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ABSTRACT

Multimodal large language models achieve strong performance across diverse
tasks but remain prone to hallucinations, where outputs are not grounded in vi-
sual inputs. This issue can be attributed to two main biases: text–visual bias, the
overreliance on prompts and prior outputs, and co-occurrence bias, spurious corre-
lations between frequently paired objects. We propose Gradient-based Influence-
Aware Constrained Decoding (GACD), an inference-based method, that addresses
both biases without auxiliary models, and is readily applicable to existing models
without finetuning. The core of our approach is bias estimation, which uses first-
order Taylor gradients to understand the contribution of individual tokens—visual
features and text tokens—to the current output. Based on this analysis, GACD
mitigates hallucinations through two components: (1) suppressing spurious vi-
sual features correlated with the output objects, and (2) rebalancing cross-modal
contributions by strengthening visual features relative to text. Experiments across
multiple benchmarks demonstrate that GACD effectively reduces hallucinations
and improves the visual grounding of MLLM outputs.

1 INTRODUCTION

Figure 1: Overview of our influence-aware con-
strained decoding framework, which mitigates
hallucinations by regulating token-level influence.
It reduces text–visual bias by enhancing visual to-
ken influence (blue bars) in alignment with the
most influential text inputs— prompts (gray) or
previous outputs (white). It further mitigates co-
occurrence bias through anchor-specific suppres-
sion, selectively suppressing visual tokens (green,
magenta) anchored to previously emitted nouns.

Recent advances in Multimodal Large Lan-
guage Models (MLLMs) have demonstrated
remarkable capabilities in producing coherent
and context-aware content across a wide range
of domains (Bai et al., 2023; Dai et al., 2023;
Chen et al., 2024b; Liu et al., 2024a; Ye et al.,
2024). Despite their impressive advancements,
these models remain prone to hallucination,
wherein the generated text is not faithfully
grounded in the visual modality (Rohrbach
et al., 2018; Li et al., 2023b). This limitation
poses a critical barrier to establishing trust in
the outputs of MLLMs.

The hallucinations observed in MLLMs can
be largely attributed to two fundamental bi-
ases (Kang & Choi, 2023; Li et al., 2023b; Kim
et al., 2024). Text-visual bias refers to the ex-
cessive reliance on textual information—such
as the input prompt and previously generated
outputs—while neglecting the visual modality during generation. This bias becomes particularly
pronounced in longer sequences, where MLLMs tend to depend more heavily on prior text and
increasingly disregard visual cues (Zhou et al., 2023b; Favero et al., 2024). Co-occurrence bias
arises from spurious statistical correlations embedded in the training data, which lead models to
erroneously predict the presence of non-existent objects based on their frequent co-occurrence with
observed objects in the visual inputs (Li et al., 2023b). This bias is particularly challenging to
mitigate, and existing approaches largely rely on statistical priors rather than offering statistically
agnostic solutions (Kang & Choi, 2023; Zhou et al., 2023a).
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Existing efforts to mitigate hallucinations in MLLMs can be broadly categorized into inference-
based methods, which operate at the decoding stage (Chen et al., 2024a; Favero et al., 2024; Leng
et al., 2024; Park et al., 2024; Woo et al., 2024), and training-based approaches, which intervene
during model optimization (Ben-Kish et al., 2023; Chen et al., 2023b; Kang & Choi, 2023; Sun
et al., 2023; Jiang et al., 2024; Yue et al., 2024). Inference-based approaches are valued for their
cost-effectiveness, as they avoid the need for additional data collection, data bias examination, or
extensive model retraining. However, these methods offer limited insight into the severity of under-
lying biases, leaving the root causes of hallucination insufficiently understood. In addition, some
inference-based methods rely on auxiliary models—such as segmentation networks Chen et al.
(2024a), detection systems Kan et al. (2024) , or even additional MLLMs (Radford et al., 2021;
Deng et al., 2024; Xing et al., 2024)—which undermine their purported cost-effectiveness.

Another limitation of existing methods lies in their lack of granularity when adjusting the underlying
biases in MLLMs. Most approaches rely on heuristically tuned priors, which vary across datasets
and fail to generalize reliably Leng et al. (2024); Zhao et al. (2024). Moreover, they apply uniform
weighting across all visual features, offering no mechanism to selectively adjust bias at the level
of individual featuresZhang et al. (2024b); Manevich & Tsarfaty (2024). This coarse treatment
limits their effectiveness in mitigating co-occurrence bias, which arises from spurious statistical
correlations between objects that are often represented by distinct visual features.

In this work, we propose an inference-based method that simultaneously addresses both text–visual
bias and co-occurrence bias, without relying on auxiliary models or external supervision. The core
of our approach is the estimation of underlying bias, achieved by quantifying the contribution of
individual tokens—both visual features and text tokens—through gradients derived from a first-
order Taylor expansion. Building on this analysis, the method mitigates hallucinations by reweight-
ing tokens via two key components: (1) suppressing the influence of visual features that exhibit
strong spurious correlations with the current output token, thereby reducing co-occurrence bias; and
(2) rebalancing cross-modal contributions by enhancing the role of visual features to align more
closely with that of text tokens in generating the current output. As illustrated in Fig. 1, our method,
GACD, corrects hallucinated predictions—such as the spurious generation of “beer” in the presence
of “fork” and “spoon”—by amplifying the contributions of visual tokens unrelated to those nouns,
leading to outputs that are more faithfully grounded in the visual modality. Note also that our method
is readily applicable to existing MLLMs at inference time.

We summarize our main contributions as follows.

• We introduce an inference-based method for hallucination mitigation in MLLMs, built on
a principled estimation of underlying bias via gradients obtained from a first-order Taylor
expansion. This estimation provides a mechanism for understanding and granularly adjust-
ing their influences of individual visual features and text tokens on the generation of the
current output token, all without requiring auxiliary models or finetuning.

• We design two complementary modules: (i) suppression of spurious visual features cor-
related with the current output token to alleviate co-occurrence bias, and (ii) cross-modal
rebalancing to enhance the contributions of visual features relative to text tokens, thereby
addressing text–visual bias.

• Extensive experiments demonstrate that GACD mitigates hallucinations and enhances ac-
curacy without sacrificing information. GACD achieves up to 8% increase in overall score
on AMBER Wang et al. (2023), an 8% F1 boost on POPE Li et al. (2023b), up to 45%
improvement in detailness and a 92% accuracy gain on LLaVA-QA90 Liu et al. (2024b).

2 RELATED WORK

Hallucination and Bias. Hallucinations in LLMs often arise from biases in the training data
McKenna et al. (2023); Huang et al. (2025), while in MLLMs, studies Tonmoy et al. (2024); Li
et al. (2023b); Fu et al. (2024) show that hallucinations are closely linked to biases like text-visual
and co-occurrence biases. Additionally, biases related to output position, which increase the risk
of hallucination as output length grows, have been examined in Favero et al. (2024); Zhou et al.
(2023b). Existing methods Li et al. (2023b); Fu et al. (2024); Kim et al. (2024) typically report only
overall statistics, lacking a mathematical, sample-wise bias measurement. This distinction is impor-
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tant, as biases can vary case by case. Our approach measures sample-dependent bias via token-level
gradient sensitivities, revealing how pre-trained MLLM parameters embed these biases Kim et al.
(2019); Guo et al. (2024), and enabling self-reflective hallucination mitigation.

Hallucination Mitigation. Training-related hallucination mitigation methods Chen et al. (2023a);
Jiang et al. (2024); Yue et al. (2024); Peng et al. (2025); Zadeh et al. (2025) are expensive, requiring
access to training data and specialized statistical analysis. Among them, LPOI Zadeh et al. (2025)
also employs an object-aware framework, highlighting the effectiveness of modeling object-level
information for mitigating hallucinations. Reinforcement-learning approaches Xing et al. (2024);
Deng et al. (2024); Zhai et al. (2024) rely on supplementary feedback, often from human annotators
or auxiliary LLMs/MLLMs, and the latter may themselves hallucinate. By contrast, post-decoding
techniques modify model logits at inference time without further training or external feedback, mak-
ing them lightweight add-ons. In text-only LLMs, such methods aim to align outputs with factual
knowledge Chuang et al. (2023); Li et al. (2023a). In MLLMs, post-decoding strategies emphasize
the role of visual inputs Leng et al. (2024); Zhao et al. (2024); Favero et al. (2024) and can be clas-
sified into image-level and token-level interventions. Image-level decoding methods Zhang et al.
(2024b); Manevich & Tsarfaty (2024) treat all objects in the input image uniformly, limiting their
effectiveness in addressing co-occurrence hallucinations. Existing token-level methods either rely
on external segmentation Chen et al. (2024a) and detection models Kan et al. (2024) or lack aware-
ness of object-related decoupling Woo et al. (2024). Moreover, these methods typically introduce
an implicit trade-off between accuracy and informativeness, reducing hallucinations at the expense
of omitting valid details. Attention-based methods Tang et al. (2025); Zhang et al. (2024a) require
careful selection of specific layers and often introduce model-specific adjustments or heuristics. In
contrast, our GACD directly estimates embedded bias and decouples object-aware visual tokens,
enabling sample-specific hallucination mitigation without external data, models, or model-specific
adjustments, while achieving a more favorable balance between accuracy and informativeness.

3 METHOD

In this section, we provide background on MLLMs, introduce the concept of token influence, and
explain how GACD balances token influence to mitigate hallucinations.

3.1 BACKGROUND ON MLLMS

MLLMs generate a finite token sequence y = [y1, . . . , yM ] in response to a visual input (image
or video) and a textual prompt. Let V be a finite vocabulary. The prompt is tokenized as tp =
[tp1, . . . , t

p
N ] with tpn ∈ V . The visual input is encoded by a visual encoder into features, which are

then projected into the token-embedding space Rd, yielding visual tokens tv = [tv1, . . . , t
v
S ] with

tvs ∈ Rd, where d is the shared token embedding dimension used for V .

A MLLM with parameters θ computes, at each decoding step m, a logit vector

zm = πθ(t
v, tp, y<m) ∈ R|V|, y<m = [y1, . . . , ym−1] (empty when m = 1). (1)

This induces a categorical next-token distribution via the softmax σ : R|V|→∆|V|−1:
pθ(ym | tv, tp,y<m) =

[
σ(zm)

]
ym

, 1 ≤ m ≤ M, (2)

where σ(zm) ∈ ∆|V|−1 denotes the probability distribution1 over the vocabulary, and [·]ym
selects

the component corresponding to token ym ∈ V . At inference, ym is sampled from this categorical
distribution (e.g., greedy, beam search). The sequence likelihood factorizes by the chain rule:

pθ(y | tv, tp) =

M∏
m=1

pθ(ym | tv, tp,y<m) . (3)

Given a dataset D of (tv, tp,y), maximum-likelihood training (or fine-tuning) estimates θ⋆ by max-
imizing the conditional log-likelihood. Pretrained MLLMs encode statistical regularities (including
spurious correlations) from training data in θ⋆; such behavior can be probed without changing θ⋆ via
parameter-dependent analyses (e.g., gradients/attributions or counterfactual decodings) Kim et al.
(2019); Guo et al. (2024), enabling self-reflective bias interpretation.

1We use “confidence” to denote the model-assigned probability of the emitted token.
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3.2 GRADIENT-BASED TOKEN INFLUENCE ESTIMATION

To capture these embeded biases, we measure how each input token perturbs the output logits. Let
z⋆m ∈ R|V| denote the step-m logits z⋆m = πθ⋆(tv, tp,y<m). Around a reference sample point
(tv(0), tp(0),y

(0)
<m), the first-order Taylor expansion Spivak (1980) of the logits z⋆m is

z⋆m ≈
S∑

s=1

gv
mst

v
s +

N∑
n=1

gp
mnt

p
n +

m−1∑
i=1

gy
miyi + Const, (4)

where Const denotes other terms that are constant w.r.t., tv and tp and the token-wise Jacobians are

gv
ms :=

∂ z⋆m
∂ tvs

∣∣∣∣
tv=tv(0)

, gp
mn :=

∂ z⋆m
∂ tpn

∣∣∣∣
tp=tp(0)

, gy
mi :=

∂ z⋆m
∂ yi

∣∣∣
y=y

(0)
<m

, (5)

where
∣∣
· indicate evaluation at the reference sample point. Taylor expansion details are in sup-

plementary Sec. A. Each gv
ms, g

p
mn, g

y
mi indicate a small token perturbation in its corresponding

embedding space to a perturbation of the predict logit vector in R|V|. We score the importance of
each input token by the Manhattan norm of its gradient:

Ivms = ∥gv
ms∥1, Ipmn = ∥gp

mn∥1, Iymi = ∥gy
mi∥1, (6)

and Ivms[c] represents the gradient from the output vocabulary c with respect to each visual tokens.
Aggregating over tokens yields step-m group-level influences:

Iv
m =

S∑
s=1

Ivms, Ip
m =

N∑
n=1

Ipmn, Iy
m =

m−1∑
i=1

Iymi. (7)

These quantities decompose, at the sample level, how visual tokens, prompt tokens, and prior outputs
contribute to the logit of ym, enabling interpretation of bias per sample.

3.3 INFLUENCE-AWARE CONSTRAINED DECODING

GACD builds on token influence estimation with two components: (i) Object-aware Visual Token
Grouping and (ii) Anchor-specific Influence-weighted Decoding. At step m, the former partitions
visual tokens into object-related to and unrelated tu based on objects detected in y<m. The latter ex-
tends contrastive decoding Li et al. (2022) by forming Anchor-specific negative guidance logits from
pre-mentioned objects and computing a decoding weight αm from token-influence measurements.

Figure 2: Overview of GACD. The method comprises (i) Object-aware Visual Token Grouping
and (ii) Anchor-specific Influence-Weighted Decoding. At step m, previously mentioned objects
are detected from y<m; visual tokens are partitioned into object-related textcolordarkgreento and
unrelated tu via token influence (Sec. 3.2). Anchor-specific Influence-weighted Decoding extends
contrastive decoding with token influence, explicitly amplifying the influence of tu to jointly counter
text-visual and co-occurrence biases; negative-guidance logits zom are generated from {to, tp,y<m}
to suppress text tokens and anchor-specific visual cues. Grouping is invoked only for noun prediction
(where co-occurrence arises between object pairs); for non-noun prediction, we set to = ∅ and
uniformly amplify all visual tokens to balance text–visual bias.
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Object-aware Visual Token Grouping. For each step m, we detect nouns in y<m and treat each
noun yi as an object mention. To link a mention to visual evidence, we measure the influence Ivis of
visual token s on step i, For every noun yi, the visual token with maximal influence is selected to
form a mask Mis. The cumulative object mask at step m aggregates all prior noun-linked tokens:

Mms = 1

[
m−1∑
i=1

Mis > 0

]
, Mis = 1

[
yi ∈ Noun ∧ s = argmax

j
Ivij

]
, (8)

where 1[·] is the indicator and ∧ is logical AND.

The mask Mms identifies visual tokens linked to nouns emitted before m. We then partition the
visual tokens into object-related (to) and unrelated-to-objects (tu) sets via a Hadamard product:

to = tv ⊙Mm, tu = tv ⊙ (1−Mm). (9)

Object-related and unrelated influences at step m are

Io
m =

S∑
s=1

∥gv
ms∥1 Mms, Iu

m =

S∑
s=1

∥gv
ms∥1 (1−Mms). (10)

Masking and grouping are applied only during noun prediction (mitigate co-occurrence hallucination
from object pairs). For non-noun steps, all elements in Mm are set to 0, yielding an empty to.

Anchor-specific Influence-weighted Decoding. Let zom = πθ⋆(to, tp,y<m) the anchor-specific
negative logits and z⋆m = πθ⋆(tv, tp,y<m) be the original logits. We adjust logits by

ẑm = (1 + αm) z⋆m − αm zom, (11)

with αm ≥ 0. In the probability space, moving along z⋆m − zom increases the KL diver-
gence DKL(σ(z

⋆
m)∥σ(zom)) (see Sec. B). The original logits distribution z⋆m can be viewed as

πθ∗(tu, to, tp,y<m), i.e., a joint distribution that additionally depends on tu compare to zom. In-
creasing the KL divergence therefore emphasizes the contribution of tokens tu, which are unrelated
to previous mentioned objects, thereby mitigating co-occurrence bias in noun prediction. For non-
noun steps, tu coincides with tv , meaning that all visual tokens are emphasized. This adjustment
helps reduce text–visual hallucination.

When analyzing token influence of ẑm in Eq. 11, the chain rule shows that tu occur only in the
original logits z⋆m and are amplified by (1 + αm), whereas other inputs also contribute to zom and
therefore undergo smaller influence changes. Let Ĩo

m, Ĩ
p
m, Ĩ

y
m denote group influences computed

on the negative branch zom (analogous to equation 7). We then choose αm so that the influence of
tu matches the dominant text level, It

m := max(Ip
m,Iy

m). Aligning tu influence with the question
prompt Ip

m is crucial for visually grounded responses, while balancing with previous outputs Iy
m

prevents visual forgetting.

αm =
It
m − Iv

m

Iv
m − Ĩm

o
+ Ĩ

t
m − It

m

, Ĩ
t
m =

{
Ĩ
p
m if Ip

m ≥ Iy
m

Ĩ
y
m otherwise

(12)

Unlike existing decoding methods Zhou et al. (2023b); Favero et al. (2024); Leng et al. (2024), which
rely on adaptive plausibility constraints (e.g., prediction confidence) and require experimental tuning
to determine optimal thresholds, our approach explicitly enforces non-negativity on the influence of
object-related visual and prompt tokens. This corresponds to the following upper-bound condition:

0 ≤ αm ≤ min

{
Io
m

Ĩ
o
m − Io

m

,
Ip
m

Ĩ
p
m − Ip

m

}
. (13)

Sample-dependent early stopping. Additionally, since hallucinations are more likely in long gen-
erations Zhou et al. (2023b); Peng et al. (2025), we introduce a sample-dependent stopping criterion
based on visual influence. Specifically, if the visual influence ratio rvm of the token following the
end-of-sequence (EOS) falls below a threshold ϵ,

rvm :=
Iv
m

Iv
m + Ip

m + Iy
m

< ϵ and ym−1 = EOS. (14)

Early stopping is triggered to prevent further output generation with minimal visual grounding.
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4 EXPERIMENTS

The proposed method is evaluated for both the open-ended generative tasks and the discriminative
tasks. We use Amber Wang et al. (2023), MSCOCO Lin et al. (2014) and LLaVa-QA90 Liu et al.
(2024b) datasets for the generative task, and Amber Wang et al. (2023) and POPE Li et al. (2023b)
datasets on the discriminative tasks.

Evaluation Metrics. For generative image captioning, we focus on object hallucination and follow
Deng et al. (2024) report the Caption Hallucination Assessment with Image Relevance (CHAIR)
Rohrbach et al. (2018) score, which includes sentence-level (hal,CS) and instance-level (cha,CI )
percentages, instance-level recall (R,cov), and the average generated length (Len) 2, as well as co-
occurrence object hallucination (cog) and the overall score as suggested by Wang et al. (2023). For
generative VQA, follow Leng et al. (2024); Huang et al. (2024) GPT-4V Achiam et al. (2023) is
used to score both accuracy (Acc) and detailedness (Det) on a scale of 10. For discriminative tasks,
hallucination manifests as a ‘yes/no’ misclassification we report both accuracy and F1 score.

Implementation Details. The maximum output length is set to 256 across all models, with other
model parameters kept at their defaults. To prevent excessive modifications, we set the maximum
amplification factor, αm, to 5 for discriminative tasks and 3 for generative tasks. We empirically set
the early stopping thresholds ϵ as follows: LLaVA-v1.5 and LLaVA-v1.6: 7%, InstrucBLIP: 25%,
mPLUG-Owl2: 2.5%, and InternVL2: 10%. All experiments are performed on an NVIDIA A40
GPU with batch size of 1. Unless otherwise specified, we use greedy sampling Graves (2013).

4.1 RESULTS ON OPEN-ENDED GENERATION

In this section, we compare against SOTA alignment-based method RLAIF-V and contrastive de-
coding methods VCD, M3ID, and AVISC, on the AMBER and MSCOCO datasets, as presented
in Tab. 1, Tab. 2. Additionally, we evaluate our method against VCD on the LLaVA-QA90 dataset,
presented in Tab. 3. Our method outperforms most existing approaches across various baseline mod-
els and datasets, highlighting its robustness and reliable performance across different data types and
model architectures. Specifically, we surpass image-level contrastive decoding methods like VCD
and M3ID, demonstrating its effectiveness in operating at the token level and adapting to individual
samples. Furthermore, compared to the token-level AVISC, our method excels, likely due to its
object awareness and adaptability to fluctuating bias levels. The results further demonstrate that our
method effectively mitigates hallucinations while preserving information.

Table 1: Results on the AMBER Dataset.

MLLMs Method
Generative Discriminative

Score ↑
cha ↓ cov ↑ hal ↓ cog ↓ acc ↑ P ↑ R ↑ F1 ↑

LLaVA
v1.5

base 7.8 51.0 36.4 4.2 72.0 93.2 62.4 74.7 83.5
RLAIF-V 51 6.6 49.7 32.0 2.9 76.7 92.0 78.1 84.5 89.0
VCD 26 6.7 46.4 32.6 3.5 71.3 91.1 62.3 74.3 83.8
M3ID 12 6.2 50.5 29.3 2.8 72.4 91.8 64.1 75.5 84.7
AVISC 48 6.5 50.2 34.8 2.7 73.8 89.7 68.4 77.6 85.5
Ours 5.6 51.0 24.3 1.8 80.3 82.9 89.3 86.0 90.2

Instruct
BLIP

base 8.8 52.2 38.2 4.4 76.5 84.5 79.0 81.7 86.5
RLAIF-V 51 7.6 47.7 29.9 2.8 76.5 84.5 79.0 81.7 87.1
VCD 26 7.9 49.7 36.7 3.7 75.9 83.5 79.3 81.3 86.7
M3ID 12 7.3 49.2 33.8 3.7 75.8 84.4 77.9 81.0 86.9
AVISC 48 7.1 48.8 34.4 4.3 75.9 83.4 79.5 81.4 87.2
Ours 6.0 49.4 26.6 2.4 78.1 88.8 76.6 82.2 88.1

mPLUG
Owl2

base 10.6 52.0 39.9 4.5 75.6 95.0 66.9 78.5 84.0
RLAIF-V 51 7.8 50.5 35.7 4.1 81.2 90.8 79.7 84.9 88.6
VCD 26 8.0 51.3 35.3 4.1 75.6 83.5 78.8 81.1 86.6
M3ID 12 7.8 51.7 34.9 4.1 75.9 83.5 79.3 81.3 86.8
AVISC 48 10.9 50.5 35.5 4.4 82.1 90.7 81.4 85.8 87.5
Ours 7.5 53.6 34.7 4.0 82.1 87.0 86.2 86.6 89.6

Hallucination Mitigation. Our approach reduces hallucination by up to 33% at sentence-level (hal
in Tab. 1 and CS in Tab. 2) and 32% at instance-level (cha in Tab. 1 and CI in Tab. 2), demonstrat-
ing its effectiveness in mitigating overall hallucinations. It also effectively mitigates co-occurrence
hallucinations, with reductions of up to 57% for cog in Tab. 1. Accuracy gains of up to 92% (Tab. 3)

2Since shorter outputs can trivially lower CHAIR scores at the expense of informativeness.
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Table 2: Results Using the CHAIR Metric on the MSCOCO Subset Following Deng et al. (2024).

Method
LLaVA-v1.5 InstructBLIP mPLUG-Owl2

CS ↓ CI ↓ R ↑ Len ↑ CS ↓ CI ↓ R ↑ Len ↑ CS ↓ CI ↓ R ↑ Len ↑

base 48.8 13.4 78.6 99.8 57.8 16.5 73.6 101.3 59.2 17.6 75.8 105.3
VCD 44.8 12.8 76.8 89.8 63.4 19.6 71.2 95.5 52.7 16.1 73.2 93.6
M3ID 44.5 12.1 77.0 85.1 57.3 16.1 72.5 100.1 52.4 15.8 72.7 92.6
AVISC 46.4 13.4 76.3 90.5 58.9 17.8 70.6 99.6 58.3 17.5 75.6 99.5
Ours 41.0 10.9 77.3 85.0 47.4 13.4 72.3 93.9 45.0 12.4 74.9 83.5

further demonstrate that our model improves alignment with the input image, highlighting its ability
to jointly address text–visual and co-occurrence biases (Sec. 4.4).

Information Preservation. Our method also enhances information preservation, with recall (cov in
Tab. 1 and R in Tab. 2) dropping by an average of only 1.1%, compared to an average drop of 3.2% in
other methods, and even increasing by 3.1% when using the baseline mPLUG-Owl2 on the AMBER
dataset. Higher recall indicates that our model retrieves a broader range of objects from visual inputs.
Additionally, results in Tab. 3 an increase of up to 45% in detailedness (Det), further demonstrating
our method’s effectiveness in retrieving all relevant visual details and mitigating visual forgetting.

4.2 RESULTS ON DISCRIMINATIVE TASK

Table 3: Results on LLaVA-QA90 Dataset, with
All Settings Following Leng et al. (2024).

Method
LLaVA-v1.5 IntructBLIP mPLUG-Owl2

Acc↑ Det↑ Acc↑ Det↑ Acc↑ Det↑

base 3.23 3.54 3.84 4.07 4.07 4.33
VCD 4.15 3.85 4.23 4.69 4.52 4.64
Ours 6.20 5.13 6.28 4.77 6.69 6.28

We next evaluate our method on discriminative
tasks using AMBER (discriminative VQA) and
POPE (existence VQA), with results shown in
Tab. 1 and Tab. 4. Our approach achieves a bet-
ter balance between precision and recall, yield-
ing consistently higher F1 scores and improved
accuracy. Notably, unlike competing methods
that degrade Intern-VL2, ours preserves its per-
formance via bias awareness, though improvements differ across categories and MLLMs.

(a) Visual Influence Ratio (b) F1 across Question Categories
Figure 3: (a) Visual influence ratios across the POPE dataset, illustrating variation across MLLMs.
Our method successfully increases the visual influence ratio when it falls below 50%. (b) F1 scores
for the AMBER discriminative task using LLaVA-v1.5 are consistently improved by our method,
with particularly notable gains in the existence and state categories.

Table 4: Results on POPE in MSCOCO Adversarial Setting.

Method
LLaVA-v1.5 InstructBLIP mPLUG-Owl2 InternVL2

Acc↑ F1↑ Acc↑ F1↑ Acc↑ F1↑ Acc↑ F1↑

base 79.4 81.6 79.8 81.4 72.5 77.5 85.8 85.0
VCD 80.9 81.3 79.6 79.5 74.2 78.8 83.2 82.2
M3ID 81.7 81.8 81.0 81.6 75.6 79.1 83.5 82.1
AVISC 81.2 81.6 81.8 81.9 80.9 79.7 85.3 84.6
Woodpecker 80.5 80.6 79.0 78.6 77.5 76.9 85.7 84.8
Ours 83.5 82.1 82.5 82.1 84.2 83.7 85.8 85.0

Variation in Improvement
Across Question Categories.
Fig. 3b presents F1 scores
across various question cate-
gories using LLaVA-v1.5 Liu
et al. (2024a). Our method
improves performance across
all categories, with the largest
gains in existence, attributes,
and state—categories strongly tied to visual cues, benefiting from enhanced visual token influence.

Variation in Improvement Across MLLMs. Our method achieves the most significant improve-
ment on mPLUG-Owl2 in object existence VQA (Tab. 4) and on LLaVA-v1.5 across various VQA
categories (Tab. 1 discriminative), with minor improvement observed on InternVL2. This variation
in performance correlates with the baseline visual influence ratios of the MLLMs. Fig. 3a presents
the visual influence ratios in object existence VQA, showing that LLaVA-v1.5 exhibits the lowest
visual contribution, followed by mPLUG-Owl2. This lower baseline visual influence ratio allows
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our method to make more impactful adjustments. In contrast, InternVL2 has an original visual in-
fluence ratio exceeding 50%, resulting in minimal improvement when our method is applied. The
strong performance of InternVL2 can be attributed to its original high visual influence ratio, further
validating the motivation behind our approach. However, this dominant visual influence ratio in
InternVL2 is not consistent across other question categories or in open-ended generation tasks 3,
which allows our method to enhance its performance on the AMBER dataset (Tab. 6).

4.3 RESULTS ON ADDITIONAL MLLMS AND DATASETS

We further evaluate modern MLLMs, LLaVA-v1.6, Qwen2-VL and Intern-VL2, on the Amber
dataset. As shown in Tab. 6 (supplementary), our method consistently improves performance, even
for strong baselines. To test generality, we also evaluate on MMBench Liu et al. (2025), MMVet Yu
et al. (2023), ScienceQA Lu et al. (2022), and VizWiz Gurari et al. (2018). Results (supplementary)
show that our approach enhances perception and recognition, especially for tasks with clear visual
grounding, while preserving overall task performance and demonstrating robustness.

4.4 ABLATION STUDY

In this section, we first analyze text–visual and co-occurrence biases, and then study the contribu-
tions of our proposed components. Further details on gradient computation methods, norm selection,
and hyperparameter settings are provided in the supplementary material.

Prompt: What are the main objects on the table in the image? 

mPLUGOwl-GACD: The main objects on the table in the image are plates, forks and a bottle.
mPLUGOwl: The main objects on the table in the image are a plate,  a fork and a spoon, forks, and a mug.

(a) mPLUGOwl (b) mPLUGOwl-GACD
Figure 4: Comparison of visual influence ratios rvm and Text-Visual GAP, with and without our
GACD. (a) Without GACD, mPLUG-Owl2 shows a low initial visual influence ratio, punctuation
marks and suffixes naturally have low visual influence, while objects start with higher influence
that declines as the sequence grows. Hallucinations tend to occur when the visual ratio is low. The
text-visual gap confirms that text dominates the influence on predictions. (b) With GACD, the visual
influence ratio increases overall and mitigates the decrease over the sequence length. The text tokens
only domain influence in predictions less related to the visual, reducing hallucination.

Text-Visual Bias Analysis. Fig. 3a shows that with the exception of InternVL2, MLLMs – LLaVA-
v1.5, InstructBLIP, and mPLUG-Owl2 – rely more on text prompt than on visual input. Likely
due to MLLMs’ training process, this tendency is common in MLLMs, where multimodal fea-
tures are aligned with language tokens after extensive text-based pre-training, causing language
components to dominate decision-making. GACD effectively increases overall visual influence
to match that of object-present question prompts in POPE (Fig. 3a). In the open-ended genera-
tion task, we further observe the visual influence ratio rvm and the Text-Visual GAP, defined as
max(max(rpm, rym)− rvm, 0), the difference between the text influence ratio and the visual influence
ratio when text influence is dominant 4. Observations in Fig. 4 also highlight the text-dominant
influence typical of MLLMs. GACD counteracts this by boosting the influence of visual tokens
when aligning them with prompts and previous outputs, leading to higher prediction confidence and
a reduction in hallucinations (see Fig. 6 in supplementary). Additionally, the nature of the output
token affects the degree of visual influence ratio. For instance, punctuation marks or suffixes tend to

3Results for other question categories and visualizations of open-ended generation are in supplementary.
4rpm and rym are derived in the same manner as rvm in equation 14.
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have a lower visual influence ratio. This is intuitive, as these tokens rely more on linguistic context
and are less dependent on visual information. This observation highlights the value of our GACD
framework delivering sample-dependent, token-specific hallucination mitigation.

List the objects in the image, paying attention
to check if 'dining table' or 'chair' exist.

mPLUGOwl: There is a pile of trash, 
including white chairs, and a dining table.
mPLUGOwl-GACD: There is a pile of
trash, including white chairs and blue bags.

(a) Co-occurrence Hallucination (b) Individual Visual Token Influence (c) Overall Statistics
Figure 5: Co-occurrence hallucination of ‘table’ in the presence of ‘chair’. (a) Comparison of
outputs with and without GACD. (b) Visualization of individual visual token influence indicates
that the visual token with index 24, which has the highest influence on the hallucinated ‘table’, also
holds the highest influence on ‘chair’. (c) Summary statistics for 100 chair-only and 100 table-only
images, showing the hallucination rate and the percentage of cases where both objects share the
same most influential visual token (as illustrated in b). GACD effectively reduces both metrics.

Co-occurrence Bias Analysis. Fig. 5a shows an example where mPLUG-Owl2 incorrectly predicts
‘dining table’ due to the presence of a ‘chair’. In Fig. 5b, the influence of individual visual tokens
on hallucinated prediction Ims(‘table’) and Ims(‘chair’) shows that they share the same most influ-
ential visual token: s = 24. We further collected 100 chair-only and 100 table-only images from
MSCOCO evaluation dataset Lin et al. (2014). Results in Fig. 5c indicate that when only ‘chair’
or ‘table’ exists in the image, the hallucination rate for the other object is 23.5%, with a 31.9%
rate of sharing the same most influential token. This indicates that the ‘Same Most Influential To-
ken’ phenomenon is common in co-occurrence hallucinations. Our GACD effectively reduces the
hallucination where both ‘table’ or ‘chair’ are predicted in single-object images.

Component Analysis. To assess the effectiveness of each component in our proposed method, we
conducted the following variants: 1) Visual Amplification (VA) only: visual amplification is applied
to all visual tokens (tv), including during noun predictions. 2) Co-occurrence Hallucination Reduc-
tion (CR): object-related visual tokens are detected, and tu is amplified during noun predictions. 3)
Our full model, with early stopping (ES). Tab. 5 demonstrates that each component of our method
contributes to the overall performance. VA significantly reduces hallucinations while improving ob-
ject recall. CR further mitigates co-occurrence bias, a residual form of the text-visual bias addressed
by VA, resulting in additional hallucination reduction. Both VA and CR achieve these gains without
introducing trade-offs. When necessary, the ES mechanism shortens outputs to effectively reduce
hallucinations, with only a slight recall trade-off that remains acceptable for most MLLMs.

Table 5: Component Analysis Using the CHAIR Metric.
Components LLaVA-v1.5 InstructBLIP mPLUG-Owl2

VA CR ES CS ↓ CI ↓ R ↑ Len ↑ CS ↓ CI ↓ R ↑ Len ↑ CS ↓ CI ↓ R ↑ Len ↑

48.8 13.4 78.6 99.8 57.8 16.5 73.6 101.3 59.2 17.6 75.8 105.3
✓ 46.4 11.6 79.0 95.6 53.6 15.1 75.3 108.4 52.6 14.4 78.2 95.6
✓ ✓ 46.2 11.3 79.4 95.5 53.2 14.0 74.6 105.7 52.3 14.2 78.0 95.5
✓ ✓ ✓ 41.0 10.9 77.3 85.0 47.4 13.4 72.3 93.9 45.0 12.4 74.9 83.5

5 CONCLUSION

In conclusion, we introduce a gradient-based self-reflection method to estimate token influence and
quantitatively estimate bias severity. This estimation enables the identification of object-related vi-
sual tokens, which are then integrated into an influence-aware constrained decoding framework.
This framework effectively mitigates both text-visual and co-occurrence biases, reducing hallucina-
tions. Our method operates without requiring additional resources such as costly fine-tuning, extra
models, or data statistics. Furthermore, to reduce text-visual bias in long-generated sequences, we
propose a sample-dependent stopping criterion based on the proposed visual influence.
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A FIRST ORDER TAYLOR EXPANSION

Let z⋆m ∈ R|V| denote the step-m logits z⋆m = πθ⋆(tv, tp,y<m). Around a reference point
(tv(0), tp(0),y

(0)
<m), the detailed first-order Taylor expansion of the logit z⋆m is

z⋆m ≈ z⋆(0)m︸︷︷︸
πθ⋆(tv(0), tp(0),y

(0)
<m)

+

S∑
s=1

gv
ms

(
tvs − tv(0)s

)

+

N∑
n=1

gp
mn

(
tpn − tp(0)n

)
+

m−1∑
i=1

gy
mi

(
yi − y

(0)
i

)
=

S∑
s=1

gv
mst

v
s +

N∑
n=1

gp
mnt

p
n +

m−1∑
i=1

gy
miyi

+ z⋆(0)m −
S∑

s=1

gv
mst

v(0)
s −

N∑
n=1

gp
mnt

p(0)
n −

m−1∑
i=1

gy
miy

(0)
i︸ ︷︷ ︸

Const

,

=

S∑
s=1

gv
mst

v
s +

N∑
n=1

gp
mnt

p
n +

m−1∑
i=1

gy
miyi + Const,

(15)

where the (token-wise) Jacobians are

gv
ms :=

∂ z⋆m
∂ tvs

∣∣∣∣
tv=tv(0)

, gp
mn :=

∂ z⋆m
∂ tpn

∣∣∣∣
tp=tp(0)

, gy
mi :=

∂ z⋆m
∂ yi

∣∣∣
y=y

(0)
<m

, (16)

and z
⋆(0)
m = πθ⋆(tv(0), tp(0),y

(0)
<m). Here

∣∣
· denotes evaluation at the reference point. Each

gv
ms, g

p
mn, g

y
mi maps a small token perturbation in its corresponding embedding space to a per-

turbation of the logit vector in R|V|. And Const denotes all other terms that are constant w.r.t., the
tv, tp.

B INTERPRETING CONTRASTIVE DECODING THROUGH KL DIVERGENCE

Kullback-Leibler (KL) divergence can be used to interpret contrastive decoding, It measures the
divergence between the reference distribution pθ⋆(ycm|to, tp, y<m) to the tu joint distribution
pθ⋆(ycm|tv, tp, y<m), where tv = {tu, to}.

DKL =
∑
c

pθ⋆(ycm|tv, tp, y<m)log
(pθ⋆(ycm|tv, tp, y<m)

pθ⋆(ycm|to, tp, y<m)

)
=

∑
c

pθ⋆(ycm|tv, tp, y<m)(log(pθ⋆(ycm|tv, tp, y<m))− log(pθ⋆(ycm|to, tp, y<m)))

=
∑
c

pθ⋆(ycm|tv, tp, y<m)([πθ∗(tv, tp)m]c − log(
∑

exp(πθ∗(tv, tp)m))

− [πθ∗(to, tp)m]c + log(
∑

exp(πθ∗(to, tp)m)))

=
∑
c

pθ⋆(ycm|tv, tp, y<m)([πθ∗(tv, tp)m − πθ∗(to, tp)m︸ ︷︷ ︸
adjustment term

]c + Const),

(17)

where pθ⋆(ycm|tv, tp, y<m) = σ(πθ∗(tv, tp)m), pθ⋆(ycm|to, tp, y<m) = σ(πθ∗(to, tp)m) and c
represents a class in the predefined vocabulary. The adjustment term increases the KL divergence,
thereby emphasizing the impact of visual tokens.

C RESULT ON MODERN MLLMS

We further evaluate recent MLLMs, LLaVA-v1.6, Qwen2-VL, and Intern-VL2, on the AMBER
dataset. As shown in Tab. 6, our method consistently improves performance, even when the base

14
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models already achieve strong results. Moreover, it surpasses SOTA comparison methods. This
improvement stems from the model’s self-reflection ability, which effectively identifies biases in
baseline MLLMs and adapts the outputs accordingly.

Table 6: Latest MLLMs on the AMBER Dataset.

MLLMs Method
Generative Discriminative Score ↑

cha↓ cov↑ hal↓ cog↓ acc↑ P↑ R↑ F1↑

LLaVA
v1.6

base 9.9 56.7 47.4 4.3 80.3 82.9 89.3 86.0 88.5
RLAIF-V 9.0 53.6 46.1 3.42 80.8 83.9 88.9 86.3 88.6
VCD 9.5 52.7 46.3 3.78 79.9 83.1 87.6 85.4 88.0
M3ID 9.2 50.1 45.3 3.3 80.4 83.2 88.8 85.9 88.4
AVISC 9.2 50.7 47.5 3.2 80.6 83.5 88.2 85.8 88.3
Ours 8.7 58.3 43.8 2.5 81.2 85.2 88.8 87.0 89.2

Qwen2
VL

base 6.4 70.4 54.8 5.9 82.9 91.6 82.2 86.6 90.1
RLAIF-V 5.8 69.4 54.1 5.5 83.5 91.2 82.6 86.7 90.4
VCD 6.5 69.1 53.7 5.3 82.7 90.9 82.3 86.4 90.0
M3ID 6.3 68.8 53.5 5.1 83.0 91.0 82.8 86.7 90.2
AVISC 6.3 69.0 53.9 5.0 82.8 91.1 82.5 86.6 90.1
Ours 4.9 71.8 44.7 3.7 84.4 88.1 89.2 87.1 91.1

Intern
VL2

base 8.1 69.6 59.0 5.2 84.0 87.3 88.8 88.0 90.0
RLAIF-V 8.0 68.4 59.3 4.9 84.2 87.7 88.5 88.1 90.1
VCD 8.5 68.7 58.6 5.0 82.9 87.0 88.4 87.7 89.6
M3ID 8.4 69.2 58.9 5.4 83.7 86.8 88.4 87.6 89.6
AVISC 8.4 68.9 59.1 4.8 84.0 87.7 86.8 87.2 89.4
Ours 7.9 69.8 57.8 3.7 84.7 88.2 88.8 88.5 90.3

D MLLMS ARCHITECTURES

Tab. 7 shows detailed information about the vision encoder and LLM components of the MLLM
architectures used in our experiments.

Table 7: Details of the used MLLM architectures.

MLLMs Vision encoder LLM

LLaVA-v1.5 (7B) CLIP-L-336px Vicuna-v1.5-7B
LLaVA-v1.5-13B CLIP-L-336px Vicuna-v1.5-13B
LLaVA-v1.6 CLIP-L-336px Vicuna-v1.5-7B
InstructBLIP (7B) BLIP-2 Vicuna-v1.1-7B
InstructBLIP-13B BLIP-2 Vicuna-v1.1-13B
mPLUG-Owl2 CLIP-L LLaMA-2-7B
InternVL2-4B InternViT-300M-448px Phi-3-mini-128k-instruct

E RESULTS ON MMBENCH

We further evaluate our method on MMBench Liu et al. (2025). The results in Tab. 8 indicate that our
method improves the overall performance and achieves consistent improvements across MLLMs on
Coarse Perception (CP). This outcome aligns with the intended effect of our method, as its focus on
increasing visual influence is directly linked to improving coarse perception capabilities. For other
metrics, our method yields minor improvements due to the possible reason that certain abilities,
such as Logical Reasoning (LR), rely more on the language component of MLLMs and cannot be
enhanced solely by increasing visual influence.

F RESULTS ON MM-VET

The evaluation on MM-Vet Yu et al. (2023) in Tab. 9 shows that our method achieves consistent
overall (Total) improvement, along with enhancements in recognition (Rec) and Optical Character
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Table 8: Results on MMBench Dataset.

MLLMs Method Overall CP FP-S FP-C AR LR RR

LLaVA-V1.5 base 62.3 68.5 69.6 57.7 73.1 29.9 54.7
ours 61.8 73.2 62.6 53.0 73.3 27.8 57.8

mPLUG-Owl2 base 63.5 68.1 69.1 55.8 78.4 37.0 57.0
ours 65.0 72.6 66.6 53.0 76.0 41.6 63.0

Recognition (OCR), indicating its effectiveness in improving visual recognition. However, its per-
formance varies across other metrics, including knowledge (Know), generalization (Gen), spatial
awareness (Spat), and math (Math), suggesting that our method, which focuses on token influence
balancing, may not effectively enhance the generalization ability of MLLMs.

Table 9: Results on MM-Vet dataset.

MLLMs Method Rec OCR Know Gen Spat Math Total

LLaVA-V1.5 base 32.9 20.1 19.0 20.1 25.6 5.2 28.0
ours 38.9 24.9 15.0 15.5 24.9 7.7 28.9

InstructBlip base 32.4 14.6 16.5 18.2 18.6 7.7 26.2
ours 40.5 18.0 18.7 17.4 14.9 3.8 26.6

mPLUG-Owl2 base 36.1 19.4 29.8 19.4 23.9 7.7 27.3
ours 45.0 26.4 27.9 25.9 24.8 3.8 33.9

G RESULTS ON SCIENCEQA AND VIZWIZ

We evaluate our method on two complementary multimodal benchmarks. ScienceQA Lu et al.
(2022) integrates images, textual context, and curriculum knowledge, requiring models to perform
structured multimodal reasoning. VizWiz Gurari et al. (2018), in contrast, consists of visual ques-
tions collected from blind users and features real-world challenges such as low-quality images, con-
versational queries, and unanswerable cases. These datasets jointly assess both reasoning under
structured multimodal contexts and robustness in unconstrained real-world settings. As shown in
Table 10, our approach consistently improves over the LLaVA-1.5 baseline. These gains demon-
strate the effectiveness of our hallucination mitigation strategy in enhancing visual grounding across
both knowledge-driven and real-world VQA tasks.

Table 10: Comparison of LLaVA-1.5 and our method on ScienceQA and VizWiz datasets.

MLLMs Method ScienceQA(%) ↑ VizWiz(%) ↑

LLaVA-V1.5 base 66.2 48.7
Ours 68.7 52.8

H REVISITING THE ACCURACY–INFORMATIVENESS TRADE-OFF

In the main paper, we report recall and output length alongside CHAIR scores, since our objective
is to evaluate models under a balance of accuracy and informativeness. This choice is deliberate:
our early stopping mechanism can be tuned to shorten responses, which naturally reduces CHAIR
scores but at the expense of recall and content richness. Consequently, the trade-off introduced by
early stopping is an explicit design choice, and it can be adjusted depending on the requirements of
a specific application.

Direct comparison with SOTA methods that omit recall and generation length is therefore not en-
tirely fair. Our analysis confirms that CHAIR scores can drop substantially when outputs are trun-
cated, underscoring the importance of jointly reporting recall and length to present a complete view
of performance. Without these complementary metrics, lower CHAIR values may simply reflect
shorter, less informative responses rather than genuine improvements in visual grounding. To en-
able a fairer comparison with prior work, we adjust our early stopping threshold to 12%. Under this
setting, our method achieves lower CHAIR scores while maintaining competitive recall, thereby
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outperforming both approaches. This demonstrates that our framework not only mitigates halluci-
nation effectively but also preserves informativeness. Moreover, the adjustable nature of the early
stopping mechanism ensures that users can flexibly select the optimal balance between accuracy and
informativeness for their specific use cases.

Table 11: Comparison with SOTA Methods with 12% Early Stopping Threshold.

MLLM Method Cs ↓ Ci ↓ R ↑ Len ↑

LLaVA-v1.5

base 48.8 13.4 78.6 99.8
PAI Liu et al. (2024c) 24.8 6.9 - -
Middle Jiang et al. (2025) 25.0 6.7 - -
Ours ES 12% 23.5 6.5 55.0 54.1

I RESULTS ON MME

Our evaluation on MME Fu et al. (2024) dataset is presented in Tab. 12. Our method achieves better
overall (Total) results and equal or improved performance in existence and counting, demonstrating
its effectiveness in object recognition. However, it does not improve position accuracy and exhibits
varying behavior on color. This diversity may stem from the inherent capabilities of MLLMs, which
cannot be solely enhanced through token influence balancing.

Table 12: Result on MME Dataset.

MLLMs Method Existence ↑ Count ↑ Position ↑ Color ↑ Total ↑

LLaVA-v1.5 base 190.0 140.0 128.3 155.0 613.3
ours 190.0 153.3 128.3 163.3 634.9

IntructBLIP base 180.0 55.0 50.0 130.0 415.0
ours 185.0 55.0 50.0 130.0 420.0

mPLUG-Owl2 base 170.0 145.0 73.3 158.3 546.6
ours 170.0 150.0 73.3 150.0 548.3

J OTHER RESULTS OF POPE

Table 13: More Results on POPE Li et al. (2023b).

Dataset Setting Method LLaVA-v1.5 InstructBLIP mPLUG-Owl2

Acc ↑ F1 ↑ Acc ↑ F1 ↑ Acc ↑ F1 ↑

MSCOCO
Random base 86.5 84.8 87.1 85.7 86.0 84.4

ours 86.8 85.1 87.9 86.8 87.9 87.1

Popular base 85.5 83.8 84.2 83.6 84.6 83.2
ours 85.6 84.0 85.0 84.3 86.4 85.7

A-OKVQA

Random base 88.0 87.6 88.5 88.5 86.5 85.7
ours 88.1 87.4 88.8 88.8 88.4 88.1

Popular base 85.5 85.1 81.9 83.1 82.4 82.2
ours 85.5 85.1 82.3 83.4 85.1 85.3

Adversarialbase 79.1 79.9 74.8 77.9 74.7 76.9
ours 79.5 80.1 75.3 78.2 78.2 79.9

GQA

Random base 88.9 88.2 87.2 87.1 85.2 84.0
ours 88.9 88.2 87.2 87.2 86.1 85.0

Popular base 84.1 84.1 78.6 80.4 78.7 78.5
ours 84.2 84.1 78.8 80.4 81.0 80.5

Adversarialbase 80.8 81.3 75.9 78.4 76.4 76.8
ours 81.1 81.6 76.1 78.5 79.2 79.1
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We report our experimental results on the POPE dataset, in addition to MSCOCO and adversarial
settings, in Tab. 13. The results indicate that our method improves performance across all baseline
MLLMs, with more significant gains observed in the adversarial setting. This discrepancy likely
arises because adversarial scenarios require models to rely more heavily on visual inputs, aligning
with our method’s focus on enhancing visual influence. Conversely, for popular and random objects,
textual data often provides sufficient statistical information, reducing the necessity for increased
visual input reliance.

K DIFFERENT SAMPLING STRATEGIES

Tab. 14 presents an ablation study on sampling strategies (non-greedy vs. greedy). We follow the
non-greedy sampling setting of VCD Leng et al. (2024), where both top-p and temperature are set
to 1. As shown, our method consistently improves performance across both sampling strategies.

Table 14: Ablation Study on Sampling Strategies on POPE MSCOCO Adversarial Dataset.

strategy Method LLaVA-v1.5 InstructBLIP mPLUG-Owl2

Acc F1 Acc F1 Acc F1

non-greedy base 79.0±0.51 81.1±0.53 71.6±0.49 74.7±0.46 71.5±0.30 76.6±0.28

ours 82.3±0.27 81.1±0.31 82.2±0.29 81.8±0.25 83.2±0.27 82.9±0.26

greedy base 79.4 81.6 79.8 81.4 72.5 77.5
ours 83.5 82.1 82.5 82.1 84.2 83.7

L DIFFERENT MODEL SIZE

We evaluate our method on different model sizes, 7B and 13B, for LLaVA-v1.5 and InstructBLIP,
as shown in Tab. 15. The results indicate consistent improvements across various model sizes. In
each model series, the smaller model gets a larger performance boost. With our method, we can
achieve high accuracy and detection rates with a smaller 7B model, outperforming a 13B model at
its original performance level.

Table 15: Ablation Study on Model Size on LLaVA-QA90 Dataset.

Mothod
LLaVA-v1.5 InstructBLIP

7B 13B 7B 13B

Acc Det Acc Det Acc Det Acc Det

base 3.23 3.54 4.78 4.2 3.84 4.07 5.67 4.88
ours 6.20 5.14 7.36 6.5 6.28 4.77 6.42 5.99

M GRADIENT COMPUTATION DETAILS AND EFFICIENCY ABLATION

Table 16: Ablation Study on Gradient Methods on the POPE MSCOCO Adversarial Dataset

Methods Accuracy F1 Average Speed(ms)

MPLUG-Owl2 IG Enguehard
(2023)

83.4 82.9 20335

direct 84.2 83.7 385

Our method obtains gradients directly through PyTorch’s ‘torch.autograd.grad’ on input tokens,
eliminating the need for manual derivations and facilitating straightforward reproduction. For com-
parison, we evaluate Integrated Gradients (IG) Enguehard (2023); Lundstrom et al. (2022); Kapish-
nikov et al. (2021) using the SIG Enguehard (2023) implementation; Table 16 presents this ablation.
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In the table, “IG” denotes the SIG-based results, while “direct” refers to our torch.autograd.grad
approach. Both methods yield comparable accuracy and F1-score, but the direct-gradient variant is
substantially more efficient.

N NORM SELECTION FOR TOKEN INFLUENCE

To evaluate the impact of norm selection on token influence, we study L1 (Manhattan), L2 (Eu-
clidean), and L∞ (infinity) norms. The L1 norm highlights individual token contributions, while the
L2 norm captures overall influence. The L∞ norm focuses on the most dominant token or channel.
Results in Tab. 17 show that the L1 norm achieves the best performance, aligning with our intuition
that it effectively captures influence magnitude across tokens and channels. In contrast, the L2 norm,
by emphasizing overall contribution, can obscure individual token effects, and the L∞ norm, though
capturing the strongest signal, fails to account for the broader token/channel influence.

Table 17: Norm Strategies on POPE MSCOCO Adversarial Dataset.

Norm LLaVA-v1.5 InstructBLIP mPLUG-Owl2

Acc F1 Acc F1 Acc F1

L1 83.5 82.1 82.5 82.1 84.2 83.7
L2 83.2 81.9 79.5 79.6 83.2 82.9
L∞ 83.4 82.0 82.1 81.8 80.8 80.6

O HYPER PARAMETER STUDY

Maximum αm. To determine the optimal maximum amplification factor (αm) and understand its
impact on the model performance, we conducted a search over values from 1 to 6 using the LLaVA-
v1.5 model on the POPE dataset for discriminative tasks. For open-ended generation tasks on a
subset of the MSCOCO dataset following Deng et al. (2024), we observed garbled text when αm

was set to 5; therefore, we limited our search to values from 1 to 4. As shown in Tab. 18 and
Tab. 19, discriminative task on POPE is less sensitive to the value of αm. The performance on the
generative task gets improved while αm increases but later drops. Therefore, in our experiments,
the optimal maximum amplification factor (αm) is set to 5 and 3 for discriminative and generation
tasks, respectively.
Table 18: αm Study For Discriminative Task On POPE Li et al. (2023b) in MSCOCO Adversarial
Setting.

Maximum αm
1 2 3 4 5 6

Acc
↑

F1
↑

Acc
↑

F1
↑

Acc
↑

F1
↑

Acc
↑

F1
↑

Acc
↑

F1
↑

Acc
↑

F1
↑

LLaVA-v1.5 83.4 82.0 83.4 82.0 83.4 82.0 83.4 82.0 83.5 82.1 83.4 82.1

Table 19: Maximum αm Study For Generation Task on the MSCOCO Subset.

Maximum αm
1 2 3 4

CS ↓CI ↓ R ↑ Len CS ↓CI ↓ R ↑ Len CS ↓CI ↓ R ↑ Len CS ↓CI ↓ R ↑ Len

LLaVA-v1.5 44.0 11.8 76.2 86.1 41.4 11.1 77.4 84.8 41.0 10.9 77.3 85.0 41.4 10.9 77.3 84.9

Early Stopping Threshold. To set the early stopping threshold properly, we conducted a search on
a subset of the MSCOCO dataset subset following Deng et al. (2024). Recognizing that the visual
influence ratio varies across models, we first analyze the sample-wise visual influence to identify
an appropriate range for this study. By searching over the corresponding range, we show results in
Tab. 20. These results demonstrate that varying the ES threshold primarily mediates the trade-off
between recall and hallucination rate. Our goal is to have balanced recall (R) and instance-level
hallucination (CI ), leading us to select thresholds of 7% for LLaVA-v1.5 and LLaVA-v1.6, 25% for
InstructBLIP, 2.5% for mPLUG-Owl2 and 10% for InternVL2. We additionally ran an experiment
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to measure the ES activation rate using LLaVA-v1.5 with ES threshold 7%. As shown in Tab. 21,
ES fires on only 8.7% of the test samples, and when it does, the generated responses are on average
just 0.7 tokens shorter. This indicates that ES rarely, and only minimally, truncates outputs.

Table 20: Early Stopping Threshold Study on the MSCOCO Subset

LLaVA-v1.5 LLaVA-v1.6 IntructBLIP mPLUG-Owl2 InternVL2

6% 7% 8% 9% 5% 7% 9% 11% 15% 20% 25% 30% 2% 2.5%3% 3.5%8% 10% 12% 14%

CS 45.6 41.0 36.6 31.4 29.0 26.0 23.0 17.8 52.6 51.4 47.4 36.0 51.8 45.0 41.2 41.0 37.0 35.2 34.6 32.9
CI 11.5 10.9 10.2 10.2 8.5 8.1 7.8 7.5 15.0 14.3 13.4 11.7 13.7 12.4 11.0 11.0 8.6 8.1 8.0 7.9
R 79.7 77.3 75.2 70.8 68.5 63.0 58.8 53.0 75.1 74.4 72.3 68.8 77.7 74.9 73.8 73.5 65.8 65.4 65.4 64.0
Len 92.0 85.0 75.4 63.9 119.1101.881.1 62.7 107.9103.493.9 74.3 89.1 83.5 78.9 77.8 180.4175.5170.6162.2

Table 21: Activation Rate of the Early Stopping on the MSCOCO Subset

Methods Activate Percentage Average Length

LLaVA-v1.5 (7%) base - 85.1
ours 8.7% 84.4

P CONFIDENCE AND VISUAL INFLUENCE

Low confidence often signals potential failure modes in base MLLMs. Here, we demonstrate that
our method not only improves accuracy but also increases model confidence. It remains effective
even in low-confidence regions for three reasons: 1) We aggregate token gradients at the compo-
nent level (Eq. 7) rather than using individual token gradients which yields robustness against local
gradient noise. 2) We adjust influence towards visual tokens which consistently reduces the hallu-
cination likelihood; 3) Empirically, low model confidence does not correlate with noisy gradients.
In our experiments, pretrained MLLMs usually maintain meaningful gradient signals even at low
confidence levels. Fig. 6 shows an example where the baseline model mPLUG-Owl2 exhibits low
confidence in hallucinated predictions and near-zero confidence in the initial predictions for ‘forks’
and ‘mug’. With GACD, prediction confidence increases alongside the visual influence ratio, with
the minimum confidence rising to over 30%.

Th
e

m
ai

n
ob

je
ct

s on th
e

ta
bl

e in
im

ag
e

ar
e a

pl
at

e ,
fo

rk
an

d sp oo
n fo
r ks m ug
.0.0

0.2

0.4

0.6

0.8

1.0
Visual Influence Ratio
Prediction Confidence

(a) mPLUGOwl2
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(b) mPLUGOwl2-GACD

Figure 6: Comparison of prediction confidence with and without GACD. (a) Without GACD,
mPLUGOwl2 exhibits low confidence in hallucinated predictions and near-zero confidence in the
initial predictions for ‘forks’ and ‘mug’. (b) With GACD, mPLUGOwl2’s confidence increases
alongside the visual influence ratio, effectively mitigating hallucinations.

Q QUESTION CATEGORY RESULTS ON THE AMBER DATASET

We report discriminative results across different question categories in Tab. 22. Our method im-
proves performance in nearly all categories across all MLLMs. The improvement in InternVL2’s
object existence is minor, likely due to its already high visual influence ratio. For LLaVA-v1.5
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and mPLUG-Owl2, which have lower original visual influence ratios, our method achieves more
substantial gains in existence, attribute, and state categories.

Table 22: Results on the Question Categories of Discriminative Task on AMBER Dataset.

Category Metric InstructBLIP LLaVA-v1.5 LLaVA-v1.6 mPLUG-Owl2 Intern-VL2
base ours base ours base ours base ours base ours

Existence

acc 70.0 79.8 70.8 93.2 92.9 93.0 75.2 89.9 90.6 90.6
P 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
R 70.0 79.8 70.8 93.2 92.9 93.0 75.2 89.9 90.6 90.6
F1 82.3 88.7 82.9 96.4 96.3 96.3 85.8 94.6 95.0 95.0

Attribute

acc 71.9 78.3 72.3 76.1 75.2 77.1 73.9 78.2 82.3 82.6
P 76.0 81.7 87.3 74.0 74.6 76.4 86.0 76.9 80.9 80.9
R 64.3 73.0 52.2 82.7 83.0 83.9 57.1 81.8 84.7 85.2
F1 69.7 77.1 65.3 78.1 78.5 80.0 68.6 79.3 82.8 83.0

State

acc 73.4 76.4 68.2 73.3 78.6 75.2 70.5 77.9 81.2 81.2
P 75.1 77.1 86.2 70.3 78.6 74.7 84.9 75.5 79.1 78.7
R 70.6 75.3 43.3 82.0 78.5 82.9 49.8 83.1 84.8 85.5
F1 72.8 76.2 57.6 75.7 78.5 78.6 62.8 79.1 81.8 82.0

Number

acc 65.4 80.6 75.0 80.1 80.1 80.2 77.8 76.5 82.6 83.3
P 75.4 93.1 86.9 79.1 79.2 78.6 86.0 77.0 83.0 84.0
R 45.8 66.2 59.5 82.4 81.7 84.4 66.9 77.0 82.0 82.3
F1 57.0 77.4 70.6 80.7 80.4 81.4 75.3 77.0 82.5 83.1

Action

acc 79.7 83.7 83.6 82.3 81.9 80.4 84.0 84.1 88.4 88.6
P 82.5 88.5 92.9 85.9 79.4 81.2 90.9 85.9 86.5 86.8
R 75.3 77.5 72.7 87.4 86.0 88.6 75.5 85.9 90.9 91.2
F1 78.7 82.6 81.6 86.6 82.6 84.7 82.5 85.9 88.6 88.9

Relation

acc 62.7 71.9 71.8 61.5 64.5 65.7 70.5 76.9 72.1 77.0
P 56.2 64.0 65.9 51.9 54.0 56.6 61.0 67.9 60.0 65.1
R 48.6 73.4 66.3 97.7 95.1 87.2 79.5 83.9 98.3 95.6
F1 52.1 68.4 66.1 67.8 68.9 68.6 69.0 75.1 74.5 77.5

R COMPUTATIONAL COST

In this section, we analyze the computational cost of the proposed method. On the POPE dataset,
our method increases the average computational cost by 101.44% in TFLOPs. This is expected for
decoding-based approaches, as they require two forward passes. Importantly, the visual encoder is
executed only once, and the second pass processes a limited number of input tokens. Thus, although
additional computation is introduced, the overall overhead remains within a practical range.

Table 23: TFLOPs of Baseline vs. Ours with LLaVA-v1.5 on the POPE Dataset.

Method TFLOPs Relative Increase
LLaVA-v1.5 9.68 –
Ours 19.49 +101.44%

S INFLUENCE RATIO IN VQA

Fig. 7 illustrates the visual influence ratio across outputs in VQA tasks, comparing baseline pre-
dictions with those obtained after applying GACD. The results confirm that text tokens dominate
influence across MLLMs, including InternVL2, which exhibits a relatively high visual influence ra-
tio. As shown in Fig. 3 of the main paper, the overall 60%–100% visual influence ratio across the
POPE dataset suggests that visual inputs predominantly determine object existence in VQA tasks.
GACD enhances visual influence, effectively balancing text-visual bias. Furthermore, the visualiza-
tion on InternVL2 demonstrates that the co-occurrence hallucination ‘knife’ persists despite a high
visual influence. GACD successfully eliminates this co-occurrence hallucination.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(a) What are the main objects on the table in the image?
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(b) LLaVAv1.5
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(c) LLaVAv1.5-GACD
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(d) InstructBLIP
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(e) InstructBLIP-GACD
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(f) InternVL2
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(g) InternVL2-GACD

Figure 7: Influence Ratio across Predicted Tokens in VQA: (left) Baseline predictions; (right)
Predictions with GACD. GACD effectively mitigate Text-Visual GAP, balancing text-visual bias.
(f) The original InternVL2 shows a dominant visual influence ratio at the hallucinated prediction
‘knife’, indicating a co-occurrence bias that remains unaddressed even with dominant visual influ-
ence. (g) GACD successfully eliminates co-occurrence hallucinations, including ‘knife’.

T INFLUENCE RATIO IN IMAGE CAPTION

We further visualize the influence ratio in the image captioning task. Fig. 8 shows that in the baseline
LLaVA-v1.5, the influence gap between previous output tokens and visual tokens widens as more
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tokens are generated. However, GACD effectively narrows this gap, preventing visual information
from being forgotten and thereby reducing hallucinations.

LLaVA: The image features a black dog lying on the floor in a kitchen, resting comfortably on a tiled surface.
The dog is positioned near a bowl, possibly enjoying a meal or a snack. In the kitchen, there are several items
scattered around. A bottle can be seen on the left side of the dog, while a cup is located closer to the center. A
spoon is placed near the right side of the dog, and a bowl is situated on the right side of the scene.

LLaVA-VA:  The image features a black dog lying on the floor of a kitchen, resting comfortably on a tile
floor. The dog is positioned near a bowl, a toy, and a bag of cat food. The bowl is placed on the floor, while
the toy is located closer to the dog.

Figure 8: Comparison of influence ratios across predicted tokens with and without GACD. (Left)
Without GACD, the influence gap between previous output tokens and visual tokens widens as
more tokens are generated. (Right) With GACD, the gap is periodically narrowed to nearly zero,
mitigating this trend and reducing hallucination.

U QUALITATIVE EXAMPLE ON OCCLUDED IMAGES

We include a qualitative example in Fig. 9, where a sedan and a building are partially occluded by
a white truck, our method prevents the baseline model from hallucinating of persons and vehicles
behind the occluding object. This demonstrates our method remains effective on images consisting
of occlusions. Image caption w/o Ours: The image features a white truck parked on a city street,

Figure 9: Example of our method applied to an occluded image.

with graffiti covering its side. The truck is positioned near a crosswalk, and there are several other
vehicles in the scene, including a car and a bus. In addition to the vehicles, there are a few people
walking around the area. Image caption w Ours: The image features a large white truck parked on
a city street, with graffiti covering its side. The truck is positioned near a crosswalk, and there is
another vehicle visible in the background. Additionally, there are buildings in the scene, suggesting
an urban setting.
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V ADDITIONAL IMPLEMENTATION AND EXPERIMENTAL DETAILS

Noun tokens are identified using the spaCy library via its en core web sm model. For experi-
ments on the Amber dataset Wang et al. (2023), we adopt the original data splits and evaluation
metrics. In the MSCOCO Lin et al. (2014) subset, we follow the data partitioning and evaluation
protocol of Deng et al. Deng et al. (2024), with splits available in their official repository. For
the LLaVA-QA90 Liu et al. (2024b), MME Fu et al. (2024) and POPE Li et al. (2023b) datasets,
our setup replicates that of Leng et al. Leng et al. (2024) and use their provided scoring scripts
for LLaVA-QA90. Experiments on MMBench Liu et al. (2025), MM-Vet Yu et al. (2023) follow
the VLMEvalKit InternVL2 5 repository. All comparison methods are executed using their official
code; we only modify them to enforce greedy sampling and a uniform maximum generation length
to align with our experimental settings.

W LIMITATIONS AND FUTURE WORK

Our method is limited to white-box MLLMs, as it requires access to gradients. Its effectiveness
depends on the baseline MLLM’s original visual influence ratio, and the importance of visual in-
formation. As a post-processing technique, our method does not involve model training. In future
work, we aim to explore how insights from GACD can guide and improve training strategies for
enhanced visual perception in MLLMs.

X BROADER IMPACTS

Our method enhances the factual reliability of multi-modal language models, not only for vi-
sion–language tasks but also for modalities such as video and audio, by mitigating hallucinations
at inference time. This improvement has several positive societal implications: it can make systems
for visual question answering, assistive technologies for the visually impaired, and automated im-
age captioning more dependable, thereby increasing user trust and safety; it can power educational
tools that generate accurate descriptions of complex diagrams or historical media, benefiting learn-
ers and instructors; and in critical domains such as medical imaging or remote sensing, it can reduce
spurious outputs and support more robust decision-making. Conversely, if deployed within surveil-
lance or facial-recognition systems, stronger multi-modal grounding could facilitate more intrusive
inferences about individuals from visual data, exacerbating privacy risks.
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