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Abstract

Gaussian processes with deep neural networks demonstrate to be a strong learner
for few-shot learning since they combine the strength of deep learning and kernels
while being able to well capture uncertainty. However, it remains an open problem
to leverage the shared knowledge provided by related tasks. In this paper, we
propose to learn Gaussian processes with dense inducing variables by meta-learning
for few-shot learning. In contrast to sparse Gaussian processes, we define a set of
dense inducing variables to be of a much larger size than the support set in each
task, which collects prior knowledge from experienced tasks. The dense inducing
variables specify a shared Gaussian process prior over prediction functions of all
tasks, which are learned in a variational inference framework and offer a strong
inductive bias for learning new tasks. To achieve task-specific prediction functions,
we propose to adapt the inducing variables to each task by efficient gradient descent.
We conduct extensive experiments on common benchmark datasets for a variety
of few-shot learning tasks. Our dense Gaussian processes present significant
improvements over vanilla Gaussian processes and comparable or even better
performance with state-of-the-art methods.

1 Introduction

Meta learning [31, 4, 18], also referred to as learning to learn, aims at learning to acquire shared
knowledge from a set of related tasks so as to fast resolve novel tasks sampled from the same
underlying task distribution. Meta learning largely stimulates the rise of few-shot learning [9], and the
recent advantages are mainly driven by designing learning algorithms that learn from massive tasks
and acquire prior knowledge, which combined with a small amount of labeled data, induces models
that produce reliable predictions on novel tasks. In practice, the acquisition of prior knowledge can
be realized in different forms. Model agnostic meta-learning (MAML) [9] learns to adapts to new
tasks by few iterations of gradient descend, which inspires many follow-up methods [3, 12, 22, 46].
The adaptation of the entire network makes it hard to be scaled to large networks, and many recent
efforts focus on adapting the last classification layer only [14, 5], while assuming a universal feature
extractor that is shared across all tasks. Despite the remarkable progress, challenges remain due to
the uncertainty in making predictions with very limited data, which requires models to have high
robustness for few-shot learning.

Gaussian processes [25] serve as a powerful model for the inference of functions, which enjoy
appealing properties including natural uncertainty quantification and robustness when the amount of
data is limited. By combining the strong learning ability of deep neural networks, Gaussian processes
with deep kernels further demonstrate improved performance on supervised learning [44]. To alleviate
the computational cost, sparse Gaussian processes were widely studied by learning a sparse set of
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inducing variables to effectively approximate the full dataset. In sparse Gaussian processes, the
inducing variables usually in the forms of pseudo data or a subset of training data are expected to
capture statistics of the whole dataset.

Gaussian processes offer desirable robustness to data scarcity by capturing uncertainty, and enjoy the
high expressiveness of deep kernels. This makes Gaussian processes a well-suited learning model for
few-shot learning as demonstrated in recent works [33, 23, 38]. It is shown in deep kernel transfer
(DKT) [23] that a Gaussian process with a meta-learned deep kernel can deliver strong performance
through a simple kernel transfer. DKT relies on an important assumption that a universal deep kernel
can be obtained through training on a limited amount of tasks. However, this assumption can be too
restricted to generalize to novel tasks. In practice, when solving novel tasks, it is hardly guaranteed
that the learned deep kernels can well explain the data due to the scarce labeled data, and failing to
properly fit the Gaussian process prior can lead to inaccurate predictions. It is therefore crucial to
leverage more knowledge to be shared among Gaussian processes for individual tasks, which remains
an outstanding problem for Gaussian process few-shot learning.

In this paper, we introduce learning to learn Gaussian processes by a dense set of inducing variables
for few-shot learning. In particular, we assume a Gaussian process prior over the prediction functions
of few-shot learning tasks, which is specified by a set of inducing variables learned from data. These
inducing variables are dense in the sense that they have a much larger cardinality compared to the
support set of each individual task. Under the meta-learning setting, the dense inducing variables are
learned to collect the shared knowledge from experienced tasks to improve the learning of new tasks
effectively with limited data.

To achieve task-specific prediction functions, we propose to adapt the inducing variables to each
task by the gradient descent update. Without adding extra model parameters, the adaptation permits
online fitting to the Gaussian processes prior to each individual task, and therefore allows the model
to better fit any novel tasks at test time. In addition, in contrast to sparse Gaussian processes, we
learn the inducing variables in a low-dimensional deep feature space, which significantly reduces the
compute cost of both learning and adapting the dense inducing variables.

The resultant dense Gaussian processes inherit the strong learning ability of deep kernels and enjoy
the robustness to data scarcity and innate ability of uncertainty quantification, providing an effective
few-shot learner. We validate the effectiveness of the proposed dense Gaussian processes on a variety
of few-shot learning tasks. We observe that dense Gaussian processes achieve substantial performance
improvements over vanilla deep Gaussian processes for few-shot learning and deliver state-of-the-art
performance on common benchmarks for few-shot learning. Moreover, our dense Gaussian processes
demonstrate strong generalization on cross-domain few-shot learning tasks.

In summary, we make three major contributions as follows:

• We introduce dense Gaussian processes by learning a set of dense inducing variables for
few-shot learning. The inducing variables specify a Gaussian process prior over predictive
functions across tasks, which collect shared knowledge from experienced tasks and provide
strong inductive bias for learning new tasks efficiently and effectively.

• We propose gradient descent based adaptation to establish task-specific prediction functions
based on the Gaussian process prior. The gradient descent-based adaptation is efficient
without any auxiliary network components for inferring task representations.

• We conduct extensive experiments on common benchmark datasets for few-shot classi-
fication. The proposed dense Gaussian processes achieve consistent improvements over
previous Gaussian processes with deep kernels and deliver comparable or even better results
than state-of-the-art methods.

2 Methodology

In this section, we start with a brief review of few-shot learning; and the key ingredients that build the
foundation of the proposed method. We then introduce in detail learning to learn Gaussian processes
with dense inducing variables for few-shot learning.
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2.1 Backgrounds

Few-shot learning. The common practice of training few-shot learners is to formulate it as a
episodic training. In each episode, the training is realized by simulating a few-shot learning task,
where the learner is provided with a set of few label data called the support set S, and required to
make predictions on the corresponding query set Q with unlabeled test samples. Taking few-shot
image classification as an example, it is defined as a N -way K-shot learning problem, where K
is usually a small number, e.g., K = 5. Typically, in each episode indexed by t, one few-shot
classification task is generated by first sampling N categories from the training data, each of which
contains K samples to form the support set St = {x1, . . . ,xN⇥K}. An adaptation to the few-shot
classification model is then performed on St, by, e.g., computing prototypes [32], or updating the
network parameters [9]. After adaptation, the query set is formed by evenly sampling M samples
from each category, i.e., Qt = {x0

1, . . . ,x
0
N⇥M}, to evaluate the updated model, and the error is

propagated back to update the parameters.

Gaussian processes with deep kernels. Gaussian processes (GP) [25] place a prior distribution
p(f) over the target functions f . Consider we have a set of n datapoints, D = (xi,yi)

N
i=1 with

additive noise yi = f(xi) + ✏i, where ✏i ⇠ N (0,�2). The GP prior over f can be written as,
p(f) = N (0,Knn), (1)

where Knn = K(xn,xn) is the kernel matrix of n training datapoints, and the likelihood is

p(y|f) =
nY

i=1

p(yi|fi) =
nY

i=1

N (fi,�
2). (2)

Given a test data point x⇤, its predictive posterior is characterized by a Gaussian distribution,
f⇤ ⇠ N (f⇤|µ⇤,�⇤), where

µ⇤ = k⇤
T (Knn + �2I)�1y

�⇤ = k(x⇤,x⇤)� k⇤
T (Knn + �2I)�1k⇤

(3)

Given a deep neural network �✓ : X �! Z, which maps from input space to deep feature space, we
obtain the deep kernel function [44],

k(xi,xj |✓) = k(�✓(xi),�✓(xj)) = k(zi, zj). (4)
The dimensionality of deep feature space Z is usually smaller than the original input space X,
especially for image data, leading to more efficient kernel learning and inference. In this way,
the GP prior in our method is parameterized by the network � as p(f) = N (f |0,Knn), where
Knn = K(zn, zn) = K(xn,xn|�✓) is the covariance matrix calculated based on deep features, and
the function values f are defined over deep features f = f(Z) = f(�(X)).

Sparse Gaussian Processes The posterior inference in a Gaussian Process induces a cubic com-
plexity of O(n3), which scales poorly with a huge amount of datapoints n. Sparse Gaussian processes
[36, 34, 17] are widely studied to improve the scalability of standard GPs, and a popular direction
introduces m inducing variables {Z̃i}

m
i=1 to approximate the full GP marginal likelihood, where

typical m ⌧ n in favor of improved efficiency.

In sparse Gaussian processes, the optimization for the inducing variables {Z̃i}
m
i=1 can be achieved

through variational inference [36]. And the GP prior [36] is augmented with the function values of
inducing variables fm , f(Z̃) as p(f , fm) = p(f |fm)p(fm), and the joint distribution can therefore
be expressed as:

p(y, f , fm) = p(y|f)p(f |fm)p(fm), (5)
where it is assumed that y is conditionally independent of f given fm. By minimizing the dis-
tance between the true posterior p(f , fm|y) and the variational approximate posterior q(f , fm) =
p(f |fm)q(fm), where q(fm) is a free variational Gaussian distribution N (fm|µ,⇤), the maximization
of log likelihood amounts to maximizing a variational lower bound:

log p(y) �

Z

f ,fm

q(f , fm)log
p(y, f , fm)

q(f , fm)
dfdfm , L(Z̃,�, q) (6)
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Figure 1: The graphical illustration of the proposed dense Gaussian processes for few-shot learning.

2.2 Learning to Learn Dense Gaussian Processes

In this section, we derive our dense Gaussian processes by inducing variables under the episodic
training setting of meta-learning for few-shot learning.

Adapting Gaussian Process Priors For a C-way K-shot classification task, we adapt f c ⇠

GPc(0,Kc), and the samples from the posterior predictive are combined based on a multi-class
likelihood such as the softmax function. We would like to learn a Gaussian Process prior over the
prediction function, which can be adapted to a few-shot learning task by its support set with a few
gradient descent updates. The Gaussian process prior is established by a set of dense inducing
variables, which is much larger than the support set in each task. The inducing variables are learned
from data which serve to collect shared knowledge from experienced tasks to facilitate efficient
learning of new tasks.

Formally, in an episode of the C-way K-shot task, the GP learner is provided with a support set
St = {xc

k,y
c
k}

C,K
c=1,k=1. We adapt a task-specific GP prior in the form of specific kernels Kc(�c, Z̃c)

for each class within the task, which can be achieved through an adaptation based on Eq. 6, with both
parameters initialized by the meta representation �0, Z̃0,

�c(�0), Z̃c(Z̃0) = argmax
�,Z̃

L(�, Z̃, q). (7)

As shown in [36], L(�, Z̃, q) can be first maximized by analytically solving the optimal qo(fm),

qo(fm) = N(fm|µo,⇤o), µo = ��2Kmm⌃Kmny, ⇤
o = Kmm⌃Kmm, (8)

where now n = |S| = C ⇥ K, thus Kmn denotes the covariance matrix between m inducing
variables and n support set data, and ⌃ = (Kmm + ��2KmnKT

mn)
�1. The Derivation is provided

in the Appendix A. Thus, the lower bound can be written as,

L(�, Z̃) = log N (y|0,�2I + K̂nn)�
1

2�2
Tr(Knn � K̂nn), (9)

where K̂nn = KnmK�1
mmKT

nm. Note that (9) can be adopted for multi-class classification on the
support set. To be specific, consider a binary classification task where y 2 {0, 1}, it can be solved
by the proposed dense GP regression by assuming a Gaussian likelihood. With the one-versus-rest

scheme, the regression model can be extended to solve the C-way classification task. Specifically, a
regressor is learned for each class to predict whether a sample x belongs to this class (with y = 1) or
not (with y = 0). Each regressor is formulated as a single dense GP with its own adapted inducing
variables. By maximizing (9), we can obtain an adapted GP prior for each class that parameterized by
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Algorithm 1 Learning to learn dense inducing variables.
1: Given: A description of the tasks as N -way K-shot with M query samples at each episode.
2: Given: Inner-loop and out-loop learning rates ↵ and �, number of steps I for inner-loop

optimization.
3: Initialize � and Z̃
4: repeat

5: Sample task with support set S = {xc
k}

C,K
c=1,k=1 and query set Q = {x0

j}
M
j=1 in each task.

6: Extract feature vectors for both S and Q by applying zck = �(xc
k) and z0j = �(x0

j), respec-
tively.

7: for Class n = 1 : N do

8: for Inner iterations i = 1 : I do

9: Perform inner-loop adaptation and tuned the per-class inducing variables Z̃c,i for a
class-adapted GP prior by applying (14).

10: end for

11: end for

12: With Z̃c,I obtained, calculate the predictive posterior using (11), and perform the outer-loop
adaptation by applying (15).

13: until Converge
14: Return � and Z̃0.

Z̃c,�c. Ideally, the well-trained inducing variables can sparsely approximate the full dataset, and
reduce the prohibitive computation complexity to O(nm2).

Given a query sample x⇤, the posterior predictive distribution for class n, q(f c⇤ |xc
⇤) = N (µc

⇤, (�
2)c⇤)

can be calculated as
µc
⇤ = k⇤m⌃Kc

mny

(�2)c⇤ = kc(x⇤,x⇤)�Kc
⇤m(Kc

mm)�1(kc
⇤m)> + kc

⇤m⌃(kc
⇤m)>,

(10)

and the multi-class posterior predictive can be expressed as,

p(yc
⇤ = 1|x⇤) =

exp(f c⇤ · ⌧)P
c0 exp(f

c0
⇤ · ⌧)

, with f c⇤ ⇠ q(f c⇤ |x⇤), (11)

where ⌧ is a learned temperature for MLE. Note the trainable temperature ⌧ here allows automatic
scaling to the unnormalized multi-class posterior predictive, and a similar implementation can also be
found in [5]. Although sharing the same formulation, the ⌧ here serves a completely different role as
the temperature used in uncertainty calibration. The loss of empirical risk on the query set, acting as
the outer-loop criteria, can be then be calculated as

LOuter(Z̃
0,�0) =

X

(x⇤,y⇤)2Q

� log p(y⇤|x⇤). (12)

In this way, the GP prior adapted to the task t by St is further supervised by the query set Qt. This in
turn incorporates more knowledge from each task to consolidate task-shared meta knowledge into
�0, Z̃0, which enables new tasks to be learned efficiently.

Dense Inducing Variables The aforementioned few-shot episodic training deep kernel allows an
inner-loop adaptation to the model, and achieves better adaptation to the GP prior on novel tasks.
However, performing adaptation to the entire deep kernel involves updating the deep neural network
that parameterized the kernel, which introduces dramatically high computation cost and latency.
Meanwhile, explicitly leveraging the meta knowledge learned from massive tasks, e.g., with memory
that allows adaptive information retrieval [48], or data hallucination [45] that expands the support set
of current tasks have demonstrated impressive results on few-shot learning. Inspired by the idea of
explicit knowledge representation in few-shot learning, and data approximation through inducing
variables in sparse Gaussian processes, we introduce dense inducing variables, which are learned as
a rich set of inducing variables that carry the meta-knowledge of the entire task distribution in the
latent deep feature space, and permit efficient model adaptation to novel tasks.
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Specifically, instead of acting as a sparse approximation to the data of any particular task, the dense
inducing variables here specify a shared Gaussian process prior over prediction functions of all tasks,
are introduce to support the entire tasks distribution, from which a potentially infinite number of tasks
can be sampled from.

To achieve effective modeling of the cross task GP prior, we allow the dense inducing variables to be
have a larger cardinality than the support set in a single task, i.e., m � |S|. Notably, unlike standard
sparse Gaussian processes that learn the dense inducing variables as pseudo inputs in raw data space
of high dimension, we propose to directly learn inducing variables in the same latent space of the
feature from the deep neural network. By doing so, learning inducing variables effectively bypasses
the heavy computation cost, and also enables efficient online adaptation to the inducing variables.

With dense inducing variables specifying a hyperprior over predictive functions across tasks, and
included as hyperparameters in the deep kernel �, we now introduce the online update, which induces
an adapted Gaussian process prior over the prediction function for a specific task, through a gradient
descent based adaptation to the dense inducing variables.

Specifically, given the support set of the task with support set St, we perform adaptation of the
Gaussian process prior by using the few labeled data, and rewrite (7) as

LInner(Z̃) = log N (y|0,�2I + K̂nn)�
1

2�2
Tr(Knn � K̂nn), (13)

and adapt the inducing variables by

Z̃c,i = Z̃c,i�1
� ↵rZ̃c,i�1LInner(Z̃

c,i�1), (14)

where ↵ specifies an inner-loop learning rate, and each Z̃0
n initialized with Z̃0. Thanks to the first-

order approximation to the computationally heavy second-order derivative, the training with (14) can
be remarkably accelerated.

Given the adapted inducing variables on the i-th task, the predictive posterior of function values on
the query set can then be efficiently obtained by performing meta updates to both the feature extractor
and the dense inducing variables calculated based on (12),

� = �� �r�LOuter(�, Z̃0)

Z̃0 = Z̃0
� �rZ̃0LOuter(�, Z̃0),

(15)

with � specifying the learning rate for the outer loop.

Note that we assume a universal feature extractor � and update it only in the outer loop, which
is commonly used in meta-learning for efficiency and generalization to more powerful backbones.
Meanwhile, the specification of the task-specific Gaussian process prior through adapting dense
inducing variables endows our model with high flexibility and strong generalization to novel tasks
without scarifying efficiency, as we will demonstrate in our experiments.

In contrast to the previous work that simply learns transferable Gaussian processes on few-shot
learning [23], our method adopts episodic learning to adapt the Gaussian process prior to each
task by updating the dense inducing variables, which parameterize the deep kernel jointly with the
deep feature extractor �. The overall training procedure of the dense Gaussian process model is
summarized in Algorithm 1.

3 Experiments

In this section, we support the proposed methods with strong experimental results. We present exten-
sive experiments on both in-domain and cross-domain few-shot image classification. Visualizations
of the uncertainty quantification with examples of few-shot regression are provided in Appendix
Figure A. We finalize the discussions with the ablation study on the effectiveness of important
components of the proposed method.

3.1 Datasets and Settings

We perform experiments on the widely used few-shot learning benchmarks including miniImageNet,
tieredImageNet, CIFAR-FS , and Caltech-UCSD [42] (CUB). In miniImageNet [41], there are 100
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Table 1: Performance comparisons on miniImageNet and the Conv-4 network with 95% confidence
intervals.

Methods miniImageNet tieredImageNet CIFAR-FS

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MatchingNets [41] 43.56 ± 0.84 55.31 ± 0.73 - - - -
MAML [10] 48.70 ± 1.84 63.11 ± 0.92 51.67 ± 1.81 70.30 ± 1.75 58.90 ± 1.91 71.52 ± 1.10
Reptile [22] 49.97 ± 0.32 65.99 ± 0.58 - - - -
R2-D2 [6] 48.70 ± 0.60 65.50 ± 0.60 - - 60.20 ± 1.80 70.91 ± 0.91
VERSA [14] 53.31 ± 1.80 67.30 ± 0.91 - - 62.51 ± 1.70 75.11 ± 0.91
RelationNets [35] 50.44 ± 0.82 65.32 ± 0.70 54.48 ± 0.93 65.32 ± 0.70 55.00 ± 1.01 69.30 ± 0.80
ProtoNets [32] 47.40 ± 0.60 65.41 ± 0.52 53.31 ± 0.89 72.69 ± 0.74 55.50 ± 0.70 72.01 ± 0.60
VSM [48] 54.73 ± 1.60 68.01 ± 0.90 56.88 ± 1.71 74.65 ± 0.81 63.42 ± 1.90 77.93 ± 0.80
DKT [23] 49.73 ± 0.07 64.00 ± 0.09 - - - -
OVE PG GP + Cosine (ML) [33] 50.02 ± 0.35 64.58 ± 0.31 - - - -
OVE PG GP + Cosine (PL) [33] 48.00 ± 0.24 67.14 ± 0.23 - - - -

Our 56.32± 0.28 72.64± 0.26 58.43± 0.38 76.17 ± 0.34 64.17± 0.31 78.42 ± 0.26

Table 2: Performance comparisons on the CUB dataset with 95% confidence intervals.

Methods CUB (Conv-4) CUB (ResNet-10)
1-shot 5-shot 1-shot 5-shot

Feature Transfer 46.19 ± 0.64 68.40 ± 0.79 63.64 ± 0.91 81.27 ± 0.57
ABML [26] 49.57 ± 0.42 68.94 ± 0.16 - -
Baseline ++ [7] 61.75 ± 0.95 78.51 ± 0.59 69.55 ± 0.89 85.17 ± 0.50
MatchingNet [41] 60.19 ± 1.02 75.11 ± 0.35 71.29 ± 0.87 83.47 ± 0.58
ProtoNet [32] 52.52 ± 1.90 75.93 ± 0.46 73.22 ± 0.92 85.01 ± 0.52
RelationNet [35] 62.52 ± 0.34 78.22 ± 0.07 70.47 ± 0.99 83.70 ± 0.55
MAML [10] 56.11 ± 0.69 74.84 ± 0.62 70.32 ± 0.99 80.93 ± 0.71
Bayesian MAML [47] 55.93 ± 0.71 72.87 ± 0.26 - -
DKT [23] 62.96 ± 0.62 77.76 ± 0.62 72.27 ± 0.30 85.64 ± 0.29
OVE PG GP + Cosine (ML) [33] 63.98 ± 0.43 77.44 ± 0.18 - -
OVE PG GP + Cosine (PL) [33] 60.11 ± 0.26 79.07 ± 0.05 - -

Ours 69.18 ± 0.41 81.48 ± 0.58 78.83 ± 0.67 89.97 ± 0.63

image classes from a subset of ImageNet [8], with 600 images for each class. We follow the standard
practice [9] to split the training, validation, and testing sets with 64, 16, and 20 classes, respectively.
tieredImageNet [28] is a large subset of ImageNet that contains 608 classes with 1,300 samples in
each class. Specifically, in tieredImageNet, there are 351 classes from 20 categories for training,
97 classes from 6 categories for validation, and 160 classes from 8 different categories for testing.
Samples for both miniImageNet and tieredImageNet are random cropped and resized to 84⇥ 84 for
training, and standard center cropping is performed to the testing images. The 200 classes in the
CUB dataset is divided into 100, 50, and 50 classes, for training, validation, and testing, respectively.
CIFAR-FS adopts all the 100 classes in the CIFAR-100 dataset with training, validation, and testing
splits of 64, 16, and 20 classes, respectively. Each class contains 600 image samples. The image
resolution for CIFAR-FS is 32⇥ 32.

3.2 Few-Shot Image Classification

The results of few-shot classification on miniImageNet, tieredImageNet, CIFAR-FS , and Caltech-
UCSD (CUB) are reported in Tables 1 and 2. For comprehensive comparisons, we adopt two
backbone networks with different scales. On all three datasets, we achieve comparable or often
better performance than state-of-the-art methods. Our method yields the accuracy of 72.64 on the
miniImageNet dataset under the 5-way 5-shot setting, which surpasses the previous best method
by up to 5%. In particular, our dense Gaussian processes achieve much better performance than
the recent Gaussian processes based methods [23, 33]. This demonstrates the effectiveness of our
method by learning dense inducing variables. For more experimental detail please refer to Appendix
Section B.
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Table 3: Performance comparisons for cross-domain few-shot classification with 95% confidence
intervals.

Methods Omniglot ! EMNIST miniImageNet ! CUB

1-shot 5-shot 1-shot 5-shot

Feature Transfer 64.22 ± 1.24 86.10 ± 0.84 32.77 ± 0.35 50.34 ± 0.27
ABML [26] 76.37 ± 0.29 87.96 ± 0.28 29.35 ± 0.26 45.74 ± 0.33
Baseline ++ [7] 56.84 ± 0.91 80.01 ± 0.92 39.19 ± 0.12 57.31 ± 0.11
MatchingNet [40] 75.01 ± 2.09 87.41 ± 1.79 36.98 ± 0.06 50.72 ± 0.36
ProtoNet [32] 72.04 ± 0.82 87.22 ± 1.01 33.27 ± 1.09 52.16 ± 0.17
RelationNet [35] 75.62 ± 1.00 87.84 ± 0.27 37.13 ± 0.20 51.76 ± 1.48
MAML [10] 72.68 ± 1.85 83.54 ± 1.7 34.01 ± 1.25 48.83 ± 0.62
Bayesian MAML [47] 63.94 ± 0.47 65.26 ± 0.30 33.52 ± 0.36 51.35 ± 0.16
DKT [23] 75.40 ± 1.10 90.30 ± 0.49 40.14 ± 0.18 56.40 ± 1.34
OVE PG GP (ML) [33] 68.43 ± 0.67 86.22 ± 0.20 39.66 ± 0.18 55.71 ± 0.31
OVE PG GP (PL) [33] 77.00 ± 0.50 87.52 ± 0.19 37.49 ± 0.11 57.23 ± 0.31

Ours 78.32 ± 0.49 90.78 ± 0.24 43.45 ± 0.38 60.48± 0.53

3.3 Cross-Domain Few-Shot Image Classification

The efficient adaptation to the GP prior through updating the dense inducing variables enables the
proposed method with improved generalization to novel tasks with unseen categories. To fully
demonstrate the remarkable generalization, we perform cross-domain few-shot image classifica-
tion. Following common practice, we adopt two cross-domain settings, Omniglot ! EMNIST and
miniImageNet! CUB. The results are reported in Table 3. The proposed dense Gaussian processes
demonstrate high generalizability across domains for few-shot classification and achieve much better
performance than the recent Gaussian process based methods [23, 33] in the setting of generalization
from Omniglot to CUB.

3.4 Ablation Study

We perform extensive ablation studies to provide insights into the effectiveness of the proposed dense
Gaussian processes for few-shot learning. These experiments are performed on the CUB dataset.

Effectiveness of dense inducing variables The proposed dense inducing variables enable shared
knowledge to be collected from experienced tasks and applied to new unseen tasks. We show how the
number of inducing variables affects the performance of our model. As shown in Figure 2, we report
performance on both 5-way 1-shot and 5-way 5-shot experiments. We test a sequence of values of m
starting from 8, which is just slightly larger than the number of support set samples in a 5-way 1-shot
experiment. And the value of m is progressively increased to 1024. It is clearly demonstrated that, on
both experiments with different shots, the performance grows monotonically w.r.t. the number of
inducing points that are utilized. And the performance tends to saturate when m > 256. To maintain
a balance between efficiency and performance, we choose m = 256 throughout all the experiments.
The results in Figure 2 also validate the effectiveness of specifying the GP prior through ‘dense’
inducing variables, with much more elements compared to the support set in each task.

Effectiveness of inner-loop adaptation In the proposed method, the task-specific GP prior adap-
tation is achieved by few-step gradient descent to the dense inducing variables. For the selection of
the best configuration of the inner-loop optimization, we present comparisons performed with the
number of steps I in the inner-loop gradient descent, and the inner-loop learning rate ↵. As shown in
Figure 14, we plot the classification accuracy for 5-way 5-shot setting, and show the performance
obtained by conducting 1 to 20 steps of inner-loop update with three different values of ↵. It is
clearly shown that the performance reaches the peak within 5 steps of inner-loop update, and it does
not improve with even more steps of adaption, especially when combined with larger learning rates.
This indicates the efficiency of the proposed adaption of the Gaussian process prior to each task.
Moreover, a large ↵ can lead to performance drop very fast when performing more than 1 step of
inner-loop update. To keep the balance between accuracy and efficiency, we choose ↵ = 0.01 and
I = 5 throughout all the experiments.
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Figure 2: The performance with different sizes
of inducing variables.

Figure 3: The performance with different num-
bers of adaptation steps and hyper-parameters.

4 Related Work

Metric learning [32] has been explored for few-shot learning, which assumes that different related
tasks would share the same metric to measure similarity. Vinyals et al. [41] proposed the matching
network, which learns to map a small labeled support set and an unlabelled example to its label,
obviating the need for fine-tuning to adapt to new class types. This work was originally developed
for one-shot learning, and extended to a few-shot setting by Snell et al. [32]. They proposed the
prototypical network to learn a metric space in which classification can be performed by computing
distances to prototype representations of each class and the prototype of each class is the cluster of
samples in that class. To enhance the expressivity of the prototypes, Allen et al. [1] proposed infinite
mixture prototypes to adaptively represent both simple and complex data distributions for few-shot
learning. Satorras et al. [30] solved few-shot learning with the prism of inference on a partially
observed graphical model.

Meta-learning based on optimization has been extensively studied [27, 10, 2]. The core idea of
optimization-based methods is to learn an optimization procedure that is shared across tasks, which
can be applied to new tasks for quick adaptation, once learned in the meta-train stage. Ravi et al.
[27] proposed an LSTM based meta-learner to learn the exact optimization algorithm used to train a
neural network classifier in the few-shot regime; in their methods, apart from the learned optimization
algorithm, a good initialization of model parameters is also obtained after training. Finn et al. [11]
proposed a model agnostic meta-learning (MAML) algorithm, which was built upon the assumption
that related tasks sharing initial parameters of neural networks could be adapted to specific tasks
with a few steps of gradient descent updates. It was believed that the initial weights combined with a
few more steps of gradient descent can approximate any learning algorithm, and thus gradient-based
meta-learning had a number of practical benefits. Finn et al. [13] extended MAML in a probabilistic
framework. Rajeswaran et al. [24] developed the implicit MAML [10] algorithm, which depended
only on the solution to the inner level optimization. Zintgraf et al. [50] updated context parameters
with one or several gradient steps on a task-specific loss that serves as an additional input to the
model and were adapted on individual tasks.

It has also been investigated to explicitly design a meta-learner to learn a base-learner. Bertinetto et al.
[6] explored the feasibility of incorporating fast solvers with closed-form solutions as the base learning
component of a meta-learning system. Gordon et al. [15] developed meta-learning approximate
probabilistic inference for prediction. The support set was used to produce the parameter distribution
of the classifier, which was applied to the query set for prediction. Mishra et al. [20] proposed a
generic meta-learner architecture that used a novel combination of temporal convolutions and soft
attention. Zhen et al. [49] introduced learning to learn kernels with variational random features for
few-shot learning, where a specific kernel is inferred for each individual tasks conditioning on global
context information collected by LSTMs. Recently, memory has generated increasing attention in the
machine learning community, which was used to augment deep neural networks [43, 16]. It has also
been introduced to the meta-learning framework for few-shot learning [29, 21, 48].
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Gaussian processes have recently been introduced for Few-shot Learning [39, 23, 33, 33]. Tossou
et al. [39] learn a parameterized kernel operator that can be combined with a differentiable kernel
algorithm during inference. Deep Kernel Transfer (DKT) [23] explore Gaussian processes for few-
shot classification, which learns covariance functions parameterized by deep neural networks. More
recently, Titsias et al. [38] applies Gaussian processes to meta-learning by maximizing the mutual
information between the query set and a latent representation of the support set. Snell et al. [33]
develop a Gaussian process classifier by combining Pólya-Gamma augmentation and the one-vs-each
softmax approximation [37] in order to efficiently marginalize over functions rather than model
parameters. In our work, we explore a dense set of inducing variables in Gaussian processes for
few-shot classification. The resultant dense Gaussian processes enable more knowledge to be shared
among related tasks and transferred to new unseen tasks for efficient and effective learning. Notably,
the idea of inducing points in GP also stimulates progress in many other directions of research.
Set transformer [19] introduced a transformer architecture with an inducing-point-inspired design
for efficient computation. This serves as a piece of supportive evidence for using inducing points
in meta-learning, as we show in this paper that using inducing points to collect and accumulate
shared knowledge from previously seen, related tasks offers a strong inductive bias for efficiently and
effectively solving new tasks with few labeled data only.

5 Conclusion

In this paper, we introduce learning to learn dense inducing variables for few-shot learning. By
specifying a Gaussian process prior prediction functions, we introduce dense inducing variables,
which are learned from data to collect shared knowledge from previous work to facilitate efficient and
effective learning of new tasks. With a universal deep feature extractor learned from the training tasks,
we achieve task-specific Gaussian process prior by adapting the dense inducing variables through
an inner-loop few-step gradient optimization. The resultant dense Gaussian processes are endowed
with strong generalization and robustness. The effectiveness of the proposed method is validated on a
variety of benchmark datasets, and state-of-the-art performance across tasks is observed. Notably, the
substantial performance improvements on the cross-domain few-shot learning further demonstrate
the strong generalization of the proposed method.
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