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ABSTRACT

Contemporary deep learning frameworks have been applied to solve meteorolog-1

ical problems (e.g., front detection, synthetic radar generation, precipitation now-2

casting, e.t.c.) and have achieved highly promising results. Spatial precipitation3

downscaling is one of the most important meteorological problems. However,4

the lack of a well-organized and annotated large-scale dataset hinders the training5

and verification of more effective and advancing deep-learning models for precip-6

itation downscaling. To alleviate these obstacles, we present the first large-scale7

spatial precipitation downscaling dataset named RainNet, which contains more8

than 62, 400 pairs of high-quality low/high-resolution precipitation maps for over9

17 years, ready to help the evolution of deep models in precipitation downscal-10

ing. Specifically, the precipitation maps carefully collected in RainNet cover var-11

ious meteorological phenomena (e.g., hurricane, squall, e.t.c.), which is of great12

help to improve the model generalization ability. In addition, the map pairs in13

RainNet are organized in the form of image sequences (720 maps per month or14

1 map/hour), showing complex physical properties, e.g., temporal misalignment,15

temporal sparse, and fluid properties. Two machine-learning-oriented metrics are16

specifically introduced to evaluate or verify the comprehensive performance of the17

trained model, (e.g., prediction maps reconstruction accuracy). To illustrate the18

applications of RainNet, 14 state-of-the-art models, including deep models and19

traditional approaches, are evaluated. To fully explore potential downscaling so-20

lutions, we propose an implicit physical estimation framework to learn the above21

characteristics. Extensive experiments demonstrate that the value of RainNet in22

training and evaluating downscaling models.23

1 INTRODUCTION24

Deep learning has made an enormous breakthrough in the field of computer vision, which is ex-25

tremely good at extracting valuable knowledge from numerous amounts of data. In recent years,26

with computer science development, a deluge of Earth system data is continuously being obtained,27

coming from sensors all over the earth and even in space. These ever-increasing massive amounts of28

data with different sources and structures challenge the geoscience community, which lacks practi-29

cal approaches to understand and further utilize the raw data (Reichstein et al. (2019)). Specifically,30

several preliminary works (Groenke et al. (2020); White et al. (2019); He et al. (2016); Ravuri et al.31

(2021); Angell & Sheldon (2018); Veillette et al. (2020)) try to introduce machine learning and deep32

learning frameworks to solve meteorological problems, e.g., spatial precipitation downscaling.33

In this paper, we focus on the spatial precipitation downscaling task. Spatial precipitation down-34

scaling is a procedure to infer high-resolution meteorological information from low-resolution vari-35

ables, which is one of the most important upstream components for meteorological task (Bauer et al.36

(2015)). The precision of weather and climate prediction is highly dependent on the resolution and37

reliability of the initial environmental input variables, and spatial precipitation downscaling is the38

most promising solution. The improvement of the weather/climate forecast and Geo-data quality39

saves tremendous money and lives; with the fiscal year 2020 budget over $1 billion, NSF funds40

thousands of colleges in the U.S. to research on these topics (NSF (2020)).41

Unfortunately, there are looming issues hinders the research of spatial precipitation downscaling42

in the machine learning community: 1). Lack of ”machine-learning ready” datasets. The existing43

1



Under review as a conference paper at ICLR 2022

machine-learning-based downscaling methods are only applied to ideal retrospective problems and44

verified on simulated datasets (e.g., mapping bicubic of precipitation generated by weather fore-45

cast model to original data (Berrisford et al. (2011))), which significantly weakens the credibility46

of the feasibility, practicability, and effectiveness of the methods. It is worth mentioning that the47

data obtained by the simulated degradation methods (e.g., bicubic) is completely different from the48

real data usually collected by two measurement systems (e.g., satellite and radar) with different49

precision. The lack of a well-organized and annotated large-scale dataset hinders the training and50

verification of more effective and complex deep-learning models for precipitation downscaling. 2).51

Lack of tailored metrics to evaluate machine-learning-based frameworks. Unlike deep learning (DL)52

and machine learning (ML) communities, scientists in meteorology usually employ maps/charts to53

assessing downscaling models case by case based on domain knowledge (He et al. (2016); Walton54

et al. (2020)), which hinders the application of Rainnet in DL/ML communities. For example, (He55

et al. (2016)) use log-semivariance (spatial metrics for local precipitation), quantile-quantile maps56

to analyzing the maps. 3). an efficient downscaling deep-learning framework should be established.57

Contrary to image data, this real precipitation dataset covers various types of real meteorological58

phenomena (e.g., Hurricane, Squall, e.t.c.), and shows the physical characters (e.g., temporal mis-59

alignment, temporal sparse and fluid properties, e.t.c.) that challenge the downscaling algorithms.60

Traditional computationally dense physics-driven downscaling methods are powerless to handle the61

increasing meteorological data size and flexible to multiple data sources.62

To alleviate these obstacles, we propose the first large-scale spatial precipitation downscaling dataset63

named RainNet, which contains more than 62, 400 pairs of high-quality low/high-resolution precip-64

itation maps for over 17 years, ready to help the evolution of deep models in spatial precipitation65

downscaling. The proposed dataset covers more than 9 million square kilometers of land area, which66

contains both wet and dry seasons and diverse meteorological phenomena. To facilitate DL/ML and67

other researchers to use RainNet, we introduce 6 most concerning indices to evaluate downscaling68

models: mesoscale peak precipitation error (MPPE), heavy rain region error (HRRE), cumulative69

precipitation mean square error (CPMSE), cluster mean distance (CMD), heavy rain transition speed70

(HRTS) and average miss moving degree (AMMD). In order to further simplify the application of in-71

dices, we abstract them into two weighted and summed metrics: Precipitation Error Measure (PEM)72

and Precipitation Dynamics Error Measure (PDEM). Unlike video super-resolution, the motion of73

the precipitation region is non-rigid (i.e., fluid), while video super-resolution mainly concerns rigid74

body motion estimation. To fully explore how to alleviate the mentioned predicament, we propose75

an implicit dynamics estimation driven downscaling deep learning model. Our model hierarchi-76

cally aligns adjacent precipitation maps, that is, implicit motion estimation, which is very simple77

but exhibits highly competitive performance. Based on meteorological science, we also proved that78

the dataset we constructed contained the full information people may need to recover the higher79

resolution observations from lower resolution ones.80

The main contributions of this paper are:81

• To the best of our knowledge, we present the first REAL (non-simulated) Large-Scale Spa-82

tial Precipitation Downscaling Dataset for deep learning;83

• We introduce 2 simple metrics to evaluate the downscaling models;84

• We propose a downscaling model with strong competitiveness. We evaluate 14 competitive85

potential solutions on the proposed dataset, and analyze the feasibility and effectiveness of86

these solutions.87

2 BACKGROUND88

At the beginning of the 19th century, geoscientists recognized that predicting the state of the atmo-89

sphere could be treated as an initial value problem of mathematical physics, wherein future weather90

is determined by integrating the governing partial differential equations, starting from the observed91

current weather. Today, this paradigm translates into solving a system of nonlinear differential92

equations at about half a billion points per time step and accounting for dynamic, thermodynamic,93

radiative, and chemical processes working on scales from hundreds of meters to thousands of kilo-94

meters and from seconds to weeks (Bauer et al. (2015)). The Navier–Stokes and mass continuity95

equations (including the effect of the Earth’s rotation), together with the first law of thermodynamics96
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Figure 1: Dataset Visualization. Please zoom-in the figure for better observation. Please note that
the details of the precipitation map are partially lost due to file compression. Here we plot 2 groups
of typical meteorological phenomena (hurricane and squall) in the dataset. To learn more about the
dataset, please visit our project website (coming soon) and supplementary material.

and the ideal gas law, represent the full set of prognostic equations in the atmosphere, describing the97

change in space and time of wind, pressure, density and temperature is described (formulas given in98

supplementary) (Bauer et al. (2015)). These equations have to be solved numerically using spatial99

and temporal discretization because of the mathematical intractability of obtaining analytical solu-100

tions, and this approximation creates a distinction between so-called resolved and unresolved scales101

of motion.102

2.1 SPATIAL DOWNSCALING OF PRECIPITATION103

The global weather forecast model, treated as a computational problem, relying on high-quality104

initial data input. The error of weather forecast would increase exponentially over time from this105

initial error of input dataset. Downscaling is one of the most important approaches to improve the106

initial input quality. Precipitation is one of the essential atmospheric variables that are related to daily107

life. It could easily be observed, by all means, e.g., gauge station, radar, and satellites. Applying108

downscaling methods to precipitation and creating high-resolution rainfall is far more meaningful109

than deriving other variables, while it is the most proper initial task to test deep learning’s power110

in geo-science. The traditional downscaling methods can be separated into dynamic and statistical111

downscaling.112

Dynamic downscaling treats the downscaling as an optimization problem constraint on the physical113

laws. The dynamic downscaling methods find the most likely precipitation over space and time114

under the pre-defined physical law. It usually takes over 6 hours to downscale a 6-hour precipitation115

scenario globally on supercomputers (Courtier et al. (1994)). As the dynamic downscaling relying116

on pre-defined known macroscopic physics, a more flexible weather downscaling framework that117
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could easily blend different sources of observations and show the ability to describe more complex118

physical phenomena on different scales is desperately in need.119

Statistical downscaling is trying to speed up the dynamic downscaling process. The input of statisti-120

cal downscaling is usually dynamic model results or two different observation datasets on different121

scales. However, due to the quality of statistical downscaling results, people rarely apply statistical122

downscaling to weather forecasts. These methods are currently applied in the tasks not requir-123

ing high data quality but more qualitative understanding, e.g., climate projection, which forecasts124

the weather for hundreds of years on coarse grids and using statistical downscaling to get detailed125

knowledge of medium-scale future climate system.126

3 RAINNET: SPATIAL PRECIPITATION DOWNSCALING IMAGERY DATASET127

3.1 DATA COLLECTION AND PROCESSING128

To build up a standard realistic (non-simulated) downscaling dataset for computer vision, we129

selected the eastern coast of the United States, which covers a large region (7 million km2;130

105◦ ∼ 65◦W , 25◦ ∼ 50◦N , GNU Free Documentation License 1.2) and has a 20-year high-quality131

precipitation observations. We collected two precipitation data sources from National Stage IV QPE132

Product (StageIV (Nelson et al. (2016)); high resolution at 0.04◦ (approximately 4km), GNU Free133

Documentation License 1.2) and North American Land Data Assimilation System (NLDAS (Xia134

et al. (2012)); low resolution at 0.125◦ (approximately 13km)). StageIV is mosaicked into a na-135

tional product at National Centers for Environmental Prediction (NCEP), from the regional hourly/6-136

hourly multi-sensor (radar+gauges) precipitation analyses (MPEs) produced by the 12 River Fore-137

cast Centers over the continental United States with some manual quality control done at the River138

Forecast Centers (RFCs). NLDAS is constructed quality-controlled, spatially-and-temporally con-139

sistent datasets from the gauges and remote sensors to support modeling activities. Both products140

are hourly updated and both available from 2002 to the current age.141

In our dataset, we further selected the eastern coast region for rain season (July ∼ November,142

covering hurricane season; hurricanes pour over 10% annual rainfall in less than 10 days). We143

matched the coordinate system to the lat-lon system for both products and further labeled all the144

hurricane periods happening in the last 17 years. These heavy rain events are the largest challenge145

for weather forecasting and downscaling products. As heavy rain could stimulus a wide-spreading146

flood, which threatening local lives and arousing public evacuation. If people underestimate the147

rainfall, a potential flood would be underrated; while over-estimating the rainfall would lead to148

unnecessary evacuation orders and flood protection, which is also costly.149

3.2 DATASET STATISTICS150

At the time of this work, we have collected and processed precipitation data for the rainy season151

for 17 years from 2002 to 2018. One precipitation map pair per hour, 24 precipitation map pairs152

per day. In detail, we have collected 85 months or 62424 hours, totaling 62424 pairs of high-153

resolution and low-resolution precipitation maps. The size of the high-resolution precipitation map154

is 624 × 999, and the size of the low-resolution is 208 × 333. Various meteorological phenomena155

and precipitation conditions (e.g., hurricanes, squall lines, e.t.c.) are covered in these data. The156

precipitation map pairs in RainNet are stored in HDF5 files that make up 360 GB of disk space. We157

select 2 typical meteorological phenomena and visualize them in Fig. 1. Our data is collected from158

satellites, radars, gauge stations, e.t.c., which covers the inherent working characteristics of different159

meteorological measurement systems. Compared with traditional methods that generate data with160

different resolutions through physical model simulation, our dataset is of great help for deep models161

to learn real meteorological laws.162

3.3 DATASET ANALYSIS163

In order to help design a more appropriate and effective precipitation downscaling model, we have164

explored the property of the dataset in depth. As mentioned above, our dataset is collected from mul-165

tiple sensor sources (e.g., satellite, weather radar, e.t.c.), which makes the data show a certain extent166

of misalignment. Our efforts here are not able to vanquish the misalignment. This is an intrinsic167
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problem brought by the fusion of multi-sensor meteorological data. Limited by observation meth-168

ods (e.g., satellites can only collect data when they fly over the observation area), meteorological169

data is usually temporal sparse, e.g., in our dataset, the sampling interval between two precipitation170

maps is one hour. The temporal sparse leads to serious difficulties in the utilization of precipitation171

sequences. Additionally, the movement of the precipitation position is directly related to the cloud.172

It is a fluid movement process that is completely different from the rigid body movement concerned173

in Super-Resolution. At the same time, the cloud will grow or dissipate in the process of flowing174

and even form new clouds, which further complicates the process. In the nutshell, although existed175

SR is a potential solution for downscaling, there is a big difference between the two. Especially,176

the three characteristics of downscaling mentioned above: temporal misalignment, temporal sparse,177

fluid properties, which make the dynamic estimation of precipitation more challenging.178

4 EVALUATION METRICS179

Due to the difference between downscaling and traditional figure super-resolution, the metrics that180

work well under SR tasks may not be sufficient for precipitation downscaling. By gathering the181

metrics from the meteorologic literature (the literature includes are Zhang & Yang (2004); Maraun182

et al. (2015); Ekström (2016); He et al. (2016); Pryor & Schoof (2020); Wootten et al. (2020)),183

we select and rename 6 most common metrics (a metrics may have multiple names in different184

literature) to reflect the downscaling quality: mesoscale peak precipitation error (MPPE), cumulative185

precipitation mean square error (CPMSE), heavy rain region error (HRRE) , cluster mean distance186

(CMD), heavy rain transition speed (HRTS) and average miss moving degree (AMMD).These 6187

metrics can be separated as reconstruction metrics: MPPE, HRRE, CPMSE, AMMD, and dynamic188

metrics: HRTS and CMD.189

The MPPE (mm/hour) is calculated as the difference of top quantile between the generated/real190

rainfall dataset which considering both spatial and temporal property of mesoscale meteorological191

systems, e.g., hurricane, squall. This metric is used in most of these papers (for example Zhang192

& Yang (2004); Maraun et al. (2015); Ekström (2016); He et al. (2016); Pryor & Schoof (2020);193

Wootten et al. (2020) suggest the quantile analysis to evaluate the downscaling quality).194

The CPMSE (mm2/hour2) measures the cumulative rainfall difference on each pixel over the time-195

axis of the test set, which shows the spatial reconstruction property. Similar metrics are used in196

Zhang & Yang (2004); Maraun et al. (2015); Wootten et al. (2020) calculated as the pixel level197

difference of monthly rainfall and used in He et al. (2016) as a pixel level difference of cumulative198

rainfall with different length of record.199

The HRRE (km2) measures the difference of heavy rain coverage on each time slide between gen-200

erated and labeled test set, which shows the temporal reconstruction ability of the models. The201

AMMD (radian) measures the average angle difference between main rainfall clusters. Similar202

metrics are used in Zhang & Yang (2004); Maraun et al. (2015); Wootten et al. (2020) as rainfall203

coverage of a indefinite number precipitation level and used in He et al. (2016); Pryor & Schoof204

(2020) as a continuous spatial analysis.205

As a single variable dataset, it is hard to evaluate the ability of different models to capture the206

precipitation dynamics when temporal information is not included (a multi-variable dataset may207

have wind speed, a typical variable representing dynamics, included). So here we introduce the208

first-order temporal and spatial variables to evaluate the dynamical property of downscaling results.209

Similar approaches are suggested in Maraun et al. (2015); Ekström (2016); Pryor & Schoof (2020).210

The CMD (km) physically compares the location difference of the main rainfall systems between211

the generated and labeled test set, which could be also understand as the RMSE of the first order212

derivative of precipitation data on spatial directions.The HRTS (km/hour) measures the difference213

between the main rainfall system moving speed between the generated and labeled test set which214

shows the ability for models to capture the dynamic property, which could be also understand as the215

RMSE of the first order derivative of precipitation data on temporal direction.Similar metrics are216

suggested in Maraun et al. (2015); Ekström (2016); Pryor & Schoof (2020) as the auto-regression217

analysis and the differential analysis.218

More details about the metrics and their equations are given in supplementary materials. One met-219

rics group (MPPE, HRRE, CPMSE, AMMD) mainly measures the rainfall deviation between the220
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Figure 2: The pipeline of our proposed baseline model for spatial precipitation downscaling.

generated precipitation maps and GT. The other group (HRTS and CMD) mainly measures the221

dynamic deviation of generated precipitation maps. In order to further simplify the application222

of indices, we abstract them into two weighted and summed metrics: Precipitation Error Mea-223

sure (PEM) and Precipitation Dynamics Error Measure (PDEM). We first align the dimensions224

of these two groups of metrics respectively. The first group of metrics (MPPE, HRRE, CPMSE,225

AMMD) is normalized, weighted and summed to get the precipitation error measure (PEM). Ac-226

cording to Gupta et al. (1999), all the metrics are transferred to Percent Bias (PBIAS) to be suit-227

able for metrics weighting. The original definition of PBIAS is the bias divided by observation, as228

PBIAS = |Qmodel − Qobs|/|Qobs|. Here we rewrite the original metrics to PBIAS by dividing229

the metrics with annual mean observations of the original variables (AMO), as PBIASPEM
i =230

|MetricsPEM
i |/|AMOPEM

i |,MetricsPEM
i = {MPPE,HRRE,CPMSE,AMMD}. In our231

dataset, AMOPEM
MPPE = 64, AMOPEM

HRREM = 533, AMOPEM
CPMSE = 0.64, AMOPEM

AMMD = 332,232

AMOPEM
HRTS = 15, AMOPEM

CMD = 26. The metrics then are ensembled to a single metric233

(PEM) with equal weight, as PEM =
∑

i 0.25 · PBIASPEM
i . Following the same procedure,234

we then ensemble the second group of dynamic metrics (HRTS and CMD) to a single metrics235

PDEM =
∑

i 0.5 · PBIASPDEM
i .236

We also include the most common used metrics RMSE as one single metrics in our metrics list.237

RMSE could evaluate both reconstruction and dynamic property of the downscaling result.238

5 APPLICATIONS OF RAINNET IN SPATIAL PRECIPITATION DOWNSCALING239

As a potential solution, Super-Resolution (SR) frameworks are generally divided into the Single-240

Image Super-Resolution (SISR) and the Video Super-Resolution (VSR). Video Super-Resolution is241

able to leverage multi-frame information to restore images, which better matches the nature of down-242

scaling. We will demonstrate this judgment in Sec. 6.1. The VSR pipeline usually contains three243

components: deblurring, inter-frame alignment, and super-resolution. Deblurring and inter-frame244

alignment are implemented by the motion estimation module. There are four motion estimation245

frameworks: 1). RNN based (Keys (1981); Tao et al. (2017); Huang et al. (2015); Haris et al.246

(2019)); 2). Optical Flow (Xue et al. (2019)); 3). Deformable Convolution based (Tian et al. (2020);247

Xiang et al. (2020); Wang et al. (2019)); 4). Temporal Concatenation (Jo et al. (2018); Caballero248

et al. (2017); Liao et al. (2015)). In fact, there is another motion estimation scheme proposed for249

the first time in the noise reduction task (Tassano et al. (2020)), which achieves an excellent video250

noise reduction performance. Inspired by (Tassano et al. (2020)), we design an implicit dynamics251

estimation model for the spatial precipitation downscaling. It is worth mentioning that our proposed252

model and the above four frameworks together form a relatively complete candidate set of dynamic253

estimation solutions.254

Proposed Framework. As shown in Fig. 2, our framework consists of two components: Implicit255

dynamic estimation module and downscaling Backbone. These two parts are trained jointly. Suppose256

there areN adjacent low-resolution precipitation maps {IL
T−N−1

2

, .., ILT , ..., I
L
T+N−1

2

}. The task is to257

reconstruct the high-resolution precipitation map IHT of ILT . The implicit dynamic estimation module258

is composed of multiple vanilla networks A = {A1, ...,AN−2} (N = 5 in this paper) sharing259

weights. Each vanilla network receives three adjacent frames as input, outputs, and intermediate260

results. The intermediate result can be considered as a frame with implicit dynamic alignment. We261
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concatenate all the intermediate frames as the input of the next module. The specific structure of262

the vanilla network can be found in the supplementary materials. The main task of the downscaling263

backbone is to restore the high-resolution precipitation map IHT based on the aligned intermediate264

frames. In order to make full use of multi-scale information, we use multiple Residual-in-Residual265

Dense Blocks (Wang et al. (2018)) in the network. We employ the interpolation+convolution (Odena266

et al. (2016)) as the up-sampling operator to reduce the checkerboard artifacts. After processing by267

downscaling backbone we get the final estimated HR map ÎHT .268

Model objective. The downscaling task is essentially to restore high-resolution precipitation maps.269

We learn from the super-resolution task and also applyL1 and perceptual loss (Johnson et al. (2016))270

as the training loss of our model. The model objective is shown below:271

L(̂IHT , IHT ) =‖ ÎHT − IHT ‖1 +λ ‖ φ(̂IHT )− φ(IHT ) ‖2, (1)

where φ denotes the pre-trained VGG19 network (Simonyan & Zisserman (2015)), we select the272

Relu5 − 4 (without the activator (Wang et al. (2018))) as the output layer. λ is the coefficient to273

balance the loss terms. λ = 20 in our framework.274

6 EXPERIMENTAL EVALUATION275

We conduct spatial precipitation downscaling experiments to illustrate the application of our276

proposed RainNet and evaluate the effectiveness of the benchmark downscaling frameworks. Fol-277

lowing the mainstream evaluation protocol of DL/ML communities, cross-validation is employed.278

In detail, we divide the dataset into 17 parts (2002.7∼2002.11, 2003.7∼2003.11, 2004.7∼2004.11,279

2005.7∼2005.11, 2006.7∼2006.11, 2007.7∼2007.11, 2008.7∼2008.11, 2009.7∼2009.11,280

2010.7∼2010.11, 2011.7∼2011.11, 2012.7∼2012.11, 2013.7∼2013.11, 2014.7∼2014.11,281

2015.7∼2015.11, 2016.7∼2016.11, 2017.7∼2017.11, 2018.7∼2018.11) by year, and sequentially282

employ each year as the test set and the remaining 16 years as the training set, that is, 17-fold283

cross-validation. All models maintain the same training settings and hyperparameters during the284

training phase. These data cover various complicated precipitation situations such as hurricanes,285

squall lines, different levels of rain, and sunny days. It is sufficient to select the rainy season of286

the year as the test set from the perspective of meteorology, as the climate of one area is normally287

stable.288

6.1 BASELINES289

Figure 3: The dynamic property of bench-
mark algorithms. The frameworks of VSR
are gathered in the lower-left corner of the
figure, which demonstrates that VSR meth-
ods are superior to SISR and traditional
methods in dynamic properties.

The SISR/VSR and the spatial precipitation down-290

scaling are similar to some extent, so we argue that291

the SR models can be applied to the task as the292

benchmark models. The input of SISR is a single293

image, and the model infers a high-resolution image294

from it. Its main focus is to generate high-quality295

texture details to achieve pleasing visual effects. In296

contrast, VSR models input multiple frames of im-297

ages (e.g., 3 frames, 5 frames, e.t.c.). In our experi-298

ments, we employ 5 frames. The core idea of VSR299

models is to increase the resolution by complement-300

ing texture information between different frames. It301

is worth mentioning that VSR models generally are302

equipped with a motion estimation module to alle-303

viate the challenge of object motion to inter-frame304

information registration.305

We evaluated 7 state-of-the-art SISR frameworks306

(i.e., Bicubic (Keys (1981)), SRCNN1 (Dong307

et al. (2016)), SRGAN2 (Ledig et al. (2017)),308

1https://github.com/yjn870/SRCNN-pytorch
2https://github.com/leftthomas/SRGAN
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Approach MPPE↓ HRRE↓ AMMD↓ CPMSE↓ HRTS↓ CMD↓ PEM↓ PDEM↓ RMSE×100↓
Kriging 4.036 339.641 0.204 4.891 9.958 12.277 0.259 0.568 0.372

Bicubic 4.600 306.996 0.208 3.678 10.453 12.389 0.247 0.587 0.345

SRCNN 5.333 296.950 0.225 3.929 10.091 12.396 0.252 0.575 0.405

SRGAN 14.125 298.290 0.221 91.464 9.429 11.891 0.352 0.543 0.603

EDSR 4.748 288.354 0.204 3.292 9.605 12.259 0.236 0.556 0.329

ESRGAN 6.205 407.848 0.219 4.483 10.201 17.035 0.305 0.668 0.563

DBPN 6.596 302.278 0.212 5.692 9.869 11.336 0.256 0.547 0.380

RCAN 4.709 272.189 0.200 3.062 9.772 12.055 0.227 0.558 0.325

SRGAN-V 10.007 291.546 0.210 35.932 8.276 10.448 0.286 0.477 0.557

EDSR-V 4.592 289.331 0.201 3.269 8.484 11.214 0.235 0.498 0.323

ESRGAN-V 7.187 413.398 0.213 4.010 7.887 10.695 0.309 0.469 0.399

RBPN 4.816 287.214 0.201 2.680 8.267 11.244 0.235 0.492 0.317

EDVR 2.148 213.034 0.179 1.352 8.479 10.060 0.180 0.476 0.329

Ours 4.198 221.859 0.191 1.890 7.723 9.568 0.197 0.441 0.312

Table 1: Cross-validation results. Comparison with state-of-the-art super resolution approaches.
The best performance is marked with red (1st best), blue (2nd best).

EDSR3 (Lim et al. (2017)), ESRGAN4 (Wang et al. (2018)), DBPN5 (Haris et al. (2018)),309

RCAN6 (Zhang et al. (2018)) and 5 VSR frameworks (i.e., SRGAN-V, EDSR-V, ESRGAN-V,310

RBPN7 (Haris et al. (2019)), EDVR8 (Wang et al. (2019)), of which 3 VSR methods (i.e., SRGAN-311

V, EDSR-V, ESRGAN-V) are modified from SISR. In particular, we build SRGAN-V, EDSR-V and312

ESRGAN-V by concatenating multiple frames of precipitation maps as the input of the model. In313

addition, we also evaluated the traditional statistics method Kriging (Stein (2012)), which is widely314

applied in weather forecasting. The mentioned 8 metrics are used to quantitatively evaluate the315

performance of these SR models and our method. Further, we select some disastrous weather as316

samples for qualitative analysis to test the model’s ability to learn the dynamic properties of the317

weather system. And we employ the implementation of Pytorch for Bicubic. We use 4 NVIDIA318

2080 Ti GPUs for training. We train all models with following setting. The batch size is set as 24.319

Precipitation maps are random crop into 64× 64. We employ the Adam optimizer, beta1 is 0.9, and320

beta2 is 0.99. The initial learning rate is 0.001, which is reduced to 1/10 every 50 epochs, and a total321

of 200 epochs are trained. We evaluate benchmark frameworks with 17-fold cross-validation. The322

downscaling performances are shown in Tab. 1. We divide the indicators mentioned above into two323

groups. PDEM measures the model’s ability to learn the dynamics of precipitation. PEM illustrates324

the model’s ability to reconstruct precipitation.325

From Tab. 1, we can learn that the overall performance of the VSR methods are better than SISR326

models, which shows that the dynamic properties mentioned above are extremely important for the327

downscaling model. Furthermore, it can be seen from Fig. 3 that the SISR method is clustered in the328

upper right corner of the scatter plot, and the VSR method is concentrated in the lower-left corner,329

which further shows that the dynamic properties of the VSR methods are overall better than the SISR330

methods. In addition, our method achieves the 1st best performance in RMSE, PDE, and achieve the331

second-best performance on PEM. The score shows that the implicit dynamic estimation framework332

3https://github.com/sanghyun-son/EDSR-PyTorch
4https://github.com/xinntao/ESRGAN
5https://github.com/alterzero/DBPN-Pytorch
6https://github.com/yulunzhang/RCAN
7https://github.com/alterzero/RBPN-PyTorch
8https://github.com/xinntao/EDVR
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LR(green) & HR Bicubic SRCNN SRGAN EDSR

ESRGAN DBPN RCAN SRGAN-V EDSR-V

ESRGAN-V RBPN EDVR DUF Ours

Figure 4: Visual comparison with state-of-the-art Super Resolution approaches. Please zoom-in the
figure for better observation. More results can be found in suppl.

used is feasible and effective. It is worth mentioning that the traditional downscaling method Kriging333

performs better than many deep learning models (e.g., SRGAN, ESRGAN)334

6.1.1 QUALITATIVE ANALYSIS335

We visualized the tropical cyclone precipitation map of the 166th hour (6th) in September 2010336

and the high-resolution precipitation map generated by different methods. As shown in Fig. 4, the337

best perceptual effects are generated by EDVR and Our framework. Zooming in the result image,338

the precipitation maps generated by SRGAN and EDSR present obvious checkerboard artifacts.339

The reason for the checkerboard artifacts should be the relatively simple and sparse texture pattern340

in precipitation maps. The results generated by Bicubic, RCAN, Kriging, and SRCNN are over-341

smooth. DBPN even cannot reconstruct the eye of the hurricane. Especially, the result generated by342

Kriging is as fuzzy as the input LR precipitation map. In conclusion, the visual effects generated343

by the VSR methods are generally better than the SISR methods and the traditional method. From344

the perspective of quantitative and qualitative analysis, the dynamics estimation framework is very345

critical for downscaling.346

7 CONCLUSION347

In this paper, we built the first large-scale real precipitation downscaling dataset for the deep learning348

community. This dataset has 62424 pairs of HR and LR precipitation maps in total. We believe this349

dataset will further accelerate the research on precipitation downscaling. Furthermore, we analyze350

the problem in-depth and put forward three key challenges: temporal misalignment, temporal sparse,351

fluid properties. In addition, we propose an implicit dynamic estimation model to alleviate the above352

challenges. At the same time, we evaluated the mainstream SISR and VSR models and found that353

none of these models can solve RainNet’s problems well. Therefore, the downscaling task on this354

dataset is still very challenging.355

This work still remains several open problems. Currently, the data domain of this research is limited356

to the eastern U.S. In future research, we would enlarge the dataset to a larger domain. The dataset357

is only a single variable now. In future research, we may include more variables, e.g. temperature358

and wind speed.359
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