DEGRADATION & RESTORATION: A LOW-COST PIPELINE FOR LONG-RANGE SINGLE-FRAME TURBULENCE MITIGATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Long-range turbulence mitigation (TM) remains challenging due to complex spatiotemporal distortions along the imaging path. Current approaches face several limitations in long-range TM: (i) traditional model-based image fusion methods fail to restore dynamic scenes, (ii) learning-based approaches demonstrate either inadequate distortion correction or poor deblurring performance, and (iii) simulators and synthetic training sets inadequately capture the characteristic features of long-range atmospheric turbulence. To achieve optimal restoration with minimal computation, we propose a low-cost single-frame TM pipeline featuring two key innovations: (i) a novel physically-grounded degradation simulator that enables rapid data generation while maintaining fidelity, and (ii) a simple yet effective parallel-training two-stage architecture for sequential distortion removal and deblurring. We demonstrate 4.3× acceleration in degradation simulation and a minimum 2× improvement in training efficiency compared to the baseline. Networks trained on our synthetic data consistently outperform those trained on other SOTA simulations. Our pipeline not only achieves state-of-the-art performance in single-frame TM but also surpasses many multi-frame approaches.

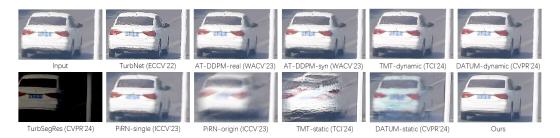


Figure 1: Real-world performance comparison on the RLR-AT benchmark (Xu et al., 2024).

1 Introduction

The presence of atmospheric turbulence leads to deformed shapes, blurred details, and reduced visibility, significantly affecting the performance of long-range observation such as face reconstruction (Nair et al., 2023; Jaiswal et al., 2023) and object recognition (Zhang & Chou, 2024; Deshmukh et al., 2013). Consequently, turbulence mitigation (TM) plays a critical role in long-range imaging systems by simultaneously enhancing visual quality and improving performance metrics for downstream tasks.

TM can be achieved through various approaches, each with inherent limitations. Under stable observation conditions, adaptive optics systems (Rao et al., 2016; Macintosh et al., 2006) can be deployed; however, these systems typically rely on large-aperture astronomical telescopes and require additional optical and electronic components, resulting in high costs and limited field deployability. Alternatively, traditional model-based multi-frame fusion methods offer a computational solution. However, these methods are computationally intensive and demonstrate effectiveness primarily for static scenes. As demonstrated in Figure 2, even state-of-the-art (SOTA) fusion methods (Lao et al., 2024; Xu et al., 2024) struggled to reconstruct moving objects.

put CDSN(ECCV'24) w/o Deblur

Figure 2: Results of traditional pipelines on dynamic scene.

With the rapid advancement of deep learning, researchers have begun exploring learning-based image and video restoration approaches (Zamir et al., 2022; Liang et al., 2022) for TM (Mao et al., 2022; Zhang et al., 2024a). Although existing methods have shown promising performance on close-up real-world benchmarks such as Turbulence-Text (Mao et al., 2022), they exhibit limited restoration capability in the long-range benchmark RLR-AT (Xu et al., 2024). As shown in Figure 1, we compared recent SOTA methods (Mao et al., 2022; Nair et al., 2023; Jaiswal et al., 2023; Zhang et al., 2024b; Saha et al., 2024; Zhang et al., 2024a) in a dynamic scene and found that, regardless of the network architecture employed, the real turbulence images were not faithfully restored in terms of structural shape. This phenomenon indicates that the inability to recover the correct shapes is not primarily a deficiency of network architectures, but a consequence of shortcomings in the synthetic training data, most notably a mismatch in tilt simulation and an insufficient blur degradation domain.

Specifically, the displacement (tilt) fields produced by current tilt simulators deviate substantially from the spatial statistics of real long-range turbulence, and this mismatch directly undermines the faithful recovery of object shape. In addition, blur simulation also suffers from distinct limitations: Phase-to-Space (P2S) methods (Mao et al., 2021; Zhang et al., 2024a) generate degradation kernels via extensive Zernike coefficient computations, making them computationally expensive and difficult to scale, whereas the Gaussian-blur model of Saha et al. (2024) is computationally lightweight but produces only limited blur severity and variability, failing to cover the broader blur degradation manifold encountered in practice. Because models are not exposed during training to tilt and blur degradations that match the severity and statistical properties of real long-range turbulence, they inevitably fail to restore structural shapes under real conditions. In addition, the inherent slowness of existing simulators further impedes large-scale data generation and rapid model iteration.

During our effort to reproduce previous models, particularly DATUM (Zhang et al., 2024a) and TMT (Zhang et al., 2024b), we observe substantial computational resource demands for training. In our experiments, DATUM required approximately 50 days on dual NVIDIA A100 GPUs, while TMT required about 30 days. The extremely slow training convergence and high computational cost render model iteration based on these methods prohibitive.

To address these challenges, we propose a fast degradation simulator tailored for long-range turbulence and a low-cost restoration framework with strong generalization. Our main contributions are as follows:

- We introduce a multi-scale noise stacking scheme together with a random warp-time strategy to enrich pixel displacement fields for tilt simulation.
- We propose a lightweight yet effective random kernel generator to accelerate blur simulation. To enable smooth spatially varying convolution with discontinuous kernels, we further present a novel Mask-then-Conv strategy along with a fast mask-transition method.
- We present a parallel-training Detilt-then-Deblur architecture for single-frame TM, achieving an excellent balance between performance and efficiency.
- Our simulator delivers a 4.3× speedup over prior approaches while improving model generalization under real-world turbulence. Remarkably, our single-frame restoration framework reaches state-of-the-art performance with only 2.5 days of training on dual NVIDIA RTX A6000 GPUs, surpassing even some multi-frame counterparts.

2 RELATED WORKS

2.1 TURBULENCE SIMULATOR

Recent advances in turbulence simulation include the Phase-to-Space (P2S) simulators, as proposed by Mao et al. (2021); Zhang et al. (2024a). Instead of directly propagating phase screens through

split-step models, P2S extracts Zernike coefficients from randomly sampled phase aberrations, providing a compact representation of wavefront distortions. These coefficients are interpolated over the spatial grid to model local variations in turbulence strength. At each pixel location, the interpolated Zernike vector is transformed into a coefficient vector of basis kernels through the learned phase-to-space mapping. Consequently, the spatially varying blur process is reformulated as a weighted summation of a small set of basis convolutions, where each basis corresponds to a pre-computed blur kernel. This decomposition drastically reduces computational cost: rather than convolving every pixel with a unique PSF, the image is blurred by several spatially invariant kernels followed by per-pixel coefficient weighting.

However, the limitations of P2S are evident. First, computing Zernike coefficients is itself expensive, making the generation of degraded images relatively slow. Second, the blur representation is fundamentally constrained by the Zernike order: adopting higher-order expansions on large input images dramatically increases both GPU memory consumption and runtime, since more coefficients must be computed and the corresponding weighted summation across the image becomes heavier. Conversely, restricting the expansion to a low Zernike order reduces the computational load but narrows the blur domain, leading to insufficient modeling capacity and inaccurate reproduction of turbulence-induced blur.

To address these issues, a recent approach named QuickTurbSim (Saha et al., 2024) is introduced. It employs simplex noise in the pixel displacement technique to simulate tilt, and it also uses simplex noise to generate masks for different degrees of Gaussian blur. However, due to the one-hot nature of these masks, abrupt transitions occur between adjacent blur regions, resulting in visible artifacts that compromise visual fidelity. Moreover, its exclusive reliance on Gaussian kernels significantly reduces the generalization capability of models trained on the synthesized dataset, as this oversimplified approximation fails to capture the complex spatially varying blur characteristics inherent in real-world atmospheric turbulence.

2.2 Spatial-various Convolution Implementation

In commercial imaging software such as Ansys Optics (formerly Zemax) (Nicholson, 2024), blur is simulated through spatially varying convolution, where PSFs are sampled on a grid and interpolated across the image domain before being convolved with the input. While this approach produces spatially varying blur consistent with physical optics, it involves repeated convolution operations at dense grid locations, which substantially slow down the simulation process.

3 Proposed Methods

3.1 Overview

3.1.1 DEGRADATION SIMULATOR

Our simulator is built on the conclusion of Chan (2022), that it is more appropriate to state the image formation model as

$$I_{out} = B(T(I_{in})), \tag{1}$$

where I_{in} , I_{out} denotes the latent image and the simulated blurry image separately, $T(\cdot)$ the warping operator (tilt), and $B(\cdot)$ the blurring operator. Shown in Figure 3(a), the first stage gets a sharp image as input, then warps the image using the pixel displacement technique, which can simulate the tilt degradation of turbulence. The second stage employs a spatially varying convolution to introduce blur artifacts, thereby transforming the tilt output of Stage 1 into a degradation that better approximates the distribution of real turbulence, shown in Figure 3(b).

3.1.2 PARALLEL-TRAINING TWO-STAGE TM ARCHITECTURE

As illustrated in Figure 3(c), we adopt a parallel-training Detilt-then-Deblur framework inspired by Zhang et al. (2024b), with a key modification: in the second stage, instead of incorporating the entire two-stage network and keeping the stage-1 module fixed, we train the stage-2 network independently using blur–GT image pairs. This innovation yields significant gains in computational efficiency through our training paradigm, which eliminates $N_2 + V \times M$ redundant forward passes of the stage-1 network, where N_2 represents training iterations, V stands for validation frequency and M indicates the cardinality of the validation set in stage-2 training. Our proposed framework

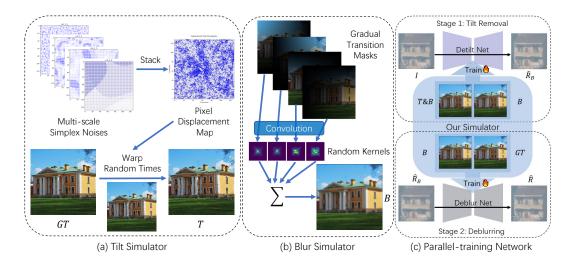


Figure 3: Main contributions of this paper.

enables parallel-training of the Detilt and Deblur networks, achieving at least 50% reduction in total training time compared to conventional sequential approaches.

3.2 TILT SIMULATOR

In our proposed tilt simulator, each warp operation is not limited to a single, mono-scale displacement. Instead, we model the displacement field as a hierarchical composition of layered 2D Simplex noise functions. Specifically, let the total number of noise layers be L. For the i-th layer, we denote the 2D noise function as $N_i(\cdot)$, with a progressive division factor d, and a weight α_p (controlled by the displacement factor together with noise persistence and lacunarity). Coarse-scale layers introduce global structural shifts, while fine-scale layers contribute localized fluctuations, ensuring that every displacement field captures both large-scale perturbations and subtle high-frequency distortions. The resulting horizontal and vertical displacement maps are defined as

$$\Delta x = \alpha_x \sum_{i=0}^{L-1} N_i^x \left(\frac{x}{d^i}, \frac{y}{d^i}\right), \quad \Delta y = \alpha_y \sum_{i=0}^{L-1} N_i^y \left(\frac{x}{d^i}, \frac{y}{d^i}\right), \tag{2}$$

where (x,y) are the normalized pixel coordinates. The warped image is then obtained by resampling:

$$I'(x,y) = I(x + \Delta x, y + \Delta y), \tag{3}$$

with appropriate boundary clipping.

To further enhance realism, we do not apply a fixed number of warps. Instead, we introduce stochasticity into the number of pixel displacement iterations executed on each input, allowing different imaging instances to traverse atmospheric paths of varying lengths, with each segment subject to different turbulence strengths. Formally, if we denote a single turbulence-induced warp operator as $T(\cdot)$, then an input image after t random warping iterations can be written as

$$\boldsymbol{I}_T = T^t(\boldsymbol{I}_{in}),\tag{4}$$

where t is randomly sampled. By combining multi-scale displacement synthesis with randomized iterative warping, our simulator produces displacement maps of high richness and variability, which better approximate the stochastic nature of real atmospheric turbulence and improve the robustness of models trained under this simulation.

3.3 Blur Simulator

Since the strength of atmospheric turbulence varies spatially, the induced blur must also be modeled as spatially varying. Consequently, we aim to implement spatially varying convolution instead of

applying a fixed degradation kernel. A naive solution would be to assign a randomly generated kernel to each pixel, which is computationally inexpensive. However, this approach leads to excessive discrepancies between neighboring kernels, producing images that resemble pure noise instead of the desired smoothly varying blur.

Inspired by optical imaging software, we adopt the idea of sampling Point Spread Functions (PSFs) on a coarse grid and interpolating them across the spatial domain, followed by convolution to achieve spatially varying blur. Direct interpolation and per-pixel convolution, however, are prohibitively expensive on GPUs due to intensive memory access. To address this, we introduce a mask-based scheme in which gradual transition masks, combined with patch-level convolutions, replace the interpolation-plus-pointwise convolution pipeline. This design enables efficient GPU acceleration while preserving the smooth spatial transitions of turbulence-induced blur. The details of this implementation are as follows.

3.3.1 GRADUAL TRANSITION MASKS

To efficiently realize spatially varying blur, we design a mask generation strategy that replaces explicit PSF interpolation. The image plane is first partitioned into overlapping regions determined by a patch size parameter. For each region, we construct a radially decaying template that gradually decreases from the center toward the boundary. By sliding and overlapping these templates across the image, a complete set of smooth masks is generated.

At any spatial location, the contributions from neighboring regions overlap such that only four masks have non-zero values. These four masks are normalized to ensure that their sum equals one, and the local PSF at that location is computed as the weighted combination of the four corresponding regional PSFs. This guarantees two key properties: (1) Different regions contribute different kernels, enriching the variety of local blur patterns. (2) Because adjacent masks change gradually, neighboring pixels receive similar but not identical weights, producing seamless spatial variations rather than blocky discontinuities.

This mechanism achieves the same effect as the PSF interpolation strategy employed in Nicholson (2024), but in practice it is substantially faster and more memory-efficient, detailed in experiments.

3.3.2 MASK-THEN-CONV FRAMEWORK

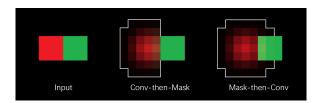


Figure 4: Comparison of Conv-then-Mask and Mask-then-Conv.

The difference between the 'Mask-then-Conv' and 'Conv-then-Mask' can be formally expressed as follows. 'Conv-then-Mask' approach used in P2S and Saha et al. (2024) computes

$$I'(x,y) = \sum_{k} [\mathbf{M}_{k} \odot (\mathbf{I} * \mathbf{K}_{k})](x,y),$$
 (5)

where I is the input image, M_k denotes the binary or simplex-derived mask corresponding to the k-th kernel, and * represents convolution. In this formulation, masking is applied after convolution, which inevitably introduces spatial discontinuities: regions near mask boundaries cannot accumulate sufficient kernel support, leading to incomplete blur formation and even chromatic distortions. In contrast, our proposed 'Mask-then-Conv' strategy is defined as

$$I'(x,y) = \sum_{k} [(I \odot M_k) * K_k](x,y).$$
 (6)

Here, the gradual transition masks talked above is performed first, and the masks are convolved with various kernels. This reordering ensures that every pixel fully inherits the convolutional support of the kernel while maintaining continuous transitions between regions. As a result, the synthesized blur fields preserve chromatic fidelity, avoid boundary artifacts, and more faithfully capture the gradual spatial variations inherent in turbulence-induced degradation, as Figure 4 shows.

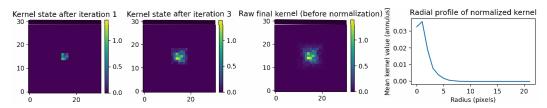


Figure 5: An example of our random kernel generator.

3.3.3 RANDOM KERNEL GENERATOR

To better approximate real turbulence degradations, we first analyze measured PSFs and observe a characteristic energy distribution: a strong central peak with rapidly decaying surroundings, accompanied by non-uniform spatial asymmetry. Motivated by this, we propose a random kernel generation strategy.

Formally, let $K \in \mathbb{R}^{s \times s}$ denote the kernel to be generated, and $c = \lfloor s/2 \rfloor$ the central index. We initialize

$$K \leftarrow \text{rand}(s, s) \cdot 10^{-4}.$$
 (7)

Then, for each iteration $i = 1, \dots, L$, we construct a random perturbation matrix

$$\mathbf{R}_i \sim \text{rand}(2i+1, 2i+1),\tag{8}$$

and add it to the corresponding subregion of K centered at (c, c), weighted by α_i :

$$K[c-i:c+i, c-i:c+i] \leftarrow K[c-i:c+i, c-i:c+i] + \alpha_i R_i. \tag{9}$$

The coefficient α_i decays step by step according to

$$\alpha_{i+1} = \alpha_i / (\text{rand}() \cdot d_{\text{diff}} + d_{\text{min}}), \tag{10}$$

where d_{\min} and d_{diff} control the decay rate. Finally, in order to maintain the overall luminance of the convolved image, we normalize K. This procedure yields kernels with a pronounced central peak and rapidly decaying periphery, effectively mimicking the non-uniform energy distributions observed in real turbulence PSFs. Compared with prior methods, our random kernel generator maintains physical plausibility, introduces stochastic diversity, and enables efficient large-scale synthesis.

4 EXPERIMENTS

4.1 Datasets and Experimental Settings

4.1.1 TRAINING SETS

To ensure a fair comparison, we generated QuickTurbSim Saha et al. (2024) and our training sets with structure identical to the SOTA Zernike-based ATSyn-static dataset Zhang et al. (2024a) by randomly sampling parameters from the recommended ranges.

4.1.2 EVALUATION BENCHMARK

We tested on the RLR-AT benchmark Xu et al. (2024). To the best of our knowledge, there are currently no authentic paired datasets for long-range TM in real-world scenarios. Our investigation reveals that RLR-AT stands as the only challenging real-world benchmark for long-range TM, as detailed in Appendix A.

4.1.3 IMPLEMENTATION DETAILS

All experiments were conducted on identical computing cluster nodes equipped with dual AMD 9004 series processors (64 cores) and an NVIDIA RTX A6000 graphics card. For fair comparison, regardless of the training set or the backbone architecture employed, each stage of the two-stage network underwent 4×10^6 iterations. The models were validated every 2×10^5 iteration. All remaining settings are consistent with the original OKNet Cui et al. (2024c) implementation. For evaluation, we selected the models that achieved the highest Peak Signal-to-Noise Ratio (PSNR) during validation. Unless otherwise specified, OKNet is used as the backbone.

Figure 6: Different backbones × different synthetic training sets.

4.2 DEGRADATION SIMULATOR

4.2.1 Comparison of Effectiveness

Our experiments involved parallel training our two-stage network using three efficient image restoration backbones, CSNet (Cui et al., 2024a), ConvIR (Cui et al., 2024b), and OKNet (Cui et al., 2024c), on different training sets. The comparative visual results are presented in Figure 6, where each group of three images corresponds to the same backbone: the left image is trained on ATSyn (Zhang et al., 2024a), the middle on QuickTurbSim (Saha et al., 2024), and the right on our proposed dataset. The results demonstrate that across all three backbones, models trained on our dataset consistently achieve superior recovery of the van's geometric structure and substantially reduce boundary flickering artifacts compared to those trained on ATSyn or QuickTurbSim.

4.2.2 Comparison of Efficiency

We conducted a comparative analysis of computational time across different simulators on a dataset equivalent in scale to ATSyn-static, which contains 3000 GT images of 512×512 resolution, each paired with 50 degraded counterparts. Since the command-line interface of Zhang et al. (2024a) does not separately generate Tilt and Blur, we restricted the comparison to Turb image synthesis for fairness. All simulations used a batch size of 1. As summarized in Table 1a, our simulator achieves a $4.32\times$ acceleration over the previously fastest ATSyn simulator, while Chimitt & Chan (2020) is further limited to grayscale output, implying even lower efficiency for RGB synthesis. In addition, Figure 1b reports the runtime of different spatially varying convolution methods on 1280×720 images with 16×9 grids, where our method significantly outperforms Nicholson (2024).

Algorithm	Device	Time (h)↓
Chimitt & Chan (2020)	CPU	43.11
Saha et al. (2024)	CPU	24.24
Mao et al. (2021)	GPU	17.85
Zhang et al. (2024a)	GPU	5.96
Ours	GPU	1.38

Algorithm	Time (s) \downarrow
Nicholson (2024) per line	2.7041
Nicholson (2024) per 16 lines	1.4614
Ours	0.1715

⁽a) Simulation time of different simulators.

Table 1: Overall comparison of simulation efficiency.

4.2.3 ABLATION STUDY

Figure 7 shows a comparison on RLR-AT benchmark. (a) Replacement of our Mask-then-Conv strategy with QuickTurbSim Saha et al. (2024) Conv-then-Mask approach; (b) Substitution of our randomized multi-warp scheme with single-warp degradation; (c) Exchange of our random kernel generation by QuickTurbSim's Gaussian kernels; (d) Replacement of our spatially-varying convolution with uniform kernel application. Visual results demonstrate that:

- The Conv-then-Mask approach (a) slightly impacts the TM model's capacity to learn distortion patterns characteristic of atmospheric turbulence degradation, resulting in asymmetric restoration of the blue car's front grill (highlighted in red box).
- The single-warp degradation (b), various Gaussian kernels (c), and uniform convolution (d) exhibit varying degrees of shape restoration failure, with (c) additionally introducing severe blurring artifacts (pointed by red arrows). These comparisons validate the necessity of each proposed component in our degradation simulator.

⁽b) Time comparison of spatial various convolu-

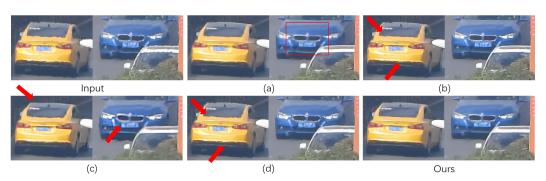


Figure 7: Ablation study of degradation simulator.

4.3 PARALLEL-TRAINED TWO-STAGE TM ARCHITECTURE

4.3.1 Comparison of Visual Result

We compared our method with the SOTA TM methods TurbNet Mao et al. (2022), PiRN Jaiswal et al. (2023), AT-DDPM Nair et al. (2023), TMT Zhang et al. (2024b), DATUM Zhang et al. (2024a) and TurbSegRes Saha et al. (2024) as shown in Figure 1. All baseline methods are evaluated using their official implementations. It should be noted that (i) the input patch size is set to 512×512 when testing AT-DDPM, TMT and DATUM due to memory restriction. (ii) PiRN-single uses only a single image as input, while PiRN-origin uses weighted averaging $(\frac{2I_t+I_{t+1}+I_{t+2}+I_{t+3}+I_{t+4}}{6})$ as specified in their source code. Our method produces the most accurate shape restoration while maintaining natural contrast throughout the entire scene.

4.3.2 Comparison of Temporal Stability

We compare temporal slices in Figure 9, where each column represents a frame cut from the same position in the image sequence. This experimental protocol was conducted following Xu et al. (2024); Cai et al. (2024), which can evaluate temporal distortions caused by spatio-temporal turbulence Cai et al. (2024): The temporal smoothness of pixel-wise tracking trajectories demonstrates a strong positive correlation with the model's capacity for temporal distortion restoration.

- In comparisons among single-frame methods (marked yellow), our approach demonstrates superior temporal smoothness and the most robust capability for temporal distortion restoration.
- When evaluated against multi-frame methods (marked blue), our method outperforms DATUM Zhang et al. (2024a) while achieving performance comparable to TMT Zhang et al. (2024b) and TurbSegRes Saha et al. (2024) in partial pixel tracking, pointed by red arrows. This represents a particularly notable achievement given that our model is trained on single-frame inputs without explicit learning of the temporal turbulence distribution. The observed performance indicates that our simulator effectively captures the spatial characteristics of turbulence degradation, while our model successfully learns these patterns, thus compensating for the absence of temporal modeling.
- Compared with networks trained in the QuickTurbSim and ATSyn datasets (unmarked), our line represents the smoothest, providing further validation that our simulator better enables networks to learn authentic turbulence removal.

4.3.3 OBJECT DETECTION ON RESTORED IMAGES

Figure 10 shows comparisons of object detection in restored images using widely used YOLO11x Jocher et al. (2023). The threshold was deliberately set to 50% to demonstrate more effectively the superior performance of our approach, while other settings remained as default. The experimental results clearly demonstrate superior recognition confidence in our restored images, with all three objects above the threshold. We provide uncropped images for testing in the supplementary material.

Figure 8: Ablation study of training strategy.

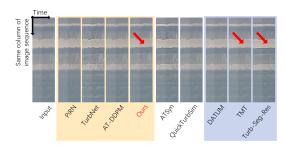


Figure 9: Comparison of time scale stability.

Figure 10: Detection comparison using YOLO11x Jocher et al. (2023).

4.3.4 ABLATION STUDY

Table 2 compares PSNR and SSIM Wang et al. (2004) in the Test Set with different training strategies. The notation X-Y in Stage-1/2 indicates using X as input and Y as target during training. 'continue' in Stage-2 denotes jointly training both stages while fixing Stage-1 weights. The results show that our training strategy performs slightly lower than TMT Zhang et al. (2024b) on synthetic data within acceptable margins, while achieving over $2\times$ training speed gains. Experimental results using Turb-Tilt in the first stage demonstrate the genuine efficacy of the Detilt-then-Deblur architecture.

Stage-1	Stage-2	PSNR↑	SSIM↑
Test Se	t Turb	24.20	0.6930
Turb-Blur	continue	26.85	0.9101
Turb-Tilt	Tilt-GT	24.85	0.8581
Turb-Blur	Blur-GT	26.45	0.9062

Table 2: Comparison of training strategy.

Figure 8 compares the visual result between serial-trained and our parallel-trained network. Under real-world turbulence conditions, while serial-trained achieves superior shape reconstruction, it produces noticeably blurred outputs. In contrast, our method demonstrates stronger deblurring performance while maintaining an acceptable shape.

Figure 6 not only shows the effectiveness of our simulator, but also shows the universality of our parallel-training two-stage pipeline. Crucially, the proposed framework consistently achieves optimal shape and sharpness regardless of the IR backbone employed.

5 CONCLUSION

In this paper, we introduce a low-cost pipeline for long-range TM, including a well-designed fast degradation simulator and a simple yet effective parallel-training two-stage TM architecture. In the field of turbulence degradation, we contribute a enhanced tilt simulator using multi-scale noise stacking technique, an accelerated approach to perform smooth spatially-varying convolution and a new random kernel generator. Our simulator achieves SOTA performance both in degradation modeling capability and computational efficiency. Whether on visual quality or downstream task, our workflow achieves SOTA on single-frame approaches and outperforms most of the multi-frame methods. Our simulator and pre-trained models will be open-sourced upon publication.

REFERENCES

- Nantheera Anantrasirichai, Alin Achim, Nick G Kingsbury, and David R Bull. Atmospheric turbulence mitigation using complex wavelet-based fusion. *IEEE Transactions on Image Processing*, 22(6):2398–2408, 2013.
- Haoming Cai, Jingxi Chen, Brandon Feng, Weiyun Jiang, Mingyang Xie, Kevin Zhang, Cornelia Fermuller, Yiannis Aloimonos, Ashok Veeraraghavan, and Chris Metzler. Temporally consistent atmospheric turbulence mitigation with neural representations. *Advances in Neural Information Processing Systems*, 37:44554–44574, 2024.
- Stanley H Chan. Tilt-then-blur or blur-then-tilt? clarifying the atmospheric turbulence model. *IEEE Signal Processing Letters*, 29:1833–1837, 2022.
- Nicholas Chimitt and Stanley H Chan. Simulating anisoplanatic turbulence by sampling intermodal and spatially correlated zernike coefficients. *Optical Engineering*, 59(8):083101–083101, 2020.
- David Cornett, Joel Brogan, Nell Barber, Deniz Aykac, Seth Baird, Nicholas Burchfield, Carl Dukes, Andrew Duncan, Regina Ferrell, Jim Goddard, et al. Expanding accurate person recognition to new altitudes and ranges: The briar dataset. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 593–602, 2023.
- Yuning Cui, Mingyu Liu, Wenqi Ren, and Alois Knoll. Hybrid frequency modulation network for image restoration. In *Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence*, pp. 722–730, 2024a.
- Yuning Cui, Wenqi Ren, Xiaochun Cao, and Alois Knoll. Revitalizing convolutional network for image restoration. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024b.
- Yuning Cui, Wenqi Ren, and Alois Knoll. Omni-kernel network for image restoration. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 1426–1434, 2024c.
- Ajinkya S Deshmukh, Swarup S Medasani, and GR Reddy. Moving object detection from images distorted by atmospheric turbulence. In 2013 International Conference on Intelligent Systems and Signal Processing (ISSP), pp. 122–127. IEEE, 2013.
- Jérôme Gilles and Nicholas B Ferrante. Open turbulent image set (otis). *Pattern Recognition Letters*, 86:38–41, 2017.
- Ajay Jaiswal, Xingguang Zhang, Stanley H Chan, and Zhangyang Wang. Physics-driven turbulence image restoration with stochastic refinement. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 12170–12181, 2023.
- Darui Jin, Ying Chen, Yi Lu, Junzhang Chen, Peng Wang, Zichao Liu, Sheng Guo, and Xiangzhi Bai. Neutralizing the impact of atmospheric turbulence on complex scene imaging via deep learning. *Nature Machine Intelligence*, 3(10):876–884, 2021.
- Glenn Jocher, Jing Qiu, and Ayush Chaurasia. Ultralytics yolo. https://github.com/ultralytics/ultralytics, 2023. Accessed: 2025-04-13.
- Dong Lao, Congli Wang, Alex Wong, and Stefano Soatto. Diffeomorphic template registration for atmospheric turbulence mitigation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 25107–25116, 2024.
- Jingyun Liang, Yuchen Fan, Xiaoyu Xiang, Rakesh Ranjan, Eddy Ilg, Simon Green, Jiezhang Cao, Kai Zhang, Radu Timofte, and Luc V Gool. Recurrent video restoration transformer with guided deformable attention. *Advances in Neural Information Processing Systems*, 35:378–393, 2022.
- Bruce Macintosh, Mitchell Troy, Rene Doyon, James Graham, Kevin Baker, Brian Bauman, Christian Marois, David Palmer, Donald Phillion, Lisa Poyneer, et al. Extreme adaptive optics for the thirty meter telescope. In *Advances in Adaptive Optics II*, volume 6272, pp. 201–215. SPIE, 2006.
- Zhiyuan Mao, Nicholas Chimitt, and Stanley H Chan. Image reconstruction of static and dynamic scenes through anisoplanatic turbulence. *IEEE Transactions on Computational Imaging*, 6:1415–1428, 2020.

- Zhiyuan Mao, Nicholas Chimitt, and Stanley H Chan. Accelerating atmospheric turbulence simulation via learned phase-to-space transform. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 14759–14768, 2021.
 - Zhiyuan Mao, Ajay Jaiswal, Zhangyang Wang, and Stanley H Chan. Single frame atmospheric turbulence mitigation: A benchmark study and a new physics-inspired transformer model. In *European Conference on Computer Vision*, pp. 430–446. Springer, 2022.
 - Nithin Gopalakrishnan Nair, Kangfu Mei, and Vishal M Patel. At-ddpm: Restoring faces degraded by atmospheric turbulence using denoising diffusion probabilistic models. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 3434–3443, 2023.
 - Mark Nicholson. How to simulate high resolution images. https://optics.ansys.com/hc/en-us/articles/42661994652819-How-to-simulate-high-resolution-images, 2024. Accessed: 2024-07-19.
 - Dehao Qin, Ripon Kumar Saha, Woojeh Chung, Suren Jayasuriya, Jinwei Ye, and Nianyi Li. Unsupervised moving object segmentation with atmospheric turbulence. In *European Conference on Computer Vision*, pp. 18–37. Springer, 2024.
 - Changhui Rao, Lei Zhu, Xuejun Rao, Lanqiang Zhang, Hua Bao, Lin Kong, Youming Guo, Libo Zhong, Xue'an Ma, Mei Li, et al. Instrument description and performance evaluation of a high-order adaptive optics system for the 1 m new vacuum solar telescope at fuxian solar observatory. *The Astrophysical Journal*, 833(2):210, 2016.
 - Ripon Kumar Saha, Dehao Qin, Nianyi Li, Jinwei Ye, and Suren Jayasuriya. Turb-seg-res: a segment-then-restore pipeline for dynamic videos with atmospheric turbulence. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 25286–25296, 2024.
 - Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error visibility to structural similarity. *IEEE Transactions on Image Processing*, 13(4):600–612, 2004.
 - Shengqi Xu, Run Sun, Yi Chang, Shuning Cao, Xueyao Xiao, and Luxin Yan. Long-range turbulence mitigation: a large-scale dataset and a coarse-to-fine framework. In *European Conference on Computer Vision*, pp. 311–329. Springer, 2024.
 - Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang. Restormer: Efficient transformer for high-resolution image restoration. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 5728–5739, 2022.
 - Xingguang Zhang and Chih-Hsien Chou. Source-free domain adaptation for video object detection under adverse image conditions. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 5010–5019, 2024.
 - Xingguang Zhang, Nicholas Chimitt, Yiheng Chi, Zhiyuan Mao, and Stanley H Chan. Spatio-temporal turbulence mitigation: a translational perspective. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 2889–2899, 2024a.
 - Xingguang Zhang, Zhiyuan Mao, Nicholas Chimitt, and Stanley H Chan. Imaging through the atmosphere using turbulence mitigation transformer. *IEEE Transactions on Computational Imaging*, 10:115–128, 2024b.

A OTHER RELATED WORKS

A.1 LEARNING-BASED TM METHODS

A.1.1 MULTI-FRAME APPROACHES

Zhang et al. (2024a) introduced a deep learning-enhanced pipeline that retains the traditional framework while replacing conventional modules with neural networks. Meanwhile, Zhang et al. (2024b) proposed a two-stage model that decouples tilt correction and blur removal, providing a modular architecture that inspired our design. Despite their effectiveness, these multi-frame methods often require substantial computational resources, mentioned in the Introduction. Additionally, these models are typically specialized for static or dynamic scenarios, limiting their generalizability. Building on Zhang et al. (2024a), Cai et al. (2024) exploited the low-pass filtering characteristics of regularized temporal representations to enhance temporal coherence in turbulent video sequences. A distinct approach was taken by Saha et al. (2024), who segmented moving objects from static backgrounds, restored them independently, and combined the results additively, demonstrating improved adaptability in dynamic scenes.

A.1.2 SINGLE-FRAME APPROACHES

Jaiswal et al. (2023) developed a two-stage framework, first employing a physics-integrated restoration network and then refining outputs via diffusion-based stochastic enhancement to improve perceptual quality metrics. Similarly, Nair et al. (2023) applied diffusion models to reconstruct human faces degraded by atmospheric turbulence. Mao et al. (2022) proposed a U-Net architecture with a redegradation module to enhance robustness. However, as noted in Xu et al. (2024), existing methods exhibit critical limitations: Jaiswal et al. (2023) struggles with deblurring, while Mao et al. (2022) underperforms in tilt correction — highlighting the demand for more versatile and adaptive solutions.

A.1.3 EFFICIENT IMAGE RESTORATION METHODS USED IN OUR EXPERIMENTS

To validate the effectiveness and generalizability of our simulator and parallel-training strategy, we employed various efficient Image Restoration (IR) networks OKNet (Cui et al., 2024c), CSNet (Cui et al., 2024a), and ConvIR (Cui et al., 2024b) as backbones.

A.2 REAL-WORLD BENCHMARKS

Table 3 shows real-world benchmarks mostly used in previous studies. Among all benchmarks, the RLR-AT Xu et al. (2024) has the highest resolution and the longest shooting distance, posing significant challenges for turbulence mitigation. As illustrated in Figure 1 of our paper, none of the previous methods can effectively restore it, which is precisely why we selected it as our benchmark.

The RLR-AT benchmark was captured using a Nikon Coolpix P1000 camera at 3000mm equivalent focal length and 30fps, recording turbulence-degraded scenes at distances of 1-13 km. It comprises 60 dynamic scenes and hundreds of static scenes. Since static scenes in RLR-AT benchmark can already be well restored using CDSN Xu et al. (2024), our evaluation focuses mainly on dynamic scenes in this benchmark.

B SIMULATOR DETAILS

B.1 TILT SIMULATOR

As illustrated in Figure 11, the first row demonstrates a single warp process. By progressively injecting multi-scale noise, the displacement field evolves from subtle, nearly uniform perturbations into spatially varying shifts with heterogeneous magnitudes, resembling the random fluctuations observed in turbulence. The noise scale and the number of stacked noise layers are carefully controlled to introduce diversity across both spatial scales and local details. As the warp iterations accumulate, the displacement field gradually exhibits chaotic patterns, akin to the cumulative distortions in real

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
676 677
676 677 678
676 677
676 677 678
676 677 678 679
676 677 678 679 680
676 677 678 679 680 681
676 677 678 679 680 681 682 683
676 677 678 679 680 681 682 683 684
676 677 678 679 680 681 682 683 684 685
676 677 678 679 680 681 682 683 684 685 686
676 677 678 679 680 681 682 683 684 685 686
676 677 678 679 680 681 682 683 684 685 686 687
676 677 678 679 680 681 682 683 684 685 686 687 688
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
676 677 678 679 680 681 682 683 684 685 686 687 688
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
676 677 678 679 680 681 682 683 684 685 686 687 688 690 690 691
676 677 678 679 680 681 682 683 684 685 686 687 688 690 691 692 693 694
676 677 678 679 680 681 682 683 684 685 686 687 688 690 691 692 693 694 695
676 677 678 679 680 681 682 683 684 685 686 687 688 690 691 692 693 694 695 696
676 677 678 679 680 681 682 683 684 685 686 687 690 691 692 693 694 695 696 697
676 677 678 679 680 681 682 683 684 685 686 687 690 691 692 693 694 695 696 697 698
676 677 678 679 680 681 682 683 684 685 686 687 690 691 692 693 694 695 696 697

Name	Distance↑	Resolution	Subject	Note
Heat Chamber Mao et al. (2022)	20m	440×440	static	gas heat; with GT
Turbulence Text Mao et al. (2022)	300m	440×440	static	text only
OTIS Gilles & Ferrante (2017)	$\leq 1km$	$\leq 520 \times 520$	both	3 static & 4 dynamic
BRIAR Cornett et al. (2023)	$\leq 1km$	Various	dynamic	private
DOST (URG-T) Qin et al. (2024)	$\leq 1km \text{ mostly}$	1920×1080	dynamic	ı
CLEAR Anantrasirichai et al. (2013)	$\leq 2km$	$\leq 512 \times 512$	dynamic	3 scenes
TSR-WGAN Jin et al. (2021)	$\leq 3km$	$\leq 1144 \times 744$	dynamic	AVI compressed
TurbRecon Mao et al. (2020)	$\leq 4km$	512×512	static	gray scale; 4 scenes
RLR-AT Xu et al. (2024)	$1km \sim 13km$	1920×1080	both	1

Table 3: Real Datasets and Benchmarks.

turbulence. To preserve a rich range of displacement intensities, we regulate the initial scaling factor along with the number of warps.

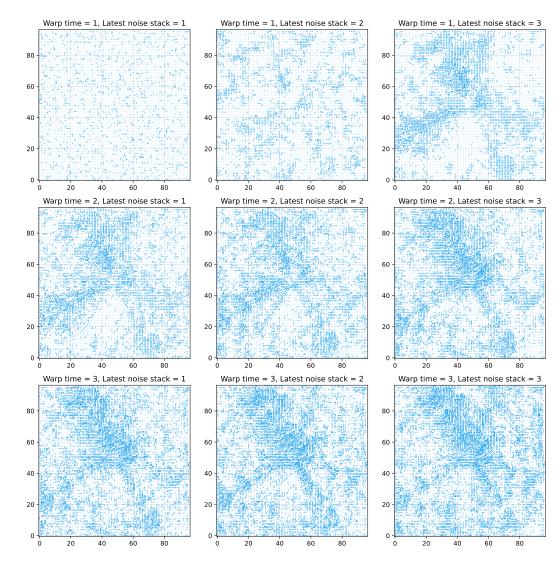


Figure 11: An example of displacement field generation.

B.2 BLUR SIMULATOR

Due to space constraints, we describe the gradual transition mask and the random kernel generator only through textual explanations and simplified formulations. The complete algorithms and implementation details are provided in Algorithm 1 and 2. We further provide a comparison between the one-hot mask of Saha et al. (2024) and our proposed gradual transition mask in 12, facilitating a clearer understanding of the differences in mask design. And we also provide a comparison of kernels generated by different simulators, shown in 13.

C MORE EXPERIMENTS

C.1 SIMULATOR COMPARISON

Figure 14 shows the visual result of each simulator, Chimitt & Chan (2020), P2S Mao et al. (2021), ATSynZhang et al. (2024a) QuickTurbSim Saha et al. (2024) and ours. It should be specifically

Algorithm 1 Generate Masks $\overline{\textbf{Input:}} \ w, h, size_p$ Output: $frames_{masked}$ 1: $num_x \leftarrow (w-2)/size_p + 2$ 2: $num_y \leftarrow (h-2)/size_p + 2$ 3: $line \leftarrow [1, 2, ..., size_p, size_p - 1, ..., 1]$ 4: $template \leftarrow line^T \times line/size_p^2$ 5: $frames = zeros([(num_x + 1) * size_p - 1, (num_y + 1) * size_p - 1, num_x * num_y])$ 6: for $i \leftarrow 0, num_x$ do for $j \leftarrow 0, num_y$ do 7: $frames[i*size_p:(i+2)*size_p-1,j*size_p:(j+2)*size_p-1,i*num_y+j] \leftarrow template$ 8: 9: end for 10: **end for** 11: **return** $frames[size_p - 1 : w + size_p - 1, size_p - 1 : h + size_p - 1, :]$

Algorithm 2 Generate Random Kernel

```
\overline{\textbf{Input: } size, level, start, div_{min}, div_{diff}}
```

Output: kernel

```
1: kernel \leftarrow rand([size, size]) * 0.0001
```

2: $num \leftarrow 1$.

3: **for** $i \leftarrow start, level - 1$ **do**

4: kernel[size/2 - i : size/2 + i + 1, size/2 - i : size/2 + i + 1] + = rand([2 * i + 1, 2 * i + 1]) * num

5: $num/=rand()*div_{diff}+div_{min}$

6: end for

7: kernel/ = sum(kernel)

8: **return** kernel

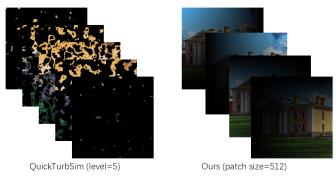


Figure 12: Mask shape comparison.

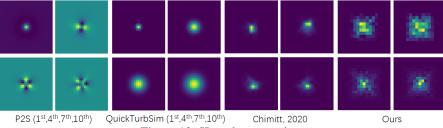


Figure 13: Kernels comparison.

Figure 14: Simulator Comparison.

noted that, as each simulator employs distinct parameter configuration methods, we cannot use this figure to evaluate the relative merits of different simulators. The figures are provided only for illustrative purposes.

C.2 OBJECT DETECTION

In the supplementary material, we include two folders:

- In the folder named 'figure_11', we provide the original images used in Figure 11 of our paper in subfolder 'outputs', along with our object detection code 'test.py'. After running 'test.py', you can find results in the path 'detection/1'.
- In the folder named 'train', we provide three video clips that demonstrate detection performance in an additional 'train' scene. The experiment settings are the same as those mentioned in our paper.
 - '1_versus_SOTA_simulators.mp4' shows a comparison of the same network trained on different synthetic training set generated by different simulators;
 - '2_versus_SOTA_single_frame_methods.mp4' shows a comparison between single-frame State-Of-The-Art (SOTA) approaches;
 - '3_versus_SOTA_multi_frame_methods.mp4' shows a comparison of SOTA multi-frame approaches and our single-frame approach.

Both results demonstrate that our turbulence mitigation pipeline significantly enhances the detection capability using YOLO11x Jocher et al. (2023), which also confirms that our network can restore superior visual quality.

Previous state-of-the-art methods compared with:

- Simulators: ATSyn Zhang et al. (2024a), QuickTurbSim Saha et al. (2024);
- Single-frame methods: TurbNet Mao et al. (2022), PiRN Jaiswal et al. (2023), AT-DDPM Nair et al. (2023);
- Multi-frame methods: TMT Zhang et al. (2024b), DATUM Zhang et al. (2024a), Turb-Seg-Res Saha et al. (2024).

D FUTURE WORKS

In this work, we proposed a fast simulator tailored for single-frame restoration and introduced a low-cost single-frame restoration method. While the trained models already surpass certain multi-frame

approaches in terms of structural fidelity, the intrinsic limitation of single-frame information remains evident. Multi-frame inputs naturally provide richer temporal cues, which can substantially enhance restoration performance. As a promising direction, we plan to extend our simulator to incorporate temporal information, thereby enabling the exploration of low-cost multi-frame restoration methods. We believe that this line of research will advance turbulence mitigation and push the frontier of robust and efficient restoration under real-world long-range scenarios.