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Abstract

Various data modalities are common in real-world
applications (e.g., electronic health records, med-
ical images and clinical notes in healthcare). It
is essential to develop multimodal learning meth-
ods to aggregate various information from mul-
tiple modalities. The main challenge is how to
appropriately align and fuse the representations
of different modalities into a joint distribution.
Existing methods mainly rely on concatenation
or the Kronecker product, oversimplifying the
interaction structure between modalities and in-
dicating a need to model more complex interac-
tions. Additionally, the joint distribution of latent
representations with higher-order interactions is
underexplored. Copula is a powerful statistical
structure for modelling the interactions among
variables, as it naturally bridges the joint distribu-
tion and marginal distributions of multiple vari-
ables. We propose a novel copula-driven mul-
timodal learning framework, which focuses on
learning the joint distribution of various modali-
ties to capture the complex interactions among
them. The key idea is to interpret the copula
model as a tool to align the marginal distribu-
tions of the modalities efficiently. By assuming
a Gaussian mixture distribution for each modal-
ity and a copula model on the joint distribu-
tion, our model can generate accurate represen-
tations for missing modalities. Extensive exper-
iments on public MIMIC datasets demonstrate
the superior performance of our model over other
competitors. The code is available at https:
//github.com/HKU-MedAT/CMCM.
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1. Introduction

Multimodal learning aims to aggregate information from
multiple modalities to generate meaningful representations
for downstream tasks. It has been widely explored in the
context of vision-language models (Fu et al., 2023; El Ba-
nani et al., 2023), audio-visual applications (Chen et al.,
2023; Mo & Tian, 2023; Huang et al., 2023), image-video
models (Girdhar et al., 2023; Gan et al., 2023) and health-
care applications (Wu et al., 2024a; Hayat et al., 2022). For
example, multimodal learning has been applied to various
healthcare tasks such as clinical prediction tasks (Zhang
et al., 2023; Wu et al., 2024a), report generation (Song
et al., 2022; Cao et al., 2023), and clinical trial site selec-
tion (Theodorou et al., 2024). The existing fusion strategies
can be divided into early, joint, or late fusion (Huang et al.,
2020), where the joint fusion paradigm is the most popu-
lar strategy and its core idea is to model the interactions
between the representations of the input modalities (Hayat
et al., 2022). The resulting fused embedding encodes the
structural interaction between the modalities, enabling accu-
rate prediction for each modality.

However, due to the heterogeneity of different modalities
(e.g., electronic health records: EHRs, medical images, med-
ical reports), properly aligning their distributions remains
a challenge. The existing alignment strategies mainly rely
on concatenation or Kronecker products which oversim-
plify the interactions among different modalities. A recent
work (Salzmann et al., 2022) emphasizes simple probabilis-
tic assumptions on the marginals and neglects to explore
statistical assumptions about the joint distributions of the
modalities. This approach may result in biased fused repre-
sentations, limiting the performance of downstream tasks
and the generalizability and robustness of the resulting mul-
timodal models. Therefore, there is still a need for an ap-
proach that can more appropriately align the distributions of
modalities and model the potentially complex interactions
among them.

Copula models have shown great success in modelling the
interactions of variables as they construct a bridge between
the joint distribution and their marginals (Cherubini, 2004).
However, copula models are less explored in deep learning
field as most existing approaches heavily rely on sampling-
based methods (e.g., MCMC (Silva & Gramacy, 2009)),
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which are relatively slow and difficult to scale to modern
deep learning settings (Smith & Loaiza-Maya, 2023). Al-
though some recent works have attempted to introduce cop-
ula to deep learning models through stochastic variational
inference (Smith & Loaiza-Maya, 2023), the potential of
copula in multimodal learning is still underexplored.

Moreover, existing multimodal learning methods mostly
assume the existence of all modalities. In reality, some
modalities may be missing for some observations due to
various reasons (e.g., missing medical images or reports for
some patients due to clinical and administrative factors in
healthcare), which may pose a major challenge in multi-
modal learning. The existing solutions either discard these
observations or impute simple values (e.g., zeros or means
from other observations) to address the missing modality
problem. However, these approaches ignore the marginal
distributions of the modality and often mislead the learning
of the joint distribution. Therefore, properly learning the
marginal distributions is also necessary to generate unbi-
ased latent representations for the observations with missing
modalities.

In light of the aforementioned challenges, we propose
a novel copula-driven multimodal learning framework,
namely CM? (Cross-Modal alignment via variational Copula
Modelling), to tackle the joint fusion paradigm from a prob-
abilistic perspective. Our contributions can be summarized
as: (1) We for the first time introduce copula modelling into
multimodal learning, where we interpret copula as an effec-
tive tool of distribution alignment, guaranteed by Sklar’s
theorem. (2) We employ a Gaussian mixture model on the
marginal distribution of each modality to enable more flexi-
ble modelling of the high-dimensional feature distribution
of different modalities. (3) We adopt stochastic variational
inference to optimize the copula model, which enables the
scalability of our model to large-scale datasets. (4) We adopt
the learned marginal distribution as the data generator to
accurately impute the missing observations. (5) Empirical
results on real multimodal MIMIC datasets demonstrate the
good performance of our method and ablation analysis cor-
roborates the effectiveness of copula in modality alignments
and robustness to potential variations.

2. Related Works

Multimodal Representation Learning. Multimodal repre-
sentation learning aims to effectively integrate information
from different modalities for accurate predictions on the
downstream tasks. Early works (Hayat et al., 2022; Ding
et al., 2022; Trong et al., 2020) focus on late fusion that
merges unimodal representations via, for instance, concate-
nation or the Kronecker product. However, such approaches
oversimplify the interactions of the modalities and mostly
lead to biased fused representations. Therefore, the struc-

tural interactions of the modalities need to be encoded in the
fused representation for more effective multimodal learn-
ing. Recently, modelling the interaction between modalities
has received increasing attention. Liang et al. (2024) pro-
posed an information decomposition framework to define
and quantify different types of interactions between modal-
ities. Transformer-based methods have greatly facilitated
the progress by modelling the cross-model tokens (Zhang
et al., 2023; Theodorou et al., 2024). However, matching the
correspondence with transformers introduces high computa-
tional complexity, which prompts a more efficient approach
for representation alignment.

Copula Deep Learning. Copula is a promising tool in
modelling the interactions or correlations between variables
and it constructs a bridge between the joint distribution and
marginal distributions. Copula has been widely applied in
financial risk management (Hofert, 2021; Rodriguez, 2007),
signal processing, and healthcare (Zeng & Wang, 2022) due
to its capability in modelling complex interactions. Tradi-
tional copula models rely on closed-form solutions of the
likelihood and estimate the copula parameter with sampling-
based approaches (e.g., MCMC (Silva & Gramacy, 2009)).
However, these algorithms suffer from high time complex-
ity, making them less applicable to high-dimensional data.
Recently, with the emergence of deep learning, there have
been works integrating copula models into deep learning
frameworks (Tagasovska et al., 2019; Smith et al., 2020). To
tackle the inherent high dimensionality, variational inference
is adopted to solve copula models in high dimensions (Tran
et al., 2015; Smith & Loaiza-Maya, 2023). For example,
Tagasovska et al. (2019) introduced copula to variational
autoencoders to create deep generative models. However,
the potential of copula in multimodal learning is still under-
explored.

Learning with Missing Data. Traditional multimodal learn-
ing assumes all modalities are available, but in reality, some
observations may be missing, like medical images or reports
in clinical data. Late fusion is a common strategy to ad-
dress missing modalities by aggregating predictions (Yoo
et al., 2019) or latent space representations (Theodorou
et al., 2024) from the available modalities. While effective,
it treats each modality independently and lacks interactions
among them. Some research focuses on extracting shared
information across modalities for downstream tasks (Del-
dari et al., 2023; Yao et al., 2024), which can be challenging,
particularly with heterogeneous modalities like EHRs and
CXRs. Under the missing at random (MAR) assumption,
imputation methods have become a popular approach for
handling missing data. Some approaches assume that the
missing modality follows a certain distribution, imputing
the missing values using the mean or mode of that distribu-
tion (Ma et al., 2021). Others impute missing modalities’
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Figure 1. Overview of our proposed CM? framework. For a dataset with M modalities, we extract modality-specific embeddings 2., via
Encoder,,, and compute its Gaussian mixture model (GMM). We then model the marginal distributions and estimate the joint distribution
using a copula family C'. We sample 2£,,, from its GMM if modality m is missing. The concatenated embedding 2z then passes through
a 2-layer LSTM fusion module and MLP classifier to predict g. The ELBO for backpropagation can be obtained by aggregating the
task-specific loss (e.g., cross-entropy loss) and the negative log-likelihood from the joint distribution.

representations in the latent feature space via deep learning
models, attempting to preserve model performance by mod-
eling relationships (Zhang et al., 2022; Wu et al., 2024b)
or generating global representations for the missing data
(Hayat et al., 2022). Despite their successes, these dis-
tributional assumptions or the learned relationships may
be inaccurate, potentially introducing bias into the model.
Therefore a probabilistic assumption is needed to guarantee
the unbiasedness of learned marginal distributions.

3. Methodology

3.1. Preliminaries

Copula. An M-variate function C(uy,...,cp), where
U € [0, 1] for all m, is a copula if and only if C' defines
a valid joint cumulative distribution function (CDF) of the
random vector (Uy, ..., Uys) with each U, distributed as
uniform on the unit interval. Taking the bivariate Gumbel
copula as an example, given the CDF values of the first and
second modalities u and v, the bivariate distribution is

C(u, v;0) = exp{—[(~log u)® + (— log v)*]* }

and its copula density is

1
c(u, v;a) = %(— logv)* (= logu)* ' C(u,v; a)

201 —a) 1

< fgu i)l [(@ = 1lgluva)] 7 + 1]

where g(u,v;a) = (—logu)® + (—logv)®. The effects
of different copula families are discussed in the ablation
analysis. Details of different copula families and their corre-
sponding distribution and density functions are provided in
Appendix C.

Multimodal Learning.
dataset Dy, = {(:c(li), cee wg\?, y) 3, where ') is the
i-th observation of the m-th modality and y(* is the cor-
responding label, the goal is to train a multimodal model
M (+) with parameter © such that the model can achieve
optimal performance in downstream tasks.

Given the multimodal training

3.2. Copula Multimodal Learning

The overview of the proposed copula-driven multimodal
learning framework is shown in Figure 1. Given multimodal
data, we extract each modality-specific embedding and com-
pute its Gaussian mixture model (GMM). We then model the
marginal densities and estimate the joint distribution using
a copula family C. If modality m is missing, we generate
feature embeddings from its GMM. The concatenated em-
beddings z are passed through a fusion module and an MLP
classifier for prediction. The evidence lower bound (ELBO)
combines the copula log-likelihood and task-specific loss.

Gaussian Mixture Assumption. The GMM is a common
technique in machine learning to model the behavior of
distributions in high dimensions (Song et al., 2024; Bai
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Algorithm 1 Sampling algorithm of our proposed method.

Input:

Multimodal model Mg (-) with parameter ©

The copula parameter «

Means and covariances of GMM: { (i, Zmk) | m =
1,....Mk=1,.... K}

5: Training set Dy, = {(:cgl), . ,w%[), Yy

6: Output: Trained fg

7: for (", .. . 2{) y)in D, do

8

9

B v

90 = Mo(z",..., ()
. Compute task-specific loss Lop; with §(*) and y*)
10:  Compute the KL(¢||7) and hence the ELBO
11:  Backpropagate the ELBO to update O, «
12: end for
13: Return: Trained Mg

et al., 2022; Ni et al., 2021). To generate a more flexible
feature distribution, we assume the feature distribution of the
m-th modality follows a K-mixture of multivariate GMM,

K
fm(zm) = Zﬂ—mk-/\/(/l'mkv 2777.]6)7 (1)

k=1

where 7, is the mixture weight, w1 is the mean vector,
and X, is the covariance matrix of the k-th mixture of
the m-th modality. Let o = {ppr, : m € [M], k € [K]}
and 3 = {3,,x : m € [M],k € [K]}. Without loss of
generality, we predict 7,,; with a multilayer perceptron
(MLP) with a softmax output layer and adopt the reparame-
terization trick (Nalisnick, 2018; Tran et al., 2022), which
assumes 3, is diagonal. We further set 1 and X to be
trainable by gradient backpropagation. We compute the cu-
mulative distribution function of the multivariate Gaussian
distributions using the approximation provided in Marmin
et al. (2015). By employing a mixture model, we can model
a wider range of distributions of each modality and improve
the flexibility and robustness.

Multivariate Copula. Using the multivariate copula, the
joint distribution function of the modalities is given by

le,m,ZM (Z) = C(Fl(zl)a ey FM(ZM))7

where C'(F1(21), ..., Fam(za)) is the M -dimensional cop-
ula distribution function, and F},,(z,,) is the marginal cu-
mulative distribution function of the m-th modality which
is the CDF of the GMM model defined in Eq. (1).

3.3. Stochastic Variational Inference

To tackle the scalability of CM? to modern deep learning
settings, we adopt the stochastic variational inference to
optimize the proposed copula model and treat the copula

parameter « as trainable. Algorithm 1 presents the overall
workflow of our method.

Variational Family. We use a variational posterior ¢ to
approximate the true posterior of the joint distribution. The
variational family of the copula model that we optimize
during training is given by

M
q(z) = [H Qm(zm)] c(Qi(z1), -, Qum(zm)),

where ¢y, (2,,) is the density of the variational posterior
of the GMM of the m-th modality, and Q,,,(2,) is the
corresponding CDF.

The Evidence Lower Bound (ELBO). The joint objective
function can be written as the negation of the negative log-
likelihood,

ELBO = — Aeop 3 (1ogc(Q1(z§“), L Qu())

y i=1
— Z log fm(sz,))) + Lo,
m=1

where fm(zr(fl)) is the marginal density of modality m,

c(Ql(zEl)), e QM(z](VZI))) is the copula density, Acop is
the regularization parameter of the copula, and Ly, is the
task-specific loss (e.g., cross-entropy loss). We compute
the gradient based on the ELBO and backpropagate it to p
and X to learn the marginal distributions of each modality,
with the copula parameter « to learn the interactions among
these modalities and the multimodal model parameter © to
learn the embedding, fusion, and classification layers.

3.4. Handling Missing Modality

Owing to the probabilistic design of our method, our frame-
work can also generate pseudo representations for missing
modalities. Without loss of generality, we assume that the
missing modalities are missing at random (MAR) and, fol-
lowing prior works (Tran et al., 2017; Ma et al., 2021; Zhang
et al., 2022; Wang et al., 2023), we impute the features of
these missing modalities in the latent space. We consider
missing modalities with complete labels where only the ob-
servations are missing. The learned GMM for each modality
can be treated as a data generation model, and we can gen-
erate feature embeddings through sampling from the GMM
of each modality (i.e., z,(fl) ~ F,,). Then the generated
feature embeddings can be treated as the feature input to the
classification layer and predictions can be obtained.

By learning the copula parameter «, the marginal distri-
bution of each modality contains information from other
modalities and information of the interactions. The gener-

ated feature representation z%) can thus better reflect the
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characteristics of the joint distribution, which, as a result,
can improve the quality of the representation and the down-
stream task performance.

3.5. Theoretical Guarantee with Sklar’s Theorem.

We make use of Sklar’s theorem to demonstrate the unique-
ness of the joint distribution as follows.

Theorem 3.1. (Sklar’s theorem) (Sklar, 1959) Let
F(xz1,...,2p) be an M-variate CDF for (X1,...,Xn)
with the marginal CDF for the m-th variable given by
Fo(xm),m=1,..., M.

1. There exists an M -dimensional copula such that

C(F1<.’E1),...,FM(.’L’M)):F(xh...,ZEM) (2)

forall z,, € R.

2. Conversely, given any copula C and univariate CDFs
Fy, ..., Fu, Cisavalid joint CDF for (X1, ..., Xaz).
If F is continuous, then C'in Eq. (2) is unique.

The above theorem lays the foundation to construct joint
distributions with the same marginals but different depen-
dence structures, or conversely by fixing the dependence
structure and varying the behaviour in individual modali-
ties (Tagasovska et al., 2019). This allows us to update the
marginal distributions and the copula parameter separately.
Furthermore, since we assume a GMM for each modality
and they are continuous by definition, the uniqueness of the
copula C' can be guaranteed and the identifiability of the
model can be enhanced.

4. Experiments

4.1. Datasets and Experimental Setting

Datasets. We evaluate the performance of CM? using large-
scale, real-world EHR datasets: MIMIC-III (Johnson et al.,
2016), MIMIC-IV (Johnson et al., 2023), and MIMIC-CXR
(Johnson et al., 2019). MIMIC-III and MIMIC-1IV are pub-
licly available datasets containing real-world EHR data from
patients admitted to the intensive care units (ICUs) or emer-
gency departments of Beth Israel Deaconess Medical Center
(BIDMC), comprising numerical time series and clinical
notes. MIMIC-CXR is a dataset of Chest X-ray (CXR) im-
ages along with radiology reports collected from BIDMC,
with a subset of patients matched to those in MIMIC-IV.

Following Hayat et al. (2022), we utilize the MIMIC-
IV and MIMIC-CXR datasets for our multimodal exper-
iments. Additionally, we extend our experiments to the
MIMIC-III dataset. As CXR images are not available in
MIMIC-III, we replace them with clinical notes. Table

Table 1. Numbers of samples in training/validation/testing sets

Datasets Train Valid Test Total
Complete Datasets

MIMIC-IIT 14,681 3222 3236 21,139

MIMIC-III NOTE 3,652 815 806 5,273

MIMIC-1V 18,064 2,035 4972 25,071

MIMIC-CXR 344,529 9,497 23,069 377,095
Matched Datasets

MIMIC-III | NOTE
MIMIC-IV | CXR
MIMIC-IV | CXR | REPORT

3,652 815 806 5,273
4,287 465 1,179 5,931
4,287 465 1,179 5,931

1 provides an overview of the real datasets and the train-
ing/validation/testing split sets. We extract 25,071 ICU
stays with EHR records from MIMIC-IV, 5,931 of which
are matched to CXR images and reports. Similarly, we
extract 21,139 ICU stays with EHR records from MIMIC-
III, with 5,273 stays matched to clinical notes. To evaluate
the performance of M2 on cross-modal alignment, we con-
duct experiments on totally matched bi-modal and tri-modal
settings. We also evaluate partially matched datasets to
demonstrate the robustness of CM? in the presence of miss-
ing modalities. Further details on the datasets can be found
in Appendix A.1.

Task and Evaluation Metrics. Following the common prac-
tice in clinical prediction tasks (Hayat et al., 2022; Zhang
et al., 2022; Wu et al., 2024b; Wang et al., 2024), we focus
on two clinical prediction tasks: (1) In-Hospital Mortality
(IHM) prediction, which predicts whether a patient will
pass away during the hospital stay; and (2) Readmission
(READM) prediction, which aims to predict whether a pa-
tient will be readmitted within 30 days after discharge. To
assess model performance, we compute the area under the
precision-recall curve (AUPR) and the area under the re-
ceiver operating characteristic curve (AUROC). Results are
reported with the corresponding 95% confidence intervals
based on 1,000 bootstrap iterations.

Backbone Encoders. Following Hayat et al. (2022), we uti-
lize ResNet34 (He et al., 2016) as the backbone encoder for
the CXR image data. For time-series data, we employ a two-
layer stacked LSTM network (Graves & Graves, 2012). For
clinical notes and radiology reports, we use the TinyBERT
encoder (Jiao et al., 2019). A projection layer is applied to
map the modality embeddings into the same latent space.

4.2. Compared Methods

We compare CM? against the following baselines:
(1) MMTM (Joze et al., 2020) is a flexible plugin mod-
ule that facilitates information exchange between modali-
ties. We address missing CXR and clinical notes during
training and testing by filling in the missing data with ze-
ros. (2) DAFT (Polsterl et al., 2021) is a module designed
to exchange information between tabular data and image
modalities when integrated into CNN models. Similarly, we
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Table 2. Results of AUROC and AUPR with 95% confidence intervals on MIMIC-III and MIMIC-IV datasets with totally matched

modalities. The best results are highlighted in boldface.

Datasets Models THM READM
AUROC (1) AUPR (1) AUROC (1) AUPR (1)

— MMTM (Joze et al., 2020) | 0.776(9.728,0.819) 0.347(0.268,0.447)  0.716(0.670,0.762)  0.341(0.277,0.419)
:. DAFT (P(ilsterl et al., 2021) 0~792(0‘746,O.839) 0.388(0‘29970.484) 0.701 (0.653,0.746) 0~325(0.262,O.403)
< Unified (Hayat et al., 2021) | 0.827(9.782,0.868) 0.466(0.371,0.560) 0.714(0.662,0.750)  0.423(0.344,0.504)
S MedFuse (Hayatetal,, 2022) | 0.82607s10866) 043003100557 0.725(0.676.0.774)  0414(0.535.0.50)
= DrFuse (Yao et al., 2024) 0.835(0.793,0.874)  0.5110.417.0.607)  0.749(0.699,0.795)  0-441(0.356,0.527)
cm? 0.854(0.820,0.861) 0.513(0.460,0.557) 0.754(0.731,0.774)  0.445(0.403,0.487)

MMTM (Joze et al., 2020) | 0.802(9.770,0.835) 0.429(0.362,0.513) 0.713(0.677,0.750)  0.420(0.362,0.489)

E. DAFT (Polsterl et al., 2021) 0815(0782,0.844) 0454(0.387,0.538) 0~729(0.692,0.766) 0'433(0.378,0.499)
© Unified (Hayat et al., 2021) | 0.808(¢.778,0.840) 0429(0.367,0.512)  0.7190.680,0.756)  0-450(0.390,0.513)
S MedFuse (Hayatetal., 2022) | 0.813(07770510) 044805500505  0.725(0.690.0.763)  0-438(0.579.0.508)
> DrFuse (Yao et al., 2024) 0.818(0.784,0.850) 0.460(0.391,0.540) 0.726(0.689,0.760)  0-430(0.370,0.495)
cM? 0.827(0.790,0.850) 0-492(0.4230.566) 0-737(0.704,0.773)  0.466(0.404,0.529)

Table 3. Results of AUROC and AUPR with 95% confidence intervals on MIMIC-III and MIMIC-IV datasets with partially matched

modalities (i.e., missing modalities). The best results are highlighted in boldface.

Datasets Models THM READM
AUROC (1) AUPR (1) AUROC (1) AUPR (1)

— MMTM (Joze et al., 2020) | 0.846(9.825,0.865) 0.450(0.399,0.500) 0.742(0.716,0.766)  0-413(0.371,0.455)
:I DAFT (Pélsterl et al., 2021) 0'854(0.836,0.873) 0.495(0'440,0_552) 0.748(0'724,0'772) 0-429(0.386,0.473)
< Unified (Hayat et al., 2021) | 0.849(0.8209,0.868) 0.491(0.436,0.542) 0.751(0.728,0.772)  0.427(0.383,0.467)
E MedFuse (Hayat et al., 2022) 0'850(0.830,0.868) 0'480(0‘426,0.533) 0.753(0.730,0_775) 0'437(0.396,0.480)
= DrFuse (Yao et al., 2024) 0.8390.817,0.861) 0.474(0.422,0.531) 0.749(0.727,0.770)  0-411(0.371,0.455)
cm? 0.856(0.833,0.877) 0.510(0.463,0.566) 0-754(0.708,0.795)  0-445(0.358,0.523)

MMTM (Joze et al., 2020) | 0.855(9.840,0.869) 0.519(0.477,0.561) 0.765(0.747,0.783)  0.465(0.430,0.501)

EI DAFT (Pﬁlsterl et al., 2021) 0'857(0.841,0.870) 0-526(0.487,0.565) 0-765(0.747,0.782) 0.476(0'442,0.510)
< Unified (Hayat et al., 2021) | 0.854(0.8309,0.870) 0.505(0.463,0.545)  0.759(0.742,0.776)  0.470(0.436,0.503)
E MedFuse (Hayat et al., 2022) 0~855(0‘84O,0.870) 0'500(0‘458,0.541) 0-762(0.744,0.778) 0.465(0.430’0'501)
= DrFuse (Yao et al., 2024) 0.857(0.841,0.872) 0.518(0.479,0.562) 0.768(0.749,0.784)  0-485(0.451,0.520)
cm? 0.858(0.844,0.872)  0.527(0.490,0.568) 0.771(0.752,0.788) 0.486(0.452,0.518)

replace missing CXR and clinical notes with zero matrices
during training and testing. (3) Unified (Hayat et al., 2021)
is a dynamic approach for integrating auxiliary data modali-
ties and combining all representations via a unified classifier.
It handles missing data inherently and leverages all available
modality-specific information. (4) MedFUSE (Hayat et al.,
2022) employs LSTM-based fusion to combine features
from image or language encoders with EHR encoders. It
handles missing modalities by learning a global represen-
tation for absent CXR or clinical notes. (5) DrFuse (Yao
et al., 2024) leverages disentangled representation learn-
ing to create a shared representation between the EHR and
image modalities, even when one modality is missing.

Table 4. Ablation study on different alignment loss functions with

AUROC and AUPR on MIMIC-IV.

Alignment IHM READM
loss AUROC (1) AUPR (1) AUROC (1) AUPR (1)
Cosine 0.820 0.470 0.726 0.445
KL 0.826 0.489 0.731 0.446
Copula 0.827 0.492 0.737 0.466

4.3. Experimental Results

Quantitative Results. Table 2 presents results on the
MIMIC-III and MIMIC-1IV datasets with fotally matched
modalities. CM? outperforms all the five baselines in all
cases. Notably, for the IHM task, cM?2 exceeds the best base-
line by 1.9% in AUROC on MIMIC-III and 3.2% in AUPR
on MIMIC-IV. These results demonstrate the effectiveness
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Table 5. Ablation study on the influence of different components
(e.g., copula alignment, gradient-preserving sampling (GPS), and
fusion module) of our proposed method on MIMIC-IV.

Models Matched THM READM
’ AUROC (1) AUPR (1) AUROC (1) AUPR (1)

w/o copula x 0.855 0.506 0.753 0.459
wio GPS X 0.858 0.521 0.763 0.473
w/o fusion x 0.860 0.531 0.762 0.476
cM? X 0.858 0.527 0.771 0.486
w/o copula v 0.809 0.434 0.717 0.424
w/o fusion v 0.811 0.446 0.720 0.424
cM? 7 0.827 0.492 0.737 0.466

Table 6. Results on different copula families and the influence of
the missing modality on MIMIC-IV.

Matched  Copula THM READM
AUROC (1) AUPR (1) AUROC (1) AUPR (1)
X Gumbel 0.858 0.527 0.772 0.485
v Gumbel 0.825 0.488 0.735 0.463
X Frank 0.858 0.527 0.771 0.436
v Frank 0.827 0.492 0.737 0.466
X Gaussian 0.859 0.527 0.771 0.485
v Gaussian 0.827 0.488 0.736 0.458

of CM? in capturing the interactions between modalities and
enhancing the performance of multimodal learning tasks in
clinical prediction.

Table 3 reports results on the MIMIC-IIT and MIMIC-IV
datasets with partially matched modalities (e.g., missing
modality). CM? outperforms the baselines in all cases, with
the best performance on the MIMIC-III dataset, where it
outperforms the best baseline by 1.5% in AUPR for the [HM
task and 0.8% in AUPR for the READM task. This indi-
cates that CM? effectively learns the joint distribution of the
modalities, generating robust and unbiased representations
in the presence of missing modalities.

Moreover, our results reveal that the performance on the
partially matched datasets is superior to that on the matched
datasets. This can be attributed to the larger number of
observations in the partially matched datasets, underscoring
the importance of multimodal learning in the presence of
missing modalities. Lastly, we observe that the performance
on MIMIC-1V is better than that on MIMIC-III under the
partially matched setting, likely due to the larger number of
observations in MIMIC-IV. Additionally, the heterogeneity
between modalities in MIMIC-IV may be greater than that
in MIMIC-III, contributing to the difference in performance
between the two datasets under the totally matched setting.

Qualitative Analysis. We visualize the densities of different
families of copula and see how the interactions between
modalities are captured. Figure 2 presents the visualization
of learned densities of the Gumbel, Gaussian, and Frank
copula families, respectively. We observe that the Gumbel

copula is more focused on the positive dependence between
the modalities while the Gaussian copula has lower weight
on modelling tail dependencies. On the other hand, the
Frank copula is tail-symmetric and capable of modelling
both positive and negative dependencies. Hence, it can cover
more dependency structures, indicating that it may be a more
flexible choice for modelling complex interactions. We
further demonstrate how CM? learns the interactions through
density plots at different epochs. The detailed discussion
can be found in Appendix D. We also study how CM? learns
the correlation over epochs. Figure 3 presents the change in
the estimated « and its corresponding correlation C“T_l over
training epochs. We discover that the model learns a positive
correlation over the epochs, and the correlation converges
at around 0.601. This implies that by backpropagating the
gradient to the copula parameter «, the model can learn the
interactions between the modalities during training.

4.4. Ablation Analysis

Effectiveness of Copula Alignment. We study the effects
of the alignment loss, as presented in Table 4. The cop-
ula alignment loss achieves the best performance, outper-
forming the popular cosine similarity alignment and KL
divergence alignment.

Ablation on Contribution of the Designed Modules. To
further evaluate the performance of cM2, we conduct an ab-
lation study by removing the copula alignment, the gradient-
preserving sampling (GPS), and fusion modules, respec-
tively. As shown in Table 5, the performance of CM? sig-
nificantly declines without copula alignment, underscoring
the importance of modeling the copula joint distribution
before fusing modality features. Additionally, in most cases,
removing the fusion module leads to a notable drop in per-
formance, emphasizing its critical role in capturing modality
interactions. Furthermore, we observe a slight decline when
the GPS is removed, indicating its effectiveness in generat-
ing unbiased representations for observations with missing
modalities.

Ablation on Different Families of Copula. We also com-
pare the performance of CM? under different settings for
missing modalities and copula families. The accuracy relies
heavily on the assumed copula family (Zeng & Wang, 2022).
We examine the performance of our method over an array
of commonly used copula families. Table 6 presents the
results of CM2 on the MIMIC-IV dataset. We discover that
while our method is generally robust to the choice of copula
family, the best-performing copula varies across different
tasks. This indicates that different tasks highlight different
characteristics (e.g., extreme values for mortality) that can
be captured when a proper copula family is chosen.

Extension to More Modalities. We further investigate the
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Table 7. Results of AUROC and AUPR with 95% confidence intervals using three modalities (EHR time series, CXR images, and CXR

reports) on MIMIC-IV.

Models IHM READM

AUROC (1) AUPR (1) AUROC (1) AUPR (1)
MMTM (JOZC et al., 2020) 0'777(0.739,0.813) 0.370(0.312’0'443) 0.689(0.650’0'723) 0.401 (0.347,0.463)
DAFT (Pdlsterl et 3.1., 2021) 0.788(0.75470.821) 0.397(0.331’0'471) 0-706(0.670,0.742) 0'403(0.346,0.464)
Unified (Hayat et al., 2021) 0'795(0.761,0.827) 0.420(0.351’0'497) 0'7]5(0.679,0.749) 0'430(0.376,0.495)
MedFuse (Hayat et al., 2022) 0.801 (0.767,0.836) 0'427(0.367,0.511) 0'7]3(0.675,0.749) 0'419(0.356,0.487)
DrFuse (Yao et al., 2024) 0.808(0.77370.839) 0.451 (0.376,0.524) 0'728(0.691,0.761) 0.433(0.370’0'495)
cM? 0°824(O.793,0.856) 0.471 (0.399,0.554) 0°730(O.694,0.764) 0'444(0.385,0.509)
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Figure 2. Plots of the fitted copula density to demonstrate the interrelationship captured by the copula model (Left: Gumbel, middle:

Gaussian, right: Frank).
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Figure 3. Plots comparing the value of « and the
correlation,Corr = (a — 1)/« learned by the Gumbel cop-
ula model.

impact of incorporating more auxiliary modalities. We adapt
all baselines into the tri-modal setting. Table 7 presents the
results for CM? and the baselines on the MIMIC-IV dataset
under the tri-modal setting: EHR time series, CXR images,
and radiology reports. Across both tasks, CM? consistently
outperforms the baselines, achieving the best performance.
Notably, the baseline models show a decline in performance
compared to the bi-modal setting, suggesting that incorpo-
rating additional modalities becomes more challenging as
the alignment complexity increases. Despite this, CM? main-
tains strong performance, demonstrating its robustness and
effectiveness in aligning multiple modalities.

5. Conclusion

We introduce copula modelling into multimodal representa-
tion learning. Using a copula can effectively model the inter-
actions among different modalities, and impute the missing
modalities through sampling from learned marginals. Em-
pirical evaluation validates the predictive performance on
the multimodal learning tasks, on both the fully and partially
matched datasets. Ablation studies show that the proposed
copula model can serve as a promising modality alignment
tool due to the consistently satisfactory performance over
different copula families. Our idea can be potentially ex-
tended to works that require effective fusion or distribution
alignment, including domain adaptation, multi-feature and
multi-view learning.

Limitations and Future Works. Using a neural network to
learn the copula parameter o may be insufficient (since the
joint log-likelihood may not be convex). Hence, an alterna-
tive updating algorithm (e.g., partial likelihood) is needed in
future development of copula multimodal learning to ensure
that each loss is convex to apply gradient descent. While we
select healthcare datasets to demonstrate the effectiveness
of our model, our method can be extended to other types of
multimodal datasets.
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Summary

In this Appendix, we first present detailed information on the datasets in A.1 and tasks used in the experiments in A.2.
Next, we introduce the multivariate Gaussian distribution in B and some common copula families in C. Then in D, we
discuss the implications of how the copula model learns interactions over the epochs. Finally, we provide more details on
the implementation and hyperparameters used in the experiments in E.1 along with the settings of baseline methods in E.2.

A. Additional Information on Datasets and Tasks
A.1. Datasets

Table 8 provides a summary of the datasets used in our experiments.

MIMIC-III dataset This dataset contains 46,520 ICU stays, each with 17 clinical variables. We split the dataset into
training, validation, and test sets in the ratio of 70 : 15 : 15, following the procedure in Harutyunyan et al. (2019).

MIMIC-IV dataset This dataset includes 21,139 ICU stays, also with 17 clinical variables. The dataset is split into training,
validation, and test sets in the ratio of 70 : 10 : 20, following Hayat et al. (2022).

For both MIMIC-IIT and MIMIC-IV datasets, we extract 17 clinical variables commonly monitored in the ICU, including 5
categorical and 12 continuous variables. Data are sampled every two hours during the first 48 hours of ICU admission for
both tasks, in accordance with Hayat et al. (2022). This results in a vector representation of size 76 at each time step of the
clinical time-series data.

MIMIC-CXR dataset This dataset contains 377,110 chest X-ray images, of which 5,931 are associated with MIMIC-IV
ICU stays. We split the data into 4,287 training samples, 465 validation samples, and 1,179 test samples. Following Hayat
et al. (2022), we retrieve the last Anterior-Posterior projection chest X-ray and apply transformations to the images, resizing
them to 224 x 224 pixels.

This dataset also includes radiology reports, which are unstructured text data. We choose the radiology reports of the
MIMIC-CXR dataset as an auxiliary modality to investigate the effectiveness of CM? on more modalities alignment since
the radiology reports do not contain death information and can avoid possible overfitting and shortcuts. We divide the
unstructured radiology reports into 4 sections, including Impression, Findings, Last paragraph, and Comparison.

MIMIC-III NOTE dataset This dataset consists of 5,273 clinical notes associated with MIMIC-IIT ICU stays. The dataset
is divided into 3,652 training samples, 815 validation samples, and 806 test samples. In line with Zhang et al. (2023), we
select the last five clinical notes before the prediction time. If fewer than five notes are available, we treat the notes for that
ICU stay as missing. The original number of matched ICU stays is around 15,000. We randomly sample one-third of the
matched ICU stays to form the training, validation, and test sets, keeping the scale of the notes nearly the same as the CXRs
in the MIMIC-IV dataset.

Both radiology reports sections and clinical notes are capped at a maximum length of 512 words, tokenized into words, and
embedded into 312-dimensional vectors using the pre-trained TinyBERT model (Jiao et al., 2019)".

A.2. Tasks

In-Hospital Mortality (IHM) Prediction. The In-Hospital Mortality (IHM) prediction task focuses on predicting whether a
patient will pass away during their hospital stay. As summarized in Table 8, the MIMIC-III dataset contains a total of 2,795
positive samples, of which 736 are matched with clinical notes. Similarly, the MIMIC-IV dataset includes 3,153 positive
samples, with 890 matched to CXR.

Readmission (READM) Prediction. The Readmission (READM) prediction task aims to forecast whether a patient will be
readmitted within 30 days of discharge. In this task, both patients who are readmitted and those who pass away in hospital
are considered positive samples. As shown in Table 8, the MIMIC-III dataset contains 3,987 positive samples, with 998
matched to clinical notes. In the MIMIC-IV dataset, there are 4,603 positive samples, with 1,262 matched to CXRs.

'"https://huggingface.co/huawei-noah/TinyBERT_General_4I1,_312D
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Table 8. Numbers of samples in training/validation/testing sets

Datasets Tasks Train Valid  Test Pos. Total
Complete Datasets
MIMIC-III IHM 14681 3222 3236 2795 21139
MIMIC-III READM 14681 3222 3236 3987 21139
MIMIC-III NOTE - 3652 815 806 - 5,273
MIMIC-IV IHM 18064 2035 4972 3153 25071
MIMIC-IV READM 18064 2035 4972 4603 25071
MIMIC-CXR - 344529 9497 23069 - 377,095
Matched Datasets
MIMIC-III | NOTE IHM 3652 815 806 736 5273
MIMIC-III | NOTE READM 3652 815 806 998 5273
MIMIC-1IV | CXR IHM 4287 465 1179 890 5931
MIMIC-1V | CXR READM 4287 465 1179 1262 5931

MIMIC-IV | CXR | REPORT IHM 4287 465 1179 890 5931
MIMIC-IV | CXR | REPORT READM 4287 465 1179 1262 5931

B. Multivariate Gaussian Distribution

The multivariate Gaussian distribution is defined as

(2= w)T= Nz - )},

N |

1
Zip, X)) = ———— €X {—
p(z; 1, %) EEDE p

where p € RP is a p-dimensional mean vector and 32 € RP*? is the covariance matrix.
The KL divergence of two multivariate normal distributions A (g1, 21) and N (o, 32) is

1 by _ _
KLV (g1, Z1) [N (p2, X2)) = 5 log :Ej: —p+u{S3' S+ (p2 — 1) 25 (12 — )|

C. Common Copula Families.

We specify the copula distributions and density functions of common copula families with necessary derivations. Without
loss of generality, we consider bivariate copula families.

Archimedean Copula. A subclass of copulas can be easily constructed by a generator function ¢ : [0, 1] — [0, co|, which
is strictly decreasing and convex so that ¢(0) = co and (1) = 0. Then, a copula C' can be constructed as follows,

d
Cug,ug,y ..., uq) = <p[*1] <Z <p(ub)> )

The Archimedean copula can generate copula densities when more than one modality exist in the dataset.

C.1. Copula Distribution Functions
* Clayton copula

C(u,v;a) = [max{ufo‘ +v7 — 1,0}] /e

* Frank copula

1 1 — %) (] — v
C(u,v;a):—alog 1—( el _)(eiae )

where o € R\{0}.
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* Gumbel copula

Q=

C(u,v; ) = exp{— [(—logu)* + (—log v)*]=}.

* Gaussian copula

C(u,v; p) = o [0 (u), @~ (v); p] ,

where ® is the CDF of the standard Gaussian distribution, and ®, is the bivariate Gaussian distribution.

* Student’s ¢ copula

Clu,v;p,v) = To, [T, (u), T,  (v);p],  ©v>0;lp| <1,

where 7! is the inverse of the CDF of Student’s ¢-distribtuion with degrees of freedom v, and 75 ,, is the bivariate
t-distribtuion with degrees of freedom v.

C.2. Copula Density Functions

Clayton copula

c(u,v) = (1+ o) (uw) % (=1 + 4= 4+ p=)~2-V/e,

where a € (—1, 00).

Frank copula

_ae—a(u+v)(€—o¢ _ 1)

(efa —emou _ p—av efa(u+v))2’

c(u,v) =

where o € (—00,0), a # 0.
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Gumbel copula

o) =g 7100
:a%a% exp{— [(— logu)® + (— log v)?]"/*}
:a%aﬁ xp{— [g(u, v;a)]"/*}
=g ~ o=l (G o)) Gotuna

=2 (toge)* | S latuvi] ¥ ) L expl= ofuvs)]7)
oxp(- fou, s )] %) 5 ot vs)] 5
= (~logo)™! :— é lg(u, v;0)] = exp{— [g(u, v;)]"/*} (; l9(u, v; a)]la“) %gw via)
+oxp(- [ V22 [t )] gt via)]
:%(* log v)“’la%g(u, v; ) exp{— [g(u, v; @))%} BQ g(u, v;a)] =
# O b =
= (- Togv)" (- Togu)"~ C(w,0) [(a = 1) [g(w, w5 )] = + [g,0300] =
:%(—mg )1 (= logu)®~1C(u, v) [g(u, v;a)] = [(a C ) g(wvia)]E 4+ 1} '

The closed-form density of the trivariate Gumbel copula is computed by

0 0 0
c(u v w) 9090w (u,v7w)
aauaavaa exp{— [(=logu)® + (= logv)® + (— log w)*]"/*}
;ua@vai exp{— (h(u, v, w;@))"}
:ﬁ(‘log“‘))“‘ (—log(v))*~" (— log(w))* ' C(u, v, w)

. (a6 (h(u, v, w; oz))3a73 — (a = 1)a® (h(u,v, w; a))2a73 —2a°(a — 1) (h(u, v,w;oz))m*3
+ (a = 2)(a — 1)a* (h(u, v, w; ))*° )

The identity can be generated by the Archimedean copula for M > 3, which is less common in multimodal learning,
d

c(u) @(d) H

where ¢(t; ) = (logt)* for the Gumbel copula, and (1) is the first derivative of the inverse of ¢.
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Figure 4. Plots of the copula densities of the Gumbel family at epochs 5, 50, and 100, respectively.

Gaussian copula The bivariate case is given by

(u,0: p) = 1 o  (a® +0%)p® — 2abp
Cu?”ap - /_l_p 2(1_p2) I

where a = v/2erf ! (2u—1),and b = V2erf ! (2v — 1). The multivariate case is given by the following matrix form,

c(w; 2) = (2m)M/2|x|~1/2 exp{—¢T®"1¢/2} |
(%) = (an) P S

where X is the covariance matrix and ¢ = (®~(uy),..., 2 Y(un)) ", ¢ = [C1y -+, Cur)-

Student’s ¢ copula

D(v/2)T(v/2 + 1)(1 + (2 (u) + t,2(v) — 2pt,  (w)t; () /(0(1 — p?)) (v +2)/2)
1= p2T((v +1)/2)2(1 + t5 2 (w) /0) = C+D/2(1 4 2 (v) fv) = (+1)/2

)

where v is the degree of freedom, I" is the gamma function, and

/x T((v+ 1)/2)dt

L@ = | /)1 s v e

D. How Copula Learns Interactions.

We demonstrate how the copula model learns the interactions over the epochs and further discuss the implications.

Figure 4 presents the copula densities at epochs epochs 5, 50, and 100, respectively. We use the Gumbel family as an
illustrative example. We observe that the copula density is evolving to a positive correlation pattern, while the negative
correlation scenarios (e.g., u > 0.5,v < 0.5, or u < 0.5,v > 0.5) are still considered but the weights allocated are
decreasing.

E. More on Baseline Methods and Implementation Details
E.1. Implementation Details and Hyperparameters

We train all models for 100 epochs on the training set and select the best-performing model based on the validation set,
using the AUROC as the monitoring metric. The final results are reported on the test set. We optimize the models using the
Adam optimizer and apply early stopping if the validation AUROC does not improve for 15 consecutive epochs to prevent
overfitting. All experiments are conducted on a single RTX-3090 GPU. The batch size is set to 32 for models trained on the
MIMIC-IV & CXR datasets, and 16 for models trained on the MIMIC-III & NOTE datasets, except for DrFuse, which is
trained with a batch size of 8. We employ grid search to tune hyperparameters using the validation set and report the best
results on the test set. The hyperparameter search space includes:
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* Dropout ratio: {0,0.1,0.2,0.3}

e Learning rate: {1 x 107%,5 x 107°,1 x 1075}
* Number of Gaussian mixtures K: {1,2,3,4,5,6}
* Temperature: {0.001, 0.005, 0.01,0.05,0.08}

* Regularization parameter Acop: {1 X 107°,5 x 1075,1 x 107%}

cM? is implemented in Python 3.11 using PyTorch 1.9. Following MedFuse (Hayat et al., 2022), we use ResNet34 (He et al.,
2016) as the backbone encoder for CXR, a two-layer LSTM (Graves & Graves, 2012) as the encoder for time-series data, and
pre-trained TinyBERT (Jiao et al., 2019)? as the encoder for clinical notes. We include a projection layer to map modality
embeddings into the same latent space. A two-layer LSTM is used as the fusion module to combine modality embeddings,
and a multilayer perceptron (MLP) with one linear layer and a sigmoid activation function serves as the classifier.

E.2. Additional Settings of Baseline Methods

We compare CM? with the following baseline methods.

* MMTM (Joze et al., 2020) is a module that can leverage the information between modalities with flexible plugin
architectures. Since the model assumes full modality, we compensate for the missing modality CXR and clinical notes
with all zeros during training and testing. For clinical notes, we replace the ResNet34 encoder with TinyBERT to
embed the clinical notes.

* DAFT (Polsterl et al., 2021) is a module that can be plugged into CNN models to exchange information between
tabular data and image modality. Similarly, we replace the input of CXR and clinical notes with matrices of all zeros
during training and testing and use TinyBERT to embed the clinical notes.

¢ Unified (Hayat et al., 2021) is a dynamic approach towards integrating auxiliary data modalities, learning the data
representations for the individual modalities, and integrating the representations via a unified classifier. It inherently
handles missingness and leverages all of the available modality-specific data. Also, we use TinyBERT to embed the
clinical notes.

e MedFuse (Hayat et al., 2022) uses an LSTM-based fusion to combine features from the image encoder (or language
encoder) and EHR encoder. Missing modality is handled by learning a global representation for the missing CXR or
clinical notes. We randomly initialized encoders for the time-series data, clinical notes, and CXR images.

* DrFuse (Yao et al., 2024) uses disentangled representation learning to learn a shared representation between the EHR
and image modality even when one modality is missing. Drfuse uses ResNet50 as the image encoder and Transformer
as the EHR encoder. We replace the ResNet50 encoder with TinyBERT to embed the clinical notes.

The Implementation of DrFuse follows the original paper(Yao et al., 2024)%, and we use the same hyperparameters as the
original paper. We directly adopt the implementations of MMTM, DAFT, Unified, and MedFuse provided by (Hayat et al.,
2022)*, and all hyperparameters are set to the default values provided by Hayat et al. (2022). We adapt the implementations
of MMTM, DAFT, Unified, MedFuse and DrFuse to tri-modal setting, including EHR time-series data, CXR images, and
radiology reports.

F. Additional Experiment Results

Additional Baselines. We compare CM? to two additional healthcare baselines: LSMT (Khader et al., 2023) and Interleaved
(Zhang et al., 2023). The results are shown in Table 9.

https://huggingface.co/huawei-noah/TinyBERT General 4L_312D
Shttps://github.com/dorothy-yao/drfuse
4https ://github.com/nyuad-cai/MedFuse
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Table 9. Results of additional baselines on the MIMIC-IV dataset. All results are reported in AUROC and AUPR with 95% confidence
intervals. The best results are highlighted in boldface.

IHM READM
AUROC (1) AUPR (1) AUROC (1) AUPR (1)

Totally Matched
LSMT (Khader et al., 2023) | 0.803(g.769,0.837) 0.444(0.370,0.519) 0.701(0.662,0.737)  0.421(0.356,0.490)
Interleaved (Zhang et al., 2023) | 0.800(0.764,0.834) 0.440(0.374,0.523) 0.702(0.664,0.741)  0.421(0.360,0.487)
cM? 0.8270.790,0.850)  0.492(0.423,0.566) 0-737(0.704,0.773)  0.466(0.404,0.529)

Partially Matched
LSMT (Khader et al., 2023) 0-854(0.838,0.870) 0.5080.466,0.551) 0-764(0.746,0.781) 0-473(0.436,0.509)
Interleaved (Zhang et al., 2023) | 0.856(g.840,0.871) 0.508(0.466,0.550)  0.758(0.740,0.775)  0.473(0.441,0.506)

Models

2
CM 0'858(0.844,0.872) 0'527(0.490,0.568) 0'771(0.752,0.788) 0'486(0.452,0.518)
=g=Paired_IHM Partial_IHM Paired_READM Partial_READM
=@=Paired_IHM Partial_IHM Paired_READM Partial_READM
09 0.57
0.88 0.55
0.86 053
0.84
e 0.51
O 082 —r e o
@] 2 0.49
< 08 <
=) 0.47 — ~———
< 0.78
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Figure 5. Results (left: AUROC; right: AUPR) of CM? on MIMIC-IV, where the model reduces to a multivariate Gaussian disdtribution
when K = 1.

e LSMT (Khader et al., 2023) is a transformer-based model designed for the multimodal medical context.

¢ Interleaved (Zhang et al., 2023) is a multimodal approach that addresses the irregularity of medical multimodal data
and fuses representations from different modalities using cross-modal attention.

Effect of Backbone Encoders. Moreover, we explore the effectiveness of backbone encoders for both time-series data
and CXR image data. We conduct additional experiments to evaluate the impact of different encoder architectures for
each modality. Specifically, we use the Transformer (Vaswani, 2017) and ViT (Dosovitskiy, 2020) as alternative backbone
encoders for the time-series and CXR image data, respectively. The results are shown in Table 10. We observe that our
method consistently outperforms competitive baselines across various backbone encoders, highlighting its robustness and
effectiveness. Furthermore, our method demonstrates greater stability across different backbones, suggesting it is less
sensitive to their selection. Besides, the Transformer backbone generally outperforms the LSTM backbone, particularly for
MMTM, LSMT, and Interleaved. While the ResNet backbone slightly outperforms the ViT backbone, the performance
difference is not substantial, suggesting time-series data’s greater impact on backbone encoder choice.

Effect of Number of Mixtures K. As a convention in statistical modelling, K is set to be small to avoid over-specification.
The popular choice of K is 2 to 3 such that the learned mixture distribution can achieve an optimal degree of flexibility
while preventing over-specification. We evaluate how the performance of CM2 varies with different values of K, as shown in
Figure 5. We observe that the performance is quite robust.

Statistical Tests The p-values of two-sample bootstrapped ¢-tests of the AUROC and AUPR of CM? compared to baseline
methods are shown in Table 11. We observe that the improvements over the competitive baselines are overall statistically
significant under the 5% significance level, validating the effectiveness of our method.
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Table 10. Results of different backbone encoders and additional baselines on MIMIC-IV with totally matched modalities. All results are
reported in AUROC and AUPR with 95% confidence intervals. The best results are highlighted in boldface.

Models Backbone IHM READM

TS IMG | AUROC (1) AUPR (1) AUROC (1) AUPR (1)
MMTM (Joze et al., 2020) 0.802(0.770,0.835)  0-429(0.362,0.513)  0.713(0.677,0.750)  0.420(0.362,0.489)
DAFT (Pélsterl et al., 2021) 0-815(0.782,0.844) 0-454(0.387,0.538) 0-729(0.692,0.766) 0433(0.378,0.499)
Unified (Hayat et al., 2021) = 0.808(0.77&0.840) 0-429(0.367,0.512) 0'719(0.680,0.756) 0.450(0'39070.513)
MedFuse (Hayat et al., 2022) E Z | 0.813(0.777,0.810)  0448(0.380,0.528)  0.725(0.690,0.762)  0-438(0.379,0.508)
DrFuse (Yao et al., 2024) A 2 | 0.814(0.780,0.844) 0.450(0.384,0.536) 0.723(0.687,0.756) 0.422(0.367,0.486)
LSMT (Khader et al., 2023) 0-803(0.769,0.837) 0-444(0.374,0.523) 0-701(0.662,0.737) 0-421(0.356,0.490)
Interleaved (Zhang et al., 2023) 0-800(0.764@‘834) 0.440(0_37070‘519) 0'702(0.664,0.741) 0.421 (0.360,0.487)
cM? 0.8270.790,0.850) 0.492(0.423,0.566) 0-737(0.704,0.773)  0.466(0.404,0.529)
MMTM (Joze et al., 2020) 0.805(0.768,0.837)  0-446(0.377,0.524)  0.712(0.676,0.720)  0.422(0.360,0.491)
DAFT (Polsterl et al., 2021) 0.808(0.775,0.820)  0-438(0.365,0.521)  0.714(0.678,0.753)  0.423(0.369,0.490)
Unified (Hayat et al., 2021) 0-803(0.768,0.835) 0-431(0.365,0.515) 0-707(0.667,0.743) 0416(0.360,0.482)
MedFuse (Hayat et al., 2022) E b 0-805(0.7710.837) 0.439(0'37170‘524) 0'715(0.677,0.753) 0.424(0_37070.492)
DrFuse (Yao et al., 2024) A Z | 0.806(0.772,0.838) 0-446(0.370.0526) 0.716(0.677,0.74s) 0421 (0.364,0.489)
LSMT (Khader et al., 2023) 0.801(0.767,0.836) 0.441(0.372,0527) 0.703(0.662,0.739) 0.410(0.358,0.475)
Interleaved (Zhang et al., 2023) 0-802(0.766,0.833) 0-434(0.364,0.509) 0-710(0.673,0.747) 0.435(0'37270.502)
cM? 0.826(0.790,0.856) 0.490(0.421,0.563) 0-736(0.697,0.771)  0.452(0.304,0.522)
MMTM (Joze et al., 2020) 0-813(0.780,0.846) 0-452(0.383,0.540) 0-735(0.699,0.7’70) 0-448(0.38870.515)
DAFT (Polsterl et al., 2021) . 0.814(0.782,0.845) 0-437(0.373,0.522)  0.730(0.694,0.766)  0-430(0.372,0.493)
Unified (Hayat et al., 2021) = z | 9-812(0.776,0.845) 0.453(0.385,0.533)  0.719(0.681,0.754)  0-426(0.365,0.488)
MedFuse (Hayat et al., 2022) 8 Z | 0.815(0.782,0.846) 0-441(0.373,0.520) 0.728(0.692,0.762)  0-442(0.381,0.505)
DrFuse (Yao et al., 2024) = 2 | 0.818(0.784,0.850) 0.460(0.301,0.500) 0.726(0.689,0.760)  0.430(0.370,0.495)
LSMT (Khader et al., 2023) = 0.817(0.785,0.848) 0-452(0.386,0.535)  0.722(0.688,0.758)  0-431(0.376,0.494)
Interleaved (Zhang et al., 2023) 0-821(0.791,0.851) 0'459(0.389,0.539) 0'721(0.683,0.757) 0'429(0.367,0.497)
cM? 0.823(0.788,0.855) 0-488(0.421,0.560) 0.740(0.699,0.771)  0.470(0.382,0.510)
MMTM (Joze et al., 2020) 0-813(0.778,0.846) 0-462(0.396,0.545) 0-723(0.686,0.761) 0435(0.380,0.505)
DAFT (Pdlsterl et al., 2021) - 0-803(0.76&0.836) 0-432(0.363,0.510) 0'719(0.682,0.758) 0-421(0.367,0.486)
Unified (Hayat et al., 2021) = 0.812(0.778,0.845)  0-463(0.396,0.546) 0.719(0.680,0.753)  0.412(0.353,0.474)
MedFuse (Hayat et al., 2022) | & E | 0.818(0.786,0.820) 0461(0.3930.542) 0.721(0.684,0.750) 0-431(0.371,0.493)
DrFuse (Yao et al., 2024) é > 0-814(0.780,0.845) 0-436(0.369,0.516) 0-717(0.680,0.755) 0-416(0.359,0.480)
LSMT (Khader et al., 2023) = 0.815(0.784,0.847)  0-453(0.380,0.535)  0.714(0.675,0.751)  0.424(0.365,0.492)
Interleaved (Zhang et 3.1., 2023) 0'818(04786,0.849) 0'453(0.380,04531) 0-717(04679,0.753) 0~433(0.371,0.498)
cM? 0.826(0.790,0.855) 0.489(0.422,0.560) 0-737(0.700,0.772)  0.465(0.304,0.517)

Table 11. P-values of two-sample bootstrapped t-tests of the AUROC and AUPR of CM? compared to baseline methods. Most of the tests
are significant under the 5% significance level.

Models THM READM
AUROC (1) AUPR (1) AUROC (1) AUPR (1)
MMTM (Joze et al., 2020) 2.02e-06 3.55e-180  4.40e-100  5.36e-291
DAFT (Polsterl et al., 2021) 0.1122 1.53e-132 9.37e-78 2.95e-240
Unified (Hayat et al., 2021) 4.55e-08 5.71e-240 4.80e-73 2.81e-139
MedFuse (Hayat et al., 2022) 7.73e-07 5.66e-129 1.11e-92 3.69¢-173
DrFuse (Yao et al., 2024) 0.1447 4.28e-99 6.05e-67 6.25e-250

19



