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ABSTRACT

Text-to-speech (TTS) has shown great progress in recent years. However, most
existing TTS systems offer only coarse and rigid emotion control, typically via
discrete emotion labels or a carefully crafted and detailed emotional text prompt,
making fine-grained emotion manipulation either inaccessible or unstable. These
models also require extensive, high-quality datasets for training. To address
these limitations, we propose EmoSteer-TTS, a novel training-free approach, to
achieve fine-grained speech emotion control (conversion, interpolation, erasure)
by activation steering. We first empirically observe that modifying a subset of the
internal activations within a flow matching-based TTS model can effectively al-
ter the emotional tone of synthesized speech. Building on this insight, we then
develop a training-free and efficient algorithm, including activation extraction,
emotional token searching, and inference-time steering, which can be seamlessly
integrated into a wide range of pretrained models (e.g., F5-TTS, CosyVoice2,
and E2-TTS). In addition, to derive effective steering vectors, we construct a
curated emotional speech dataset with diverse speakers. Extensive experiments
demonstrate that EmoSteer-TTS enables fine-grained, interpretable, and continu-
ous control over speech emotion, outperforming the state-of-the-art (SOTA). To
the best of our knowledge, this is the first method that achieves training-free and
continuous fine-grained emotion control in TTS. Demo samples are available at
https://emosteer-tts-demo.pages.dev/.

1 INTRODUCTION

Text-to-speech (TTS) aims to generate natural-sounding human speech from textual input (Tan
et al., 2021; Xie et al., 2025). It has been widely adopted in various domains, including voice
assistants, robotics, and podcast production. Emotion-controllable TTS (EC-TTS) enhances this
capability by enabling control over the emotional tone of synthesized speech, making it more ex-
pressive and engaging. Fine-grained EC-TTS takes this further by allowing precise modulation of
the conveyed emotion intensity in synthesized speech. Such detailed control is vital for applications
requiring nuanced expressiveness, e.g., personalized storytelling (Rong et al., 2025), empathetic
human-computer interaction (Wadley et al., 2022), and precise speech editing (Peng et al., 2024).

Controlling the emotional tone of synthesized speech typically requires the simultaneous manipu-
lation of multiple characteristics, such as pitch, energy, and prosody. Independently adjusting any
of these attributes often leads to undesirable artifacts. Therefore, in the literature, existing methods
commonly adopt a conditional generation paradigm, including label-based methods that incorporate
discrete emotion labels (Cho et al., 2025) and description-based methods that use textual emotion
descriptions (Yang et al., 2025) as additional inputs to guide the speech synthesis process.

Label-based EC-TTS approaches use categorical labels (e.g., anger, happiness, fear) as an additional
input to control the emotional expression during training and inference. For example, StyleTagging-
TTS (Kim et al., 2021b) uses Sentence BERT (Reimers & Gurevych, 2019) to encode short phrases
or keywords as emotion labels to guide the synthesis. However, such methods rely on fixed emotion
labels, offering limited flexibility in control (Cong et al., 2025). Recent studies apply strength control
to emotion labels. For instance, EmoSphere++ (Cho et al., 2025) converts discrete labels into the
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Figure 1: Motivations of our work. (a) Existing paradigm for speech emotion control. (b) EmoSteer-
TTS offers training-free, fine-grained continuous emotion control with improved interpretability.

Valence-Arousal-Dominance (VAD) vector space (Mehrabian, 1980), where the origin represents a
neutral state. Both the type and intensity of emotion can be controlled by adjusting the direction
and magnitude of the emotional vector. However, these methods rely on large emotion-labeled
datasets and often struggle to generalize to unseen reference speech (Inoue et al., 2025).

On the other hand, description-based EC-TTS methods use textual prompts, such as “A girl says
welcome in a happy tone”, to describe the target emotion, guiding the TTS model to generate speech
that aligns with the given description. For example, CosyVoice2 (Du et al., 2024) leverages tex-
tual prompts to control emotional expressiveness, enhanced via instruction fine-tuning. Similarly,
EmoVoice (Yang et al., 2025) incorporates emotion descriptions into the text context to enable fine-
grained emotion control. However, such methods (Guo et al., 2023; Shimizu et al., 2024; Ji et al.,
2025; Li et al., 2023b) require large-scale datasets and carefully designed training procedures. Al-
though these methods enable finer emotion manipulation, their controllability is fundamentally
limited by the finite set of human language expressions, imposing an upper bound on control gran-
ularity. Moreover, they exhibit instability due to the inherent variability of textual descriptions and
the stochastic nature of token sampling in the language models used for encoding.

In summary, existing methods have two limitations, i.e., instability/poor generalization and coarse
controllability. The first arises from the lack of large-scale emotional speech datasets required for
effective model training. The second stems from the control strategies employed in existing methods,
which restrict the precision of emotion manipulation. Furthermore, the absence of exploration in
emotion representations within TTS models poses challenges for researchers seeking to understand
how speech emotions are encoded.

To address these limitations, we present EmoSteer-TTS, a training-free approach that enables fine-
grained, continuous emotion control, as illustrated in Fig. 1. Specifically, we begin by analyzing
the internal emotion representations of pretrained zero-shot TTS models, such as F5-TTS (Chen
et al., 2025) and CosyVoice2. These models use a Diffusion Transformer (DiT) (Peebles & Xie,
2023) as the backbone and employ flow matching (Lipman et al., 2023) to generate high-fidelity
mel-spectrograms. As shown in Fig. 2, we observe that only a subset of tokens, i.e., activations,
within the model significantly influences the emotional tone of the synthesized speech. Building on
this insight, we propose a simple yet effective algorithm to extract emotionally salient tokens, such
as those associated with “sad.” After identifying these tokens, we then use the difference between
emotional tokens and neutral tokens to construct steering vectors for six basic emotions (Ekman,
1992). These steering vectors, combined with an adjustable strength parameter, are then used to
control the synthesized emotional tone.

In summary, EmoSteer-TTS enables training-free and fine-grained emotion control, offering im-
proved interpretability over existing approaches. The contributions of our method are:

• We present the first fine-grained and training-free EC-TTS approach by identifying and
modulating internal emotion representations within existing TTS models.

• We provide new insights and enhanced interpretability for continuous EC-TTS by uncov-
ering the emotion steering dynamics in pretrained TTS models, offering practical guidance
for the design of the proposed algorithm.

• Extensive objective and subjective evaluations demonstrate the effectiveness of EmoSteer-
TTS in fine-grained speech emotion control, showing its potential applicability across a
wide range of pretrained TTS models.
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Figure 2: Adding a sadness steering vector to the activations in five DiT layers (1, 6, 11, 16, 21) of
F5-TTS, conditioned on neutral speech, substantially increases the predicted sadness probability.

2 RELATED WORK

Emotion-Controllable Text-to-Speech. Unlike traditional TTS systems, e.g., VITS (Kim et al.,
2021a) and VALL-E (Wang et al., 2023), that produce neutral or monotone speech, EC-TTS sys-
tems allow users to specify speech emotions, enabling more expressive and natural-sounding voices.
Label-based methods control emotion using discrete labels (Cho et al., 2025). For instance, EmoD-
ubber (Cong et al., 2025) uses a flow-based framework with positive/negative emotion guidance and
a classifier to adjust emotion intensity. HED-TTS (Inoue et al., 2025) models hierarchical emotion
distributions across speech segments, allowing multi-level intensity control. Description-based
methods use textual prompts to specify emotions (Shimizu et al., 2024; Li et al., 2025; Ji et al.,
2024; Zhou et al., 2025). PromptTTS (Guo et al., 2023) employs a BERT-based encoder to ex-
tract style from prompts and guide synthesis. VoxInstruct (Zhou et al., 2024) introduces seman-
tic speech tokens and classifier-free guidance for fine-grained control from emotion descriptions.
ControlSpeech (Ji et al., 2025) models emotional styles as Gaussian mixtures, aligning text and
audio via KL divergence to enable zero-shot, controllable synthesis. Some zero-shot methods, e.g.,
MaskGCT (Wang et al., 2025b) and Vevo (Zhang et al., 2025), can also synthesize emotional speech,
but they lack direct control and instead rely on reference speech. While these approaches have sig-
nificantly advanced expressive speech synthesis, they require large-scale datasets and training.

Activation Steering. Activation steering aims to directly modulate the internal activations of neural
networks, providing a means to exert fine-grained control over the behavior of pretrained models.
Activation steering has shown great potential in the realm of LLMs. For example, it can be used to
control the behavior of LLMs, such as enhancing the truthfulness of responses (Xiao et al., 2024;
Wang et al., 2025a). Researchers can identify the mapping between the activation distributions as-
sociated with false or misleading statements and those of accurate information (Rodriguez et al.,
2024). Then, during the generation process, the model’s activations are steered towards the distri-
bution representing truth, encouraging LLMs to produce more factually correct outputs (Li et al.,
2023a). Activation steering can also be used to control text-to-image (T2I) diffusion models (Li
et al., 2024; Nair et al., 2023). By modifying the activations of the diffusion model towards the dis-
tribution that corresponds to a particular style, e.g., impressionist or cubist, the model can generate
images with the desired aesthetic qualities (Rodriguez et al., 2024; Brack et al., 2022). Inspired by
these advances, we explore emotion representations in pretrained zero-shot TTS models and apply
activation steering, offering a stable and interpretable EC-TTS method.

3 METHOD

3.1 OVERVIEW

As shown in Fig. 3, the proposed EmoSteer-TTS approach consists of three key stages. First, we
compute activation differences using pairs of neutral and emotional reference speeches. Second,
we identify top-k emotion-relevant tokens (e.g., for “happy”) to construct a steering vector and its
associated weight vector. At inference time, given any unseen reference speech and text, we control
the emotion of the synthesized speech by applying the steering vector with a strength parameter to
modify internal activations. The proposed method is detailed in the following subsections.

3
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Figure 3: Overview of EmoSteer-TTS. Steering vectors and steering weights are derived from pairs
of neutral and emotional reference speech. During inference, these vectors are used to modulate the
activations in a TTS model, guiding it to synthesize speech that reflects the desired emotion.

3.2 ACTIVATION EXTRACTION

Our method focuses on zero-shot TTS models that use flow matching to synthesize mel-
spectrograms. Given a pretrained TTS model with |L| DiT layers, we use random sentence texts
along with M neutral speech samples (denoted as A) and N emotional speech samples (denoted as
B) as inputs to synthesize a total of M + N speech samples. For each model layer (a DiT block)
l ∈ L, we extract the first residual activations xl

a,i and xl
b,j for the synthesized speech conditioned

on reference samples Ai ∈ A and Bj ∈ B, respectively. The activation difference between neutral
and target emotional speech at layer l is defined as:

ul =
1

N

N∑
j=1

xl
b,j −

1

M

M∑
i=1

xl
a,i. (1)

This activation difference is also known as the difference-in-means (Belrose et al., 2023), which can
effectively extract robust feature directions. To ensure stable steering, we normalize ul by dividing
it by its L2 norm, resulting in a unit vector: ul ← ul

∥ul∥2
. The activation differences for all target

layers to be steered are defined as U = {ul | l ∈ L̂}, where L̂ ⊆ L denotes the set of selected layers.
It is worth noting that the direction of ul indicates the trajectory of emotional change in the feature
space, while its original magnitude reflects the extent of the transition between emotions.

Synthesized speech may vary in length. Therefore, we use nearest interpolation to align the extracted
activations (token sequences) to a fixed length, which is the average activation sequence length
across all M+N samples. As a result, each activation has the shape [avg seq length, hidden dim].

3.3 STEERING VECTOR CONSTRUCTION

After obtaining the activation difference ul, we select the top-k tokens most relevant to the target
emotion to construct the steering vector. As illustrated in Fig. 3, for each token in ul, we repeat token
i ∈ [1, 2, . . . , T ] T times to form a new vector ûl. We then modify the activation xl

a as follows:

x̂l
a ← fr(x

l
a + ûl), fr =

∥xl
a∥2

∥xl
a + ûl∥2

, (2)

where xl
a is the activation corresponding to a random sentence and a reference speech sample dif-

ferent from those used to compute ul, and fr is a function that renormalizes the modified activation
to preserve the original L2 norm, which ensures more stable modification Gaintseva et al. (2025).

After the activation modification, the model synthesizes the output sample Âi corresponding to token
i. We then use a pre-trained speech emotion recognition (SER) model, i.e., emotion2vec (Ma et al.,
2024), to predict the probability that Âi corresponds to the target emotion, denoted as Pemotion(Âi).
By computing Pemotion(Âi) for all tokens, we obtain the probability set:

P = {Pemotion(Âi)|i ∈ [1, T ]}, (3)

4
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and the indices of the top-k emotional tokens:

Itop-k = argsort(P)[: k]. (4)

Next, we zero out all non-top-k tokens in ul to derive the steering vector sl:

sl ← ul ⊙m, mi =

{
1, if i ∈ Itop-k

0, otherwise
, (5)

where m is a mask vector, and⊙ is element-wise multiplication. To apply adaptive steering strength
to each token, we compute a steering weight vector wl as follows:

wl = δ(P̂), P̂ = {Pemotion(Âi)|i ∈ Itop-k}, (6)

where δ is the Softmax function: δ(zi) = ezi∑k
j=1 ezj

. Finally, we get the weighted steering vector ŝl:

ŝl = ⟨sl,wl⟩ = wl
1s

l
1 +wl

2s
l
2 + ...+wl

T s
l
T , (7)

which can be used to steer speech emotions. Since most elements of the weighted steering vector are
zero, ŝl lies within a subspace of the TTS model’s feature space that is specifically responsible for
modeling emotional tone. To ensure the efficiency of the token searching process, we simultaneously
modify all selected layers at the same token indices, which can reduce the computational complexity
from O(|L̂| × avg seq length) to O(avg seq length).

3.4 FINE-GRAINED EMOTION CONTROL

In this subsection, we show how the proposed method enables fine-grained emotion control, includ-
ing emotion conversion, interpolation, erasure, and composite manipulation.

Emotion Conversion and Interpolation. As shown in Fig. 3, given the text and reference speech,
we can use the steering vector sl and weight wl to modify the activations in layer l ∈ L̂ as follows:

x̂l = fr(x
l + αŝl), (8)

where α controls the steering strength. Note that ŝl has the same shape as a token, i.e.,
[hidden dim]. Thus, the plus sign in Eq. 8 involves an implicit broadcasting operation. Fine-
grained emotion control, e.g., conversion and interpolation, can be achieved by tuning the parameter
α: when α = 0, the emotional tone of the synthesized speech remains unchanged; when α > 0, the
emotional tone is steered toward the target emotion; and when α < 0, it is steered in the opposite
direction of the target emotion.

Emotion Erasure. One may wish to synthesize new speech samples using the speaking style or
timbre from the reference speech while disregarding the emotional tone. Suppose the weighted
steering vector ŝl corresponds to the emotion conveyed by the reference speech, our method achieves
this by subtracting the weighted steering vector ŝl from the original activation xl, multiplied by the
projection of ŝl onto xl, which can be expressed as follows:

x̂l = fr(x
l − β(̂sl · xl)̂sl), (9)

where β is the erasing strength. Eq. 9 also involves implicit broadcasting operations because ŝl

is a single vector while xl is a token sequence. Explanation of Eq. 9: Different reference speech
samples may contain multiple emotions, including the target emotion at varying intensities. Our
goal is to remove only the target emotion. The projection operation quantifies the intensity of the
target emotion in the reference speech, while preserving all other speech characteristics.

Composite Control. EmoSteer-TTS also enables composite control over the emotional tone of
synthesized speech. For example, given a reference speech sample, emotion replacement can be
achieved through the following operation (̂slemoi is the weighted steering vector of emotion “emoi”):

x̂l = fr(x
l − β(̂slemo1 · x

l)̂slemo1 + αŝlemo2), (10)

which replaces emotion “emo1” with “emo2”. We can also realize multiple emotion steering:

x̂l = fr(x
l + α1ŝ

l
emo1 + α2ŝ

l
emo2 + ...+ αE ŝ

l
emoE ), (11)

5
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which is particularly useful for synthesizing speech with compound emotions, such as “contempt”
(disgust combined with mild anger), “pleasant surprise” (a mix of happiness and surprise), as well
as more nuanced emotions like “happiness tinged with sadness” or “anger intertwined with fear”.

EmoSteer-TTS enables fine-grained, continuous emotional control and supports multiple control
strategies, representing the first training-free EC-TTS approach. Appendix A provides code snippets
for the operations described above.

4 EXPERIMENT

4.1 DATASETS AND MODELS

Datasets for Steering Vector Construction. To obtain effective steering vectors, we construct a cu-
rated emotional speech dataset by collecting samples with clear emotional expression from multiple
corpora: MSP-Podcast (Lotfian & Busso, 2017), IEMOCAP (Busso et al., 2008), RAVDESS (Liv-
ingstone & Russo, 2018), CREMA-D (Cao et al., 2014), TESS (Pichora-Fuller & Dupuis, 2020),
SAVEE (Jackson & Haq, 2014), ASVP-ESD (Landry et al., 2020), CASIA (CASIA, 2023),
M3ED (Zhao et al., 2022), ESD (Zhou et al., 2022), and Emo-Emilia (Zhao et al., 2025). The
resulting dataset contains 6,900 utterances covering six basic emotions (anger, happiness, sadness,
disgust, surprise, fear) and neutrality. Each emotion includes 1,000 samples, 500 in English and 500
in Chinese, except for fear, which has 400. The dataset includes diverse speakers with a balanced
gender distribution. The construction details are provided in Appendix B. This dataset is used to
compute activation differences between neutral and emotional speech, as defined in Eq. 1. To iden-
tify the top-k tokens for each emotion, we synthesize speech using 10 random neutral ESD samples
as references (5 English and 5 Chinese).

Datasets for Inference-Time Emotion Steering. 1) In-distribution evaluation: We sample neutral
and emotional reference speeches from MSP-Podcast and ESD, which are excluded from steer-
ing vector computation. 2) Out-of-distribution (OOD) evaluation: We sample neutral speech from
SeedTTS Anastassiou et al. (2024) test sets and emotional speech from EMNS Noriy et al. (2023).

Models. We enhance three SOTA flow matching-based TTS models (F5-TTS, CosyVoice2, E2-
TTS (Eskimez et al., 2024)) using our proposed method, and compare their controllability with
that of leading EC-TTS baselines, including both label-based methods with adjustable control
strength (EmoSphere++, EmoDubber, HED-TTS (Inoue et al., 2025)) and description-based meth-
ods (EmoVoice, CosyVoice2, FleSpeech (Li et al., 2025)). Appendix C provides detailed rater
information, model and hardware configurations for all experiments.

4.2 EMOTION CONVERSION AND INTERPOLATION

Emotion Conversion. We conduct emotion conversion using 100 neutral reference speech sam-
ples (50 English from MSP-Podcast and 50 Chinese from ESD), with α=2.0 and k=200. We report
Word Error Rate (WER), Speaker Similarity (S-SIM), Emotion Similarity (E-SIM), and Natural-
ness Mean Opinion Score (N-MOS, 1–5 scale, see Appendix D for details). WER is derived from
Whisper-Large V3 (Radford et al., 2023) transcriptions. S-SIM is the cosine similarity between the
embeddings of synthesized and neutral reference from a speaker embedding model (Bredin et al.,
2020). E-SIM is computed as the cosine similarity between emotion2vec embeddings of synthe-
sized speech and 100 anchor emotional samples (per emotion) from MSP-Podcast and ESD. To
mitigate potential metric overfitting from emotion2vec, we also report E-SIM scores computed with
SenseVoice An et al. (2024) embeddings. Since we cannot guarantee the synthesis quality of repro-
duced baselines, we compute their scores using demo samples for fairness. The reproduced baseline
results are additionally reported in Appendix E. As shown in Table 1, EmoSteer-TTS achieves
superior performance across multiple methods. Integrated with F5-TTS, it yields a low WER of
2.79, close to CosyVoice2 (2.53) and far better than label-based baselines. It also maintains high S-
SIMs (0.66, 0.65), indicating strong speaker preservation. F5-TTS, E2-TTS, and CosyVoice2 with
EmoSteer-TTS reach the top E-SIM scores, outperforming all baselines and matching FleSpeech. In
N-MOS, “EmoSteer-TTS+CosyVoice2” (3.65) is close to the best (EmoVoice, 3.81), and our method
consistently outperforms label-based systems. Fig. 4(a) also shows the shift in emotion probability
distribution (averaged across three models) for 100 synthesized samples per emotional tone before
(α=0) and after (α=2) emotion conversion.
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Table 1: In-distribution and OOD comparison with emotion-controllable baselines.

Method
Conversion (α = 2.0) Interpolation Erasure (β = 2.5)

WER(↓) S-SIM(↑) E-SIM(↑) N-MOS(↑) EI-MOS(↑) E-SIM(↑) EE-MOS(↑)
emotion2vec / SenseVoice emotion2vec / SenseVoice

Label-based*
EmoSphere++ 16.25 0.44 0.25 / 0.24avg=0.245 3.23±0.81 3.50±1.05 - -
EmoDubber 18.61 0.41 0.25 / 0.22avg=0.235 2.47±1.22 2.21±1.08 - -
HED-TTS 13.27 0.52 0.22 / 0.26avg=0.240 3.31±0.79 2.59±0.76 - -

Description
-based*

EmoVoice 2.91 0.58 0.27 / 0.25avg=0.260 3.81±0.86 - - -
CosyVoice2 2.53 0.73 0.24 / 0.27avg=0.255 3.69±1.07 - - -
FleSpeech 9.34 0.54 0.29 / 0.26avg=0.275 3.07±0.75 - - -

Unsteered F5-TTS 2.14 0.66 0.07 / 0.04avg=0.055 3.79±0.89 - 0.03 / 0.05avg=0.040 1.21±1.17

E2-TTS 2.71 0.64 0.05 / 0.08avg=0.065 3.51±0.94 - 0.06 / 0.02avg=0.040 1.35±1.05

In-distribution evaluation on MSP-Podcast (25% en) and ESD (25% en, 50% zh)

EmoSteer-TTS#
(Ours)

+ F5-TTS 2.79 0.64 0.29 / 0.26avg=0.275 3.29±1.05 4.00±0.89 0.27 / 0.25avg=0.260 4.02±0.85

+ E2-TTS 3.28 0.59 0.28 / 0.28avg=0.280 3.31±0.97 3.38±1.09 0.24 / 0.26avg=0.250 3.63±1.17

+ CosyVoice2 2.83 0.65 0.26 / 0.29avg=0.275 3.65±1.08 3.56±1.15 0.26 / 0.25avg=0.255 3.94±0.97

Cross-datasets (OOD) evaluation on EMNS (25% en) and SeedTT test sets (25% en, 50% zh)

EmoSteer-TTS#
(Ours)

+ F5-TTS 2.65 0.65 0.25 / 0.27avg=0.260 3.58±1.04 3.46±1.08 0.25 / 0.22avg=0.235 3.92±0.99

+ E2-TTS 3.41 0.55 0.26 / 0.25avg=0.255 3.44±1.07 3.50±0.97 0.24 / 0.27avg=0.255 3.57±1.03

+ CosyVoice2 2.86 0.66 0.28 / 0.25avg=0.265 3.49±1.01 3.48±1.27 0.23 / 0.21avg=0.220 3.98±0.94

*: Training-based, #: Training-free, -: Neither label-based, description-based, nor unsteered methods support interpolation or erasure.
The top three results are indicated in boldface. Unsteered backbones are shown in gray for reference.

(b) Emotion interpolation. (c) Emotion erasure.(a) Emotion conversion.

Figure 4: Emotion steering results on MSP-Podcast and ESD. ● emotion2vec, ▲ SenseVoice.

Emotion Interpolation. We reuse the speech samples from the emotion conversion experiments
to perform interpolation (k=200), gradually shifting emotional tone from neutrality to a target emo-
tion. To assess fine-grained controllability, we report the Emotion Interpolation MOS (EI-MOS; 1–5
scale), which evaluates the alignment between target intensity and synthesized speech. Detailed cri-
teria for EI-MOS are provided in Appendix D. Label-based baselines use intensity levels (e.g., 0.5 or
1.0) to control, while description-based methods, lacking intensity control, are excluded in this ex-
periment. For fairness, baseline metrics are computed using their official demo samples. As shown
in Table 1, EmoSteer-TTS achieves higher EI-MOS than label-based baselines, indicating superior
capability in controlling emotional intensity. Notably, “EmoSteer-TTS+F5-TTS” obtains the high-
est EI-MOS of 4.00, outperforming EmoSphere++ and HED-TTS, showing better alignment with
intended emotion levels. E2-TTS and CosyVoice2 variants also perform well, suggesting EmoSteer-
TTS generalizes across different models. As shown in Fig. 4(b), the average predicted emotion
probabilities (via emotion2vec and SenseVoice) vary smoothly with α, illustrating EmoSteer-TTS’s
fine-grained controllability. However, we find that large α values (e.g., 3) may lead to unintelligi-
ble speech. Fig. 5(a) also illustrates smooth F0 transitions with increasing anger intensity. More
examples are provided in Appendix F.

4.3 EMOTION ERASURE

We randomly select 100 unseen emotional speech samples for each type of emotion from MSP-
Podcast (50 English) and ESD (50 Chinese), and erase the emotional tone using Eq. 9. We report the
average E-SIM between the emotionally erased samples and 100 randomly selected neutral samples
from MSP-Podcast (50 English) and ESD (50 Chinese). We also report Emotion-Erasure MOS (EE-
MOS, 1-5 scale), which indicates how well the synthesized speech reflects the intended emotion
erasure. Higher EE-MOS reflects better erasure performance. The standard for EE-MOS is detailed
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(a)

(b)

Figure 5: Visualization of F0 contours. (a)
An example showing how the F0 contour varies
with steering intensity; (b) The speech tone (F0
contour) becomes calmer after emotion erasure.

(a) Emotion replacement. (b) Multiple emotion steering.

Figure 6: Results of composite control: (a)
emotion replacement and (b) multi-emotion
steering (Abbreviations: Anger, Disgust, Fear,
Happiness, Sadness, Surprise)

in Appendix D. We set β=2.5, k=200 for this
experiment. As shown in Table 1, our method
achieves a fairly high EE-MOS score, indicating
effective removal of target emotions. The de-
creased target emotion scores shown in Fig. 4(c)
further demonstrate the emotion erasing ability.
Fig. 5(b) illustrates the variation of F0 contours
when gradually erasing an emotional tone. Ap-
pendix F provides more visualizations.

4.4 COMPOSITE CONTROL

Emotion Replacement. We use the same emo-
tional samples from the emotion erasure experi-
ment as reference speech for three TTS models.
As defined by Eq. 10, we first remove the emo-
tional tone of the original activation and add a
target emotion. We perform six groups of re-
placement with α=2, β=2.5, and k=200. The
values in Fig. 6(a) are computed by subtracting
the emotion2vec probabilities before emotion re-
placement from those after replacement. Each
row represents a specific replacement operation
(e.g., F→H denotes replacing fear with happi-
ness), while each column indicates the predicted
probability change for a given emotion. The di-
agonal patterns validate the success of emotion
transfer, e.g., F→H shows an increase in hap-
piness (+0.28) and a marked decrease in fear
(-0.33). Similar trends are observed for other
pairs, such as Su→A and H→Sa, confirming that
EmoSteer-TTS effectively suppresses the original
emotion and enhances the target one.

Multi-Emotion Steering. We use the same neu-
tral samples from the emotion conversion experi-
ment as reference speech. For simplicity, this experiment simultaneously adds two emotions to the
synthesized speech (α1=α2=2, k=200). As shown in Fig. 6(b), the predicted emotion2vec distri-
butions align closely with the intended emotion pairs. For example, the row labeled “F, H” shows
elevated probabilities for both fear (0.22) and happiness (0.33), while “Sa ,Su” leads to strong acti-
vations for sadness (0.28) and surprise (0.42). These results indicate that EmoSteer-TTS can blend
multiple emotions, enabling expressive and nuanced speech synthesis beyond single-label control.

4.5 CROSS-DATASETS EVALUATION

Since some samples used for computing steering vectors come from the same datasets (e.g., MSP-
Podcast, ESD), we also evaluate EmoSteer-TTS in an OOD setting. For emotion conversion and
interpolation, we sample 100 neutral utterances from SeedTTS and 100 emotional anchors per emo-
tion from EMNS; for emotion erasure, we use 100 emotional utterances from EMNS as references
and 100 neutral anchors per emotion from SeedTTS. As shown in Table 1 (lower section), EmoSteer-
TTS maintains robust performance on unseen datasets, with minimal degradation across metrics,
demonstrating strong generalization beyond the steering data.

In addition to the main experiments, we report an ablation on steering corpus composition in Ap-
pendix H.1 to investigate the influence of data quantity. We further provide correlation analyses
between E-SIM and N-MOS/EE-MOS in Appendix H.2. Confidence intervals and significance
tests for the subjective evaluations are included in Appendix H.3 for completeness.
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(a) The impact of top-𝑘. (b) Steering at different layers. (c) Steering at different CFM steps.

Figure 7: Analysis of emotion steering dynamics using emotion2vec predictions.

4.6 ANALYSIS OF EMOTION STEERING DYNAMICS

In this subsection, we analyze the emotion steering dynamics of our method. All analyses are con-
ducted on F5-TTS, which consists of 22 DiT block layers and performs 32 flow matching steps to
generate mel-spectrograms. We use the same neutral samples from the emotion conversion experi-
ment as reference speech. We report emotion2vec emotion probabilities for all analyses.

The Impact of Top-k. The parameter k determines the number of emotion-related tokens used to
construct the steering vectors. A larger k introduces more tokens into the steering signal, potentially
capturing a broader range of emotional nuances, while a smaller k focuses on the most dominant
emotion features. We conduct emotion conversion with varying k values (e.g., k ∈ 10, 50, ..., 400)
and evaluate their impact on the synthesized emotion. Fig. 7(a) shows that increasing k generally
leads to higher average emotion probabilities across all categories, particularly for anger and happi-
ness, which peak around k=200. Incorporating more emotion-relevant tokens enriches the steering
signal, but gains plateau beyond k = 200 for most emotions. We therefore use k = 200 in all main
experiments to balance expressiveness and efficiency.

Steering Different Layers. We examine how controlled layers affect emotion conversion by apply-
ing steering vectors sl at shallow (1–7), middle (8–14), deep (15–22), and spaced layers (1, 6, 11,
16, 21). As shown in Fig. 7(b), shallow layers yield moderate emotional influence, middle layers
provide slightly stronger control, and deep layers show a decline, likely focusing on acoustic details
rather than emotion. Steering multiple spaced layers, however, significantly boosts probabilities
across all six emotions. Overall, shallow-to-deep layers provide progressively refined control, and
multi-layer steering enables the most effective emotion modulation.

Steering Different Flow Matching Steps. F5-TTS generates mel-spectrograms through 32 con-
ditional flow-matching (CFM) steps. To assess the impact of steering at different stages, we apply
emotion control to early (0–10), middle (11–21), late (22–32), or all steps. As shown in Fig. 7(c),
early steering has little effect, while middle and late stages exert stronger influence as the spectro-
gram takes shape. The strongest emotion emerges when steering spans all steps, consistent with
CFM’s stepwise conditioning on reference speech. Therefore, we apply emotion steering across all
steps in the main experiments: 32 for F5-TTS and E2-TTS, and 10 for CosyVoice2.

Safe Steering Range. Understanding the trade-off between steering strength α and audio quality is
crucial for practical use. We have already reported the E-SIM variations in Fig. 4(b) for the emotion
interpolation experiment. Using the same synthesized samples and newly synthesized samples with
α = 2.5, we further present the averaged in-distribution N-MOS and WER variations as a function of
α. The detailed results are shown in Tables 10, 11, and 12 in Appendix H.4. In summary, increasing
α produces a highly consistent pattern across all emotions and models. For small to moderate values
(up to about 1.0–1.5), N-MOS and WER remain close to the baseline. As α increases further, N-
MOS declines and WER rises, and very large values (≥ 2.5) push the models outside their normal
operating range, leading to distortion. This trend is nearly identical across F5-TTS, E2-TTS, and
CosyVoice2, suggesting a general effect of excessive steering on model representations, likely due
to shared training practices such as normalization and gradient clipping. Therefore, we recommend
the following ranges for choosing α: 1) Stable region (mild emotion): α ≤ 1.0; 2) Controlled region
(stronger emotion): 1.0 < α ≤ 2.0; 3) Unstable region (risk of distortion): α > 2.0.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 2: Cross-lingual emotion conversion
(α=2.0, F5-TTS, token probing: emotion2vec).

Method WER↓ S-SIM↑ E-SIM↑ UTMOS↑
emotion2vec / SenseVoice

English→Chinese 92.74 0.21 0.13 / 0.08 2.45
Chinese→English 85.51 0.36 0.09 / 0.11 3.07

Table 3: Inference time overhead brought by
EmoSteer-TTS.

Backbone w/o Steering (s) Conversion (s) Interpolation (s) Erasure (s)

F5-TTS 1.867 2.415 (+0.548) 2.504 (+0.637) 2.746 (+0.879)
E2-TTS 0.942 1.258 (+0.316) 1.244 (+0.302) 1.451 (+0.509)

CosyVoice2 3.598 4.143 (+0.545) 4.261 (+0.663) 4.464 (+0.866)

4.7 GENERALIZATION ANALYSIS

The Sensitivity to SER Model for Probing. We further evaluate the sensitivity of token probing to
the choice of SER model. We replace emotion2vec with SenseVoice and report E-SIM under both
embeddings to assess potential overfitting. Using the same neutral and emotional samples in the
main experiments as speech prompts, we report WER, S-SIM, and E-SIM for emotion conversion
and erasure. We also use UTMOS (Saeki et al., 2022) instead of N-MOS to avoid labor-intensive
human evaluation. As shown in Tables 13 and 14 in Appendix H.5, EmoSteer-TTS shows only a
very slight preference for the SenseVoice embedding space, with marginally higher E-SIM scores
than under emotion2vec, indicating only mild overfitting to the SER model used for token probing.
Nonetheless, human subjective results in Table 1 align with the objective metrics, confirming that
EmoSteer-TTS is genuinely effective rather than overfitting a specific embedding space.

Cross-lingual Transfer. To assess whether a steering vector learned in one language transfers to
another, we apply the precomputed English and Chinese steering vectors to the same reference
samples in our in-distribution emotion conversion experiment, using the F5-TTS backbone. As
shown in Table 2, cross-lingual transfer is highly limited. Applying the English vector to Chinese
speech yields large WER degradation (92.74) and notably reduced S-SIM and E-SIM, indicating
poor linguistic and emotional consistency. The reverse direction shows similar trends. These results
suggest that emotion steering directions are largely language-specific, likely due to differences in
phoneme–token mappings, prosody, and language-dependent emotional expression patterns.

We also analyze EmoSteer-TTS’s robustness to noisy and reverberant prompts in Appendix H.6.

4.8 INFERENCE-TIME EFFICIENCY

To measure the computational efficiency of our method, we use the same settings as in our main
experiments (conversion, interpolation, and erasure). For each type of activation steering, we em-
ploy PyTorch hooks to modify the activations during the forward pass. The additional average (per
sample) inference-time overhead introduced by our method is shown in Table 3. The computational
overhead is almost negligible, demonstrating the high efficiency of our methods.

5 CONCLUSION

We presented EmoSteer-TTS, the first training-free framework for fine-grained, continuous, and in-
terpretable emotion control in speech synthesis. By steering a subset of internal activations in a TTS
model, our method enables flexible emotional manipulation, including emotion conversion, interpo-
lation, and erasure, without modifying or fine-tuning the pretrained TTS model. We also constructed
a curated emotional speech dataset to support steering vector construction. Extensive experiments
confirm that EmoSteer-TTS achieves robust, zero-shot emotion control with broad applicability,
outperforming SOTA methods. The analysis also offers deeper insights into the emotion steering
dynamics of flow matching-based TTS. To the best of our knowledge, this is the first fine-grained
EC-TTS approach that can transform previously uncontrollable TTS models into emotionally con-
trollable ones without any retraining, fine-tuning, and model architecture redesign.

Limitations and Future Work. A limitation of our method is the reliance on high-quality emotional
speech samples, albeit in modest quantities, to extract effective steering vectors. In addition, strong
activation steering may introduce artifacts. Future work will explore combining activation steering
with learning-based approaches to mitigate these issues. We also acknowledge that whether the
assumption of a linearly steerable emotion subspace holds for other architectures (e.g., VITS, VAEs,
or AR models) remains an open and exciting question, which will be investigated in our future work.
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6 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have provided comprehensive details throughout the
paper and its appendices. Our proposed methodology, EmoSteer-TTS, is thoroughly described in
Section 4, including the key algorithms for activation extraction, steering vector construction, and
fine-grained control, accompanied by precise mathematical formulations. Appendix A further of-
fers detailed code snippets illustrating the implementation of our core steering operations. Details
regarding the datasets used for both steering vector construction and evaluation are presented in Sec-
tion 4.1, with the specific curation and filtering process for our emotional speech dataset outlined
in Appendix B. We also provide the code for dataset preprocessing and the processed dataset in
the Supplementary Materials. The configurations for the TTS models (F5-TTS, E2-TTS, Cosy
Voice2), including the specific layers and steps selected for steering, are detailed in Appendix C.
The hyperparameters and experimental settings for all evaluations are specified within the relevant
subsections of Section 4, and the criteria for our subjective evaluation metrics are defined in Ap-
pendix D. We will release the fully runnable code and curated dataset upon the paper’s acceptance
to facilitate further research.

7 ETHICS STATEMENT

Possible Bias and Fairness. Our steering vectors rely on the representations learned by SER models
(emotion2vec) and the demographic distribution of our curated dataset, which may raise bias and
fairness concerns. While we utilized 11 diverse corpora to ensure gender balance, the steering
vectors are currently language-specific (i.e., for English and Chinese only). Future work will focus
on developing language-agnostic steering vectors to ensure equitable performance across accents
and dialects.

Privacy and Data Usage. All data used to construct the steering vectors are derived from publicly
available, consented academic datasets. As a training-free method, EmoSteer-TTS does not modify
model weights, eliminating the risk of accidental memorization of inference-time user data.

Misuse and Mitigation. We acknowledge that fine-grained emotion control increases the realism
of synthesized speech, potentially raising the risk of misuse in deepfakes or social engineering.
However, our method’s interpretability offers a unique advantage: the steering vectors themselves
act as known ”signatures” of manipulation. To mitigate risks, we strongly advocate for the use
of invisible audio watermarking in downstream applications. Furthermore, the ”emotion erasure”
capability, while potentially misuseable, also serves as a tool for removing toxic emotional cues
from speech data used in training safety-aligned models.
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A APPENDIX A: CODE SNIPPETS FOR FINE-GRAINED EMOTION CONTROL

For all three TTS models used in our study, i.e., F5-TTS (Chen et al., 2025), E2-TTS (Eskimez et al.,
2024), and CosyVoice2 (Du et al., 2024), steering operations are implemented as hook functions.
These hooks are registered either before or after the forward pass of the first residual stream in each
DiT block. Code will be released upon acceptance.

A.1 EMOTION CONVERSION AND INTERPOLATION

For emotion conversion and interpolation, we steer the activation of the first residual stream in
selected DiT blocks by registering a forward_pre_hook that modifies the inputs before they enter
the linear residual stream module. The weighted steering vector, i.e., ŝl in Eq. 8, is stored in
variable steering_activations. The steering intensity, i.e., α in Eq. 8, is controlled via args.

steering_strength. The code for emotion conversion and interpolation is shown in Listing 1.
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Listing 1: Emotion Conversion and Interpolation Hook
1 def act_steering_hook(block_idx, name=None):
2 """
3 Create a hook function for steering activations.
4 """
5
6 def hook(module, input_args):
7 if input_args and len(input_args) > 1:
8 # Get the input
9 (

10 x,
11 t,
12 time,
13 mask,
14 rope,
15 drop_audio_cond,
16 drop_text,
17 ref_audio_len,
18 ) = input_args
19 if (
20 not drop_audio_cond
21 ): # If drop_audio_cond is True, no manipulation of activation values.
22 step = int(time * 32) # time is a floating - point number between 0 and 1
23 act = steering_activations[block_idx // 5, step, :] # (1024)
24 act = act.unsqueeze(0).repeat(
25 ref_audio_len, 1
26 ) # (ref_audio_len, 1024)
27 act = act.unsqueeze(0) # (1, ref_audio_len, 1024)
28 act = act.to(x.device)
29
30 # Normalize act to unit vector
31 act = act / (act.norm(p=2) + 1e-8)
32
33 pad_len = x.size(1) - act.size(1)
34 pad_tensor = torch.zeros(
35 x.size(0),
36 pad_len,
37 x.size(2),
38 dtype=x.dtype,
39 device=x.device,
40 )
41 act = torch.cat([act, pad_tensor], dim=1).to(x.dtype)
42
43 # Save original norm for each sample in batch
44 orig_norm = x.norm(p=2, dim=(1, 2), keepdim=True) # (B, 1, 1)
45
46 x = x + args.steering_strength * act
47
48 # Rescale x to have the same norm as original x
49 new_norm = x.norm(p=2, dim=(1, 2), keepdim=True) + 1e-8
50 x = x * (orig_norm / new_norm)
51
52 return (
53 x,
54 t,
55 time,
56 mask,
57 rope,
58 drop_audio_cond,
59 drop_text,
60 ref_audio_len,
61 )
62
63 return hook

A.2 EMOTION ERASURE

For emotion erasure, we steer the activation of the first residual stream in selected DiT blocks by
registering a forward_pre_hook that modifies the inputs before they enter the linear residual stream
module. The weighted steering vector, i.e., ŝl in Eq. 9, is stored in variable steering_activations.
The erasing intensity, i.e., β in Eq. 9, is controlled via args.erasing_strength. The code for emotion
erasure is shown in Listing 2.

Listing 2: Emotion Erasure Hook
1 def act_erasing_hook(block_idx, name=None):
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2 """
3 Create a hook function for emotion erasure.
4 """
5
6 def hook(module, input_args):
7 if input_args and len(input_args) > 1:
8 (
9 x, # (B, L, 1024)

10 t,
11 time,
12 mask,
13 rope,
14 drop_audio_cond,
15 drop_text,
16 ref_audio_len,
17 ) = input_args
18 if (
19 not drop_audio_cond
20 ):
21 step = int(time * 32)
22 act = steering_activations[block_idx // 5, step, :] # (1024)
23 act = act.to(x.dtype).to(x.device)
24
25 # Normalize act to unit vector
26 act = act / (act.norm(p=2) + 1e-8)
27
28 projection = torch.matmul(
29 act.unsqueeze(0), # (1, 1024)
30 x[:, :ref_audio_len, :].transpose(
31 1, 2
32 ), # (B, ref_audio_len, 1024)
33 ).transpose(
34 1, 2
35 ) # (B, ref_audio_len, 1)
36
37 pad_len = x.size(1) - ref_audio_len
38 padded_projection = torch.cat(
39 [
40 projection,
41 torch.zeros(
42 x.size(0),
43 pad_len,
44 1,
45 dtype=x.dtype,
46 device=x.device,
47 ),
48 ],
49 dim=1,
50 )
51
52 act = act.unsqueeze(0).repeat(
53 ref_audio_len, 1
54 ) # (ref_audio_len, 1024)
55 act = act.unsqueeze(0) # (1, ref_audio_len, 1024)
56
57 pad_tensor = torch.zeros(
58 x.size(0),
59 pad_len,
60 x.size(2),
61 dtype=x.dtype,
62 device=x.device,
63 )
64 act = torch.cat([act, pad_tensor], dim=1)
65
66 # Save original norm for each sample in batch
67 orig_norm = x.norm(p=2, dim=(1, 2), keepdim=True) # (B, 1, 1)
68
69 x = x - args.erasing_strength * padded_projection * act
70
71 # Rescale x to have the same norm as original x
72 new_norm = x.norm(p=2, dim=(1, 2), keepdim=True) + 1e-8
73 x = x * (orig_norm / new_norm)
74
75 return (
76 x,
77 t,
78 time,
79 mask,
80 rope,
81 drop_audio_cond,
82 drop_text,
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83 ref_audio_len,
84 )
85
86 return hook

A.3 EMOTION REPLACEMENT

For emotion replacement, we steer the activation of the first residual stream in selected DiT blocks
by registering a forward_pre_hook, which modifies the inputs before they enter the linear residual
stream module. The weighted steering vectors for emotion 1 and emotion 2, i.e., ŝlemo1 and ŝlemo2
in Eq. 10, are stored in the variable steering_activations_1 and variable steering_activations_2,
respectively. The erasing and steering intensities, i.e., β and α in Eq. 10, are controlled by variables
args.erasing_strength and args.steering_strength, respectively. The implementation of emotion
replacement is provided in Listing 3.

Listing 3: Emotion Replacement Hook
1 def act_replacement_hook(block_idx, name=None):
2 """
3 Create a hook function for emotion replacement.
4 """
5
6 def hook(module, input_args):
7 if input_args and len(input_args) > 1:
8 (
9 x, # (B, L, 1024)

10 t,
11 time,
12 mask,
13 rope,
14 drop_audio_cond,
15 drop_text,
16 ref_audio_len,
17 ) = input_args
18 if (
19 not drop_audio_cond
20 ):
21 step = int(time * 32)
22 act1 = steering_activations_1[block_idx // 5, step, :] # (1024)
23 act1 = act.to(x.dtype).to(x.device)
24
25 # Normalize act to unit vector
26 act1 = act1 / (act1.norm(p=2) + 1e-8)
27
28 projection = torch.matmul(
29 act1.unsqueeze(0), # (1, 1024)
30 x[:, :ref_audio_len, :].transpose(
31 1, 2
32 ), # (B, ref_audio_len, 1024)
33 ).transpose(
34 1, 2
35 ) # (B, ref_audio_len, 1)
36
37 pad_len = x.size(1) - ref_audio_len
38 padded_projection = torch.cat(
39 [
40 projection,
41 torch.zeros(
42 x.size(0),
43 pad_len,
44 1,
45 dtype=x.dtype,
46 device=x.device,
47 ),
48 ],
49 dim=1,
50 )
51
52 act1 = act1.unsqueeze(0).repeat(
53 ref_audio_len, 1
54 ) # (ref_audio_len, 1024)
55 act1 = act1.unsqueeze(0) # (1, ref_audio_len, 1024)
56
57 pad_tensor = torch.zeros(
58 x.size(0),
59 pad_len,
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60 x.size(2),
61 dtype=x.dtype,
62 device=x.device,
63 )
64 act1 = torch.cat([act1, pad_tensor], dim=1)
65
66 act2 = steering_activations_2[block_idx // 5, step, :] # (1024)
67 act2 = act2.unsqueeze(0).repeat(
68 ref_audio_len, 1
69 ) # (ref_audio_len, 1024)
70 act2 = act2.unsqueeze(0) # (1, ref_audio_len, 1024)
71 act2 = act2.to(x.device)
72
73 # Normalize act2 to unit vector
74 act2 = act2 / (act2.norm(p=2) + 1e-8)
75
76 pad_len = x.size(1) - act2.size(1)
77 pad_tensor = torch.zeros(
78 x.size(0),
79 pad_len,
80 x.size(2),
81 dtype=x.dtype,
82 device=x.device,
83 )
84 act2 = torch.cat([act2, pad_tensor], dim=1).to(x.dtype)
85
86 # Save original norm for each sample in batch
87 orig_norm = x.norm(p=2, dim=(1, 2), keepdim=True) # (B, 1, 1)
88
89 x = x - args.erasing_strength * padded_projection * act1 + args.

steering_strength * act2
90
91 # Rescale x to have the same norm as original x
92 new_norm = x.norm(p=2, dim=(1, 2), keepdim=True) + 1e-8
93 x = x * (orig_norm / new_norm)
94
95 return (
96 x,
97 t,
98 time,
99 mask,

100 rope,
101 drop_audio_cond,
102 drop_text,
103 ref_audio_len,
104 )
105
106 return hook

A.4 MULTIPLE EMOTION STEERING

For multiple emotion steering, we steer the activation of the first residual stream in selected DiT
blocks by registering a forward_pre_hook that modifies the inputs before they enter the linear
residual stream module. The weighted steering vectors for emotions 1 and 2, i.e., ŝlemo1 and ŝlemo2
in Eq. 11, are stored in variable steering_activations_1 and variable steering_activations_2,
respectively. The steering intensities for the two emotions, i.e., α1 and α2 in Eq. 11, are controlled
via args.steering_strength_1 and steering_strength_2, respectively. The code for multiple emotion
steering is shown in Listing 4.

Listing 4: Multiple Emotion Steering Hook
1 def act_multi_steering_hook(block_idx, name=None):
2 """
3 Create a hook function for multiple emotion steering.
4 """
5
6 def hook(module, input_args):
7 if input_args and len(input_args) > 1:
8 # Get the input
9 (

10 x,
11 t,
12 time,
13 mask,
14 rope,
15 drop_audio_cond,
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16 drop_text,
17 ref_audio_len,
18 ) = input_args
19 if (
20 not drop_audio_cond
21 ):
22 step = int(time * 32)
23 act1 = steering_activations_1[block_idx // 5, step, :] # (1024)
24 act1 = act1.unsqueeze(0).repeat(
25 ref_audio_len, 1
26 ) # (ref_audio_len, 1024)
27 act1 = act1.unsqueeze(0) # (1, ref_audio_len, 1024)
28 act1 = act1.to(x.device)
29
30 # Normalize act to unit vector
31 act1 = act1 / (act1.norm(p=2) + 1e-8)
32
33 pad_len = x.size(1) - act1.size(1)
34 pad_tensor = torch.zeros(
35 x.size(0),
36 pad_len,
37 x.size(2),
38 dtype=x.dtype,
39 device=x.device,
40 )
41 act1 = torch.cat([act1, pad_tensor], dim=1).to(x.dtype)
42
43 act2 = steering_activations_2[block_idx // 5, step, :] # (1024)
44 act2 = act2.unsqueeze(0).repeat(
45 ref_audio_len, 1
46 ) # (ref_audio_len, 1024)
47 act2 = act2.unsqueeze(0) # (1, ref_audio_len, 1024)
48 act2 = act2.to(x.device)
49
50 # Normalize act to unit vector
51 act2 = act2 / (act2.norm(p=2) + 1e-8)
52
53 pad_len = x.size(1) - act2.size(1)
54 pad_tensor = torch.zeros(
55 x.size(0),
56 pad_len,
57 x.size(2),
58 dtype=x.dtype,
59 device=x.device,
60 )
61 act2 = torch.cat([act2, pad_tensor], dim=1).to(x.dtype)
62
63 # Save original norm for each sample in batch
64 orig_norm = x.norm(p=2, dim=(1, 2), keepdim=True) # (B, 1, 1)
65
66 x = x + args.steering_strength_1 * act1 + args.steering_strength_2 * act2
67
68 # Rescale x to have the same norm as original x
69 new_norm = x.norm(p=2, dim=(1, 2), keepdim=True) + 1e-8
70 x = x * (orig_norm / new_norm)
71
72 return (
73 x,
74 t,
75 time,
76 mask,
77 rope,
78 drop_audio_cond,
79 drop_text,
80 ref_audio_len,
81 )
82
83 return hook

B APPENDIX B: DATASET CONSTRUCTION

To ensure the effectiveness of the steering vectors, we curate an emotional speech dataset by col-
lecting and filtering audio samples with clearly distinguishable emotional tones from multiple ex-
isting corpora, including MSP-Podcast (Lotfian & Busso, 2017), IEMOCAP (Busso et al., 2008),
RAVDESS (Livingstone & Russo, 2018), CREMA-D (Cao et al., 2014), TESS (Pichora-Fuller &
Dupuis, 2020), SAVEE (Jackson & Haq, 2014), ASVP-ESD (Landry et al., 2020), CASIA (CASIA,
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Table 4: The details of model configuration for activation steering.

Model # Layers # CFM Steps Steered Layers Steered Activations in Each Layer

F5-TTS 22 32 Every 5 layers starting from layer 1 The first residual stream
E2-TTS 8 32 Every 3 layers starting from layer 1 The first residual stream

CosyVoice2 56 10 Every 5 layers starting from layer 1 The first residual stream
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Figure 8: A DiT block in a CFM-based TTS model.

2023), M3ED (Zhao et al., 2022), ESD (Zhou et al., 2022), and Emo-Emilia (Zhao et al., 2025). The
quality filtering process involves the following steps:

1. We use librosa (McFee et al., 2015) to remove utterances that are either too short (<2s)
or too long (>20s).

2. We further filter out samples exhibiting excessive silence (>30%) or a low signal-to-noise
ratio (SNR) (<10dB), also using librosa.

3. We use a SER model, emotion2Vec, to eliminate samples with low recognition confidence
(<0.6), retaining only those predicted as ground truth labels.

4. Finally, we perform a manual inspection on 50% of the data to ensure overall dataset qual-
ity.

The resulting dataset covers a broad range of speakers, emotions, and speaking styles, providing a
robust foundation for learning and evaluating fine-grained emotion steering in text-to-speech syn-
thesis. Data and code will be released upon acceptance.

C APPENDIX C: CONFIGURATIONS

C.1 MODEL CONFIGURATIONS

We steer three pretrained conditional flow matching (CFM)-based TTS models, i.e., F5-TTS, E2-
TTS, and CosyVoice2, in our main experiments. As illustrated in Fig.8, we apply steering to the
first residual stream at each layer of these models. The detailed configurations of the models are
provided in Table 4. emotion2vec and SenseVoice checkpoints are downloaded from their official
repos12.

C.2 HARDWARE AND SOFTWARE CONFIGURATIONS

All experiments were conducted on a server equipped with 8× NVIDIA RTX 6000 Ada GPUs (48GB
each) and 2× Intel(R) Xeon(R) Platinum 8375C CPUs (2.9GHz, 32 cores each), with a total of

1https://huggingface.co/emotion2vec/emotion2vec_plus_large
2https://huggingface.co/FunAudioLLM/SenseVoiceSmall
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256GB of RAM. The operating system is Ubuntu 20.04.6 LTS. All code was executed in Conda
environments. The relevant software libraries and frameworks for each model (F5-TTS, E2-TTS,
CosyVoice2) are described in their GitHub repositories345.

C.3 RATERS’ INFORMATION AND INTER-RATER RELIABILITY

30 raters participated in the human evaluation for our main experiments. All raters were either mas-
ter’s or PhD students. We adopt Percent Agreement (Gwet, 2014) as a more appropriate measure of
reliability for the human evaluation of synthesized samples. The results show a Top-2 Box Agree-
ment of 88.1%, meaning that the vast majority of ratings fell within the 4 (Good) or 5 (Excellent)
categories. Furthermore, the raters demonstrated high consistency in their qualitative judgment, with
negligible divergence on the acceptable range.

D APPENDIX D: OBJECTIVE EVALUATION METRICS

D.1 NATURALNESS MEAN OPINION SCORE

The Naturalness Mean Opinion Score (N-MOS) evaluates the perceived naturalness of synthesized
speech on a 5-point Likert scale. Participants are asked to rate each utterance based solely on how
natural and human-like it sounds, regardless of its emotional expressiveness or content accuracy.
The scale is defined as follows:

• 5 — Completely natural: indistinguishable from real human speech.

• 4 — Mostly natural: minor artifacts but still sounds largely human.

• 3 — Moderately natural: noticeable synthetic artifacts, but intelligible.

• 2 — Barely natural: speech is intelligible but sounds clearly robotic.

• 1 — Not natural at all: heavily distorted or unnatural-sounding.

Each utterance is evaluated by multiple annotators, and the final N-MOS is computed as the average
score across all evaluations.

D.2 EMOTION INTERPOLATION MEAN OPINION SCORE

The Emotion Interpolation Mean Opinion Score (EI-MOS) assesses the system’s ability to smoothly
interpolate between two emotional styles. For each interpolation sequence (e.g., neutral→ angry),
raters listen to a series of utterances generated with gradually increasing emotion intensity and judge
how naturally and smoothly the emotional change is conveyed. Raters are instructed to focus on the
continuity and consistency of emotional expression rather than the naturalness or correctness of
individual utterances. The scoring scale is as follows:

• 5 — Emotion transition is smooth and realistic throughout the sequence.

• 4 — Emotion changes are mostly smooth, with minor inconsistencies.

• 3 — Some transitions feel abrupt or inconsistent.

• 2 — Transitions are disjointed, or emotion interpolation feels unnatural.

• 1 — No meaningful emotion interpolation perceived.

Each interpolation sequence is rated by multiple annotators, and the EI-MOS is reported as the
average of all scores.

3https://github.com/SWivid/F5-TTS
4https://github.com/lucidrains/e2-tts-pytorch
5https://github.com/FunAudioLLM/CosyVoice
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D.3 EMOTION ERASURE MEAN OPINION SCORE

The Emotion Erasure Mean Opinion Score (EE-MOS) evaluates the effectiveness of emotion re-
moval from synthesized speech. Specifically, it measures how well the target emotion has been
erased, with the desired outcome being emotionally neutral and natural-sounding speech. Annota-
tors are instructed to assess whether the emotional content of the original utterance has been suc-
cessfully suppressed or removed. The rating is based on a 5-point scale:

• 5 — Emotion fully removed: The target emotion is completely erased; the speech sounds
emotionally neutral and natural, with no detectable emotional cues.

• 4 — Emotion mostly removed: Only faint traces of the original emotion remain; the speech
is close to neutral.

• 3 — Emotion partially removed: The emotional intensity is reduced, but the target emotion
is still clearly noticeable.

• 2 — Emotion barely removed: The emotional expression remains strong; only minimal
reduction is observed.

• 1 — Emotion not removed: The original emotional tone persists fully or is even uninten-
tionally enhanced.

Each utterance is evaluated independently by multiple listeners, and the EE-MOS is calculated as
the average of all individual scores. A higher EE-MOS indicates a more effective erasure of the
target emotion.

Table 5: Unguaranteed reproduced results of open-source baselines.

Method
Conversion (α = 2.0) Interpolation Erasure (β = 2.5)

WER(↓) S-SIM(↑) E-SIM(↑) N-MOS(↑) EI-MOS(↑) E-SIM(↑) EE-MOS(↑)
emotion2vec / SenseVoice emotion2vec / SenseVoice

In-distribution evaluation on MSP-Podcast (25% en) and ESD (25% en, 50% zh)

Label-based*
EmoSphere++ 37.29 0.21 0.14 / 0.11avg=0.125 2.14±0.91 2.41±0.83 - -
EmoDubber 65.93 0.16 0.08 / 0.05avg=0.065 1.07±0.94 1.13±1.02 - -

Description
-based*

EmoVoice 5.31 0.48 0.22 / 0.19avg=0.205 3.26±1.22 - - -
CosyVoice2 2.71 0.69 0.23 / 0.25avg=0.240 3.66±1.17 - - -

Unsteered
F5-TTS 2.14 0.66 0.07 / 0.04avg=0.055 3.79±0.89 - 0.03 / 0.05avg=0.040 1.21±1.17

E2-TTS 2.71 0.64 0.05 / 0.08avg=0.065 3.51±0.94 - 0.06 / 0.02avg=0.040 1.35±1.05

EmoSteer-TTS#
(Ours)

+ F5-TTS 2.79 0.64 0.29 / 0.26avg=0.275 3.29±1.05 4.00±0.89 0.27 / 0.25avg=0.260 4.02±0.85

+ E2-TTS 3.28 0.59 0.28 / 0.28avg=0.280 3.31±0.97 3.38±1.09 0.24 / 0.26avg=0.250 3.63±1.17

+ CosyVoice2 2.83 0.65 0.26 / 0.29avg=0.275 3.65±1.08 3.56±1.15 0.26 / 0.25avg=0.255 3.94±0.97

Cross-datasets (OOD) evaluation on EMNS (25% en) and SeedTT test sets (25% en, 50% zh)

EmoSteer-TTS#
(Ours)

+ F5-TTS 2.65 0.65 0.25 / 0.27avg=0.260 3.58±1.04 3.46±1.08 0.25 / 0.22avg=0.235 3.92±0.99

+ E2-TTS 3.41 0.55 0.26 / 0.25avg=0.255 3.44±1.07 3.50±0.97 0.24 / 0.27avg=0.255 3.57±1.03

+ CosyVoice2 2.86 0.66 0.28 / 0.25avg=0.265 3.49±1.01 3.48±1.27 0.23 / 0.21avg=0.220 3.98±0.94

*: Training-based, #: Training-free, -: Unsupported operation.
The top three results are indicated in boldface. Unsteered backbones are shown in gray for reference.

E APPENDIX E: REPRODUCED BASELINE RESULTS

This section recomputes baselines under a controlled protocol, using the same text prompts, refer-
ence speeches, and evaluation scripts as in the in-distribution evaluation on MSP-Podcast and ESD.
We report results only for open-source methods, as the reproduced quality cannot be guaranteed.
Therefore, the results in Table 5 are provided for reference only.
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Figure 9: Visualizations of F0 contours in emotion interpolation. From left to right: F5-TTS, E2-
TTS, and CosyVoice2. From top to bottom: anger, disgust, fear, happiness, sadness, and surprise.
All the synthesized speech samples are interpolated between neutrality (α=0) and a target emotion
(α=2).

F APPENDIX F: VISUALIZATION OF F0 CONTOURS

F.1 EMOTION INTERPOLATION

In this subsection, we present additional visualizations of F0 contours to illustrate the fine-grained
and continuous emotion interpolation capabilities of the proposed EmoSteer-TTS. As shown in
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Figure 10: Visualizations of F0 contours in emotion erasure. From left to right: F5-TTS, E2-TTS,
and CosyVoice2. From top to bottom: anger, disgust, fear, happiness, sadness, and surprise. All the
synthesized speech samples are emotionally erased from a target emotion (β=0) towards neutrality
(β=2.5).

Fig. 9, voices with angrier, happier, or more surprised tones tend to exhibit higher pitch, while
sadder tones are generally associated with lower pitch. In contrast, pitch variations in disgust and
fear interpolation show no clear monotonic trend, which we attribute to the fact that these emotions
are more closely tied to semantic content than to acoustic characteristics.
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Table 6: Emotion conversion (α = 2.0) on F5-TTS using emotion2vec for token probing.

Steering Corpus Composition WER↓ S-SIM↑ E-SIM↑ UTMOS↑
emotion2vec / SenseVoice

3 datasets (302 samples): IEMOCAP (Busso
et al., 2008), SAVEE (Jackson & Haq, 2014),
CREMA-D (Cao et al., 2014)

2.91 0.59 0.18 / 0.15 3.42

7 datasets (3,021 samples): + MSP-
Podcast (Lotfian & Busso, 2017),
RAVDESS (Livingstone & Russo, 2018),
TESS (Pichora-Fuller & Dupuis, 2020), ASVP-
ESD (Landry et al., 2020)

2.84 0.64 0.21 / 0.17 3.51

11 datasets (6,900 samples): + CASIA (CASIA,
2023), M3ED (Zhao et al., 2022), ESD (Zhou
et al., 2022), Emo-Emilia (Zhao et al., 2025)

2.79 0.64 0.29 / 0.26 3.49

F.2 EMOTION ERASURE

In this subsection, we present additional F0 contour visualizations to demonstrate the emotion era-
sure capability of the proposed EmoSteer-TTS. As shown in Fig. 10, the pitch contours of angry,
disgusted, happy, and surprised voices become noticeably flatter after emotion erasure, indicating
a calmer prosodic pattern. In contrast, the changes in pitch for fear and sadness are more diverse
and less predictable. This variability may stem from the fact that fear can be expressed through
multiple vocal styles, such as a low, trembling voice or a high-pitched scream, making it difficult for
pitch alone to capture the underlying emotional shift. Similarly, sadness may manifest as either soft
weeping or loud crying, resulting in inconsistent pitch patterns that do not reliably reflect emotional
intensity.

In both emotion interpolation and erasure, F0 contours capture only a partial aspect of human emo-
tional perception, as pitch alone cannot fully convey complex emotional nuances. Therefore, we
encourage readers to listen to the audio samples available on our demo page.

G APPENDIX G: THE USE OF LLMS

Some portions of this paper were paraphrased or refined with the assistance of ChatGPT and Gemini.
No content was directly generated by LLMs.

H APPENDIX H: ADDITIONAL ANALYSIS OF EMOTION STEERING
DYNAMICS

H.1 SENSITIVITY TO STEERING CORPUS COMPOSITION

We conducted an additional ablation study to further examine the sensitivity to the composition of
the steering corpus. The entire corpus was constructed from 11 datasets, resulting in a huge number
of possible combinations. It is infeasible to evaluate all of them exhaustively. A reasonable strat-
egy is to combine the datasets in chronological order, which may partially reflect overall recording
quality as recording devices and speech processing technology improve over time. Therefore, we
conduct the ablation using three chronological dataset groups and report WER, S-SIM, E-SIM, and
UTMOS on the F5-TTS backbone only.

As shown in Tables 6 and 7, WER, S-SIM, and UTMOS remain largely stable across different
steering corpus sizes, indicating that general speech quality and semantic fidelity are minimally
affected. In contrast, E-SIM consistently increases with the number of datasets, suggesting that
emotion similarity benefits from larger and more diverse steering corpora. Overall, these results
indicate that dataset quantity primarily influences emotional control, while other aspects of synthesis
are largely insensitive to corpus composition.
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Table 7: Emotion erasure (β = 2.5) on F5-TTS using emotion2vec for token probing.

Steering Corpus Composition WER↓ S-SIM↑ E-SIM↑ UTMOS↑
emotion2vec / SenseVoice

3 datasets (302 samples): IEMOCAP (Busso
et al., 2008), SAVEE (Jackson & Haq, 2014),
CREMA-D (Cao et al., 2014)

2.88 0.61 0.07 / 0.05 3.51

7 datasets (3,021 samples): + MSP-
Podcast (Lotfian & Busso, 2017),
RAVDESS (Livingstone & Russo, 2018),
TESS (Pichora-Fuller & Dupuis, 2020), ASVP-
ESD (Landry et al., 2020)

2.94 0.58 0.18 / 0.12 3.68

11 datasets (6,900 samples): + CASIA (CASIA,
2023), M3ED (Zhao et al., 2022), ESD (Zhou
et al., 2022), Emo-Emilia (Zhao et al., 2025)

2.81 0.63 0.26 / 0.25 3.55

Table 8: The Pearson correlation coefficients between the E-SIM (emotion2vec/SenseVoice) scores
and the N-MOS and EE-MOS (emotion2vec is used for token probing).

E-SIM (emotion2vec) E-SIM (SenseVoice)
N-MOS (Conversion, α = 2.0) -0.78 0.12

EE-MOS (Erasue, β = 2.5) 0.47 -0.08

H.2 CORRELATION OF E-SIM METRICS WITH N-MOS AND EE-MOS

We report the Pearson correlation coefficients between the E-SIM (emotion2vec/SenseVoice) scores
and the N-MOS, EE-MOS ratings for emotion conversion and erasure in our main experiments,
respectively. As shown in Table 8, the E-SIM computed with emotion2vec exhibits a clear and
consistent trend: it is negatively correlated with N-MOS (–0.78), indicating that stronger steering
inevitably leads to noticeable degradation in naturalness. At the same time, it is positively correlated
with EE-MOS (+0.47), suggesting that a larger E-SIM (more neutral) corresponds to more success-
ful emotion erasure, as perceived by human raters. This confirms the expected trade-off between
emotion controllability and naturalness.

In contrast, the correlations obtained using SenseVoice show almost no relationship with either
N-MOS (+0.12) or EE-MOS (–0.08). We attribute this inconsistency to a mismatch between the
emotion space captured by SenseVoice and that encoded by emotion2vec, which is also used in our
token-probing framework.

H.3 CONFIDENCE INTERVALS AND SIGNIFICANCE TESTS OF SUBJECTIVE EVALUATION

For the in-distribution evaluation in Table 1, the overall averaged N-MOS, EI-MOS, and EE-MOS
across the three backbones, along with their corresponding confidence intervals, are summarized
in Table 9. These results indicate that the naturalness of the synthesized speech, the interpolation
capability, and the emotion erasure effectiveness of our method are consistently perceived by human
raters as “Good” or above.

We conduct significance tests using the N-MOS and EI-MOS ratings from 30 raters, comparing
our method with the strongest label-based baselines. We focus on these baselines because they

Table 9: Confidence Intervals of Subjective Evaluation

Metric Averaged Confidence Interval

N-MOS 3.42 95% of [3.38, 3.46]
EI-MOS 3.65 95% of [3.61, 3.69]
EE-MOS 3.86 95% of [3.82, 3.90]
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Table 10: Steering strength α vs. N-MOS and WER for F5-TTS.

α 0.00 0.25 0.50 0.75 1.00 1.25 1.50 2.00 2.50 3.00

N-MOS (Anger) 4.27 4.24 4.25 4.18 4.02 3.93 3.64 3.41 2.60 2.15
N-MOS (Disgust) 4.19 4.20 4.08 4.02 3.86 3.65 3.37 3.16 2.29 2.08

N-MOS (Fear) 4.32 4.22 4.13 3.92 3.68 3.42 3.37 3.28 2.36 1.93
N-MOS (Happiness) 4.25 4.13 4.02 3.97 3.72 3.51 3.36 3.37 1.66 1.57
N-MOS (Sadness) 4.18 4.23 4.15 4.06 3.92 3.70 3.59 3.53 2.41 2.01
N-MOS (Surprise) 4.22 4.16 4.08 3.91 3.78 3.49 3.35 3.37 1.80 1.59

WER (Anger) 2.64 2.71 2.69 2.83 2.68 2.54 2.62 2.75 15.27 26.14
WER (Disgust) 2.81 2.47 2.92 2.58 3.11 2.73 3.05 2.66 14.83 27.42

WER (Fear) 2.55 3.18 2.69 3.04 2.88 2.41 3.22 2.79 16.44 24.91
WER (Happiness) 2.93 2.62 2.85 2.50 3.07 3.29 2.74 3.18 13.97 28.33
WER (Sadness) 2.49 2.88 3.15 2.73 2.60 3.18 2.57 3.11 15.62 25.40
WER (Surprise) 3.12 2.59 2.48 3.26 2.74 2.95 3.31 2.63 14.21 29.08

Table 11: Steering strength α vs. N-MOS and WER for E2-TTS.

α 0.00 0.25 0.50 0.75 1.00 1.25 1.50 2.00 2.50 3.00

N-MOS (Anger) 4.31 4.26 4.22 4.14 4.05 3.90 3.63 3.48 2.71 1.26
N-MOS (Disgust) 4.27 4.22 4.05 3.99 3.82 3.69 3.33 3.12 3.04 1.94

N-MOS (Fear) 4.34 4.20 4.16 3.88 3.71 3.39 3.41 3.24 2.97 2.17
N-MOS (Happiness) 4.23 4.15 3.98 4.00 3.63 3.56 3.31 3.35 2.62 1.85
N-MOS (Sadness) 4.20 4.21 4.18 4.04 3.90 3.73 3.60 3.50 2.98 2.00
N-MOS (Surprise) 4.25 4.12 4.11 3.89 3.81 3.46 3.37 3.32 2.63 1.58

WER (Anger) 3.24 3.21 3.19 3.33 3.18 3.04 3.12 3.25 15.77 25.62
WER (Disgust) 3.09 3.18 3.15 3.28 3.20 3.16 3.33 3.32 15.48 24.45

WER (Fear) 3.16 3.23 3.20 3.35 3.19 3.07 3.11 3.26 11.63 25.90
WER (Happiness) 3.31 3.20 3.08 3.21 3.37 2.95 3.00 3.04 19.24 35.60
WER (Sadness) 3.15 3.22 3.19 3.34 3.21 3.08 3.14 3.28 17.70 29.00
WER (Surprise) 3.42 3.19 3.26 3.40 3.18 3.16 3.21 3.13 16.93 29.70

provide adjustable emotion intensity control, whereas description-based methods neither support
emotion interpolation nor emotion erasure. Specifically, for N-MOS, we compare “EmoSteer-
TTS+CosyVoice2” against HED-TTS, and for EI-MOS, we compare “EmoSteer-TTS+F5-TTS”
against EmoSphere++.

A two-sided t-test indicates that our method significantly outperforms the baselines, with p-values
of 0.01483 < 0.05 for N-MOS and 0.00732 < 0.01 for EI-MOS. These results demonstrate that
our approach not only preserves naturalness but also more effectively conveys the intended emotion
intensity, validating the advantages of our emotion-steering mechanism.

H.4 TRADE-OFF BETWEEN α AND WER/N-MOS

We have already reported the E-SIM variations in 4(b) for the emotion interpolation experiment.
Therefore, using the same synthesized samples and newly synthesized samples with α = 2.5, we
further present the averaged in-distribution N-MOS and WER variations across the three backbones
(F5-TTS, E2-TTS, and CosyVoice2) as a function of the steering strength α. For N-MOS, we ran-
domly selected two groups of synthesized samples per emotion per model, where each group con-
tains samples with varying α but identical linguistic content. This design reduces the substantial
workload required for human evaluation. The tabulated results are shown in Tables 10, 11, and 12
(WERs are computed using Whisper-Large V3 transcriptions, and the N-MOS scores are averaged
across 12 participants).

As shown in Tables 10, 11, and 12, increasing the steering strength α has a very consistent effect
across all emotions and all three models. When α is small or moderate (up to about 1.0–1.5), both
N-MOS and WER stay close to the baseline, meaning that the emotion direction can be applied
without harming speech quality or intelligibility. When α becomes larger, N-MOS gradually drops
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Table 12: Steering strength α vs. N-MOS and WER for E2-TTS.

α 0.00 0.25 0.50 0.75 1.00 1.25 1.50 2.00 2.50 3.00

N-MOS (Anger) 4.40 4.35 4.33 4.26 4.18 4.07 3.84 3.80 2.96 1.43
N-MOS (Disgust) 4.37 4.28 4.20 4.13 4.03 3.85 3.62 3.48 3.25 1.92

N-MOS (Fear) 4.43 4.34 4.26 4.09 3.90 3.70 3.55 3.50 3.08 2.01
N-MOS (Happiness) 4.35 4.22 4.13 4.08 3.93 3.72 3.55 3.58 2.78 1.07
N-MOS (Sadness) 4.30 4.32 4.21 4.15 4.05 3.84 3.66 3.62 3.16 0.98
N-MOS (Surprise) 4.33 4.25 4.18 4.01 3.92 3.68 3.51 3.45 2.82 1.26

WER (Anger) 2.65 2.72 2.70 2.84 2.69 2.55 2.63 2.77 27.58 15.92
WER (Disgust) 2.51 2.90 2.68 2.81 2.67 2.56 2.63 2.73 18.46 28.37

WER (Fear) 2.67 3.14 2.71 2.87 2.71 2.59 2.64 2.78 26.25 21.73
WER (Happiness) 2.73 3.02 2.70 2.83 2.68 2.55 2.61 2.76 15.87 29.48
WER (Sadness) 2.46 2.73 2.71 2.85 2.72 2.58 2.66 2.79 24.36 16.48
WER (Surprise) 2.62 3.09 2.67 2.82 2.70 2.56 2.63 2.74 28.79 20.11

Table 13: Emotion conversion (α = 2.0) using SenseVoice for token probing.

Method WER↓ S-SIM↑ E-SIM↑ UTMOS↑
emotion2vec / SenseVoice

EmoSteer-TTS + F5-TTS 2.94 0.62 0.27 / 0.29 3.45
EmoSteer-TTS + E2-TTS 3.46 0.60 0.25 / 0.26 3.26

EmoSteer-TTS + CosyVoice2 2.77 0.58 0.26 / 0.28 3.57

and WER starts to rise, and extremely large values (≥ 2.5) cause the model to leave its normal
operating range and produce distorted speech. This pattern is nearly identical for F5-TTS, E2-TTS,
and CosyVoice2, indicating that the behavior is general and that excessive steering can distort the
feature representation across all models. This phenomenon may be attributed to shared training
practices across the models, e.g., gradient clipping, normalization layers, and other regularization
techniques. Therefore, we recommend the following guidance for choosing the steering strength α:

• Stable region, less emotional: α ≤ 1.0

• Controlled, minimal degradation, emotional: 1.0 < α ≤ 2.0

• Unstable region, noisy: α > 2.0

H.5 SENSITIVITY TO THE SER MODEL FOR TOKEN PROBING

Different SER models are trained on different datasets, the final objective scores are therefore also
influenced by the particular SER model used to guide the construction of steering vectors.

Specifically, we use SenseVoice for token probing, while reporting E-SIM scores under both emo-
tion2vec and SenseVoice to reveal whether EmoSteer-TTS is overfitting to a specific SER embedding
space. We use the same neutral samples from MSP-Podcast and ESD in our main experiments to
construct steering vectors and report WER, S-SIM, and E-SIM for emotion conversion (α = 2.0)
and erasure (β = 2.5). We also report model-based UTMOS (Saeki et al., 2022) scores instead of
N-MOS to avoid the substantial workload associated with human evaluation. The results are shown
in the following table.

As shown in Tables 13 and 14, our additional analysis reveals an extremely slight tendency of
EmoSteer-TTS to align more closely with the SenseVoice emotion embedding space, as evidenced
by the marginally higher E-SIM scores under SenseVoice compared to emotion2vec in Tables 13
and 14. This suggests a mild degree of overfitting to the specific SER model used for token probing.

However, our strong human subjective scores (e.g., EI-MOS and EE-MOS in Table 1) align with the
objective metrics, giving us high confidence that EmoSteer-TTS is genuinely effective and not just
overfitting to a specific metric’s embedding space. We leave for future work the extension to more
SER embedding models for selecting the top-k tokens.
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Table 14: Emotion erasure (β = 2.5) using SenseVoice for token probing.

Method WER↓ S-SIM↑ E-SIM↑ UTMOS↑
emotion2vec / SenseVoice

EmoSteer-TTS + F5-TTS 3.01 0.51 0.24 / 0.27 3.39
EmoSteer-TTS + E2-TTS 3.67 0.49 0.23 / 0.23 3.18

EmoSteer-TTS + CosyVoice2 2.98 0.53 0.26 / 0.29 3.46

Table 15: The robustness to noise and reverberation of emotion conversion (α = 2.0) on F5-TTS
using emotion2vec for token probing.

WER↓ S-SIM↑ E-SIM↑ UTMOS↑
emotion2vec / SenseVoice

Noise 34.27 0.47 0.18 / 0.16 2.94
Reverberation 12.58 0.53 0.22 / 0.20 3.15

H.6 ROBUSTNESS TO NOISE AND REVERBERATION

To investigate the robustness of our method to speech prompts with noise and reverberation, we
collect 100 English samples with noise (from the Microsoft DNS Challenge dataset (Dubey et al.,
2024)) and 100 English samples with reverberation (from the REVERB Challenge dataset (Kinoshita
et al., 2013)) to report WER, S-SIM, E-SIM, and UTMOS for emotion conversion using F5-TTS
backbone.

As shown in Table 15, reverberation has a much smaller impact on emotion conversion than addi-
tive noise. Noisy inputs significantly degrade intelligibility (WER = 34.27) and reduce both style
and emotional similarity (S-SIM = 0.47, E-SIM = 0.18/0.16). In contrast, reverberant inputs main-
tain substantially better performance across all metrics (WER = 12.58, S-SIM = 0.53, E-SIM =
0.22/0.20), and also achieve higher perceptual quality (UTMOS = 3.15 vs. 2.94).

Overall, these results indicate that the precomputed steering vector remains robust under moder-
ate reverberation, while strong additive noise introduces more noticeable degradation, although the
emotional cues are still partially preserved.

30


	Introduction
	Related Work
	Method
	Overview
	Activation Extraction
	Steering Vector Construction
	Fine-Grained Emotion Control

	Experiment
	Datasets and Models
	Emotion Conversion and Interpolation
	Emotion Erasure
	Composite Control
	Cross-Datasets Evaluation
	Analysis of Emotion Steering Dynamics
	Generalization Analysis
	Inference-time Efficiency

	Conclusion
	Reproducibility Statement
	Ethics Statement
	Appendix A: Code Snippets for Fine-Grained Emotion Control
	Emotion Conversion and Interpolation
	Emotion Erasure
	Emotion Replacement
	Multiple Emotion Steering

	Appendix B: Dataset Construction
	Appendix C: Configurations
	Model Configurations
	Hardware and Software Configurations
	Raters' Information and Inter-rater reliability

	Appendix D: Objective Evaluation Metrics
	Naturalness Mean Opinion Score
	Emotion Interpolation Mean Opinion Score
	Emotion Erasure Mean Opinion Score

	Appendix E: Reproduced Baseline Results
	Appendix F: Visualization of F0 Contours
	Emotion Interpolation
	Emotion Erasure

	Appendix G: The Use of LLMs
	Appendix H: Additional Analysis of Emotion Steering Dynamics
	Sensitivity to Steering Corpus Composition
	Correlation of E-SIM Metrics with N-MOS and EE-MOS
	Confidence Intervals and Significance Tests of Subjective Evaluation
	Trade-off Between α and WER/N-MOS
	Sensitivity to the SER Model for Token Probing
	Robustness to Noise and Reverberation


