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I. INTRODUCTION

Various rapidly evolving AI systems are primarily designed
to infer and explore the solution landscape through data-driven
learning. In the context of embodied AI for robotics, this
paradigm is also widely investigated. Diverse data sources can
be leveraged here, such as pre-trained vision-language models
[1, 2], online human video [3, 4], and teleoperation [5, 6].
However, these data sources may present several challenges.
From the perspective of the sensorimotor system, humans
and various robotic systems possess significantly different
modalities, making it challenging to transfer one’s policy to
another. Moreover, they are more likely to extract relatively
coarse-level strategies rather than precise-level control, and
the cost of configuring new systems and environments, and
collecting data is high. On the other hand, physics simulators
[7, 8] can be leveraged to complement this weakness. Various
sensor and actuator systems can be implemented with minimal
effort, and arbitrary control strategies can be tested within
the system. Also, data generation is often much than real-
time, especially when utilizing highly parallelized hardware
architectures [9].

However, the paradigm of using a physics simulator as a
data generator also has fundamental weaknesses. The follow-
ing problems (P) are the ones I aim to address in my research.

P1. Unlike other data sources from the real world, physics
simulators are fundamentally model-based. These models in-
corporate various components, including dynamics, contact
mechanics, object geometry, and other miscellaneous physi-
cal artifacts. While some aspects of these models are well-
established (e.g., Newtonian dynamics), many others remain
elusive, particularly those related to contact interaction. A
physics simulator essentially serves as a solver for the equa-
tions governing these models. One crucial aspect here is
that, in many cases, modeling and solvers are interdependent.
No matter how accurate a model is, if it is numerically
intractable, the results produced by the simulator cannot be
considered reliable. Therefore, a key problem I aim to address
is the development of models for various physical artifacts in
simulation, such as intensive contact and local deformation,
along with solvers that are effectively tailored to handle these
models in an efficient and reliable manner.

P2. Physics simulators themselves only provide fine-grained
data, as they essentially output state transitions based on
action inputs. The characteristics of such fine-grained data can
introduce inefficiencies and limitations in its utilization. For

Fig. 1. I am developing physics simulators to generate reliable data by
balancing trade-offs while considering the interdependencies between models
and solvers. Additionally, I am building a framework to obtain data at a more
coarse-grained level through inverse problem-solving, leveraging the internal
structure of the simulator.

example in reinforcement learning, exploration is conducted
based on random actions [10], which may struggle to “dig up”
useful results. Similarly, in grasping, which is a widely studied
problem in manipulation, data are often generated through
rejection sampling of the random grasping action in simulation
[11]. For more coarse-grained data, a physics simulator should
be able to generate data for various inverse problems by
leveraging its internal structure, rather than relying on random
trials by the user and treating it as a black box. Therefore, a key
problem I aim to address is the development of a framework
to efficiently search for useful data from a simulator.

II. CURRENT RESEARCH

A. Reliable Contact Modeling and Solver

Various robotic simulators adopt different models and
solvers to handle contact interactions. In most cases, they must
balance a subtle trade-off between accuracy, efficiency, and
reliability. For example, the soft convex model [12, 13] used
in MuJoCo and Drake provides numerical efficiency but may
introduce undesirable behaviors such as bouncing and gliding
effects. These trade-offs become even more pronounced in sce-
narios with intensive contact formation and stiff interactions,
which frequently occur in dexterous robotic manipulation. In
this context, I have developed variations of the augmented
Lagrangian (AL) method [14]. This approach modifies the
original AL formulation for convex optimization [15] to
robotic multi-contact simulation, interpreting the problem as a



sequence of feasible subproblems. The underlying philosophy
is that the model and solver operate interdependently: for each
subproblem, the model is iteratively updated to approximate
the desired contact condition as closely as possible while
remaining within a numerically feasible boundary. At the
same time, each subproblem can be efficiently solved using
a tailored solver algorithm [14, 16].

This interdependency between contact modeling and the
solver can also be leveraged in robotic simulation with de-
formable objects. One of my representative works in this
area is contact nodalization and diagonalization (COND [17]).
COND builds on a modeling approach where contact forces
act directly on the system’s nodal coordinates. The subse-
quent solver can then precisely enforce contact conditions
over nonlinear elastic materials, while computations can be
performed highly efficiently without requiring matrix factor-
ization or multiplication. Such a balance of trade-offs can be
effectively applied to sim-to-real verification of deformable
object manipulation [17, 18].

B. New Geometry Representation

Geometry representation is related to both P1 and P2, as
its design impacts both the performance of the simulation
itself and the solution process of inverse problems. In stan-
dard practice, primitives and meshes are the most widely
used models in simulators. However, each approach has its
own limitations. Primitives lack the representational power to
accurately model a sufficiently wide range of objects in real-
world environments. On the other hand, meshes can introduce
stability and differentiability issues due to their discrete nature
[19]. Meanwhile, tailored functional representations can be
developed for specific purposes, such as neural radiance fields
[20] for rendering. A key question is: what is a good functional
representation for physics simulation and data generation?
Motivated by this question, I have developed the concept
of a differentiable support function (DSF [21]). DSF defines
diverse range of convex geometries by a prescribed functional
form of support function [22]. Given the definition, I showed
they theoretically guarantee the property of differentiable
contact feature: contact gap, points, normal between DSFs are
always differentiable. Using a set of DSFs, one can represent
a diverse range of non-convex objects in the real world
[23] while offering several advantages. First, differentiability
ensures a smooth transition of contact forces over time steps,
enhancing the stability of the simulation. Moreover, gradient-
based reasoning for contact interactions can be established.
This reasoning includes estimation, planning, and control -
which will be more specified in Sec. II-C.

C. Efficient Inference over Contact Interaction

As mentioned in P2, extracting useful data from simulation
is a challenging problem. Prevalent strategies for this are based
on random sampling, nonlinear optimization, or a combina-
tion of both [24]. My primary focus is on generalized and
compositional modeling of reasoning over contact interactions.
The design I propose, termed contact factor graphs (CFG

[25]), can incorporate diverse factors such as the number of
active contacts, their locations, directions, and modes. Based
on this, CFG can be utilized to generate solutions (i.e., data)
for diverse inverse problems, including planning (grasping,
placing, etc.), estimation (assembly, etc.), and control (push-
ing, pivoting, etc.). Moreover, combined with the geometry
module in Sec. II-B, I develop a differentiable probabilistic
distribution model on CFG, along with an efficient bi-level
inference scheme based on convex optimization and the enve-
lope theorem. Currently, I am working on a method to integrate
CFG inference with diverse high-level reasoning (e.g., task-
level [26]) and sampling to generate various types of plausible
data from a non-convex, multi-modal search space.

III. FUTURE RESEARCH

A. Semi-supervised Physics Simulator

As stated above, data generation using a physics simulator
is bound to encounter the well-known problem of the sim-to-
real gap. Common strategies to addressing this issue involves
domain randomization [27] or domain adaptation [28], both
of which operate outside the simulator. However, more funda-
mentally, I believe that solutions within the simulator are nec-
essary. While my current research, as described in Sec. II-A,
partially addresses this issue, there remain several aspects of
the simulator and solver that are difficult to control and heavily
rely on heuristics: such as the amount of damping, clustering
rules on the contact manifold, solver hyperparameters, etc.

One promising solution I envision is integrating semi-
supervised learning with the simulator. In many cases, physi-
cally implausible behaviors can be qualitatively defined: such
as excessive penetration, high jerk, or abrupt changes in force.
By leveraging such post hoc evaluations, the simulator can be
rewarded and gradually learn to adjust its internal parameters
and rules accordingly. This semi-supervised approach can be
done very efficiently, without any refined data or human inter-
vention. Such learning can be further enhanced by integrating
supervision from real-world experimental results [29].

B. Integration with Generative Model

While various emerging studies have been conducted on
action/behavior models [6, 30], the integration of diverse
data generated from simulations has not yet been extensively
explored. One key problem I consider is the integration of data
from different sources. Data extracted from simulations (e.g.,
by inference Sec. II-C) inherently captures pure multimodal
aspects of the model. While this facilitates the discovery of
various modes, it may also introduce unnecessary complexity
by failing to adequately incorporate human biases. In contrast,
extracting information as rich as that from simulations is
challenging in real-world environments. I believe that the
synergy between these data sources will facilitate the high
performance intelligence in the future. To this end, I find it
promising to study effective theoretical and empirical combi-
nations of simulation and real-world data for improving robot
performance.
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