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Abstract

In this study, we investigate whether non-001
English-centric large language models, ‘think’002
in their specialized language. Specifically, we003
analyze how intermediate layer representations,004
when projected into the vocabulary space, favor005
certain languages during generation—termed006
as latent languages. We categorize non-English-007
centric models into two groups: CPMs, which008
are English-centric models with continued pre-009
training on their specialized language, and010
BLMs, which are pre-trained on a balanced011
mix of multiple languages from scratch. Our012
findings reveal that while English-centric mod-013
els rely exclusively on English as their latent014
language, non-English-centric models activate015
multiple latent languages, dynamically select-016
ing the most similar one based on both the017
source and target languages. This also influ-018
ences responses to culture difference questions,019
reducing English-centric biases in non-English020
models. This study deepens our understand-021
ing of language representation in non-English-022
centric LLMs, shedding light on the intricate023
dynamics of multilingual processing at the rep-024
resentational level.025

1 Introduction026

Large Language Models (LLMs) need multilin-027

gual capability to effectively serve a global audi-028

ence by facilitating communication and task execu-029

tion across diverse languages. Nevertheless, state-030

of-the-art LLMs remain predominantly English-031

centric (Dubey et al., 2024) (Workshop et al., 2022).032

Despite their robust performance in English, these033

models often exhibit reduced proficiency in non-034

English languages, and their outputs may reflect035

an inherent bias toward English-centric perspec-036

tives. Recent studies on the Llama-2 family sug-037

gest that these English-centric models ‘think’ in En-038

glish (Wendler et al., 2024). Specifically, as shown039

in Figure 1 (a), when employing logit-lens (Nos-040

(a) English-centric: Llama-2

(b) CPM: Swallow

(c) BLM: LLM-jp-3

Figure 1: Logit-lens for intermediate layers of three
models when doing translation. The input is “Français:
"préparation" -中文: "”. The figure shows the highest
probability token from the intermediate layers starting
from layer 20. The Chinese answer “准备” is expected,
where 0xE5 is the first UTF-8 byte of “准”.

talgebraist, 2020) to examine the probability dis- 041

tributions of tokens in their intermediate layers, 042

a pronounced internal preference for English to- 043

ken ‘_prepar’ is observed—even when processing 044

French to Chinese translation inputs. This phe- 045

nomenon is defined as these English-centric mod- 046

els ‘thinking’ in English latent language. This 047

reliance on an English latent language not only un- 048

dermines performance in other languages but also 049

may introduce unintended biases. 050

To mitigate these challenges, researchers have 051

developed non-English-centric models designed 052

to enhance performance in a specialized language 053

and reduce biases. Two primary strategies have 054
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emerged. One approach adapts English-centric055

models by continuing pre-training with language-056

specific corpora (CPMs) (Fujii et al., 2024) (Cui057

et al., 2023), while the other constructs a model058

from scratch using a balanced corpus that contains059

English and the specialized language (BLMs) (Gou-060

vert et al., 2025) (Aizawa et al., 2024).061

While these models demonstrate improved per-062

formance, it remains unclear how their internal pro-063

cessing differs from English-centric models. To ex-064

plore this, we investigate the open question: When065

processing their specialized language, in what066

latent language do these models ‘think’? Specif-067

ically, we seek to determine whether these models068

employ the dominant language of their training069

data as latent language when processing mono-070

lingual cloze tasks. To address this question, we071

conduct experiments on four languages—Japanese,072

Chinese, French, and Arabic. An example finding073

of Japanese-specialized models indicate that while074

the English-centric model predominantly processes075

information in English, the BLM model primarily076

utilizes Japanese as a single latent language in its in-077

termediate layer; the CPM model exhibits a mixed078

pattern of both English and specialized language079

utilization as latent languages.080

While non-English-centric models ‘think’ in081

their specialized language when processing tasks082

in that language, an intuitive question arises: What083

latent language do these models employ when084

handling cross-lingual tasks? To address this,085

we systematically vary both the source and target086

languages across various non-English-centric mod-087

els in a translation task. Our experiments reveal088

that the latent language in intermediate layers of089

these models follows a dynamic pattern: earlier090

layers tend to reflect latent language similar to the091

source language, while later layers increasingly092

utilize latent language similar to the target lan-093

guage—eventually yielding outputs in the target094

language. Notably, BLMs exhibit a noticeable ten-095

dency to adopt a single latent language(i.e., ‘準096

備’ in Figure 1(c)), whereas CPMs tend to inter-097

mix activations across languages (i.e. ‘準備’ and098

‘_prepar’). We refer to this phenomenon—where099

the model’s probability distribution shifts stepwise100

from a language akin to the source to one more sim-101

ilar to the target, culminating in the final output—as102

the ‘Probabilistic Cascade’.103

Given that non-English-centric models have104

been shown to reduce biases (Nie et al., 2024),105

it is crucial to understand how their internal latent106

language patterns contribute to shaping cultural bi- 107

ases. In particular, we investigate: How do the 108

latent language patterns influence semantic rep- 109

resentations when processing culturally specific 110

questions? To address this, we analyze the models’ 111

internal responses when handling culture difference 112

questions. When asked about the longest river in 113

Japan, English-centric model initially produces la- 114

tent representations biased toward English-centric 115

cultural narratives (i.e., referencing the Mississippi 116

River). Although later layers gradually adjust the 117

output toward the target language context, the fi- 118

nal answer remains culturally inappropriate. In 119

contrast, non-English-centric models realign their 120

latent language more effectively toward the target 121

culture, resulting in more accurate and culturally 122

relevant outputs. This investigation thus elucidates 123

how latent language patterns in intermediate layers 124

can shape cultural bias. 125

In summary, we demonstrate the aforementioned 126

experiments, the model subjects, and covered non- 127

English languages in Figure 2. Our contributions 128

are threefold: 129

1. We investigate non-English-centric LLMs for 130

Japanese, Chinese, French, and Arabic, con- 131

firming that these models employ their respec- 132

tive specialized languages—along with En- 133

glish—as latent languages in their interme- 134

diate layers when processing tasks in their 135

designated languages. 136

2. We observe that when processing cross- 137

lingual tasks, these models exhibit a dynamic 138

latent language pattern between English and 139

their specialized languages. The probability 140

distribution of these latent languages reflects 141

the similarity between the source/target lan- 142

guage and the latent languages. 143

3. We analyze how latent language usage cor- 144

relates with cultural bias. Specifically, when 145

addressing culture difference questions, while 146

English-centric models tend to generate latent 147

representation biased towards English culture, 148

non-English-centric models realign their la- 149

tent language more effectively toward the spe- 150

cialized language’s culture, resulting in out- 151

puts that better reflect the culturally appropri- 152

ate context. 153
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Translation (Fr to Zh)  

Cloze (Ja)

Cultural difference QA (Ja) 

Japanese-specialized Models

BLM
LLM-jp

CPM
Swallow

‘Thinking’
(intermediate layers)

Output
(final layers)

"__"は、聴くことができる⾳の芸
術です。答え:

Français: “musique” –中⽂: “

本国の最⾼峰は＿です。答え:

The highest mountain in our country is _.

"__" is the art of sound that can be 
heard.

French: “music” – Chinese: “

English-Centric 
LLama

⾳楽 (Ja)

⾳乐 (Zh)

⾳楽 (Ja)Music (En)

⾳楽 (Ja)Music (En)

McKinley (En) 富⼠⼭ (Ja) 富⼠⼭ (Ja)

Always in English
(Wendler et al., 2024) 

⾳楽 (Ja)

⾳楽 (Ja)Music (En)

富⼠⼭ (Ja)

Chinese-specialized Models French-specialized Models Arabic-specialized Models

⾳楽 (Ja)

⾳乐 (Zh)

富⼠⼭ (Ja)

Figure 2: An overview of detecting latent languages of two categories of non-English-centric models in three
experiments across four languages: Japanese, Chinese, French, and Arabic

2 Related work154

2.1 Non-English-centric LLMs155

Current frontier large language models, such as156

GPT-4 (Achiam et al., 2023), Gemini (Team et al.,157

2023), and Llama-2 (Touvron et al., 2023), are pri-158

marily trained with English-centric corpora, with159

other languages constituting only a small portion of160

the training data. Significant research efforts have161

been contributed to enhance these models’ multilin-162

gual capabilities through various methods. One ap-163

proach involves continued pre-training on special-164

ized language data (Sun et al., 2020; Brown et al.,165

2020; Hunter et al., 2023), as demonstrated by mod-166

els like Japanese Swallow (Fujii et al., 2024), Chi-167

neseLlama (Cui et al., 2023), Claire (Hunter et al.,168

2023) and SambaLingo (Csaki et al., 2024), all of169

which are based on Llama-2. Another approach is170

training from scratch with bilingual data (Sengupta171

et al., 2023; Yang et al., 2024; Gouvert et al., 2025),172

exemplified by models such as LLM-jp (Aizawa173

et al., 2024), Baichuan (Yang et al., 2023), Lucie174

(Faysse et al., 2024)and Jais (Sengupta et al., 2023).175

While these two approaches have proven effective,176

the community still knows little about the under-177

lying mechanism. Our research substantially fills178

this gap.179

2.2 Cultural Bias in LLMs180

Existing research has demonstrated that LLMs ex-181

hibit biases related to culture, race, gender, and182

social values, among other factors (Nie et al., 183

2024) (Fang et al., 2024). Studies assessing word 184

embeddings and generated text indicate that LLMs’ 185

biases correspond to the cultural and regional con- 186

texts of their training data (AlKhamissi et al., 187

2024) (Naous et al., 2023). Given that many LLMs 188

are predominantly trained on English-language cor- 189

pora, they tend to reflect cultural norms and val- 190

ues prevalent in English-speaking regions. Vari- 191

ous approaches, such as data curation, model fine- 192

tuning (Gallegos et al., 2024), and prompt engi- 193

neering (Tao et al., 2023), have been employed to 194

mitigate these biases. While previous studies have 195

explored cultural bias in LLM-generated outputs, 196

relatively little attention was paid to the underlying 197

cause of such biases. In this work, we analyze how 198

cultural biases manifest in the intermediate layers 199

of English-centric and non-English-centric models, 200

providing insights into the cause of bias. 201

2.3 Interpretability Techniques 202

Mechanistic interpretability is the study of under- 203

standing how models work by analyzing their in- 204

ternal components and processes to elucidate the 205

mechanisms that give rise to their behavior and 206

predictions, encompassing research lines like su- 207

perposition (Elhage et al., 2022), sparse autoen- 208

coders (Huben et al., 2023), circuit analysis (Wang 209

et al., 2022) and so on. Studies on multilingual 210

models have identified language-specific neurons 211

by analyzing their activation patterns across dif- 212
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ferent languages (Tang et al., 2024). Similar to213

probing methods, this approach reveals structured214

multilingual representations by examining interme-215

diate activations. Likewise, Logit Lens (Nostalge-216

braist, 2020) and Tuned Lens (Belrose et al., 2023)217

focus on decoding the probability distribution over218

the vocabulary from hidden vectors of the model.219

These methods help analyze the model’s ‘thinking’220

process. In this work, we follow the study (Wendler221

et al., 2024) to employ Logit Lens to analyze the222

internal behavior of non-English-centric models223

when processing multiple languages, examining224

the rich combination patterns of multiple latent lan-225

guages.226

3 Methodology227

In this section, we first introduce Logit lens, which228

is used to detect the latent language of certain229

LLMs. We define two categories of non-English-230

centric LLMs and collect models across four non-231

English lanuguages—Chinese, Japanese, French,232

and Arabic—as our research subjects. We design233

three tasks including monolingual cloze, cross-234

lingual translation, and culture difference QA tasks235

to examine the three research questions described236

in the introduction.237

3.1 Logit Lens238

Logit Lens (Nostalgebraist, 2020) is a tool designed239

to reveal token information of the intermedia layers.240

LLMs use softmax to project the hidden vectors241

onto the dimensions of the vocabulary in the output242

layer, which is called unembedding. As the hidden243

vectors passed between the intermediate layers of244

the model have the same dimensions as the output245

vectors. By applying the same unembedding opera-246

tion to those intermediate hidden vectors, we can247

obtain the vocabulary probability of certain inter-248

mediate layers. In this work, we use Logit Lens to249

obtain the predicted token probability distribution250

from the intermediate layers.251

3.2 Measuring Multi-token Probability252

The existing work (Wendler et al., 2024) limited its253

data construction to single-token words and calcu-254

lated the single-token probability only. However,255

more words contain multiple sub-tokens and the256

single-token probability does not meet the practical257

usage. In this work, we measure the generation258

probability of multiple tokens in the intermediate259

layers.260

After a word is tokenized into sub-token IDs 261

[x1, x2, . . . , xn], the probability p1 of token x1 is 262

first obtained using logit lens on the hidden vector 263

of a certain layer. Subsequently, the ground truth 264

token x1 is fed into the model as input to calcu- 265

late the probability p2 of token x2. This process is 266

conducted iteratively. The final probability of gen- 267

erating the token sequence [x1, x2, . . . , xn] at layer 268

i is then determined as the product of individual 269

probabilities, p1 × p2 × · · · × pn. 270

3.3 Categorization of non-English-centric 271

Large Language Models 272

Based on their training data, we classify non- 273

English-centric LLMs into two types and include 274

the original English centric one: 275

English-Centric Models: These models, such as 276

Llama2, the majority of their training data is in En- 277

glish, making them highly proficient in generating 278

and understanding English text. 279

CPMs: These models are built upon an English- 280

centric model and undergo continued pre-training 281

on a specialized language to enhance multilingual 282

ability. 283

BLMs: These models are trained on a roughly 284

equal amount of tokens from two or more lan- 285

guages, aiming to achieve balanced proficiency 286

across these languages. 287

We selected non-English-centric models for Chi- 288

nese, Japanese, French, and Arabic. Chinese and 289

Japanese share a part of common Kanji characters. 290

French is closely similar to English. Arabic is rel- 291

atively distinct from all the other languages. This 292

setting allows us to analyze the experimental results 293

from the perspective of language similarity. 294

3.4 Dataset Construction 295

After selecting the models, we constructed three 296

tasks across four languages (Japanese, Chinese, 297

French, and Arabic), each task corresponding 298

to one research question. Because Chinese and 299

Japanese share common characters (Chu et al., 300

2012), we first prepared a set of non-overlapping 301

Chinese-Japanese word pairs that have the same 302

meaning but different characters. This is based on 303

Database of Japanese Kanji Vocabulary in Con- 304

trast to Chinese (JKVC) (達彦 et al., 2020). Then, 305

we use GPT-4 to translate from Japanese and ob- 306

tain the corresponding English and French words 307

or phrases, and correcting any mistakes. Finally, 308

we obtained 166 parallel word pairs. 309
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Prompt design: We then define three tasks: the310

monolingual cloze task, the cross-lingual transla-311

tion task, and the culture difference QA task, using312

the following prompt format:313

Cloze task: We use the prompt format following314

the previous work (Wendler et al., 2024). For the315

Cloze task, we use GPT-4 to generate a description316

for each word in each language. Each described317

word is placed at the beginning of the description.318

We then mask the word in the description and make319

the models generate the target word. We present a320

Japanese example (English meaning in Figure 2):321

"__"は、聴くことができる音の芸術です。322

答え: "音楽"。323

Translation task: When constructing translation324

prompts, we use a hyphen to connect the input lan-325

guage word and the target language word to form a326

one-shot example. We demonstrate an example of327

translating a French word into Chinese:328

Français: “musique” -中文:"音乐"329

Culture difference QA task: For this task, we man-330

ually constructed 49 questions, each formulated in331

the five languages while explicitly including the332

name of a specific country. In English, the ques-333

tions refer to the United States; in Japanese, to334

Japan; in Chinese, to China; in French, to France;335

and in Arabic, to Saudi Arabia. The following is an336

example. When the question is asked in different337

languages, referring to their respective countries,338

the answers vary. Furthermore, the process does339

not require manual answer collection, as elaborated340

in Section 4.3. Below, we present a Japanese exam-341

ple (English meaning in Figure 2):342

本国の最高峰は_です。答え: "343

4 Experimental Settings344

To derive general conclusions considering linguis-345

tic diversity, we selected one CPM and one BLM346

of comparable size for Japanese, Chinese, French,347

and Arabic, respectively, and conducted our experi-348

ments alongside the English-centric Llama 2 family349

to investigate how training data influences latent350

language probabilities. Details of the selected mod-351

els are presented in Appendix 1.352

To ensure that the model can complete the task353

successfully, we use few-shot prompting (in the354

same language setting) to teach the LLM the task355

format in all experiments, with each shot structured356

as described in Section 3.4. We then monitored the357

probabilities of different language versions of the358

answers being generated at each layer and visual- 359

ized the results in graphical form. 360

4.1 Design of Cloze Task 361

The first experiment aimed to determine our first re- 362

search question: whether non-English-centric mod- 363

els could effectively utilize their specialized lan- 364

guages within its intermediate layers. To this end, 365

we conduct monolingual cloze tasks in the cor- 366

responding languages on models specialized for 367

Japanese, Chinese, French, and Arabic. We use 368

two-shot prompting in this task, followed the previ- 369

ous work (Wendler et al., 2024). 370

4.2 Design of Translation Task 371

To investigate our second research question: which 372

latent language is used when processing cross- 373

lingual tasks, we conduct the translation tasks on 374

these models and observe changes in the latent lan- 375

guage probability by varying the source and target 376

languages. Our dataset includes four languages: 377

English, French, Japanese, and Chinese. Among 378

these, En-Fr and Zh-Ja form two pairs of linguisti- 379

cally similar languages, allowing us to investigate 380

how input source and output target language simi- 381

larities to latent language influence the latent lan- 382

guage usage on Japanese- and Chinese-specialized 383

models. We use four-shot prompt in this task, fol- 384

lowed by the previous work (Wendler et al., 2024). 385

4.3 Design of Culture Difference QA Task 386

When interacting with LLMs, users typically com- 387

municate in their native language without explic- 388

itly specifying their identity, nationality, or cultural 389

background. Ideally, LLMs should generate re- 390

sponses that align with the cultural context associ- 391

ated with the language being used. 392

Because the cloze task demonstrated that non- 393

English-centric models predominantly rely on their 394

specialized language when processing tasks in that 395

language, this experiment compares the biases in 396

the intermediate layers of English-centric models 397

and non-English-centric models when answering 398

culture difference questions. 399

As described in Section 3.4, we design questions 400

in five languages, each referring to its respective 401

country. The experiment follows the two steps 402

below. 403

1. Querying the model with country-specific 404

questions. We separately query a non- 405

English-centric model in English and its spe- 406

cialized language (e.g., Japanese) about the 407
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Llama-2-13B Llama-2-13B Llama-2-7B Llama-2-7B

Swallow-13B Chinese-LLaMA-2-13B Claire-Mistral-7B SambaLingo-Arabic-Base

LLM-jp-3-13B Baichuan2-13B Lucie-7B Jais-family-6p7b

English-centric 
LLMs

CPMs

BLMs

Japanese Chinese French Arabic

Figure 3: Cloze task results of three kinds of LLMs in its specialized language. Each row represents a model of
the same category, while each column corresponds to the language used in the cloze task evaluation. The orange
line represents the probability of English answers, the red line represents the probability of the models’ specialized
language answers. The x-axes denote the model’s layer index, while the y-axes represent the probability of the
answer in each language. The translucent areas indicate 95% Gaussian confidence intervals.

United States and its respective country (e.g.,408

Japan) with country names explicitly attached.409

The model generates responses using a greedy410

decoding algorithm, and the generated two411

answers are recorded as two references, rep-412

resenting the cultural knowledge associated413

with the two countries.414

2. Querying the model with country-free ques-415

tions in its specialized language. We modify416

the original question by replacing the explicit417

country name with “our country” and query418

the model in its specialized language again419

(e.g., Japanese). By monitoring the probabil-420

ity of two reference answers in the interme-421

diate layers, we can recognize how cultural422

bias is internally encoded within the model’s423

reasoning process.424

5 Results425

5.1 Cloze Task: Analysis of Input in426

Specialized Languages427

To address our central question—whether non-428

English-centric large language models (LLMs) use429

English as a latent language or rely on their special-430

ized language—we conducted cloze tasks in four431

languages (Japanese, Chinese, French, and Arabic). 432

Figure 3 presents the intermediate layer latent lan- 433

guage probabilities of English-centric LLMs and 434

eight non-English-centric models spanning two cat- 435

egories (CPMs and BLMs). The results show that 436

English-centric LLMs consistently rely on English 437

in their intermediate representations, even when 438

processing tasks in other languages. 439

In contrast, CPMs exhibit a bilingual latent lan- 440

guage pattern: the specialized language appears in 441

the early layers, but most of these models predom- 442

inantly rely on English. BLMs, meanwhile, pre- 443

dominantly rely on its specialized language from 444

their early layers, using English only minimally. 445

One outlier is the BLM Lucie-7B, which occa- 446

sionally assigns a higher probability to English 447

terms; this likely stems from lexical overlap be- 448

tween English and French, where certain English 449

words used in the cloze tasks also appear in French, 450

thereby influencing the model’s intermediate rep- 451

resentations. In summary, these findings suggest 452

that language-specific models (CPMs and BLMs) 453

incorporate their target language—either partially 454

or entirely—in their latent representations. 455
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En Fr Zh Ja

Similar to En Similar to Zh

En

Fr

Ja

Zh

Target:  

Source:

Similar to En Similar to Ja Similar to En Similar to Ja 

Sim
ilar to

En 
Sim

ilar to
Ja 

(a) Japanese CPM: Swallow-13B (b) Japanese BLM: LLM-jp-3-13B

LLM-jp-3-13B

En Fr Zh Ja

Figure 4: Comparison of Translation Task Patterns Between CPMs and BLMs. (a) results for Japanese CPM
Swallow-13B, (b) results for BLM LLM-jp-3-13B. Each row represents a source language in the translation task,
while each column corresponds to a target language. The orange line represents the probability of English answers,
the red line represents the probability of Japanese answers, and the blue line represents the probability of answers in
other languages. The x-axes denote the model’s layer index, starting from the 15th layer, while the y-axes represent
the probability of the answer in each language. The translucent areas indicate 95% Gaussian confidence intervals.

5.2 Translation Task: Analysis of Input in456

non-specialized Languages457

To investigate which latent language these non-458

English-centric models employ when handling the459

cross-lingual translation task, we vary both the in-460

put source and output target languages.461

We specifically focus on Japanese-specialized462

models here. We investigate the latent language463

on translation task on two Japanese-specialized464

models: the CPM-based architecture (left) and the465

BLM-based one (right), as illustrative examples in466

Figure 4. Additional results for other languages are467

provided in the Appendices B.1, where we observe468

similar behaviors for Chinese-specialized models.469

Within each subfigure (a) or (b), the diagonal470

cells represent scenarios in which the source and471

target languages coincide (i.e., repetition rather472

than translation). Examining each row (fixed473

source language) from left to right shows an474

increasing similarity of the target language to475

Japanese, and accordingly, both models exhibit a476

rising probability of Japanese in later intermedi-477

ate layers. Likewise, scanning each column (fixed478

target language) from top to bottom reveals that479

a gradually more Japanese-like source boosts the480

activation of Japanese in earlier intermediate layers.481

These observations indicate that models with multi-482

ple latent languages choose which latent language483

to activate based on its similarity to the source or484

target. The two categories of models also have 485

distinct patterns: non-English-centric CPMs con- 486

sistently utilize both Japanese and English as latent 487

language, while BLMs exhibit a stronger propen- 488

sity toward a single latent language. 489

Furthermore, we observe a distinct phe- 490

nomenon—here referred to as the “Probabilistic 491

Cascade” for BLMs: during multilingual process- 492

ing, the probability of a latent language closer to the 493

source first surges, then transitions to another latent 494

language more akin to the target, and finally culmi- 495

nates in the target language output. Overall, this 496

study shows that language-specific models—here, 497

specialized for Japanese—leverage both English 498

and their specialized language as latent languages 499

across intermediate layers when handling multilin- 500

gual content, suggesting they could be adaptable to 501

typologically similar languages. 502

5.3 Culture Difference QA 503

Given that non-English-centric models can help 504

mitigate biases, it is important to examine how 505

their internal latent language patterns shape cul- 506

tural biases. In particular, we aim to understand 507

how these latent patterns influence a model’s se- 508

mantic representations when it processes culturally 509

specific questions. Figure 5 illustrates this phe- 510

nomenon on Japanese via a logit lens analysis (pan- 511

els (a), (b), and (c) show Llama-2, Swallow, and 512

LLM-jp respectively). We prompt each model in 513
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(a) English-centric: Llama-2 (b) CPM: Swallow (c) BLM: LLM-jp-3

Figure 5: Logit lens results of intermediate layers of three models, (a) Llama-2, (b) Swallow, (c) LLM-jp. The
input prompt is “本国の公用語は_です。 答え:"”, which means “The official language of our country is _ .
Answer:"” with the answer being “日本語” (Japanese). The figure shows the highest probability token from the
intermediate layers starting from layer 20.

15 20 25 30 35 400.0

0.2

0.4

0.6
en_latent
ja_target

English-centric: Llama2-13B

15 20 25 30 35 400.0

0.2

0.4

0.6
en_latent
ja_target

Japanese CPM: Swallow-13B

15 20 25 30 35 400.0

0.2

0.4

0.6
en_latent
ja_target

Japanese BLM: LLM-jp-3-13B

Figure 6: Comparison of English-centric and Japanese-specialized models when processing culture difference
QAs. The curve illustrates the probability that the latent representation aligns with the specific cultural answer. The
x-axes denote the model’s layer index, starting from the 15th layer, while the y-axes represent the probability of the
answer in each language’s cultural context. The translucent areas indicate 95% Gaussian confidence intervals.

Japanese for the official language of “our coun-514

try” (“本国の公用語は_です。答え:”) and ex-515

amine the highest-probability tokens from layer 20516

onward. Llama-2 initially generates an English-517

centric token sequence referencing the English;518

although the model later considered Japanese, it519

ultimately generated the incorrect answer “英語”520

(English). By contrast, the Japanese-specialized521

models (Swallow and LLM-jp) exhibit direct align-522

ment with the Japanese context in the earlier layers,523

generating tokens for the correct answer “日本語”524

(Japanese) far earlier. To further examine these pat-525

terns in terms of overall probability distributions,526

Figure 6 tracks the probability of each model gen-527

erating a Japanese versus an English answer across528

intermediate layers. From these curves, we observe529

that Llama-2 maintains a high likelihood of produc-530

ing English-centric responses in most mid-layers,531

only converging on the Japanese context near the532

end. In contrast, the Japanese-specialized models533

remain consistently aligned with the Japanese cul-534

tural context from earlier layers, highlighting their535

capacity to “think” in the target language more536

effectively. This result indicates that non-English-537

centric models can reason directly in the target lan-538

guage from the outset, allowing them to generate539

more culturally appropriate responses. Additional 540

experimental results and comparisons of other lan- 541

guages are presented in Appendices B.2, where 542

similar trends are observed. 543

6 Conclusion 544

In this study, we leverage Logit Lens to analyze 545

the latent languages of non-English-centric LLMs. 546

Our findings in the monolingual cloze task indicate 547

that CPMs exhibit a mixture of latent languages, 548

blending their specialized language with English, 549

while BLMs activate the latent language most sim- 550

ilar to the input dynamically. While conducting 551

cross-lingual translation, both source and target lan- 552

guages influence latent language activation, with 553

higher linguistic similarity leading to stronger ac- 554

tivation. A typical pattern termed ‘Probabilistic 555

Cascade’ is observed: the probability of latent lan- 556

guages peaks and then declines alternately, and 557

ultimately shifts the peak to the target language. Fi- 558

nally, we observe that English-centric models intro- 559

duce cultural biases, whereas non-English-centric 560

models better capture their respective cultural con- 561

texts. These insights contribute to understanding 562

multilingual bias and guiding future improvements. 563
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7 Limitations564

Despite our efforts to construct a high-quality565

dataset, certain limitations remain in our study.566

First, while we ensured that word pairs across lan-567

guages do not overlap during dataset construction,568

the inherent lexical similarities between languages,569

such as English and French, pose a challenge.570

Specifically, although the English and French an-571

swers used in the cloze task were explicitly selected572

to avoid direct overlap, some chosen English words573

may also exist as valid French words with similar574

meanings. This unintended overlap may contribute575

to higher probabilities for English in the interme-576

diate layers of the French model. A more rigorous577

dataset construction process could mitigate this is-578

sue, potentially leading to more reliable results in579

French model evaluations.580

Second, the Arabic dataset was generated using581

translations from GPT-4, which limits our ability to582

manually verify the accuracy of the translations or583

determine whether the selected words are the most584

commonly used ones in Arabic-speaking regions.585

This limitation may explain the lower probabil-586

ity of Arabic responses when evaluating Arabic-587

specialized models.588

Third, in the culture difference QA experiment,589

we constructed only 49 questions, which is a rel-590

atively small sample size. Expanding the dataset591

in future work would enhance the robustness of592

our findings. Additionally, in this experiment, we593

selected a single representative country for each594

language, yet in reality, these languages are spoken595

across multiple regions with potentially varying596

cultural contexts. Future work should consider a597

broader selection of representative regions to im-598

prove the generalizability of the results.599

8 Ethical Considerations600

This study analyzes the latent language dynamics601

of non-English-centric LLMs and how they influ-602

ence cultural bias in the model’s intermediate lay-603

ers. While we examine bias in intermediate layers,604

we do not propose direct mitigation strategies, and605

biases in training data may still influence model606

behavior.607

Our evaluation focuses on a limited set of lan-608

guages, which may affect generalizability. Addi-609

tionally, while non-English-centric models reduce610

English cultural bias, other biases may persist. Fu-611

ture work should explore broader linguistic con-612

texts and bias mitigation techniques to promote613

fairness in LLMs. 614
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A Model Details779

Table 1 presents details of the models we tested.780

For CPMs, the language proportions refer to those781

used during the CPT process.782

B Extra Results783

B.1 Translation Task: Analysis of Input in784

non-specialized Languages785

Figure 7 presents the results of the Chinese-786

specialized models in Experiment 2. These models787

exhibit the same pattern observed in the analysis788

of the Japanese model in the main text. For the789

BLM Baichuan2, we also observe the Probabilistic790

Cascade phenomenon.791

Figure 8 presents the results of the French-792

specialized model in Experiment 2. Across all set-793

tings, the intermediate layers of the French CPM794

show a low probability for French. In contrast,795

the French BLM exhibits a higher probability for796

French in its intermediate layers, achieving a more797

balanced representation. However, as noted in the798

Limitations 7, our dataset has shortcomings for799

evaluating French-specialized models.800

B.2 Culture Difference QA: Analysis on801

Culture Difference Questions802

As shown in Figure 9, 10, 11, for the English-803

centric Llama2, across all tested languages in the804

culture difference QA task, intermediate layers805

consistently first generate English answers aligned806

with the U.S. cultural context. In contrast, non-807

English-centric models do not exhibit this tendency808

when processing culture difference QAs in their809

specialized languages. This suggests that non-810

English-centric models demonstrate a reduced sus-811

ceptibility to English cultural bias.812
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Category Model Parameter Proportion in pre-training data From scratch

En Specialized
language Other

English-centric Llama 2 7/13B 89.7% 0.1% 10.2% Yes
CPM (Ja) Swallow 13B 10% 90%(Ja) 0% Llama-2 based
BLM (En + Ja) LLM-jp 13B 45.8% 48.6%(Ja) 7.4% Yes
CPM (Zh) ChineseLLaMA2 13B 0% 100%(Zh) 0% Llama-2 based
BLM (En + Zh) Baichuan2 13B -% -%(Zh) -% Yes
CPM (Fr) Claire-Mistral 7B 0% 100%(Fr) 0% Mistral based
BLM (En + Fr) Lucie 7B 33.3% 32.1%(Fr) 34.6% Yes
CPM (Ar) SambaLingo-

Arabic-Base
7B 25% 75%(Ar) 0% Llama-2 based

BLM (En + Ar) Jais-family 6.7B 59.0% 29.4%(Ar) 11.6% Yes

Table 1: Categorization of LLMs based on language proportion and training strategy. To be noted, Baichuan2 is
primarily pre-trained on English and Chinese data, but the exact proportions have not been disclosed.

En Fr Ja Zh

Similar to En Similar to Zh

En

Fr

Zh

Ja

Target:  

Source:

Similar to En Similar to Zh Similar to En Similar to Zh

Sim
ilar to

En 
Sim

ilar to
Zh

(a) Chinese CPM: ChineseLlaMA2 (b) Chinese BLM: Baichuan2

LLM-jp-3-13B

En Fr Ja Zh

Figure 7: Comparison of Translation Task Patterns Between CPMs and BLMs. (a) results for Chinese CPM
ChineseLlaMA2-13B, (b) results for Chinese BLM Baichaun2-13B. Each row represents a source language in the
translation task, while each column corresponds to a target language. The orange line represents the probability
of English answers, the red line represents the probability of Chinese answers, and the blue line represents the
probability of answers in other languages. The x-axes denote the model’s layer index, starting from the 15th layer,
while the y-axes represent the probability of the answer in each language. The translucent areas indicate 95%
Gaussian confidence intervals.
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(a) French CPM: Claire-Mistral-7B (b) French BLM: Lucie-7B

LLM-jp-3-13B
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Figure 8: Comparison of Translation Task Patterns Between CPMs and BLMs. (a) results for French CPM
Claire-Mistral-7B, (b) results for French BLM Lucie-7B. Each row represents a source language in the translation
task, while each column corresponds to a target language. The orange line represents the probability of English
answers, the red line represents the probability of French answers, and the blue line represents the probability of
answers in other languages. The x-axes denote the model’s layer index, starting from the 15th layer, while the y-axes
represent the probability of the answer in each language. The translucent areas indicate 95% Gaussian confidence
intervals.

15 20 25 30 35 400.0

0.2

0.4

0.6
en_latent
zh_target

English-centric: Llama2-13B
15 20 25 30 35 400.0

0.2

0.4

0.6
en_latent
zh_target

Chinese CPM: ChineseLlaMA-13B

15 20 25 30 35 400.0

0.2

0.4

0.6
en_latent
zh_target

Chinese BLM: Baichuan2-13B

Figure 9: Comparison of English-centric and Chinese-specialized models when processing culture difference
QAs. The curve illustrates the probability that the latent representation aligns with the specific cultural answer. The
x-axes denote the model’s layer index, starting from the 15th layer, while the y-axes represent the probability of the
answer in each language’s cultural context. The translucent areas indicate 95% Gaussian confidence intervals.
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Figure 10: Comparison of English-centric and French-specialized models when processing culture difference
QAs. The curve illustrates the probability that the latent representation aligns with the specific cultural answer. The
x-axes denote the model’s layer index, starting from the 15th layer, while the y-axes represent the probability of the
answer in each language’s cultural context. The translucent areas indicate 95% Gaussian confidence intervals.
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Figure 11: Comparison of English-centric and Arabic-specialized models when processing culture difference
QAs. The curve illustrates the probability that the latent representation aligns with the specific cultural answer. The
x-axes denote the model’s layer index, starting from the 15th layer, while the y-axes represent the probability of the
answer in each language’s cultural context. The translucent areas indicate 95% Gaussian confidence intervals.
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