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ABSTRACT

Long-range turbulence mitigation (TM) remains challenging due to complex spa-
tiotemporal distortions along the imaging path. Current approaches face several
limitations in long-range TM: (i) traditional model-based image fusion methods
fail to restore dynamic scenes, (ii) learning-based approaches demonstrate either
inadequate distortion correction or poor deblurring performance, and (iii) simu-
lators and synthetic training sets inadequately capture the characteristic features
of long-range atmospheric turbulence. To achieve optimal restoration with mini-
mal computation, we propose a low-cost single-frame TM pipeline featuring two
key innovations: (i) a novel physically-grounded degradation simulator that en-
ables rapid data generation while maintaining fidelity, and (ii) a simple yet effec-
tive parallel-training two-stage architecture for sequential distortion removal and
deblurring. We demonstrate 4.3× acceleration in degradation simulation and a
minimum 2× improvement in training efficiency compared to the baseline. Net-
works trained on our synthetic data consistently outperform those trained on other
SOTA simulations. Our pipeline not only achieves state-of-the-art performance in
single-frame TM but also surpasses many multi-frame approaches.

Figure 1: Real-world performance comparison on the RLR-AT benchmark (Xu et al., 2024).

1 INTRODUCTION

The presence of atmospheric turbulence leads to deformed shapes, blurred details, and reduced visi-
bility, significantly affecting the performance of long-range observation such as face reconstruction
(Nair et al., 2023; Jaiswal et al., 2023) and object recognition (Zhang & Chou, 2024; Deshmukh
et al., 2013). Consequently, turbulence mitigation (TM) plays a critical role in long-range imaging
systems by simultaneously enhancing visual quality and improving performance metrics for down-
stream tasks.

TM can be achieved through various approaches, each with inherent limitations. Under stable ob-
servation conditions, adaptive optics systems (Rao et al., 2016; Macintosh et al., 2006) can be de-
ployed; however, these systems typically rely on large-aperture astronomical telescopes and require
additional optical and electronic components, resulting in high costs and limited field deployability.
Alternatively, traditional model-based multi-frame fusion methods offer a computational solution.
However, these methods are computationally intensive and demonstrate effectiveness primarily for
static scenes. As demonstrated in Figure 2, even state-of-the-art (SOTA) fusion methods (Lao et al.,
2024; Xu et al., 2024) struggled to reconstruct moving objects.

1
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Figure 2: Results of traditional pipelines on dynamic scene.

With the rapid advancement of deep learning, researchers have begun exploring learning-based im-
age and video restoration approaches (Zamir et al., 2022; Liang et al., 2022) for TM (Mao et al.,
2022; Zhang et al., 2024a). Although existing methods have shown promising performance on
close-up real-world benchmarks such as Turbulence-Text (Mao et al., 2022), they exhibit limited
restoration capability in the long-range benchmark RLR-AT (Xu et al., 2024). As shown in Figure
1, we compared recent SOTA methods (Mao et al., 2022; Nair et al., 2023; Jaiswal et al., 2023; Zhang
et al., 2024b; Saha et al., 2024; Zhang et al., 2024a) in a dynamic scene and found that, regardless of
the network architecture employed, the real turbulence images were not faithfully restored in terms
of structural shape. This phenomenon indicates that the inability to recover the correct shapes is not
primarily a deficiency of network architectures, but a consequence of shortcomings in the synthetic
training data, most notably a mismatch in tilt simulation and an insufficient blur degradation domain.

Specifically, the displacement (tilt) fields produced by current tilt simulators deviate substantially
from the spatial statistics of real long-range turbulence, and this mismatch directly undermines the
faithful recovery of object shape. In addition, blur simulation also suffers from distinct limitations:
Phase-to-Space (P2S) methods (Mao et al., 2021; Zhang et al., 2024a) generate degradation kernels
via extensive Zernike coefficient computations, making them computationally expensive and diffi-
cult to scale, whereas the Gaussian-blur model of Saha et al. (2024) is computationally lightweight
but produces only limited blur severity and variability, failing to cover the broader blur degradation
manifold encountered in practice. Because models are not exposed during training to tilt and blur
degradations that match the severity and statistical properties of real long-range turbulence, they
inevitably fail to restore structural shapes under real conditions. In addition, the inherent slowness
of existing simulators further impedes large-scale data generation and rapid model iteration.

During our effort to reproduce previous models, particularly DATUM (Zhang et al., 2024a) and
TMT (Zhang et al., 2024b), we observe substantial computational resource demands for training.
In our experiments, DATUM required approximately 50 days on dual NVIDIA A100 GPUs, while
TMT required about 30 days. The extremely slow training convergence and high computational cost
render model iteration based on these methods prohibitive.

To address these challenges, we propose a fast degradation simulator tailored for long-range turbu-
lence and a low-cost restoration framework with strong generalization. Our main contributions are
as follows:

• We introduce a multi-scale noise stacking scheme together with a random warp-time strategy to
enrich pixel displacement fields for tilt simulation.

• We propose a lightweight yet effective random kernel generator to accelerate blur simulation.
To enable smooth spatially varying convolution with discontinuous kernels, we further present a
novel Mask-then-Conv strategy along with a fast mask-transition method.

• We present a parallel-training Detilt-then-Deblur architecture for single-frame TM, achieving an
excellent balance between performance and efficiency.

• Our simulator delivers a 4.3× speedup over prior approaches while improving model generaliza-
tion under real-world turbulence. Remarkably, our single-frame restoration framework reaches
state-of-the-art performance with only 2.5 days of training on dual NVIDIA RTX A6000 GPUs,
surpassing even some multi-frame counterparts.

2 RELATED WORKS

2.1 TURBULENCE SIMULATOR

Recent advances in turbulence simulation include the Phase-to-Space (P2S) simulators, as proposed
by Mao et al. (2021); Zhang et al. (2024a). Instead of directly propagating phase screens through

2
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split-step models, P2S extracts Zernike coefficients from randomly sampled phase aberrations, pro-
viding a compact representation of wavefront distortions. These coefficients are interpolated over the
spatial grid to model local variations in turbulence strength. At each pixel location, the interpolated
Zernike vector is transformed into a coefficient vector of basis kernels through the learned phase-
to-space mapping. Consequently, the spatially varying blur process is reformulated as a weighted
summation of a small set of basis convolutions, where each basis corresponds to a pre-computed
blur kernel. This decomposition drastically reduces computational cost: rather than convolving ev-
ery pixel with a unique PSF, the image is blurred by several spatially invariant kernels followed by
per-pixel coefficient weighting.

However, the limitations of P2S are evident. First, computing Zernike coefficients is itself expen-
sive, making the generation of degraded images relatively slow. Second, the blur representation is
fundamentally constrained by the Zernike order: adopting higher-order expansions on large input
images dramatically increases both GPU memory consumption and runtime, since more coefficients
must be computed and the corresponding weighted summation across the image becomes heavier.
Conversely, restricting the expansion to a low Zernike order reduces the computational load but
narrows the blur domain, leading to insufficient modeling capacity and inaccurate reproduction of
turbulence-induced blur.

To address these issues, a recent approach named QuickTurbSim (Saha et al., 2024) is introduced. It
employs simplex noise in the pixel displacement technique to simulate tilt, and it also uses simplex
noise to generate masks for different degrees of Gaussian blur. However, due to the one-hot nature
of these masks, abrupt transitions occur between adjacent blur regions, resulting in visible artifacts
that compromise visual fidelity. Moreover, its exclusive reliance on Gaussian kernels significantly
reduces the generalization capability of models trained on the synthesized dataset, as this oversim-
plified approximation fails to capture the complex spatially varying blur characteristics inherent in
real-world atmospheric turbulence.

2.2 SPATIAL-VARIOUS CONVOLUTION IMPLEMENTATION

In commercial imaging software such as Ansys Optics (formerly Zemax) (Nicholson, 2024), blur is
simulated through spatially varying convolution, where PSFs are sampled on a grid and interpolated
across the image domain before being convolved with the input. While this approach produces
spatially varying blur consistent with physical optics, it involves repeated convolution operations at
dense grid locations, which substantially slow down the simulation process.

3 PROPOSED METHODS

3.1 OVERVIEW

3.1.1 DEGRADATION SIMULATOR

Our simulator is built on the conclusion of Chan (2022), that it is more appropriate to state the image
formation model as

Iout = B(T (Iin)), (1)

where Iin, Iout denotes the latent image and the simulated blurry image separately, T (·) the warping
operator (tilt), and B(·) the blurring operator. Shown in Figure 3(a), the first stage gets a sharp
image as input, then warps the image using the pixel displacement technique, which can simulate
the tilt degradation of turbulence. The second stage employs a spatially varying convolution to
introduce blur artifacts, thereby transforming the tilt output of Stage 1 into a degradation that better
approximates the distribution of real turbulence, shown in Figure 3(b).

3.1.2 PARALLEL-TRAINING TWO-STAGE TM ARCHITECTURE

As illustrated in Figure 3(c), we adopt a parallel-training Detilt-then-Deblur framework inspired
by Zhang et al. (2024b), with a key modification: in the second stage, instead of incorporating
the entire two-stage network and keeping the stage-1 module fixed, we train the stage-2 network
independently using blur–GT image pairs. This innovation yields significant gains in computational
efficiency through our training paradigm, which eliminates N2 + V ×M redundant forward passes
of the stage-1 network, where N2 represents training iterations, V stands for validation frequency
and M indicates the cardinality of the validation set in stage-2 training. Our proposed framework

3
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Figure 3: Main contributions of this paper.

enables parallel-training of the Detilt and Deblur networks, achieving at least 50% reduction in total
training time compared to conventional sequential approaches.

3.2 TILT SIMULATOR

In our proposed tilt simulator, each warp operation is not limited to a single, mono-scale displace-
ment. Instead, we model the displacement field as a hierarchical composition of layered 2D Simplex
noise functions. Specifically, let the total number of noise layers be L. For the i-th layer, we denote
the 2D noise function as Ni(·), with a progressive division factor d, and a weight αp (controlled by
the displacement factor together with noise persistence and lacunarity). Coarse-scale layers intro-
duce global structural shifts, while fine-scale layers contribute localized fluctuations, ensuring that
every displacement field captures both large-scale perturbations and subtle high-frequency distor-
tions. The resulting horizontal and vertical displacement maps are defined as

∆x = αx

L−1∑
i=0

Nx
i

(
x
di ,

y
di

)
, ∆y = αy

L−1∑
i=0

Ny
i

(
x
di ,

y
di

)
, (2)

where (x, y) are the normalized pixel coordinates. The warped image is then obtained by resam-
pling:

I ′(x, y) = I
(
x+∆x, y +∆y

)
, (3)

with appropriate boundary clipping.

To further enhance realism, we do not apply a fixed number of warps. Instead, we introduce stochas-
ticity into the number of pixel displacement iterations executed on each input, allowing different
imaging instances to traverse atmospheric paths of varying lengths, with each segment subject to
different turbulence strengths. Formally, if we denote a single turbulence-induced warp operator as
T (·), then an input image after t random warping iterations can be written as

IT = T t(Iin), (4)

where t is randomly sampled. By combining multi-scale displacement synthesis with randomized
iterative warping, our simulator produces displacement maps of high richness and variability, which
better approximate the stochastic nature of real atmospheric turbulence and improve the robustness
of models trained under this simulation.

3.3 BLUR SIMULATOR

Since the strength of atmospheric turbulence varies spatially, the induced blur must also be modeled
as spatially varying. Consequently, we aim to implement spatially varying convolution instead of
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applying a fixed degradation kernel. A naive solution would be to assign a randomly generated ker-
nel to each pixel, which is computationally inexpensive. However, this approach leads to excessive
discrepancies between neighboring kernels, producing images that resemble pure noise instead of
the desired smoothly varying blur.

Inspired by optical imaging software, we adopt the idea of sampling Point Spread Functions (PSFs)
on a coarse grid and interpolating them across the spatial domain, followed by convolution to achieve
spatially varying blur. Direct interpolation and per-pixel convolution, however, are prohibitively ex-
pensive on GPUs due to intensive memory access. To address this, we introduce a mask-based
scheme in which gradual transition masks, combined with patch-level convolutions, replace the
interpolation-plus-pointwise convolution pipeline. This design enables efficient GPU acceleration
while preserving the smooth spatial transitions of turbulence-induced blur. The details of this im-
plementation are as follows.

3.3.1 GRADUAL TRANSITION MASKS

To efficiently realize spatially varying blur, we design a mask generation strategy that replaces ex-
plicit PSF interpolation. The image plane is first partitioned into overlapping regions determined by
a patch size parameter. For each region, we construct a radially decaying template that gradually
decreases from the center toward the boundary. By sliding and overlapping these templates across
the image, a complete set of smooth masks is generated.

At any spatial location, the contributions from neighboring regions overlap such that only four masks
have non-zero values. These four masks are normalized to ensure that their sum equals one, and the
local PSF at that location is computed as the weighted combination of the four corresponding re-
gional PSFs. This guarantees two key properties: (1) Different regions contribute different kernels,
enriching the variety of local blur patterns. (2) Because adjacent masks change gradually, neighbor-
ing pixels receive similar but not identical weights, producing seamless spatial variations rather than
blocky discontinuities.

This mechanism achieves the same effect as the PSF interpolation strategy employed in Nicholson
(2024), but in practice it is substantially faster and more memory-efficient, detailed in experiments.

3.3.2 MASK-THEN-CONV FRAMEWORK

Figure 4: Comparison of Conv-then-Mask and Mask-then-Conv.

The difference between the ‘Mask-then-Conv’ and ‘Conv-then-Mask’ can be formally expressed as
follows. ‘Conv-then-Mask’ approach used in P2S and Saha et al. (2024) computes

I ′(x, y) =
∑
k

[
Mk ⊙ (I ∗Kk)

]
(x, y), (5)

where I is the input image, Mk denotes the binary or simplex-derived mask corresponding to the
k-th kernel, and ∗ represents convolution. In this formulation, masking is applied after convolution,
which inevitably introduces spatial discontinuities: regions near mask boundaries cannot accumulate
sufficient kernel support, leading to incomplete blur formation and even chromatic distortions. In
contrast, our proposed ‘Mask-then-Conv’ strategy is defined as

I ′(x, y) =
∑
k

[
(I ⊙Mk) ∗Kk

]
(x, y). (6)

Here, the gradual transition masks talked above is performed first, and the masks are convolved with
various kernels. This reordering ensures that every pixel fully inherits the convolutional support of
the kernel while maintaining continuous transitions between regions. As a result, the synthesized
blur fields preserve chromatic fidelity, avoid boundary artifacts, and more faithfully capture the
gradual spatial variations inherent in turbulence-induced degradation, as Figure 4 shows.
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Figure 5: An example of our random kernel generator.

3.3.3 RANDOM KERNEL GENERATOR

To better approximate real turbulence degradations, we first analyze measured PSFs and observe
a characteristic energy distribution: a strong central peak with rapidly decaying surroundings, ac-
companied by non-uniform spatial asymmetry. Motivated by this, we propose a random kernel
generation strategy.

Formally, let K ∈ Rs×s denote the kernel to be generated, and c = ⌊s/2⌋ the central index. We
initialize

K ← rand(s, s) · 10−4. (7)
Then, for each iteration i = 1, . . . , L, we construct a random perturbation matrix

Ri ∼ rand(2i+ 1, 2i+ 1), (8)

and add it to the corresponding subregion of K centered at (c, c), weighted by αi:

K[c− i : c+ i, c− i : c+ i] ← K[c− i : c+ i, c− i : c+ i] + αiRi. (9)

The coefficient αi decays step by step according to

αi+1 = αi/
(
rand() · ddiff + dmin

)
, (10)

where dmin and ddiff control the decay rate. Finally, in order to maintain the overall luminance of
the convolved image, we normalize K. This procedure yields kernels with a pronounced central
peak and rapidly decaying periphery, effectively mimicking the non-uniform energy distributions
observed in real turbulence PSFs. Compared with prior methods, our random kernel generator
maintains physical plausibility, introduces stochastic diversity, and enables efficient large-scale syn-
thesis.

4 EXPERIMENTS

4.1 DATASETS AND EXPERIMENTAL SETTINGS

4.1.1 TRAINING SETS

To ensure a fair comparison, we generated QuickTurbSim Saha et al. (2024) and our training sets
with structure identical to the SOTA Zernike-based ATSyn-static dataset Zhang et al. (2024a) by
randomly sampling parameters from the recommended ranges.

4.1.2 EVALUATION BENCHMARK

We tested on the RLR-AT benchmark Xu et al. (2024). To the best of our knowledge, there are
currently no authentic paired datasets for long-range TM in real-world scenarios. Our investigation
reveals that RLR-AT stands as the only challenging real-world benchmark for long-range TM, as
detailed in Appendix A.

4.1.3 IMPLEMENTATION DETAILS

All experiments were conducted on identical computing cluster nodes equipped with dual AMD
9004 series processors (64 cores) and an NVIDIA RTX A6000 graphics card. For fair comparison,
regardless of the training set or the backbone architecture employed, each stage of the two-stage
network underwent 4 × 106 iterations. The models were validated every 2 × 105 iteration. All
remaining settings are consistent with the original OKNet Cui et al. (2024c) implementation. For
evaluation, we selected the models that achieved the highest Peak Signal-to-Noise Ratio (PSNR)
during validation. Unless otherwise specified, OKNet is used as the backbone.

6
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Figure 6: Different backbones × different synthetic training sets.

4.2 DEGRADATION SIMULATOR

4.2.1 COMPARISON OF EFFECTIVENESS

Our experiments involved parallel training our two-stage network using three efficient image restora-
tion backbones, CSNet (Cui et al., 2024a), ConvIR (Cui et al., 2024b), and OKNet (Cui et al., 2024c),
on different training sets. The comparative visual results are presented in Figure 6, where each group
of three images corresponds to the same backbone: the left image is trained on ATSyn (Zhang et al.,
2024a), the middle on QuickTurbSim (Saha et al., 2024), and the right on our proposed dataset.
The results demonstrate that across all three backbones, models trained on our dataset consistently
achieve superior recovery of the van’s geometric structure and substantially reduce boundary flick-
ering artifacts compared to those trained on ATSyn or QuickTurbSim.

4.2.2 COMPARISON OF EFFICIENCY

We conducted a comparative analysis of computational time across different simulators on a dataset
equivalent in scale to ATSyn-static, which contains 3000 GT images of 512 × 512 resolution, each
paired with 50 degraded counterparts. Since the command-line interface of Zhang et al. (2024a)
does not separately generate Tilt and Blur, we restricted the comparison to Turb image synthesis for
fairness. All simulations used a batch size of 1. As summarized in Table 1a, our simulator achieves
a 4.32× acceleration over the previously fastest ATSyn simulator, while Chimitt & Chan (2020) is
further limited to grayscale output, implying even lower efficiency for RGB synthesis. In addition,
Figure 1b reports the runtime of different spatially varying convolution methods on 1280 × 720
images with 16× 9 grids, where our method significantly outperforms Nicholson (2024).

Algorithm Device Time (h)↓
Chimitt & Chan (2020) CPU 43.11

Saha et al. (2024) CPU 24.24
Mao et al. (2021) GPU 17.85

Zhang et al. (2024a) GPU 5.96
Ours GPU 1.38

(a) Simulation time of different simulators.

Algorithm Time (s)↓
Nicholson (2024) per line 2.7041

Nicholson (2024) per 16 lines 1.4614
Ours 0.1715

(b) Time comparison of spatial various convolu-
tion.

Table 1: Overall comparison of simulation efficiency.

4.2.3 ABLATION STUDY

Figure 7 shows a comparison on RLR-AT benchmark. (a) Replacement of our Mask-then-Conv
strategy with QuickTurbSim Saha et al. (2024) Conv-then-Mask approach; (b) Substitution of our
randomized multi-warp scheme with single-warp degradation; (c) Exchange of our random kernel
generation by QuickTurbSim’s Gaussian kernels; (d) Replacement of our spatially-varying convo-
lution with uniform kernel application. Visual results demonstrate that:

• The Conv-then-Mask approach (a) slightly impacts the TM model’s capacity to learn distortion
patterns characteristic of atmospheric turbulence degradation, resulting in asymmetric restoration
of the blue car’s front grill (highlighted in red box).

• The single-warp degradation (b), various Gaussian kernels (c), and uniform convolution (d) ex-
hibit varying degrees of shape restoration failure, with (c) additionally introducing severe blurring
artifacts (pointed by red arrows). These comparisons validate the necessity of each proposed
component in our degradation simulator.

7
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Figure 7: Ablation study of degradation simulator.

4.3 PARALLEL-TRAINED TWO-STAGE TM ARCHITECTURE

4.3.1 COMPARISON OF VISUAL RESULT

We compared our method with the SOTA TM methods TurbNet Mao et al. (2022), PiRN Jaiswal
et al. (2023), AT-DDPM Nair et al. (2023), TMT Zhang et al. (2024b), DATUM Zhang et al. (2024a)
and TurbSegRes Saha et al. (2024) as shown in Figure 1. All baseline methods are evaluated using
their official implementations. It should be noted that (i) the input patch size is set to 512×512 when
testing AT-DDPM, TMT and DATUM due to memory restriction. (ii) PiRN-single uses only a single
image as input, while PiRN-origin uses weighted averaging ( 2It+It+1+It+2+It+3+It+4

6 ) as specified
in their source code. Our method produces the most accurate shape restoration while maintaining
natural contrast throughout the entire scene.

4.3.2 COMPARISON OF TEMPORAL STABILITY

We compare temporal slices in Figure 9, where each column represents a frame cut from the same
position in the image sequence. This experimental protocol was conducted following Xu et al.
(2024); Cai et al. (2024), which can evaluate temporal distortions caused by spatio-temporal turbu-
lence Cai et al. (2024): The temporal smoothness of pixel-wise tracking trajectories demonstrates a
strong positive correlation with the model’s capacity for temporal distortion restoration.

• In comparisons among single-frame methods (marked yellow), our approach demonstrates supe-
rior temporal smoothness and the most robust capability for temporal distortion restoration.

• When evaluated against multi-frame methods (marked blue), our method outperforms DATUM
Zhang et al. (2024a) while achieving performance comparable to TMT Zhang et al. (2024b) and
TurbSegRes Saha et al. (2024) in partial pixel tracking, pointed by red arrows. This represents a
particularly notable achievement given that our model is trained on single-frame inputs without
explicit learning of the temporal turbulence distribution. The observed performance indicates that
our simulator effectively captures the spatial characteristics of turbulence degradation, while our
model successfully learns these patterns, thus compensating for the absence of temporal modeling.

• Compared with networks trained in the QuickTurbSim and ATSyn datasets (unmarked), our line
represents the smoothest, providing further validation that our simulator better enables networks
to learn authentic turbulence removal.

4.3.3 OBJECT DETECTION ON RESTORED IMAGES

Figure 10 shows comparisons of object detection in restored images using widely used YOLO11x
Jocher et al. (2023). The threshold was deliberately set to 50% to demonstrate more effectively the
superior performance of our approach, while other settings remained as default. The experimental
results clearly demonstrate superior recognition confidence in our restored images, with all three
objects above the threshold. We provide uncropped images for testing in the supplementary material.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 8: Ablation study of training strategy.

Figure 9: Comparison of time scale stability.
Figure 10: Detection comparison using
YOLO11x Jocher et al. (2023).

4.3.4 ABLATION STUDY

Table 2 compares PSNR and SSIM Wang et al. (2004) in the Test Set with different training strate-
gies. The notation X-Y in Stage-1/2 indicates using X as input and Y as target during training.
‘continue’ in Stage-2 denotes jointly training both stages while fixing Stage-1 weights. The results
show that our training strategy performs slightly lower than TMT Zhang et al. (2024b) on synthetic
data within acceptable margins, while achieving over 2× training speed gains. Experimental re-
sults using Turb-Tilt in the first stage demonstrate the genuine efficacy of the Detilt-then-Deblur
architecture.

Stage-1 Stage-2 PSNR↑ SSIM↑
Test Set Turb 24.20 0.6930

Turb-Blur continue 26.85 0.9101
Turb-Tilt Tilt-GT 24.85 0.8581
Turb-Blur Blur-GT 26.45 0.9062

Table 2: Comparison of training strategy.

Figure 8 compares the visual result between serial-trained and our parallel-trained network. Un-
der real-world turbulence conditions, while serial-trained achieves superior shape reconstruction,
it produces noticeably blurred outputs. In contrast, our method demonstrates stronger deblurring
performance while maintaining an acceptable shape.

Figure 6 not only shows the effectiveness of our simulator, but also shows the universality of our
parallel-training two-stage pipeline. Crucially, the proposed framework consistently achieves opti-
mal shape and sharpness regardless of the IR backbone employed.

5 CONCLUSION

In this paper, we introduce a low-cost pipeline for long-range TM, including a well-designed fast
degradation simulator and a simple yet effective parallel-training two-stage TM architecture. In
the field of turbulence degradation, we contribute a enhanced tilt simulator using multi-scale noise
stacking technique, an accelerated approach to perform smooth spatially-varying convolution and
a new random kernel generator. Our simulator achieves SOTA performance both in degradation
modeling capability and computational efficiency. Whether on visual quality or downstream task,
our workflow achieves SOTA on single-frame approaches and outperforms most of the multi-frame
methods. Our simulator and pre-trained models will be open-sourced upon publication.

9
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A OTHER RELATED WORKS

A.1 LEARNING-BASED TM METHODS

A.1.1 MULTI-FRAME APPROACHES

Zhang et al. (2024a) introduced a deep learning-enhanced pipeline that retains the traditional frame-
work while replacing conventional modules with neural networks. Meanwhile, Zhang et al. (2024b)
proposed a two-stage model that decouples tilt correction and blur removal, providing a modular
architecture that inspired our design. Despite their effectiveness, these multi-frame methods often
require substantial computational resources, mentioned in the Introduction. Additionally, these mod-
els are typically specialized for static or dynamic scenarios, limiting their generalizability. Building
on Zhang et al. (2024a), Cai et al. (2024) exploited the low-pass filtering characteristics of regu-
larized temporal representations to enhance temporal coherence in turbulent video sequences. A
distinct approach was taken by Saha et al. (2024), who segmented moving objects from static back-
grounds, restored them independently, and combined the results additively, demonstrating improved
adaptability in dynamic scenes.

A.1.2 SINGLE-FRAME APPROACHES

Jaiswal et al. (2023) developed a two-stage framework, first employing a physics-integrated restora-
tion network and then refining outputs via diffusion-based stochastic enhancement to improve per-
ceptual quality metrics. Similarly, Nair et al. (2023) applied diffusion models to reconstruct human
faces degraded by atmospheric turbulence. Mao et al. (2022) proposed a U-Net architecture with
a redegradation module to enhance robustness. However, as noted in Xu et al. (2024), existing
methods exhibit critical limitations: Jaiswal et al. (2023) struggles with deblurring, while Mao et al.
(2022) underperforms in tilt correction —– highlighting the demand for more versatile and adaptive
solutions.

A.1.3 EFFICIENT IMAGE RESTORATION METHODS USED IN OUR EXPERIMENTS

To validate the effectiveness and generalizability of our simulator and parallel-training strategy, we
employed various efficient Image Restoration (IR) networks OKNet (Cui et al., 2024c), CSNet (Cui
et al., 2024a), and ConvIR (Cui et al., 2024b) as backbones.

A.2 REAL-WORLD BENCHMARKS

Table 3 shows real-world benchmarks mostly used in previous studies. Among all benchmarks,
the RLR-AT Xu et al. (2024) has the highest resolution and the longest shooting distance, posing
significant challenges for turbulence mitigation. As illustrated in Figure 1 of our paper, none of the
previous methods can effectively restore it, which is precisely why we selected it as our benchmark.

The RLR-AT benchmark was captured using a Nikon Coolpix P1000 camera at 3000mm equivalent
focal length and 30fps, recording turbulence-degraded scenes at distances of 1-13 km. It comprises
60 dynamic scenes and hundreds of static scenes. Since static scenes in RLR-AT benchmark can
already be well restored using CDSN Xu et al. (2024), our evaluation focuses mainly on dynamic
scenes in this benchmark.

B SIMULATOR DETAILS

B.1 TILT SIMULATOR

As illustrated in Figure 11, the first row demonstrates a single warp process. By progressively in-
jecting multi-scale noise, the displacement field evolves from subtle, nearly uniform perturbations
into spatially varying shifts with heterogeneous magnitudes, resembling the random fluctuations ob-
served in turbulence. The noise scale and the number of stacked noise layers are carefully controlled
to introduce diversity across both spatial scales and local details. As the warp iterations accumulate,
the displacement field gradually exhibits chaotic patterns, akin to the cumulative distortions in real
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turbulence. To preserve a rich range of displacement intensities, we regulate the initial scaling factor
along with the number of warps.
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Figure 11: An example of displacement field generation.

B.2 BLUR SIMULATOR

Due to space constraints, we describe the gradual transition mask and the random kernel generator
only through textual explanations and simplified formulations. The complete algorithms and im-
plementation details are provided in Algorithm 1 and 2. We further provide a comparison between
the one-hot mask of Saha et al. (2024) and our proposed gradual transition mask in 12, facilitating
a clearer understanding of the differences in mask design. And we also provide a comparison of
kernels generated by different simulators, shown in 13.

C MORE EXPERIMENTS

C.1 SIMULATOR COMPARISON

Figure 14 shows the visual result of each simulator, Chimitt & Chan (2020), P2S Mao et al. (2021),
ATSynZhang et al. (2024a) QuickTurbSim Saha et al. (2024) and ours. It should be specifically

14
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Algorithm 1 Generate Masks
Input: w, h, sizep
Output: framesmasked

1: numx ← (w − 2)/sizep + 2
2: numy ← (h− 2)/sizep + 2
3: line← [1, 2, ..., sizep, sizep − 1, ..., 1]
4: template← lineT × line/size2p
5: frames = zeros([(numx + 1) ∗ sizep − 1, (numy + 1) ∗ sizep − 1, numx ∗ numy])
6: for i← 0, numx do
7: for j ← 0, numy do
8: frames[i∗sizep : (i+2)∗sizep−1, j∗sizep : (j+2)∗sizep−1, i∗numy+j]← template
9: end for

10: end for
11: return frames[sizep − 1 : w + sizep − 1, sizep − 1 : h+ sizep − 1, :]

Algorithm 2 Generate Random Kernel
Input: size, level, start, divmin, divdiff
Output: kernel

1: kernel← rand([size, size]) ∗ 0.0001
2: num← 1.
3: for i← start, level − 1 do
4: kernel[size/2 − i : size/2 + i + 1, size/2 − i : size/2 + i + 1]+ = rand([2 ∗ i + 1, 2 ∗

i+ 1]) ∗ num
5: num/ = rand() ∗ divdiff + divmin

6: end for
7: kernel/ = sum(kernel)
8: return kernel

Figure 12: Mask shape comparison.

Figure 13: Kernels comparison.
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Figure 14: Simulator Comparison.

noted that, as each simulator employs distinct parameter configuration methods, we cannot use
this figure to evaluate the relative merits of different simulators. The figures are provided only for
illustrative purposes.

C.2 OBJECT DETECTION

In the supplementary material, we include two folders:

• In the folder named ‘figure 11’, we provide the original images used in Figure 11 of our paper in
subfolder ‘outputs’, along with our object detection code ‘test.py’. After running ‘test.py’, you
can find results in the path ‘detection/1’.

• In the folder named ‘train’, we provide three video clips that demonstrate detection performance
in an additional ‘train’ scene. The experiment settings are the same as those mentioned in our
paper.
– ‘1 versus SOTA simulators.mp4’ shows a comparison of the same network trained on different

synthetic training set generated by different simulators;
– ‘2 versus SOTA single frame methods.mp4’ shows a comparison between single-frame State-

Of-The-Art (SOTA) approaches;
– ‘3 versus SOTA multi frame methods.mp4‘ shows a comparison of SOTA multi-frame ap-

proaches and our single-frame approach.

Both results demonstrate that our turbulence mitigation pipeline significantly enhances the detection
capability using YOLO11x Jocher et al. (2023), which also confirms that our network can restore
superior visual quality.

Previous state-of-the-art methods compared with:

• Simulators: ATSyn Zhang et al. (2024a), QuickTurbSim Saha et al. (2024);
• Single-frame methods: TurbNet Mao et al. (2022), PiRN Jaiswal et al. (2023), AT-DDPM Nair

et al. (2023);
• Multi-frame methods: TMT Zhang et al. (2024b), DATUM Zhang et al. (2024a), Turb-Seg-Res

Saha et al. (2024).

D FUTURE WORKS

In this work, we proposed a fast simulator tailored for single-frame restoration and introduced a low-
cost single-frame restoration method. While the trained models already surpass certain multi-frame

16
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approaches in terms of structural fidelity, the intrinsic limitation of single-frame information remains
evident. Multi-frame inputs naturally provide richer temporal cues, which can substantially enhance
restoration performance. As a promising direction, we plan to extend our simulator to incorporate
temporal information, thereby enabling the exploration of low-cost multi-frame restoration methods.
We believe that this line of research will advance turbulence mitigation and push the frontier of
robust and efficient restoration under real-world long-range scenarios.
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