
Graph Representations for Relational Deep
Learning

Tamara Cucumides2, Pablo Barceló1, and Floris Geerts2

1 Universidad Católica de Chile & IMFD Chile CENIA Chile
pbarcelo@uc.cl

2 University of Antwerp, Belgium
{tamara.cucumidesfaundez,floris.geerts}@uantwerp.be

Abstract. We explore different graph construction strategies for rela-
tional deep learning, revealing new ways to optimize representation ef-
ficiency and expressivity. Our work extends existing methods and high-
lights new research directions in relational learning.

Introduction. Machine learning (ML) on structured data, particularly re-
lational databases, has gained attention as an alternative to traditional fea-
ture engineering. Relational Deep Learning [1] proposes modeling relational
databases as temporal, heterogeneous graphs, where rows correspond to nodes,
and primary-foreign key constraints define edges. Message Passing Graph Neural
Networks (GNNs) can then automatically learn representations over this struc-
tured data to later tackle different tasks, such as node classification, regression
and link prediction.

However, a fundamental challenge in this approach is that the graph struc-
ture is highly dependent on database design choices. The same underlying data
can lead to different graphs depending on normalization levels, key constraints,
and schema design. This raises critical questions: (1) How do different graph con-
struction strategies impact learned representations? (2) How can transformations
balance information preservation and efficiency? (3) What are the trade-offs be-
tween fully preserving relational structure and simplifying it?

In this work, we explore different strategies for transforming relational
databases into graphs and their potential impact on ML tasks.
Different graph constructions for relational databases The standard
approach in Relational Deep Learning constructs graphs where: (i) Each tuple
(row) in a table becomes a node, (ii) edges are defined by primary-foreign key
relationships, and (iii) attributes are stored as node features. However, other
graph constructions could be explored.

In particular, we propose to consider the scenario in which some attributes
are moved to separate tables by introducing additional key dependencies (or
hyper-normalizing). By introducing new key dependencies, this process creates
additional nodes representing attribute values, connecting previously unrelated
entities through shared attributes. (see Figure 1). In an extreme case, we can cre-
ate a fine-grained graph representation by encoding each different data value as



2 P. Barceló et al.

Clients

id name age country

1 Pablo 27 Chile

2 Floris 25 Belgium

3 Tamara 30 Chile

name: Pablo, 
age:27, 

country:Chile

name: Floris, 
age:25, 

country:Belgium

name: Tamara, 
age:30, 

country:Chile

date:22/5/24
Total: 500

date:3/12/24
Total: 350

date:7/1/25
Total: 200

date:29/1/25
Total: 120

Sales

id date total

1 22/5/24 500

2 3/12/24 350

2 7/1/25 200

3 29/1/25 120

(a) Graph construction for schema
Clients(id, name, age, country), Sales(id,
date, total)

Sales

id date total

1 22/5/24 500

2 3/12/24 350

2 7/1/25 200

3 29/1/25 120

Clients

id name age cid

1 Pablo 27 1

2 Floris 25 2

3 Tamara 30 1

Country

cid country

1 Chile

2 Belgium

date:22/5/24
Total: 500

date:3/12/24
Total: 350

date:7/1/25
Total: 200

date:29/1/25
Total: 120

name: Pablo, 
age:27

name: Floris, 
age:25

name: Tamara, 
age:30

country Chile: 

country Belgium: 

(b) Graph construction for schema
Clients(id, name, age, cid) Sales(id, date,
total), Country(cid, country)

Fig. 1. Figures (a) and (b) illustrate two different graph constructions for the same
data, based on different schema choices. In Figure (a), the Country attribute is stored as
a node attribute, whereas in Figure (b), it is pushed into a separate table, introducing
new nodes and connections in the graph.

nodes in the graph, which resembles the relational graph representation proposed
in [2]. Other graph constructions strategies can be explored using compact data
structures that reduce redundancy. For example, by using graph constructions
inspired by factorized data representations [4], one can incorporate dependency
structures between attribute values.

Beyond graphs, hypergraphs offer an alternative representation (see e.g.[5]).
When nodes represent tuples, hyperedges can indicate shared attributes among
them. Alternatively, if nodes represent data values, both tuples and key con-
straints can be modeled as hyperedges. For representation learning, GNNs de-
signed for hypergraphs [3] provide a suitable framework.
Discussion and open questions When transforming relational databases
into graphs for learning tasks, the choice of graph construction directly impacts:

– Expressivity. Which properties of the original relational database are pre-
served in the graph representation? How do these choices influence the types
of tasks that can be effectively performed on the graph?

– Complexity. Constructing a graph from a relational database can be com-
putationally expensive. Additionally, the resulting graph’s structure (e.g.,
size, density) directly affects the efficiency and feasibility of learning tasks
performed on it.

We aim to systematically explore how different graph representations of rela-
tional databases impact Relational Deep Learning, bridging machine learning
and database research to establish principled graph construction methods for
improved representation learning and predictive tasks.



Graph Representations for Relational Deep Learning 3

References

1. Fey, M., Hu, W., Huang, K., Lenssen, J.E., Ranjan, R., Robinson, J., Ying, R., You,
J., Leskovec, J.: Position: Relational deep learning - graph representation learning on
relational databases. In: Forty-first International Conference on Machine Learning
(2024), https://openreview.net/forum?id=BIMSHniyCP

2. Grohe, M.: word2vec, node2vec, graph2vec, x2vec: Towards a theory of vector em-
beddings of structured data. In: Proceedings of the 39th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems. pp. 1–16 (2020)

3. Huang, X., Orth, M.R., Barceló, P., Bronstein, M.M., Ceylan, İ.İ.: Link prediction
with relational hypergraphs. arXiv preprint arXiv:2402.04062 (2024), https://arxiv.
org/abs/2402.04062

4. Olteanu, D., Schleich, M.: Factorized databases. SIGMOD Rec. 45(2), 5–16 (Sep
2016). https://doi.org/10.1145/3003665.3003667, https://doi.org/10.1145/3003665.
3003667

5. Zahradník, L., Neumann, J., Šír, G.: A deep learning blueprint for relational
databases. In: NeurIPS 2023 Second Table Representation Learning Workshop
(2023), https://openreview.net/pdf?id=b4GEmjsHAB

https://openreview.net/forum?id=BIMSHniyCP
https://arxiv.org/abs/2402.04062
https://arxiv.org/abs/2402.04062
https://doi.org/10.1145/3003665.3003667
https://doi.org/10.1145/3003665.3003667
https://doi.org/10.1145/3003665.3003667
https://doi.org/10.1145/3003665.3003667
https://openreview.net/pdf?id=b4GEmjsHAB

	Graph Representations for Relational Deep Learning

