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Abstract
Fine-tuning large language models (LLMs) on001
task-specific data is essential for their effective002
deployment. As dataset sizes grow, efficiently003
selecting optimal subsets for training becomes004
crucial to balancing performance and compu-005
tational costs. Traditional data selection meth-006
ods often require fine-tuning a scoring model007
on the target dataset, which is time-consuming008
and resource-intensive, or rely on heuristics009
that fail to fully leverage the model’s predictive010
capabilities. To address these challenges, we011
propose Data Whisperer, an efficient, training-012
free, attention-based method that leverages few-013
shot in-context learning with the model to be014
fine-tuned. Comprehensive evaluations were015
conducted on both raw and synthetic datasets016
across diverse tasks and models. Notably, Data017
Whisperer achieves superior performance com-018
pared to the full GSM8K dataset on the Llama-019
3-8B-Instruct model, using just 10% of the data,020
and outperforms existing methods with a 3.1-021
point improvement and a 7.4× speedup.022

1 Introduction023

Fine-tuning on task-specific data has become a stan-024

dard approach for adapting large language models025

(LLMs) to specialized tasks (Ouyang et al., 2022).026

For instance, continued pre-training (Gururangan027

et al., 2020; Chang et al., 2024) involves extending028

the original pre-training phase on datasets closely029

aligned with the target domain; instruction tun-030

ing (Zhang et al., 2023; Üstün et al., 2024) fo-031

cuses on leveraging instruction-response pairs to032

improve the model’s ability to follow instructions;033

and task-specific fine-tuning enhances model per-034

formance on a particular task by using domain-035

specific data (Yang et al., 2024b; Zhang et al.,036

2024). As datasets continue to expand in size,037

however, a critical challenge arises: how to ef-038

ficiently select the optimal training examples—a039

process known as data selection—to strike a bal-040

ance between computational cost and model per-041
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Figure 1: Comparison of the total time and performance
across various data selection methods. For each method,
we assessed Llama-3-8B-Instruct’s performance and
time cost when utilizing 1%, 5%, and 10% of the BioIn-
struct dataset selected by that method.

formance (Zheng et al., 2023; Paul et al., 2021; Li 042

et al., 2023b; Zhang et al., 2024; Li et al., 2023a). 043

In this paper, we focus on data selection for 044

task-specific datasets, aiming to extract the most 045

informative subset from the original data to achieve 046

nearly lossless performance compared to using the 047

entire dataset for fine-tuning1. Although current 048

data selection methods have demonstrated remark- 049

able performance, they often suffer from significant 050

inefficiencies. For instance, as shown in Figure 1, 051

previous state-of-the-art (SOTA) methods can 052

take more time than directly using the entire 053

BioInstruct dataset to fine-tune a Llama-3-8B- 054

Instruct model, even when working with just 1% 055

of the original dataset. This inefficiency arises 056

because these approaches depend on a fine-tuned 057

model on the target dataset for scoring (Li et al., 058

1We address scenarios where no more advanced LLMs
are available beyond the model that is to be fine-tuned, e.g.,
GPT-4 (OpenAI et al., 2023).
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Table 1: Comparison of Selection-to-Tuning Ratio (STR) and performance across different selection methods
on various datasets using 1%, 5%, and 10% of total data points. Lower STR values indicate higher efficiency.
Evaluations were performed using the Llama-3-8B-Instruct model on eight NVIDIA A100 GPUs. ↑/↓ indicates
improvement/degradation compared to random selection. “Speedup” represents the acceleration of Data Whisperer
over the Nuggets (Li et al., 2023b) method. Results for Qwen and Mistral models are provided in Table 6.

Method
GSM8K DialogSum BioInstruct

STR Performance STR Performance STR Performance
1% 5% 10% Avg. Score 1% 5% 10% Avg. Score 1% 5% 10% Avg. Score

Random - - - 63.77 - - - 37.66 - - - 33.89
GraNd 1.04 1.05 1.08 64.98↑1.21 1.07 1.10 1.11 36.08↓1.58 1.02 1.03 1.05 34.03↑0.14

EL2N 1.05 1.07 1.12 64.44↑0.67 1.08 1.09 1.13 32.30↓5.36 1.02 1.03 1.06 32.14↓1.75

CCS 1.01 1.02 1.05 64.35↑0.58 1.01 1.03 1.05 30.65↓7.01 1.00 1.02 1.04 34.19↑0.30

Nuggets 1.22 1.23 1.26 66.07↑2.30 2.42 2.46 2.53 36.25↓1.41 0.46 0.47 0.49 32.51↓1.38

Data Whisperer 0.13 0.14 0.17 68.14↑4.37 0.12 0.15 0.25 40.40↑2.74 0.03 0.04 0.06 36.46↑2.57

Speedup 9.38× 8.79× 7.41× - 20.17× 16.40× 10.12× - 15.33× 11.75× 8.17× -

2023a; Xia et al., 2024), typically requiring the059

same architecture as the model to be fine-tuned.060

To this end, we first critically reevaluate the ef-061

fectiveness of existing selection methods. To quan-062

titatively and fairly assess the effectiveness of each063

method, we introduce the Selection-to-Tuning Ra-064

tio (STR), which is defined as the ratio of time065

spent on selection to the time required for fine-066

tuning the model on the entire dataset. Formally,067

let tp(τ, ρ) represent the time associated with a se-068

lection method τ with a budget subset ratio ρ, and069

let tft denote the corresponding fine-tuning time070

for the entire dataset. The STR is given by:071

STR(τ) =
tp(τ, ρ)

tft
. (1)072

Intuitively, for a data selection method τ to be073

considered practically efficient, its STR should074

ideally be less than 1. This condition ensures075

that the time spent on selection aligns with the076

benefits obtained during fine-tuning. However, as077

shown in Table 1, existing methods often exhibit an078

STR greater than 1, which constitutes a significant079

bottleneck in the data selection process, thereby080

severely limiting the scalability of these methods081

for large datasets and models.082

To address the inefficiencies of existing data se-083

lection methods, we introduce Data Whisperer, a084

training-free, attention-based, and context-aware085

approach. Traditional methods typically rely on086

an additional LLM that is fine-tuned on the tar-087

get dataset to provide scoring for data selection.088

In contrast, our approach takes advantage of the089

model’s inherent predictive capabilities, inspired090

by recent theories that equate in-context learning091

(ICL) with fine-tuning in LLMs (Dai et al., 2022;092

Mosbach et al., 2023). As shown in Figure 2, we093

score each training sample using few-shot ICL,094

where the sample itself serves as a demonstration095

example. The model’s performance, measured by096

its ability to respond to associated queries based on 097

these demonstration examples, yields a raw score 098

for each sample. To improve efficiency, this scor- 099

ing is performed with a weak-to-strong strategy, 100

i.e., using a less powerful pre-trained model from 101

the same model family. 102

In typical ICL, context-awareness (e.g., the order 103

of examples within the context window) can influ- 104

ence the model’s performance due to its reliance on 105

sequence-based attention mechanisms (Guo et al., 106

2024; Bhope et al., 2025). To mitigate this inher- 107

ent order sensitivity, we weight the demonstration 108

scores according to their respective attention scores, 109

as shown in Figure 2. This context-aware weight- 110

ing refines the selection process by ensuring that 111

the final score for each training sample not only 112

reflects its raw performance but also accounts for 113

its contextual significance within the task. The final 114

score for each sample is computed as the average of 115

these weighted scores, which provides a more ac- 116

curate and nuanced evaluation of each data point’s 117

contribution to the model’s learning process. 118

Our contributions can be summarized as follows: 119

1. We critically examine existing data selection ap- 120

proaches and introduce the Selection-to-Tuning 121

Ratio, a novel metric that quantifies the efficiency 122

of these methods. We observed that all prior data 123

selection methods are more inefficient than fine- 124

tuning the LLM with entire dataset. 125

2. We propose Data Whisperer, an effective, 126

training-free and attention-based method. Un- 127

like previous approaches, our method eliminates 128

the need to fine-tune a separate scoring model on 129

the target dataset, ensuring greater efficiency. 130

3. Data Whisperer integrates seamlessly with weak- 131

to-strong few-shot ICL schemes, enabling ef- 132

fective performance even when a weaker model 133

within the same model family is employed for 134

ICL. This enhances both the scalability and effi- 135
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Question 1: … If Ben has 15 new shirts, how many new shirts does Alex have? 
Answer 1: Joe has 15-8=<<15-8=7>>7 new shirts. Alex has 7-3=<<7-3=4>>4 new shirts.
......
Question 𝒏𝒅: ... How many pencils does Mitchell and Antonio have together? 
Answer 𝒏𝒅: ... Antonio and Mitchell have 24+30 = <<24+30=54>>54 pencils together.

Initial Dataset

Answer 1: … Cassy has 500 jars of jam, so she will 
have 500 - 420 = 80 jars of jam left.
……
Answer 𝒏𝒒: ... Total flowers sold = 10 + 30 + 5 = 45.

Question 1: … If she has 500 jars of jams, how many jars of jam will she have left when 
all the boxes are full?
……
Question 𝒏𝒒 : … If she sold 10 lilacs, what is the total number of flowers sold on Tuesday?

Pruned 
Dataset

(K Samples)

LLM to be fine-tuned

Instruction: You are an expert math assistant. Your role is to provide step-by-step calculations for 

each problem and deliver the correct final answer.…..

Few-shot In-Context Learning

𝒏𝒒 ground truth

1
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Figure 2: Illustration of the proposed Data Whisperer. nd and nq denote the number of demonstrations and queries
in ICL. The pipeline consists of two main steps: (I) Few-shot In-Context Learning. A set of demonstration
and query examples is randomly sampled from the initial dataset, and an ICL prompt is constructed with a fixed
instruction. The LLM to be fine-tuned generates answers for all query examples, and the average evaluation score is
computed using the ground truth answers. (II) Context-Aware Weighting. During each iteration of few-shot ICL,
we weight the scores of the demonstration examples based on their attention scores, which quantify their influence
on the queries. The scores are updated until all samples are scored. The final score for each sample is the average
score across its appearances in multiple demonstration sets. Finally, we select the top-k samples from the dataset.

ciency of our method.136

4. Comprehensive experiments are conducted on137

both real and synthetic datasets across various se-138

lection budget ratios, including BioInstruct (Tran139

et al., 2024), DialogSum (Chen et al., 2021), and140

GSM8K (Cobbe et al., 2021). We observe that141

Data Whisperer consistently outperforms previ-142

ous SOTA methods, particularly in smaller data143

scenarios, while achieving faster selection times.144

2 Related Work145

2.1 In-Context Learning146

In-Context Learning (ICL) is a powerful task adap-147

tation technique that does not require modifying148

the weights of a pre-trained model (Brown et al.,149

2020; Olsson et al., 2022; Laskin et al., 2022). In-150

stead, ICL adapts the model to new tasks by con-151

ditioning it on a sequence of demonstration pairs,152

where each demonstration consists of input-output153

pairs formatted according to a predefined template.154

This process guides the model in understanding the155

task. During inference, ICL involves presenting156

the model with a series of demonstrations followed157

by a query set, with the model expected to predict158

the corresponding labels for the query data points 159

based on the context. 160

Recent studies have explored the theoretical 161

links between ICL and gradient descent, suggest- 162

ing an implicit relationship between ICL and fine- 163

tuning (Dai et al., 2022; Mosbach et al., 2023; 164

Deutch et al., 2023; Zhou et al., 2024; Chen et al., 165

2024). One approach, Nuggets (Li et al., 2023b), 166

uses one-shot learning for selection in instruction- 167

tuning tasks with log probability scores, but is lim- 168

ited by the computational inefficiency of one-shot 169

learning. In contrast, our work employs attention- 170

based few-shot ICL on the pre-trained model, be- 171

fore any fine-tuning, to directly measure perfor- 172

mance scores for task-specific fine-tuning. This 173

approach leverages the model’s inherent knowl- 174

edge for data selection, offering a more efficient 175

and scalable solution by linking attention-aware 176

ICL predictions to the fine-tuning process. 177

2.2 Data Selection 178

Data selection is critical in deep learning, aiming 179

to identify high-quality data that enhances training 180

efficiency while maintaining comparable (or nearly 181
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lossless) performance. Traditional methods rely182

on heuristic metrics, with two primary strategies:183

(I) importance-based selection, which targets chal-184

lenging or essential samples (Raffel et al., 2020;185

Paul et al., 2021; Mirzasoleiman et al., 2020; Kil-186

lamsetty et al., 2021; Tan et al., 2024), and (II) sim-187

ilarity- or diversity-based selection, which selects188

samples based on their similarity to others or their189

representativeness of the feature space (Bukharin190

and Zhao, 2023; Xia et al., 2024; Zheng et al., 2023;191

Wei et al., 2021; Yu et al., 2024).192

For LLMs, these methods face two challenges:193

(I) the unreliability of heuristic metrics in high-194

dimensional spaces, and (II) the computational cost195

of fine-tuning additional scoring models. In con-196

trast, our approach directly integrates data selection197

with the pre-trained model’s predictions using ICL,198

eliminating the need for fine-tuning or heuristics.199

3 Method: Data Whisperer200

3.1 Preliminary: Data Selection in LLM201

Task-Specific Fine-Tuning202

Given a large and diverse task dataset D =203

{(xi, yi)}|D|
i=1, the objective of data selection is to204

identify a representative subset D′ ⊆ D, with a205

budget ratio ρ = |D′|/|D| < 1, for fine-tuning a206

pre-trained language modelMp. The fine-tuned207

model,Mf , is then evaluated on the test set Dtest.208

The selected subset D′ should ensure that the per-209

formance of the fine-tuned modelMf (D′) remains210

comparable to that of a model fine-tuned on the en-211

tire datasetMf (D) when evaluated on Dtest. The212

data selection objective is formulated as:213

min
D′⊆D,|D′|=ρ·|D|

E(x,y)∼Dtestℓ(x, y;Mf (D′)), (2)214

where ℓ(·) is the task-specific loss function (e.g.,215

cross-entropy). The key challenge in effective core-216

set selection is to efficiently identify the coreset D′217

for different selection ratios ρ.218

3.2 ICL as a Data Selector for LLM219

Fine-Tuning220

In contrast to conventional methods that rely on221

handcrafted heuristics of a fine-tuned modelMf ,222

our approach, Data Whisperer, utilizes the intrin-223

sic ICL capabilities of the pre-trained modelMp224

for data selection. At each iteration, we ran-225

domly sample nd demonstration examples Dd =226

{(x(1)d , y
(1)
d ), . . . , (x

(nd)
d , y

(nd)
d )}, and nq query ex-227

amples Dq = {x(1)q , . . . , x
(nq)
q }, where Dd ∩Dq =228

∅. Combined with a fixed instruction I , the total 229

context C is obtained, which is defined as: 230

C = {I, (x(1)d , y
(1)
d ), . . . , (x

(nd)
d , y

(nd)
d )}, (3) 231

The whole ICL process is formalized as: 232

ŷ(1)q , . . . , ŷ
(nq)
q =Mp(C, x

(1)
q , . . . , x

(nq)
q ). (4) 233

Using performance metrics f (e.g., average accu- 234

racy, or ROUGE-L (Lin, 2004), etc.), we com- 235

pare the predicted outputs ŷ(1)q , . . . , ŷ
(nq)
q with the 236

ground truth labels y(1)q , . . . , y
(nq)
q to compute the 237

average performance score s: 238

s =
1

nq

nq∑
j=1

f(ŷ(j)q , y(j)q ). (5) 239

This score is assigned to each sample in the demon- 240

stration set, and the process is repeated across mul- 241

tiple iterations. The final score for each sample is 242

the average of its scores from all repetitions. 243

3.3 Context-Aware Weighting 244

To mitigate potential order sensitivity in few-shot 245

ICL, we introduce a context-aware weighting mech- 246

anism for scoring the demonstration set, as shown 247

in Figure 2. This mechanism leverages the self- 248

attention scores from a specific layer l of the pre- 249

trained modelMp, across all attention heads h. 250

We focus on the attention scores corresponding 251

to the first prediction token of a fixed layer l. Let 252

A(h) denote the self-attention matrix of layer l. For 253

each demonstration example (x(i)d , y
(i)
d ), we extract 254

the submatrix A
(h)

(x
(i)
d ,y

(i)
d )

from A(h), which con- 255

tains the attention scores between this demonstra- 256

tion and all query examples x
(1)
q , . . . , x

(nq)
q . The 257

sum of these attention scores quantifies the inter- 258

action between the demonstration and the query 259

examples. The weight for each demonstration ex- 260

ample, across all attention heads, is computed as: 261

w
(x

(i)
d ,y

(i)
d )

=
∑
h

1⊤A
(h)

(x
(i)
d ,y

(i)
d )

1, (6) 262

where A(h)

(x
(i)
d ,y

(i)
d )

is the attention submatrix for head 263

h, and the summation is performed across all heads. 264

To account for variations in the length of demonstra- 265

tion examples, we normalize the summed attention 266

scores by the length of each demonstration. 267

This process is repeated for each demonstration 268

in every iteration until all samples are scored, yield- 269

ing the scoring set S . If any demonstration example 270
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is scored more than once, the scores are averaged.271

Finally, we select the Top-k samples as follows:272

D′ = Top-k(D;S), (7)273

where k = ⌊ρ · |D|⌋ denotes the coreset size. The274

detailed algorithm of Data Whisperer is demon-275

strated in Algorithm 1.276

3.4 Theoretical Analysis277

We now provide a theoretical analysis of Data278

Whisperer and demonstrate that our approach ef-279

fectively performs implicit data selection for task-280

specific fine-tuning.281

Analysis of ICL’s Query Prediction. In ICL, the282

model adjusts its predictions based on the attention283

assigned to a set of demonstration examples. Let284

x ∈ Rdin represent the input of a query token t, and285

q = WQx denote the attention query vector. The286

attention result for a specific head is formulated as:287

Mp(q) = Attn(V,K, q)

= WV [Xd;Xq,<t]σ

(
(WK [Xd;Xq,<t]

⊤q)√
d

)
,

(8)288

where σ denotes the softmax operator, and289

WQ,WK ,WV ∈ Rdout×din are the projection ma-290

trices for the attention queries, keys, and values,291

and
√
d is the scaling factor. Here, Xq,<t repre-292

sents the input representations of the query tokens293

before token t, Xd represents the input representa-294

tions of the demonstration tokens, and [Xd;Xq,<t]295

represents the concatenation of these matrices. For296

qualitative analysis, we approximate the standard297

attention mechanism by relaxing it to linear atten-298

tion, removing both the softmax operation and the299

scaling factor:300

Mp(q) ≈WV [Xd;Xq,<t](WK [Xd;Xq,<t])
⊤q

= WV Xq,<t(WKXq,<t)
⊤q︸ ︷︷ ︸

zero shot input

+WV Xd(WKXd)
⊤q︸ ︷︷ ︸

ICL examples input

= Wzslq +
∑
i

(WV x
(i)
d )

(
(WKx

(i)
d )⊤q

)
= Wzslq +

∑
i

(
(WV x

(i)
d )⊗ (WKx

(i)
d )

)
q

= (Wzsl +∆Wicl)q
(9)301

In the above derivation, we observe that the at-302

tention to the demonstration tokens, Xd, can be303

viewed as an implicit parameter update ∆Wicl,304

which modifies the zero-shot weights Wzsl to adapt305

to the task at hand. This update is essentially driven 306

by the in-context learning examples and their rele- 307

vance to the query tokens. 308

Analysis of Fine-Tuning for Query Prediction. 309

In fine-tuning, model explicitly updates its key and 310

value projections, WK and WV , through backprop- 311

agation to improve task performance. After fine- 312

tuning, the model’s attention can be expressed as: 313

Mf (q) = (WV +∆WV )Xq,<t

·X⊤
q,<t(WK +∆WK)⊤q

= WV Xq,<t(WKXq,<t)
⊤q︸ ︷︷ ︸

zero shot input

+∆WV Xq,<t(WKXq,<t)
⊤q

+∆WV Xq,<t(∆WKXq,<t)
⊤q

+∆WV Xq,<t(∆WKXq,<t)
⊤q

= (Wzsl +∆Wft)q.

(10) 314

Here, ∆WK and ∆WV represent the parameter 315

updates to the key and value projections WK and 316

WV , respectively, which are learned via backprop- 317

agation from task-specific training objectives. The 318

update ∆Wft corresponds to the changes in Wzsl 319

introduced by the fine-tuning process. 320

Connecting ICL Data Selection and Fine- 321

Tuning. Based on the previous analysis, both ICL 322

and FT follow a similar structure for task adapta- 323

tion. Both methods modify the attention parame- 324

ters WK and WV , but the difference lies in how 325

the model updates them. In ICL, as shown in 326

Eq. (9), the demonstration examples x(i)d impact the 327

query prediction by adjusting the attention weights. 328

These weights, (WV x
(i)
d )⊗ (WKx

(i)
d ), determine 329

relevance of each example. In contrast, as shown in 330

Eq. (10), FT explicitly refines WK and WV through 331

gradients from the task-specific loss function. 332

Given the structural similarity between ICL and 333

FT, we infer that using ICL for data selection is 334

valid for FT. By selecting and weighting the most 335

relevant examples in ICL, we achieve the same per- 336

formance gains as fine-tuning, but without the need 337

for explicit updates. Thus, Data Whisperer effi- 338

ciently performs data selection through ICL, iden- 339

tifying the most relevant data points and adapting 340

the model with minimal computational overhead. 341

4 Experiments 342

4.1 Experimental Setup 343

Datasets. We conducted experiments across four 344

datasets, including three real-world and one syn- 345
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Table 2: Evaluation results of different data selection methods on the GSM8k, DialogSum, and BioInstruct datasets.
The model was fine-tuned on a coreset comprising 1%, 5%, and 10% of the original dataset size. ↑ indicates an
improvement over random selection, while ↓ indicates a degradation compared to random selection.

Method GSM8k DialogSum BioInstruct
1% 5% 10% 1% 5% 10% 1% 5% 10%

Llama-3-8B-Instruct (Zero-shot) 57.49 18.57 13.80
+ Random 56.95 64.71 69.66 31.66 39.88 41.45 28.38 34.61 38.70
+ GraNd (Paul et al., 2021) 57.23↑0.28 67.65↑2.94 70.05↑0.39 26.02↓5.64 40.32↑0.44 41.90↑0.45 28.73↑0.35 36.47↑1.86 36.88↓1.82

+ EL2N (Paul et al., 2021) 60.16↑3.21 61.50↓3.21 71.66↑2.00 23.05↓8.61 35.14↓4.74 38.71↓2.74 28.29↓0.09 31.52↓3.09 36.62↓2.08

+ CCS (Zheng et al., 2023) 60.70↑3.75 63.64↓0.07 68.72↓0.94 23.48↓8.18 27.34↓12.54 41.12↓0.33 29.25↑0.87 36.71↑2.10 36.61↓2.09

+ Nuggets (Li et al., 2023b) 60.17↑3.22 68.65↑3.94 69.39↓0.27 31.77↑0.11 36.85↓3.03 40.13↓1.32 22.95↓5.43 36.41↑1.80 38.18↓0.52

+ Data Whisperer (ours) 62.57↑5.62 69.65↑4.94 72.46↑2.80 38.05↑6.39 40.96↑1.08 42.18↑0.73 32.29↑3.91 37.27↑2.66 39.20↑0.50

Whole Dataset 71.39 43.33 40.21

Qwen-2.5-7B-Instruct (Zero-shot) 21.23 22.10 17.30
+ Random 21.51 79.28 80.08 27.31 36.68 39.99 30.65 36.62 38.30
+ GraNd (Paul et al., 2021) 21.98↑0.47 82.09↑2.81 83.76↑3.68 30.61↑3.30 37.77↑1.09 40.50↑0.51 23.70↓6.95 35.89↓0.73 38.27↓0.03

+ EL2N (Paul et al., 2021) 22.13↑0.62 77.41↓1.87 82.62↑2.54 32.57↑5.26 38.90↑2.22 39.45↓0.54 30.36↓0.29 36.30↓0.32 37.26↓1.04

+ CCS (Zheng et al., 2023) 21.33↓0.18 80.75↑1.47 81.95↑1.87 31.69↑4.38 36.15↓0.53 38.05↓1.94 23.73↓6.92 34.53↓2.09 37.34↓0.96

+ Nuggets (Li et al., 2023b) 22.70↑1.19 82.09↑2.81 83.42↑3.34 32.11↑4.80 37.54↑0.86 40.23↑0.24 30.25↓0.40 36.33↓0.29 38.28↓0.02

+ STAFF (Zhang et al., 2024) 22.52↑1.01 82.22↑2.94 83.49↑3.41 30.16↑2.85 40.84↑4.16 40.54↑0.55 23.64↓7.01 37.08↑0.46 38.20↓0.10

+ Data Whisperer (ours) 24.45↑2.94 83.16↑3.88 85.03↑4.95 32.95↑5.64 40.95↑4.27 43.00↑3.01 34.93↑4.28 37.57↑0.95 38.85↑0.55

Whole Dataset 85.43 43.79 40.71

Mistral-Nemo-Instruct (Zero-shot) 29.41 19.39 13.12
+ Random 32.35 54.28 64.44 19.48 37.37 40.98 13.25 24.98 36.76
+ GraNd (Paul et al., 2021) 31.55↓0.80 56.02↑1.74 67.38↑2.94 19.86↑0.38 36.52↓0.85 41.79↑0.81 17.24↑3.99 25.76↑0.78 30.05↓6.71

+ EL2N (Paul et al., 2021) 30.43↓1.92 57.65↑3.37 67.14↑2.70 19.97↑0.49 35.88↓1.49 36.40↓4.58 14.93↑1.68 26.20↑1.22 30.15↓6.61

+ CCS (Zheng et al., 2023) 32.35↓0.00 53.61↓0.67 66.18↑1.74 18.55↓0.93 34.57↓2.80 42.14↑1.16 14.42↑1.17 28.12↑3.14 36.55↓0.21

+ Nuggets (Li et al., 2023b) 32.09↓0.26 58.29↑4.01 68.79↑4.35 19.52↑0.04 37.54↑0.17 40.52↓0.46 20.40↑7.15 27.40↑2.42 36.56↓0.20

+ STAFF (Zhang et al., 2024) 31.08↓1.27 63.18↑8.90 67.91↑3.47 19.49↑0.01 36.55↓0.82 42.08↑1.10 13.26↑0.01 25.40↑0.42 36.44↓0.32

+ Data Whisperer (ours) 32.63↑0.28 65.91↑11.63 74.32↑9.88 21.52↑2.04 41.48↑4.11 43.36↑2.38 21.54↑8.29 29.98↑5.00 38.37↑1.61

Whole Dataset 75.00 43.69 40.24

Table 3: Evaluation results of different data selection methods on the synthetic dataset, generated from DialogSum
dataset. The model was fine-tuned on a coreset comprising 5%, 10%, and 25% of the synthetic dataset size.

Method Llama-3-8B-Instruct Qwen-2.5-7B-Instruct Mistral-Nemo-Instruct-2407
5% 10% 25% 100% 5% 10% 25% 100% 5% 10% 25% 100%

Random 30.21 31.26 33.05

35.31

26.15 27.46 31.31

34.55

19.24 32.44 33.09

34.36

GraNd 27.04↓3.17 31.38↑0.12 33.34↑0.29 28.00↑1.85 29.79↑2.33 30.59↓0.72 20.03↑0.79 32.28↓0.16 33.05↓0.04

EL2N 28.67↓1.54 31.26↓0.00 32.78↓0.27 27.60↑1.45 27.33↓0.13 34.91↑3.60 20.96↑1.72 30.92↓1.52 32.42↓0.67

CCS 30.19↓0.02 32.75↑1.49 33.77↑0.72 26.41↑0.26 33.59↑6.13 33.83↑2.52 19.77↑0.53 32.85↑0.41 34.07↑0.98

Nuggets 30.39↑0.18 30.83↓0.43 33.84↑0.79 28.40↑2.25 28.02↑0.56 32.05↑0.74 19.98↑0.74 31.98↓0.46 32.46↓0.63

STAFF - - - 27.33↑1.18 29.64↑2.18 31.79↑0.48 20.88↑1.64 31.11↓1.33 31.33↓1.76

Data Whisperer 32.15↑1.94 32.81 ↑1.55 34.07↑1.02 31.27↑5.12 34.04↑6.58 35.20↑3.89 22.35↑3.11 35.08↑2.64 35.49↑2.40

thetic dataset, each corresponding to a distinct346

downstream task. Specifically, we used the follow-347

ing datasets: (i) the BioInstruct dataset (Tran et al.,348

2024) for biomedical question answering, (ii) the349

DialogSum dataset (Chen et al., 2021) for dialogue350

summarization, (iii) GSM8K (Cobbe et al., 2021)351

for mathematical reasoning, and (iv) a synthetic352

variant of DialogSum. Please see Appendix A.2353

for detailed prompt designs.354

Models. For each task, we evaluated the perfor-355

mance of three widely-used large language models356

(LLMs): Llama-3-8B-Instruct (Dubey et al., 2024),357

Qwen-2.5-7B-Instruct (Yang et al., 2024a; Team,358

2024), and Mistral-Nemo-Instruct-2407 (Jiang359

et al., 2023). To explore the potential of using360

a weaker model for ICL, Data Whisperer also361

incorporated two smaller LLMs: Qwen-2.5-3B-362

Instruct (Yang et al., 2024a; Team, 2024) and363

Mistral-7B-Instruct-v0.2 (Jiang et al., 2023). No-364

tably, since Llama-3-8B-Instruct does not have a 365

smaller variant within its model family, it was ex- 366

cluded from the weak-to-strong analysis. 367

Baselines. We compared Data Whisperer with 368

several state-of-the-art data selection techniques: 369

(i) Random Selection, which randomly samples 370

subsets from the dataset, (ii) GraNd (Paul et al., 371

2021), which selects samples based on large gradi- 372

ent norms, (iii) EL2N (Paul et al., 2021), which 373

prioritizes samples with large discrepancies be- 374

tween model predictions and ground truth, (iv) 375

CCS (Zheng et al., 2023), which balances data 376

coverage and importance, (v) Nuggets (Li et al., 377

2023b), which employs one-shot learning of a fine- 378

tuned model to identify high-quality examples, and 379

(vi) STAFF (Zhang et al., 2024), which estimates 380

gradient effort scores with a smaller model and val- 381

idates them on the target LLM to allocate budget 382

across different model regions. 383
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Table 4: Ablation study on the number of demonstra-
tions nd and queries nq in Data Whisperer. We observed
that selecting a moderate number of nq and nd often
yields a better performance for Data Whisperer.

Dataset Ratio
Llama-3-8B-Instruct Qwen-2.5-7B-Instruct

nd = 5
nq = 3

10
5

15
10

5
3

10
5

15
10

GSM8K

0% 57.49 21.23
1% 62.57 60.96 61.23 22.43 24.45 23.75
5% 68.18 69.65 66.56 81.95 83.01 80.95
10% 70.95 72.46 70.72 83.75 84.89 85.03

DialogSum

0% 18.57 22.10
1% 36.11 36.47 36.45 32.49 32.20 32.14
5% 38.15 40.96 38.43 38.02 40.95 38.46
10% 41.27 42.18 41.42 37.88 43.00 40.31

BioInstruct

0% 13.80 17.30
1% 32.29 32.24 30.45 32.34 34.93 32.07
5% 32.96 37.27 34.01 36.74 37.14 36.64
10% 38.98 39.20 37.67 38.20 38.85 38.16

Evaluation. All experiments were performed on 8384

NVIDIA A100 GPUs. For model fine-tuning, we385

utilized LoRA (Hu et al., 2021) and performed 3386

times. Performance on the BioInstruct and Dialog-387

Sum datasets was assessed using the ROUGE-L388

metric (Lin, 2004) during both the data selection389

and fine-tuning stages. For the GSM8K dataset, we390

computed performance based on the Exact Match391

(EM) metric by comparing the model’s generated392

answers against the ground truth.393

Synthetic Data Generation. We generated a syn-394

thetic variant of the DialogSum dataset using the395

Llama-3-8B-Instruct model. For every five demon-396

stration samples from the original dataset, we397

prompted the model to generate one synthetic sam-398

ple, ensuring alignment with the original dialogue399

structure. The generated samples were manually re-400

viewed and filtered to remove incoherent, factually401

incorrect, or misformatted data. See Appendix A.3402

for details on synthetic data generation.403

4.2 Main Results and Key Observations404

• Smaller Dataset, Comparable Performance405

with the Whole Dataset. For real datasets, as406

shown in Table 2, results demonstrate that Data407

Whisperer performs remarkably well on smaller408

datasets, achieving comparable performance to full409

dataset across various selection ratios. For instance,410

on the GSM8K dataset, fine-tuning with 10% of411

data yields even better performance to the model412

fine-tuned on the entire dataset. For synthetic413

dataset in Table 3, two out of three models outper-414

form the models fine-tuned on the entire dataset.415

• Same Size, Better Performance with SOTA416

Baseline Methods. Compared to SOTA methods,417

Data Whisperer demonstrates consistent superior-418

Table 5: Results of different attention layers for context-
aware weighting, and the impact of context-aware
weighting (w/ vs. w/o) on Llama-3-8B-Instruct.

Dataset Ratio Random
Data Whisperer

w/o Attn Shallow Intermediate Deep

GSM8K

0% 57.49
1% 56.95 60.56 60.73 60.96 62.30
5% 64.71 68.45 68.98 69.65 68.71
10% 69.66 71.72 71.25 72.46 71.79

DialogSum

0% 18.57
1% 31.66 34.35 37.97 36.47 38.05
5% 39.88 40.29 39.96 40.96 40.08
10% 41.45 41.91 41.94 42.18 41.80

BioInstruct

0% 13.80
1% 28.38 30.51 29.27 32.24 29.44
5% 34.61 36.38 36.36 37.27 36.32
10% 38.70 38.83 38.86 39.20 38.79

ity across varying dataset sizes. On real datasets, 419

as illustrated in Table 2, Data Whisperer achieves 420

higher accuracy. For instance, on 10% data of Di- 421

alogSum with Qwen-2.5-7B-Instruct, Data Whis- 422

perer attains an accuracy of 43.00, surpassing the 423

previous SOTA method, STAFF, by a significant 424

margin of 2.46. Similarly, on synthetic datasets, 425

as shown in Table 3, Data Whisperer consistently 426

delivers the best performance across all evaluated 427

models and data proportions, underscoring its ro- 428

bust generalization capabilities. Notably, with the 429

Qwen-2.5-7B-Instruct model on 5% of the data, 430

Data Whisperer achieves an accuracy of 31.27, out- 431

performing the prior SOTA method, Nuggets, by a 432

remarkable 2.87 points. 433

4.3 Ablation Study 434

• Sensitivity of demonstration and query num- 435

bers nd and nq. An interesting question is how 436

the number of demonstration examples (nd) and 437

query examples (nq) affects the performance of 438

Data Whisperer. To explore this, we varied the val- 439

ues of nd and nq and observed their impact across 440

all three datasets. As shown in Table 4, results 441

indicate that while increasing nd or nq improves 442

the model’s performance at first, the effect tends to 443

plateau after a certain threshold. This suggests that 444

there exists an optimal balance between the num- 445

ber of demonstration and query examples, beyond 446

which the improvements are marginal, demonstrat- 447

ing the robustness of Data Whisperer. We used 448

nd = 10 and nq = 5 by default. 449

• Ablation of Attention Layers. The effective- 450

ness of the context-aware weighting mechanism 451

depends on the selected attention layer for scoring. 452

We conducted an ablation study on the Llama-3- 453

8B-Instruct model, evaluating shallow (Layer 5), 454

intermediate (Layer 13), and deep (Layer 30) layers. 455
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Budget Ratio (𝜌) Budget Ratio (𝜌) Budget Ratio (𝜌)
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DialogSum

GraNd (STR: 1.11)

Figure 3: Ablation on the weak-to-strong scalability.
For Qwen models, we used Qwen-2.5-3B-Instruct to
perform ICL selection for Qwen-2.5-7B-Instruct. For
Mistral models, we used Mistral-7B-Instruct-v0.2 to
perform ICL selection for Mistral-Nemo-Instruct-2407.
Weaker models were not fine-tuned on the task dataset.
We found that using a weaker model does not signifi-
cantly affect performance and provides a more efficient
solution (measured by STR). Best viewed in color.

As shown in Table 5, the intermediate layer (e.g.,456

Layer 13) generally yielded more stable results,457

though all layers outperformed random selection.458

This suggests that Data Whisperer benefits from459

multiple attention layers, with intermediate lay-460

ers providing more relevant contextual information461

for task-specific fine-tuning. These findings align462

with previous research showing that intermediate463

layers are crucial for semantic interpretation,464

processing moderately complex concepts, and465

providing contextual information for tasks re-466

quiring understanding (Wendler et al., 2024; Jin467

et al., 2025; Li et al., 2024).468

• Effect of weak-to-strong scoring. We also in-469

vestigated the impact of weak-to-strong scoring,470

where a weaker model is used to select data for471

fine-tuning a stronger model. As shown in Figure 3,472

results indicate that using a weaker model does473

not significantly impact the overall performance474

of ICL selction, while providing a more efficient475

solution with a lower STR. It demonstrates that476

Data Whisperer is scalable across different model477

sizes and highlights its potential for efficient fine-478

tuning, even with limited computational resources.479

5 Discussion: What Samples Do480

Task-Specific Fine-Tuning Prefer?481

To study what kinds of samples task-specific fine-482

tuning favors, we analyzed the perplexity of both483

the full dataset and the selected 1% subset across484

three different task datasets, including BioInstruct,485

BioInstruct DialogSum GSM8k

Perplexity

F
re
q
u
en
cy

Perplexity Perplexity

Figure 4: Perplexity distribution of all samples and the
selected 1% samples by Data Whisperer. Perplexity
scores are calculated using the GPT-4o-mini model API.
The results show that Data Whisperer prefers selecting
easier samples, which aligns with the theory in (Sorscher
et al., 2022) that suggests selecting the easiest samples
is optimal in small data scenarios (e.g., 1% data).

GSM8K, and DialogSum. Specifically, we used 486

GPT-4o mini (OpenAI et al., 2023) to score the 487

perplexity of both the full data and the 1% se- 488

lected subset. As shown in Figure 4, our findings 489

show that the selected 1% of data consistently ex- 490

hibits lower perplexity (i.e., easier data) across all 491

three datasets. This aligns with previous findings in 492

(Sorscher et al., 2022), which suggest that, in small 493

data scenarios, the model tends to prefer easier 494

data to boost performance. Lower perplexity data 495

tends to be more predictable and less ambiguous, 496

allowing the model to learn task-specific patterns 497

more efficiently when fine-tuned on such samples. 498

This observation further supports the notion that 499

task-specific fine-tuning benefits from focusing on 500

simpler, high-confidence examples, especially in 501

data-limited settings. 502

6 Conclusion 503

In this paper, we reevaluate existing data selec- 504

tion methods through the lens of the Selection- 505

to-Tuning Ratio, revealing that many traditional 506

approaches fall short in practical scenarios. To 507

address this gap, Data Whisperer introduces an ef- 508

ficient, training-free, attention-based approach to 509

data selection. By leveraging the theoretical con- 510

nection between ICL and fine-tuning, Data Whis- 511

perer eliminates the need for fine-tuning an addi- 512

tional LLM on the target dataset for scoring. Specif- 513

ically, we use few-shot ICL for data selection, with 514

randomly sampled demonstration and query ex- 515

amples drawn from the initial dataset. Moreover, 516

to mitigate the inherent order sensitivity in ICL, 517

our method incorporates a context-aware weighting 518

strategy based on attention scores. In conclusion, 519

Data Whisperer provides a scalable, efficient solu- 520

tion for data selection in task-specific LLM fine- 521

tuning, offering significant potential for enhancing 522

both efficiency and performance. 523
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7 Limitation524

While Data Whisperer demonstrates strong per-525

formance across a range of tasks and datasets,526

there are opportunities for further exploration. The527

attention-based scoring mechanism relies on access528

to the internal attention layers of the LLM, which529

may limit its direct applicability in certain settings530

where such access is unavailable, such as in some531

commercial API-driven models (e.g., GPT-4 (Ope-532

nAI et al., 2023) and DeepSeek-R1 (Guo et al.,533

2025)). Additionally, while our evaluations pro-534

vide a solid foundation, further research is needed535

to explore the performance of Data Whisperer with536

larger LLMs and datasets. Expanding experiments537

to include larger and more complex models would538

offer valuable insights into the scalability of the539

method and its potential in extreme-scale scenar-540

ios. Addressing these areas in future work will541

help maximize the versatility and impact of Data542

Whisperer across a broader range of applications.543
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A More Experimental Details776

A.1 Datasets777

We use three real-world datasets for correspond-778

ing downstream tasks, namely, the BioInstruct779

dataset (Tran et al., 2024) for biomedical ques-780

tion answering, the DialogSum dataset (Chen781

et al., 2021) for dialogue summarization, and782

GSM8K (Cobbe et al., 2021) for mathematical rea-783

soning. The BioInstruct dataset contains 25,005784

instruction-input-output triplets spanning diverse785

biomedical scenarios, including clinical decision-786

making, biomedical question answering, and di-787

agnostic interpretation. We split the dataset into788

training and testing sets with a 9:1 ratio. The Di-789

alogSum dataset is a comprehensive collection of790

13,460 dialogues curated from open dialogue repos-791

itories, addressing a variety of everyday scenarios.792

Each dialogue is paired with a carefully constructed793

reference summary, enabling robust evaluation of794

summarization models. The GSM8K dataset of-795

fers 8.5K linguistically diverse, high-quality grade796

school math word problems requiring multi-step797

arithmetic reasoning. This dataset is designed to798

facilitate research on multi-step reasoning in ques-799

tion answering tasks for fundamental mathematical800

problem solving.801

A.2 In-Context Learning Prompt Template802

We formalize the design of In-Context Learning803

templates for three datasets: BioInstruct, Dialog-804

Sum, and GSM8K. Each template is structured to805

provide explicit guidance through task-specific in-806

structions, demonstrations, and output constraints.807

Template Design. Our framework employs a uni-808

fied template structure comprising three core com-809

ponents: (i) Task Instruction. A declarative state-810

ment that explicitly defines the task objective (e.g.,811

"Generate a concise summary of the dialogue")812

alongside specific constraints (e.g., brevity, pre-813

cision). (ii) In-Context Demonstrations. A set814

of input-output pairs that exemplify valid task ex-815

ecution, ensuring alignment with the task’s re-816

quirements and constraints. (iii) Output Con-817

straints. Rigorous formatting rules that enforce818

compliance with task-specific syntax, such as step-819

by-step derivations for GSM8K or speaker-aware820

summarization for DialogSum. This modular archi-821

tecture ensures consistency and adaptability across822

diverse tasks while maintaining strict adherence to823

domain-specific guidelines.824

Task-Specific Prompt Design. We present a sys-825

tematic approach to designing In-Context Learning 826

prompts tailored to diverse datasets. For BioIn- 827

struct, we prioritize biomedical accuracy by im- 828

plementing hierarchical guidelines that emphasize 829

logical ordering and scope limitation, while en- 830

suring responses are strictly evidence-based and 831

devoid of speculative content. In DialogSum, we 832

enforce structured dialogue processing through ex- 833

plicit speaker tagging (e.g., #Person1#), discourse 834

compression techniques, and the generation of neu- 835

tral third-person summaries. For GSM8K, we man- 836

date a rigorous format that includes intermediate 837

arithmetic steps and requires final answers to be 838

boxed (e.g., #### <number>), explicitly prohibit- 839

ing textual explanations to maintain precision and 840

clarity. This tailored approach ensures that each 841

dataset’s unique characteristics are effectively lever- 842

aged to optimize In-Context Learning performance. 843

Structural schematics and formatting rules are vi- 844

sualized in Figure 5, 6 and 7. 845
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Instruction: 

You are an expert math assistant. Your role is to provide step-by-step calculations 

for each problem and deliver the correct final answer. Each solution should be 

logically structured, with no extra commentary or deviation from the required steps. 

Your responses must be concise, accurate, and in the exact format specified below. 

Your sole focus should be on solving the problem as efficiently as possible. Do not 

include any extraneous information.

### Guidelines for your response:

1. Your response must contain only step-by-step calculations and the final answer.

2. The final output **must** be formatted as: #### <number>.

Replace `<number>` with the correct final result (either an integer or a floating-

point number). No deviations or alternative formats are allowed.

3. Do not add any commentary, questions, greetings, or extra remarks.

4. Ensure your calculations are clear, concise, and correct, but only include the 

steps required to arrive at the final answer.

Please answer each question step by step and provide the final answer following the 

instructions below.

Input:

**Strictly use the format specified below:**

Question 1 Answer: <your step-by-step solution>

#### <final answer>

Question 2 Answer: <your step-by-step solution>

#### <final answer>

(and so on...).

### Now, based on the provided questions, respond to the following mathematical 

problems:

Question 1: "Grace is looking to plant some lettuce in her raised bed garden. Her 

raised bed is comprised of 2 large beds on top with 2 medium beds on the bottom. The 

top bed can hold 4 rows of lettuce with 25 seeds being sown per row. The medium bed 

can house 3 rows with 20 seeds being sown per row. How many seeds can Grace plant in 

all four beds of her raised bed garden?”

Question 2: "Roberta takes $158 with her on a shopping trip to the mall. She spends 

$45 on new shoes, $17 less on a new bag, and a quarter of the price of the bag for 

lunch. How much money does she have left after these purchases?”

Question 3: "Alex was having a cookout Friday night and planned to serve burgers to 

his guests.  He planned to cook 3 burgers for each guest and had invited 10 friends 

over.  1 of his friends didn't eat meat and said they would bring their own food.  

Another one of his friends didn't eat bread and would not need the buns.  The burger 

buns came 8 to a pack.  How many packs of buns did Alex need to buy?”

Question 4: "Jill sells girl scout cookies.  This year, she wants to sell at least 

150 cookie boxes.  Her first customer buys 5 boxes,  Her second one buys 4 times more 

than her first customer.  Her third customer buys half as much as her second.  The 

fourth customer buys 3 times as much as her third.  Lastly, her final customer buys 

10.  How many boxes so Jill have left to sell to hit her sales goal?

Question 5: <Question 5>

Output:

Question 1 Answer:

The top bed can hold 4 rows of lettuce with 25 seeds being sown per row, so that's 

4*25 = <<4*25=100>>100 seeds.

The medium bed can house 3 rows with 20 seeds being sown per row, so that's 3*20 = 

<<3*20=60>>60 seeds.

The total number of seeds that can be planted is 100 + 60 = <<100+60=160>>160 seeds.

#### 160

Question 2 Answer:

Roberta starts with $158. She spends $45 on shoes, leaving her with $158 - $45 = 

<<158-45=113>>113.

She spends $17 less on a bag, so that's $45 - $17 = <<45-17=28>>28. She has $113 - 

$28 = <<113-28=85>>85 left.

She spends a quarter of the price of the bag for lunch, which is $28 * 0.25 = 

<<28*.25=7>>7. She has $85 - $7 = <<85-7=78>>78 left.

#### 78

Question 3 Answer:

Alex invited 10 friends, but 1 didn't eat meat and 1 didn't eat bread, so he only 

needs to cook for 10 - 2 = <<10-2=8>>8 friends.

He planned to cook 3 burgers for each guest, so that's 8 * 3 = <<8*3=24>>24 burgers.

The buns come 8 to a pack, so he needs to buy 24 / 8 = <<24/8=3>>3 packs of buns.

#### 3

Question 4 Answer:

Jill sells 5 boxes to her first customer, then 5 * 4 = <<5*4=20>>20 boxes to her 

second customer, then 20 / 2 = <<20/2=10>>10 boxes to her third customer, then 10 * 3 

= <<10*3=30>>30 boxes to her fourth customer, and finally 10 boxes to her final 

customer.

In total, she sells 5 + 20 + 10 + 30 + 10 = <<5+20+10+30+10=75>>75 boxes.

She needs to sell at least 150 boxes, so she has 150 - 75 = <<150-75=75>>75 boxes 

left to sell.

#### 75

Question 5 Answer: ...

Figure 5: ICL prompt of GSM8k dataset.
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Instruction: 

You are a medical expert. Given an input and an instruction, your objective is to 

respond with the correct and concise answer based on the provided context. Ensure 

clarity and accuracy in your answers.

### Guidelines for your response:

1. **Ensure your responses are concise, clear, and focused on the provided 

instruction.** Provide clear, correct answers, without unnecessary elaboration.

2. **Follow the logical order of questions.** Do not skip or merge responses.

3. **Stay within the scope of the question.** Avoid additional commentary or 

unrelated details.

Please respond to the questions based on the given instructions and demonstrations 

below.

Input:

Below are some demonstrations of how to format your answers:

Instruction: <Demonstration 1 Instruction>

Input: <Demonstration 1 Input>

Answer: <Demonstration 1 Answer>

... 

**Strictly use the format specified below:**

Question 1 Answer: <your answer to Question 1.>

Question 2 Answer: <your answer to Question 2.>

(and so on...).

### Now, based on the biomedical demonstrations provided, respond to the following 

biomedical questions:

Question 1: Instruction: "Given a specific healthcare topic or issue, explain 

potential ethical considerations and implications." Input: "What are potential 

ethical considerations related to the use of genetic testing in healthcare, and what 

are the implications of these considerations?"

Question 2: Instruction: "Identify the primary role of a specified healthcare team 

member." Input: "Registered dietitian"

Question 3: Instruction: "Given a set of genetic test results, interpret the results 

and explain their implications for a patient's health and family members." Input: "A 

patient tests positive for a BRCA1 gene mutation."

Question 4: Instruction: "Describe the recommended lifestyle changes for a patient 

with high blood pressure." Input: "High blood pressure"

Question 5: Instruction: "Identify the key findings or conclusions stated in the 

clinical research article and summarize them in a few sentences." Input: "Summarize 

the key findings of the randomized controlled trial investigating the efficacy and 

safety of a new antihypertensive drug.“ 

Output:

Here are the answers to the biomedical questions:

Question 1 Answer: Potential ethical considerations related to the use of genetic 

testing in healthcare include the potential for genetic discrimination, the risk of 

false positive or false negative results, and the potential for unintended 

consequences for individuals and families. The implications of these considerations 

include the need for careful counseling and informed consent, the importance of 

ensuring that genetic testing is used in a responsible and ethical manner, and the 

need for ongoing research to improve the accuracy and utility of genetic testing.

Question 2 Answer: The primary role of a registered dietitian is to provide medical 

nutrition therapy to patients, which involves assessing a patient's nutritional needs, 

developing personalized nutrition plans, and educating patients on how to implement 

these plans to achieve optimal health outcomes.

Question 3 Answer: A patient who tests positive for a BRCA1 gene mutation is at 

increased risk for developing breast and ovarian cancer. The implications of this 

result are significant, as it may require the patient to undergo increased 

surveillance, including regular mammograms and pelvic exams, and may also impact 

their reproductive choices. The patient may also need to consider genetic testing for 

their family members, as the mutation can be inherited. The patient should be 

referred to a genetic counselor to discuss these implications and develop a 

personalized plan for managing their risk.

Question 4 Answer: Lifestyle changes recommended for a patient with high blood 

pressure include increasing physical activity, reducing sodium intake, losing weight 

if overweight or obese, and limiting alcohol consumption. Additionally, patients with 

high blood pressure should aim to reduce their stress levels, get adequate sleep, and 

avoid tobacco use. A healthy diet that is low in saturated and trans fats, added 

sugars, and refined carbohydrates can also help to manage blood pressure.

Question 5 Answer: The key findings of the randomized controlled trial investigating 

the efficacy and safety of a new antihypertensive drug were that the drug was 

effective in reducing systolic blood pressure by an average of 10 mmHg compared to 

placebo, and was well-tolerated with few adverse effects. The study also found that 

the drug was more effective in reducing blood pressure in patients with more severe 

hypertension, and that it did not increase the risk of cardiovascular events or 

mortality.

Figure 6: ICL prompt of DialogSum dataset.
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Instruction: 

You are an expert assistant. Your task is to provide clear, concise, and complete 

summaries for the given dialogues. Your summaries should accurately capture the main 

points of each dialogue. Avoid unnecessary details and ensure clarity.

### Guidelines for your response:

1. **Summarize the dialogue concisely and fully**, ensuring all main points are 

captured.

2. **Avoid adding extra commentary or irrelevant details** that are not part of the 

dialogue content.

3. If a dialogue is unclear, incomplete, or lacks meaningful content, respond with 

"No valid content to summarize."

4. **Ensure every summary field is filled out.** Leaving any field blank is not 

allowed.

Please summarize dialogues based on the given instructions and demonstrations below.

Input:

Below are some demonstrations of how to format your answers:

Dialogue: <Dialogue 1>

Summary: <Summary 1>

... 

**Strictly use the format specified below:**

Summary 1: <Your summary to Dialogue 1.>

Summary 2: <Your summary to Dialogue 2.>

(and so on...).

### Now, based on the provided dialogues, provide concise and complete summaries for 

the following dialogues:

Dialogue 1: "#Person1#: We've been cramming for tomorrow's history exam since early 

this morning. What do you say we take a break and listen to some music, okay?

#Person2#: Now that you mention it, I'm getting a little bumed-out from studying 

nonstop, too. Listening to some music for a while would suit me just fine.

#Person1#: While you're picking out a record to play, I'll grab a couple of beers out 

of the refrigerator.

#Person2#: You sure have a lot of discs here.

#Person1#: Yeah, I've got everything from rock n'roll to the latest new - wave stuff.

#Person2#: To tell you the truth, I'm strictly into classical music. You don't happen 

to have any Bach or Mozart, do you?

#Person1#: Sorry, my taste in music doesn't go back any further than the 1960's. 

Music written before then is just history to me.

#Person2#: Well, speaking of history, let's get back to the books. We'Ve got an exam 

tomorrow, remember?

"

Dialogue 2: "#Person1#: Excuse me. Have you got any books on genetic engineering? 

I've looked for them everywhere, but I can't find any.

#Person2#: I'm not sure if we've got any now. Books of that kind are on this shelf. 

Well, I'm afraid we've sold out.

#Person1#: What a pity! I should have come earlier.

#Person2#: Come some time next week if you like. I think we'll have got some by then.

#Person1#: Ok, I will.

“

Dialogue 3: "#Person1#: Excuse me. Does this bus go to the National Library of China?

#Person2#: Yes, there are three stops left.

#Person1#: How long is the ride?

#Person2#: Well, you will get there in about a quarter of an hour if the traffic 

isn't too heavy.

#Person1#: Thank you. Would you please let me know when we get to the stop? I'm a 

stranger here.

#Person2#: Sure, madam. I'll remind you.

Dialogue 4: <Dialogue 4>

Dialogue 5: <Dialogue 5>

Output:

Here are the summaries for the given dialogues:

Summary 1: #Person1# and #Person2# take a break from studying for a history exam to 

listen to music. #Person2# prefers classical music, but #Person1# only has music from 

the 1960s and later. They eventually decide to get back to studying.

Summary 2: #Person1# is looking for books on genetic engineering at a bookstore, but 

they are sold out. #Person2# suggests checking back next week when new stock may be 

available.

Summary 3: #Person1# asks #Person2# if the bus goes to the National Library of China 

and how long the ride will take. #Person2# confirms that the bus goes to the library 

and estimates the ride will take about 15 minutes.

Summary 4: ... 

Summary 5: ... 

Figure 7: ICL prompt of BioInstruct dataset.
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A.3 Synthetic Data Generation846

To evaluate the robustness of Data Whisperer on847

synthetic data, we constructed a synthetic variant848

of the DialogSum dataset using the Llama-3-8B-849

Instruct model. The generation pipeline comprised850

three key stages: prompt design, generation pro-851

cess, and quality control.852

Prompt Design. For every 5 demonstration sam-853

ples from the original DialogSum dataset, we854

crafted structured prompts to generate 1 synthetic855

dialogue-summary pair. These prompts enforced856

strict formatting rules, including speaker tagging857

and topic alignment, alongside explicit constraints858

to ensure the synthetic data closely mirrored the859

style and structure of the original dataset.860

Generation Process. The model was instructed861

to produce dialogues with multiple turns, ensuring862

natural conversational flow and coherent narratives.863

Each output adhered to the JSON schema, with864

topics covering diverse everyday scenarios such as865

travel, shopping, and education.866

Quality Control. A two-step filtering process was867

employed to ensure data quality. First, automated868

checks removed duplicates and syntax-invalid en-869

tries using regex-based validation. Second, three870

annotators independently reviewed the samples,871

flagging those with coherence issues, factual in-872

consistencies, or formatting violations. Disagree-873

ments were resolved through majority voting, and874

only samples free from hallucination or structural875

deviations were retained.876

The final synthetic dataset maintained the origi-877

nal DialogSum distribution in dialogue length and878

topic diversity. Full prompt template is illustrated879

in Figure 8.880

A.4 Hyper-Parameters of Different Methods881

Data Selection. In our experiments, Data Whis-882

perer was configured with task-specific batch sizes:883

15 for the BioInstruct dataset, 5 for the DialogSum884

dataset, and 15 for the GSM8K dataset. By default,885

nd (number of demonstrations) was set to 10, and886

nq (number of queries) was set to 5. The generation887

temperature was fixed at 0 during the In-Context888

Learning process to ensure deterministic outputs.889

To ensure fairness, the batch size for all baseline890

methods was uniformly set to 16 across all tasks.891

Model Fine-tuning. All models, whether trained892

on pruned or full datasets, shared identical hyper-893

parameters. We employed parameter-efficient fine-894

tuning via LoRA (Hu et al., 2021) for all tasks.895

The fine-tuning framework, based on (Zheng et al., 896

2024)2, utilized a learning rate scheduler with lin- 897

ear warm-up and cosine decay. A consistent batch 898

size of 8 was applied across all experiments. For 899

Llama-3-8B-Instruct, the learning rate was fixed at 900

1×10−4 for all datasets. For Qwen-2.5-7B-Instruct 901

and Mistral-Nemo-Instruct-2407, the learning rate 902

was uniformly set to 1 × 10−5. All models were 903

fine-tuned for 5 epochs, with each experiment re- 904

peated three times to ensure robustness and statisti- 905

cal reliability. 906

A.5 Pseudo Code of Data Whisperer 907

The detailed pseudo code of Data Whisperer is 908

demonstrated in Algorithm 1. 909

B Extensive Evaluation Results of STR 910

As defined in Eq. (1), the Selection-to-Tuning Ra- 911

tio (STR) quantifies the efficiency of data selection 912

methods by comparing the computational cost of 913

selection to the time saved during fine-tuning. A 914

method τ is efficient if STR < 1, indicating that 915

the time invested in selection is offset by faster fine- 916

tuning. An STR below 1 ensures that the selection 917

process positively contributes to overall pipeline 918

efficiency, making it a practical and scalable choice 919

for optimizing model training workflows. More 920

evaluation results of STR are demonstrated in Ta- 921

ble 6. 922

2https://github.com/hiyouga/LLaMA-Factory
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Instruction: 

You are an expert assistant tasked with generating new dialogue-summary pairs for the 

DialogSum dataset. The dialogue should be natural and involve two or more 

participants, with a clear and meaningful conversation. Your summary should 

accurately capture the main points of the dialogue, ensuring clarity and conciseness.

### Guidelines for generating data:

1. **Generate a natural, coherent dialogue** involving two or more participants. 

Ensure the dialogue is meaningful and engaging.

2. **Create a concise, accurate summary** that captures the main points of the 

dialogue without introducing unnecessary details or commentary.

3. If the dialogue lacks clarity, completeness, or meaningful content, respond with 

"No valid content to summarize." in the summary.

4. **Ensure the generated dialogue and summary pair are returned in the correct JSON 

format.** Make sure that both the dialogue and summary are accurate and coherent.

5. **Generate new and unique data**. Each dialogue-summary pair should be fresh and 

differ from previously provided content, maintaining relevance to the topic.

### The generated data should be returned in a JSON object format.

Input:

Below are the original demonstrations of how to format your samples:

Dialogue: <Dialogue 1>

Summary: <Summary 1>

Dialogue: <Dialogue 2>

Summary: <Summary 2>

... 

**Strictly use the format specified below to generate new samples in JSON format:**

{"dialogue": "New dialogue", "summary": "Summary of the dialogue", "topic": "Topic of 

the dialogue"} 

### Now, based on the provided demonstrations, generate a new dialogue and the 

corresponding summary in JSON format:

Output:

Here is a new dialogue and summary in JSON format:

{

"dialogue": "#Person1#: I'm so excited to be here at the art museum. I've never seen 

so many masterpieces in one place.

#Person2#: Yes, it's amazing. I've been here many times, but I still find something 

new to appreciate each time.

#Person1#: What's your favorite piece here?

#Person2#: Ah, that's a tough one. I think it's the Monet water lilies. The way he 

captures the light is just breathtaking.

#Person1#: I agree. I've always loved his work. Do you think we could get a closer 

look at it?

#Person2#: Of course. Let me just check if it's allowed. (checks the sign) Yes, we 

can get up close.

#Person1#: Wow, it's even more beautiful up close. I can see all the tiny 

brushstrokes.

#Person2#: Exactly. That's what I love about Impressionism. The attention to detail 

is incredible.

#Person1#: I never knew that. I'll have to look into it more.

#Person2#: Definitely. It's a fascinating style.

#Person1#: I'm so glad we came here today. I feel like I've learned something new.

#Person2#: Me too. And it's always great to share that with someone who appreciates 

it as much as I do.",

"summary": "Two art enthusiasts visit the museum and discuss their favorite piece, 

Monet's water lilies. They appreciate the attention to detail in Impressionist art 

and enjoy getting a closer look at the painting.",

"topic": "Art and Appreciation"

}

Figure 8: Data synthesis prompt of DialogSum dataset.
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Algorithm 1 Data Whisperer for Data Selection
Input:
Mp – Pre-trained language model
D – Full task dataset
nd – Number of samples for demonstration at a time
nq – Number of samples for query at a time
I – Instruction for ICL generation
f – Performance metric
ρ – Budget ratio
Output: D′ – Selected coreset (D′ ⊆ D, |D′| < |D|)

1: procedure DATAWHISPERER(Mp,D, nd, nq, I, f, ρ)
2: S ← 0 ▷ Initialize the score set
3: while Not all samples in D have been processed do
4: Dd ← Randomly select nd samples from D
5: Dq ← Randomly select nq samples from D
6: C ← {I,Dd} ▷ Form input context
7: ŷ

(1)
q , . . . , ŷ

(nq)
q ←Mp(C,Dq) ▷ Generate query predictions via ICL

8: s← 1
nq

∑nq

j=1 f(ŷ
(j)
q , y

(j)
q )

9: for i = 1→ nd do
10: Let h denote each head in the attention mechanism
11: wi ←

∑
h 1

⊤A
(h)

(x
(i)
d ,y

(i)
d )

1 ▷ Compute weights

12: end for
13: w∗ ← Normalize(w)
14: s∗ ← s⊙ w∗ ▷ Element-wise multiplication with attention weights
15: S[Dd]← S[Dd] + s∗ ▷ Accumulate scores for corresponding indices in Dd

16: end while
17: k ← ⌊ρ · |D|⌋
18: D′ ← Top-k(D;S) ▷ Select top m samples based on scores
19: return D′

20: end procedure

Table 6: Additional results on the Selection-to-Tuning ratio and performance scores for the Qwen and Mistral
models are presented. The symbols ↑ and ↓ indicate improvements and degradations compared to random selection,
respectively. “Speedup” refers to the acceleration achieved by Data Whisperer (w2s) over Nuggets. “w2s” denotes
using the weaker model within the same family for data selection across each LLM.

Model Method
GSM8K DialogSum BioInstruct

STR Performance STR Performance STR Performance
1% 5% 10% Avg. Score 1% 5% 10% Avg. Score 1% 5% 10% Avg. Score

Q
w

en
-2

.5
-7

B
-I

ns
tr

uc
t Random - - - 60.29 - - - 34.66 - - - 35.19

GraNd 1.06 1.06 1.07 62.61↑2.32 1.09 1.11 1.13 36.29↑1.63 1.07 1.08 1.34 32.62↓2.57

EL2N 1.06 1.06 1.07 60.72↑0.43 1.10 1.13 1.15 36.97↑2.31 1.08 1.08 1.32 34.64↓0.55

CCS 1.04 1.04 1.05 61.34↑1.05 1.01 1.04 1.06 35.30↑0.64 1.02 1.03 1.25 31.87↓3.32

Nuggets 1.10 1.11 1.11 62.74↑2.45 3.66 3.69 3.71 36.63↑1.97 2.19 2.20 2.41 34.95↓0.24

STAFF 1.05 1.05 1.06 62.74↑2.45 1.06 1.08 1.10 37.18↑2.52 1.06 1.06 1.33 32.97↓2.22

Data Whisperer 0.08 0.08 0.08 64.21↑3.92 0.16 0.19 0.29 38.97↑4.31 0.15 0.27 0.46 37.12↑1.93

Data Whisperer (w2s) 0.05 0.05 0.06 63.67↑3.38 0.10 0.13 0.23 38.37↑3.71 3.71 0.20 0.37 35.98↑0.79

Speedup 21.52× 21.12× 19.29× - 35.67× 27.48× 16.12× - 25.12× 10.94× 6.48× -

M
is

tr
al

-N
em

o-
24

07
-1

2B Random - - - 50.36 - - - 32.61 - - - 25.00
GraNd 1.08 1.09 1.24 51.65↑1.29 1.05 1.07 1.09 32.72↑0.11 1.13 1.23 1.40 24.35↓0.65

EL2N 1.11 1.13 1.36 51.74↑1.38 1.06 1.09 1.11 30.75↓1.86 1.14 1.23 1.39 23.76↓1.24

CCS 1.04 1.01 1.22 50.71↑0.35 1.01 1.04 1.05 31.75↓0.86 1.02 1.11 1.25 26.37↑1.37

Nuggets 2.34 2.35 2.50 53.06↑2.70 2.22 2.24 2.26 32.53↓0.08 5.15 5.23 5.36 28.12↑3.12

STAFF 1.06 1.08 1.22 54.06↑3.70 1.04 1.06 1.07 32.71↑0.10 1.10 1.20 1.39 25.03↑0.03

Data Whisperer 0.24 0.26 0.30 57.62↑7.26 0.08 0.12 0.25 35.45↑2.84 0.24 0.39 0.65 29.96↑4.96

Data Whisperer (w2s) 0.11 0.12 0.12 57.21↑6.85 0.07 0.11 0.24 35.07↑2.46 0.18 0.33 0.60 29.66↑4.66

Speedup 20.52× 20.45× 20.89× - 31.75× 20.69× 9.53× - 29.18× 15.61× 8.95× -
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