

Answer: A
Reasoning: The correct answer is clockwise.

Logical Reasoning Skill: Mechanical
Required capability: Diagram
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Figure 13: Correlation between Model Size and Average Accuracy. The scatter plot employs varying
dot sizes to indicate the number of models with identical model sizes, illustrating the distribution
density.
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J EXAMPLES OF DIFFERENT BROAD LOGICVISTA CAPABILITIES DATA

Table 11: Three samples of diagram, OCR, and mixed LogicVista data

(a)

Q: Which ball is the heavies? Select from A, B, C, and D. (A) A (B) B (C) C (D) CAN
NOT SAY

Answer: D
Reasoning: The correct answer is D.

Logical Reasoning Skill: Mechanical
Required capability: Diagram

(b)

Q: Select from A, B, C, and D. (A) banana (B) scissors (C) empty plastic soda bottle
(D) wooden pencil

Answer: B
Reasoning: The correct answer is B because scissors have metal and are most likely to sink.

Logical Reasoning Skill: Deductive
Required capability: OCR

(c)

Q: Which of the following statements is false regarding legal sector spending between
Year 4 and projected Year 5? Select from A, B, C, D and E. (A) IT consulting will
increase by 35million. (B) IT consulting will match that of year 2. (C) IT software
will exceed IT consulting. (D) Spending on IT hardware will decline. (E) None of
these.

Answer: D
Reasoning: Step 1- Check in turn whether each statement is true or false: a) The projected

spend on IT consulting is projected to increase by 35 million. Option A is true. b)
The projected spend on IT consulting is 320 million, which matches year 2. Option
B is true. c) The projected spend on IT software is 330 million and for IT consulting
it is 320 million. Option C is true. d) There are increases projected for IT hardware,
for IT software and for consulting, therfore s̈pending on IT hardware will declineïs
not true. The option for D is false. e) We see that option D is false, so E cannot
be the correct answer. Thus the correct answer is (D) Spending on IT hardware,
software and consulting is projected to decline.

Logical Reasoning Skill: Numerical
Required capability: Diagram, OCR

K DATA LEAKAGE CONCERNS OF EXISTING BENCHMARKS

As shown in 14, sourcing data from gated sources allows LogicVista to greatly minimize the risk
of data leakage. In an experiment, we randomly sampled 50 images from datasets such as MM-vet,
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Figure 14: LogicVista mitigates potential data leakage by sourcing from gated private datasets
(with permission). This approach ensures a fair comparison by isolating MLLM reasoning abilities,
preventing any overlap with information that may have been included in their training data.

MMEvalPro, RAVEN, and MathVista Yu et al. (2023); Huang et al. (2024); Zhang et al. (2019);
Lu et al. (2024), and used Google’s reverse image search. We found that all samples from existing
benchmarks were publicly available online, whereas nearly all of LogicVista’s samples were inac-
cessible, either behind paywalls or requiring registration. Since most of LogicVista’s data is not
publicly available, it is much more difficult to scrape for training MLLM models. This restricted
access reduces the chances of LogicVista’s samples being included in training datasets, unlike in
open benchmarks.

L CROWDSOURCING ANNOTATION TOOL

To scale LogicVista for the future, we have released an annotation tool similar to the one used in our
annotation process. This tool facilitates robust annotations by incorporating rounds of peer review
before finalizing entries in LogicVista. Additionally, it is web-based, allowing the community to
contribute to LogicVista from anywhere. We hope this will enable LogicVista to grow and increase
its sample size significantly.
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Figure 15: Example of the annotation process using our tool, enabling the community to contribute
to scaling LogicVista effectively.
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Figure 16: Additional example of annotation process using our crowdsourcing tool
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