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Abstract

The performance of mini-batch stochastic gradient descent (SGD) strongly depends on set-
ting the batch size and learning rate to minimize the empirical loss in training the deep
neural network. In this paper, we present theoretical analyses of mini-batch SGD with four
schedulers: (i) constant batch size and decaying learning rate scheduler, (ii) increasing batch
size and decaying learning rate scheduler, (iii) increasing batch size and increasing learning
rate scheduler, and (iv) increasing batch size and warm-up decaying learning rate scheduler.
We show that mini-batch SGD using scheduler (i) does not always minimize the expectation
of the full gradient norm of the empirical loss, whereas it does using any of schedulers (ii),
(iii), and (iv). Furthermore, schedulers (iii) and (iv) accelerate mini-batch SGD. The paper
also provides numerical results of supporting analyses showing that using scheduler (iii) or
(iv) minimizes the full gradient norm of the empirical loss faster than using scheduler (i) or

(ii).

1 Introduction

Mini-batch stochastic gradient descent (SGD) (Robbins & Monrol, {1951} |Zinkevich) |2003; Nemirovski et al.,
2009; \(Ghadimi & Lanl [2012; [2013) is a simple and useful deep-learning optimizer for finding appropriate
parameters of a deep neural network (DNN) in the sense of minimizing the empirical loss defined by the
mean of nonconvex loss functions corresponding to the training set.

The performance of mini-batch SGD strongly depends on how the batch size and learning rate are set. In
particular, increasing batch size (Byrd et al.l |2012; Balles et al.l [2016; [De et al., 2017} [Smith et al.l [2018;
Goyal et al., 2018} |Shallue et al., |2019; Zhang et al.,|2019)) is useful for training DNNs with mini-batch SGD.
In (Smith et all 2018), it was numerically shown that using an enormous batch size leads to a reduction in
the number of parameter updates.

Decaying a learning rate (Wu et al., 2014 loffe & Szegedyl, 2015} [Loshchilov & Hutter), |2017; [Hundt et al.),
2019) is also useful for training DNNs with mini-batch SGD. In (Chen et all [2020), theoretical results
indicated that running SGD with a diminishing learning rate n; = O(1/t) and a large batch size for sufficiently
many steps leads to convergence to a stationary point. A practical example of a decaying learning rate with
N1 < n; for all ¢t € N is a constant learning rate 1, = 7 > 0 for all t € N. However, convergence of SGD with
a constant learning rate is not guaranteed (Scaman & Malherbe, 2020)). Other practical learning rates have
been presented for training DNNs, including cosine annealing (Loshchilov & Hutter] 2017)), cosine power
annealing (Hundt et al., 2019)), step decay (Lul, [2024)), exponential decay (Wu et al.,|2014)), polynomial decay
(Chen et all 2018), and linear decay (Liu et al., [2020)).

Contribution: The main contribution of the present paper is its theoretical analyses of mini-batch SGD
with batch size and learning rate schedulers used in practice satisfying the following inequality:
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where f is the empirical loss for n training samples having L-Lipschitz continuous gradient Vf and lower
bound f*, 02 is an upper bound on the variance of the mini-batch stochastic gradient, and (Gt)z:ol is the
sequence generated by mini-batch SGD with batch size b;, learning rate 7; € [min, Jmax] C [0, %), and total
number of steps to train a DNN T

Scheduler BT VT O(\/ BT + VT)
C i) (Th 3.1; Section |3.1 1 1
ase (i) (Theorem . ection Hy, Hy N H; 0 1.1
b : Constant; n;: Decay T b bT T b
Case (ii) (Theorem Section D Hy Hy 0 (1) 0 ( 1 >
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H; (i € [6]) (resp. Hry) is a positive (resp. nonnegative) number depending on fmin and Nmax. v and & are
such that 1 < 42 < § (e.g., § = 2 when batch size is doubly increasing every E epochs). The total number
of steps when batch size increases M times is T(M) = M (= 1E > ME.

m=0

(i) Using constant batch size b; = b and decaying learning rate 1, (Theorem Section
: Using a constant batch size and practical decaying learning rates, such as constant, cosine-annealing,
and polynomial decay learning rates, satisfies that, for a sufficiently large step T', the upper bound on
mingepo.r—1] E[[[V f(0;)|] becomes approximately O(%) > 0, which implies that mini-batch SGD does not
always converge to a stationary point. Meanwhile, the analysis indicates that using the cosine-annealing and
polynomial decay learning rates would decrease E[||V f(6;)||] faster than using a constant learning rate (see
@), which is supported by the numerical results in Figure

(ii) Using increasing batch size b; and decaying learning rate 7; (Theorem Section [3.2)):
Although convergence analyses of SGD were presented in (Vaswani et al.; [2019} [Fehrman et al. |2020; |Scaman
& Malherbe, |2020; [Loizou et al., [2021; Wang et al., 2021} |Khaled & Richtarik} 2023), providing the theoretical
performance of mini-batch SGD with increasing batch sizes that have been used in practice may not be
sufficient. The present paper shows that mini-batch SGD has an O(%) rate of convergence. Increasing
batch size every E epochs makes the polynomial decay and linear learning rates become small at an early
stage of training (Figure @(a)) Meanwhile, the cosine-annealing and constant learning rates are robust
to increasing batch sizes (Figure [2[a)). Hence, it is desirable for mini-batch SGD using increasing batch
sizes to use the cosine-annealing and constant learning rates, which is supported by the numerical results in
Figure

(iii) Using increasing batch size b; and increasing learning rate 7; (Theorem Section :
From Case (ii), when batch sizes increase, keeping learning rates large is useful for training DNNs. Hence, we
are interested in verifying whether mini-batch SGD with both the batch sizes and learning rates increasing
can train DNNs. Let us consider a scheduler doubly increasing batch size (i.e., § = 2). We set v > 1 such
that v < v/0 = v/2 and we set an increasing learning rate scheduler such that the learning rate is multiplied
by « every E epochs (Figure a)). This paper shows that, when batch size increases M times, mini-batch
SGD has an O(y~ % ) convergence rate that is better than the O(ﬁ) convergence rate in Case (ii). That is,

increasing both batch size and learning rate accelerates mini-batch SGD. We give practical results (Figure
Bl(b); & = 2 and Figures [B[(b); & = 3,4) such that Case (iii) decreases ||V f(8;)|| faster than Case (ii)
and tripling and quadrupling batch sizes (6 = 3,4) decrease ||V f(0;)]|| faster than doubly increasing batch
sizes (§ = 2).
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(iv) Using increasing batch size b; and warm-up decaying learning rate 7, (Theorem Section
: One way to guarantee fast convergence of mini-batch SGD with increasing batch sizes is to increase
learning rates (acceleration period; Case (iii)) during the first epochs and then decay the learning rates
(convergence period; Case (ii)), that is, to use a decaying learning rate with warm-up (He et al.l 2016;
Vaswani et al., [2017; |Goyal et al., 2018; |Gotmare et al., [2019; [He et all [2019)). We give numerical results
(Figure |4} 6 = 2 and Figure |§|; 0 = 3) indicating that using mini-batch SGD with increasing batch sizes
and decaying learning rates with a warm-up minimizes |V f(0;)|| faster than using a constant learning rate
in Case (ii) or increasing learning rates in Case (iii).

2  Mini-batch SGD for empirical risk minimization

2.1 Empirical risk minimization

Let 8 € R? be a parameter of a deep neural network; let S = {(x1,y1),...,(Zn,yn)} be the training set,
where data point x; is associated with label y;; and let fi(-) := f(-; (z;,:)): R? — R, be the loss function
corresponding to the i-th labeled training data (z;,y;). Empirical risk minimization (ERM) minimizes the
empirical loss defined for all @ € R? as f(0) = % Zie[n] fi(0). This paper considers the following stationary

point problem: Find 8* € R? such that Vf(6*) = 0.

We assume that the loss functions f; (i € [n]) satisfy the conditions in the following assumption (see Appendix
for definitions of functions, mappings, and notation used in this paper).

Assumption 2.1 Let n be the number of training samples and let L; > 0 (i € [n]).

(A1) f;: RY = R (i € [n]) is differentiable and L;-smooth, and fF := inf{fi(0): 8 € R%} € R.

(A2) Let & be a random variable that is independent of @ € RY. V fe: R? — R? is the stochastic gradient of
Vf such that (i) for all @ € RY, E¢[V f¢(0)] = Vf(0) and (ii) there exists ¢ > 0 such that, for all @ € R,
Ve[V £e(0)] = E¢[||Vfe(0) — Vf(0)]|?] < 02, where E¢[-] denotes expectation with respect to &.

(A3) Let b € N such that b < n; and let £ = (&1,62,---,&) " comprise b independent and identically
distributed variables and be independent of @ € R:. The full gradient ¥ f(0) is estimated as the following

mini-batch gradient at 0: V f5(0) := ¢ Ele V /e (0).

2.2 Mini-batch SGD

Given the t-th approximated parameter 8, € R? of the deep neural network, mini-batch SGD uses
by loss functions fe, ,, fe, ,, fe,,, randomly chosen from {fi, fo, -, fu} at each step ¢, where §; =
(é4.1,&.2, &, )| is independent of @, and b, is a batch size satisfying b; < n. The pseudo-code of the
algorithm is shown as Algorithm

Algorithm 1 Mini-batch SGD algorithm

Require: 0y € R? (initial point), b; > 0 (batch size), ; > 0 (learning rate), T' > 1 (steps)
Ensure: (6;) C R?
:fort=0,1,...,7T—1do
Vi, (0r) == & 300 Ve, (61)
0141 :=0; — UtVth(gt)
end for

L

The following lemma can be proved using Proposition Assumption and the descent lemma (Beck,
2017, Lemma 5.7): for all 81,0, € R, f(62) < f(61) + (Vf(0:1),602 — 01) + £ |62 — 6, ]|?, where Assumption
Al) ensures that f is L-smooth (L := 1 Zie[n] L;). The proof itself is given in Appendix
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Lemma 2.1 Suppose that Assumption holds and consider the sequence (0;) generated by Algorithm

with Nt € [Mmin, Mmax] C [0, %) satisfying thfol ne # 0, where L := %Zie[n] L; and f* = %Zie[n] f¥. Then,
forall T € N,

2f(8) =) 1 Lo® Yy nibi!
min E [HVf(at)” = 7 To T iy t
te[0:T—1] 2 anax Et o™ 2 L'r]max Et o

where E denotes the total expectation, defined by E := Eg Eg, - - Eg

3

.-
3 Convergence Analysis of Mini-batch SGD
3.1 Constant batch size and decaying learning rate scheduler
This section considers a constant batch size and a decaying learning rate:
bs=b(teN) and 41 <n (t €N). (1)

Let p>0and T, E € N; and let 1y, and fpax satisfy 0 < nmin < fmax. Examples of decaying learning rates
are as follows: for all ¢ € [0: T7,

[Constant LR] 17t = Nmax, (2)
. . . nmax
Diminishing LR = —, 3
. . max — //min t 71—
[Cosine-annealing LR] 17 = min + % <1 + cos LKJ E> ) (4)
£\7P
[Polynomial Decay LR] 7 = (max — Mmin) (1 — T) ~+ Mmin (5)

where K = [#] is the number of steps per epoch, E is the total number of epochs, and the number of steps
T in is given by T'= K E. A simple, practical decaying learning rate is the constant learning rate defined
by . A decaying learning rate used in theoretical analyses of deep-learning optimizers is the diminishing
learning rate defined by . The cosine-annealing learning rate defined by and the linear learning rate
defined by with p = 1 (i.e., an example of a polynomial decay learning rate) are used in practice. Note
that the cosine-annealing learning rate is updated each epoch, whereas the polynomial decay learning rate
is updated each step.

Lemma leads to the following (the proof of the theorem is given in Appendix [A.2]).

Theorem 3.1 (Upper bound on min; E||V f(6,)||? for SGD using ) Under the assumptions in
Lemma Algom'thm using satisfies that, for all T € N,

min E[vre < 20O =S 1 L S

te[0:T—1] T 2 — Limax 23:01 e 2= Lijmax bZt:O n
—_— —_——
BT VT

where P, Mmin, Nmax, K, and E are the parameters used in @)7(@), T = KE = [}]|E for Polynomial LR

J

1
Nmax 1

[Constant LR ([2))]

[Diminishing LR (3)]
Br < 277max(2\/ T+1-— 1) (6)
R ine LR (4
(nmin + nmax)T [COSIHe R ‘I'
p+1

m [Polynomial LR ],
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nnzax [Constant LR ]
"hmax(1 +1og T)

DT 1) [Diminishing LR (3))]

Vr << 3p2. 4+ 9p . 2 o
Mmin T 27minMmax + Snmax Thmax — "Jmin .
Cos LR (4
4(Mmin + Mmax)b + bT [Cosine LR (4)]
20 nin & 2P in e+ (P + 1) + (p 4+ 1) (i = Vi) [Polynomial LR (5))]

(2p + 1)<p77min + Mmax)b (pnmm + nmax)bT

Let us consider using Constant LR , Cosine LR (4]), or Polynomial LR . Theorem indicates that
the bias term including B converges to 0 as O(%), whereas the variance term including Vi does not always
converge to 0. Hence, the upper bound on mine(o.7—1] E[[|V f(8;)]|?] does not converge to 0. In fact, Theorem
with 7 = Nmax and Nmix = 0 implies that

n [Constant LR (2))]
72 3n )
lim sup mm E [IVF(8)|°] < L {7 [Cosine LR ()] (M)
T—+oo tE[0:T (2—Ln)db (p+ 1)y

—_— Polynomial LR (5))].
Gr T 1) [Poly (5)]

. 1
Since 34" < n and Eg;?:)l?

learning rate is better than using the constant learning rate in the sense of minimizing the upper bound on
minejo.7—1) E[|V£(6:)?]. Theorem also indicates that Algorithm [1{ using Diminishing LR (3)) converges

to 0 with the convergence rate mingejo.7—1) E[||V f(6:)]]] = O(‘ﬁ”;oigT). However, since Diminishing LR
4
defined by n; = \/% decays rapidly (see Figure (a)), it would not be useful for training DNNs in practice.

< n (p > 0), using the cosine-annealing learning rate or the polynomial decay

3.2 Increasing batch size and decaying learning rate scheduler

An increasing batch size is used to train DNNs in practice (Byrd et al., [2012; |Balles et al. |2016; De et al.|
2017; |[Smith et al.| 2018; |Goyal et al.l 2018). This section considers an increasing batch size and a decaying
learning rate following one of f:

bt S bt+1 (t € N) and Nt+1 S Nt (t S N) (8)

Examples of b; are, for example, for all m € [0 : M] and all t € S,, = NN [ 7 KpEx, Yty Kin Ex)
(So =NnN [O, K()Eo)),

[Polynomial growth BS| b; = (am ’VW-‘ + bo) ; (9)

[Exponential growth BS] b; = [ZZO KkEk—‘ bo, (10)

where a € Ry, ¢, > 1, and E,, and K,, are the numbers of, respectively, epochs and steps per epoch
when the batch size is (am + by)® or §™by. For example, the exponential growth batch size defined by
(10) with § = 2 makes batch size double each F,, epochs. We may modify the parameters a and ¢ to a;
and §; monotone increasing with ¢. The total number of steps for the batch size to increase M times is
T = Z%ZO K, E,,. An analysis of Algorithm |1{ with a constant batch size b; = b and decaying learning

rates satisfying is given in Section

Lemma leads to the following them (the proof of the theorem and the result for Polynomial BS (9) are
given in Appendix [A.2)).

Theorem 3.2 (Convergence rate of SGD using ) Under the assumptions in Lemma Algorithm
using (@ satisfies that, for all M € N,

2f(B0)— ) 1 Lo? L
min | B[IV6)]%] < == + b
€[0:T—-1] 2_L77max Zt o™ 2_L77max Zt 0o M =0
BT VT
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where T = Z 0 EmEm, Emax = SUPpren SUPmeio:nv] Em < 400, Kmax = SUpPpren SUPpe(o:a] Km < 400,
Br is defined as m (@ and Vi is bounded as

6 maXKmaxEmaX
W [Constant LR ]

6 maXKmaxEmaX . . .

iU (T TT-1) [Diminishing LR (3))]

Vr < 257’2 OK E ([Exponential BS (10))])

= 1)?;’(' nr’;? ma;(bo [Cosine LR (4))]

+1 ] rznameaxEmax .
(((Sp_ 1)27777 p——e [Polynomial LR (f])].

max min

That is, Algorithm|1| using Exponential BS (@) has the convergence rate

1
O \/T) [Constant LR (2)), Cosine LR (), Polynomial LR (F))]
eiin ElIVA@II] = 1
€l (- [Diminishing LR (3]
4

Theorem (Theorem |A.1)) indicates that, with increasing batch sizes such as Polynomial BS @ and
Exponential BS , Algorithm |1| using each of Constant LR , Cosine LR , and Polynomial LR ({p)
has the convergence rate O(ﬁ), in contrast to Theorem

3.3 Increasing batch size and increasing learning rate scheduler

This section considers an increasing batch size and an increasing learning rate:
bt S bt+1 (t € N) and Mt S MNt+1 (t S N) (11)

Example of b, and 7, satisfying is as follows: for all m € [0 : M] and all t € S,, = NN
[Soho KxBr Sopto Kk Br) (So = NN [0, KoEy)),

[Exponential growth BS and LR] b = ¢ {Ek—o K’“Ek’—‘ bo, e ="y { k=0 kEk—‘ 7o, (12)

where 4,y > 1 such that v2 < §; and E,, and K,, are defined as in . We may modify the parameters
v and § to be monotone increasing parameters in t. The total number of steps when both batch size and
learning rate increase M times is T = E o KmEm

Lemma E leads to the following theorem (the proof of the theorem and the result for Polynomial growth

BS and LR are given in Appendix [A.2]).
Theorem 3.3 (Convergence rate of SGD using (11))) Under the assumptions in Lemma Algo-
m’thm using satisfies that, for all M € N,

2f(80) — f*) 1 Lo’ i
min E[|[VF(6,)]2] < == Z o
te[0:T—1] 2 — anax Zt 0 Nt 2-— anax Zt 0 Mt ¢ t=0
BT VT
where T, Epax, and Kpay are deﬁned as in Theorem@ Epin = infareninf,co.n) Em < 400, Kpin =
infpren lnme[O:]VI] K, <400, ¥y=1L <1,
5 K max E max7]0 6

Br <

N V/a .
nOKminEmin’yM’ T - KmlnEmmbO(]- - ) M
That is, Algorithm[1] has the convergence rate

1
min  E[|Vf(0,)]] = (M) [Exponential growth BS and LR (12))].
te[0:T—1] vz

Under Exponential BS , using Exponential LR QD improves the convergence rate from O(—:) with
Constant LR , Cosine LR , or Polynomial LR H (Theorem to O(\ﬁ_M) (v >1).

4



Under review as submission to TMLR

3.4 Increasing batch size and warm-up decaying learning rate scheduler
This section considers an increasing batch size and a decaying learning rate with warm-up for a given
T, = Z%io K, Ep > 0 (learning rate increases M, times):

bt < bt+1 (t S N) and e < Me+-1 (t c [Tw — 1]) A Nt41 < Nt (t > Tw) (13)

Examples of b; in are Exponential BS and Polynomial BS . Examples of 7, in can be
obtained by combining with (2)—(5). For example, for all m € [0: M] and all t € S,,,,

[Constant LR with warm-up] 7, = < v { ko K’“EJ no  (m € [My)]) (14)
7o (m € [My, : M])
and [Cosine LR with warm-up]

vy ’721@—0 K’””E’“—‘ Mo (m € [Mw])

ne = Nimin + MNmax 5 Mmin (15)

m—1 m—1
t— Z _ KkEk s
1 5 E el e D My, : M

x{ +cos<kz_o k+{ K, )EM_EU;} (me] D,

where E,, is the number of warm-up epochs, Ny > 0, Nmax = 'yMw 7o, and ~y is defined as in .

Theorems [3.2] and [3.3] lead to the following theorem.

Theorem 3.4 (Convergence rate of SGD using (13|)) Under the assumptions in Lemma Algo-
m’thm using satisfies that, for all M € N,

* 7 T-1
n Bvse)P) < SO L) L Lt L s
ety t =9 T—1 oL T—1 b
te[0:T—1] — L7 max Zt:() e — L7 max Zt:O M t—g "t
BT VT

where by is the exponential growth batch size defined by @ with 8,7 > 1 such that 42 < 6; Kuin, Kmax,
FErin, and Ewyax are defined as in Theorems[3.4 and [3.3;
0 1

-
Komin Bminy Mo T-T
BT S 1oL min é_mln’}/ nmax( Qw)

[Constant LR (|14))]

[Cosine LR (15)]

+
770I(minE‘min'V]ww (nmin + nmax)(T - Tw)

KmaxEmaxn06 67]mameaxEmax
Constant LR (14
Vi <  BminEminbo(1 =)y (6 = 1)bo(T = Toy) (Constant LR (19
= KiaxFEmax 0 20m2 KaxFEmax
o + [nax [Cosine LR (TH))].

‘KrminE‘minbO(1 - &)VMQU (6 - 1)(77min + nmax)bO(T - Tw)
That is, Algorithm[1| has the convergence rate

te[gig—l]E IVf(8)]] =0 (\/I%Tw) [Constant LR (14), Cosine LR (T5))].
Since Algorithm [1| with and uses increasing batch sizes and decaying learning rates for ¢ > T, it
has the same convergence rate as using in Theorem Meanwhile, since Algorithm |1| with and
uses the warm-up learning rates for ¢ € [T3,], Algorithm [1|speeds up during the warm-up period, based
on Theorem As a result, for increasing batch sizes, Algorithm [I] using decaying learning rates with
warm-up minimizes E[||V f(6;)||] faster than using decaying learning rates in Theorem

4 Numerical results

We examined training ResNet-18 on the CIFAR100 dataset by using Algorithm [1 (see Appendices and
for training Wide-ResNet-28-10 on CIFAR100 and ResNet-18 on Tiny ImageNet). The experimental
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environment was two NVIDIA GeForce RTX 4090 GPUs and Intel Core i9 13900KF CPU. The software
environment was Python 3.10.12, PyTorch 2.1.0, and CUDA 12.2. The code is available at https://
anonymous .4open.science/r/IncrBothBSLRAccelSGDarXiv.

We set the total number of epochs E = 300, the initial learning rate 1y = 0.1, and the minimum learning
rate Nmin = 0 in and . The solid line in the figure represents the mean value, and the shaded area in
the figure represents the maximum and minimum over three runs.

Let us first consider the case (Figure a)) of a constant batch size (b = 27) and decaying learning rates
ne defined by (2)-(5) discussed in Section where “linear" in Figure [1] denotes Polynomial LR () with
p = 1. Figure [I{b)—(d) indicate that using Diminishing LR did not work well, since it decayed rapidly
and was very small (Figure [[fa)). Figure [T[b)—(d) also indicate that Cosine LR () and Polynomial LR (F)
performed better than Constant LR , as promised in the theoretical results in Theorem and .

Learning Rate and Batch Size Schedular ResNet-18 on CIFAR100

ining

—— polynomial (p=2.0)
Batch Size

— constant

Full Gradient Norm of Empirical Loss for Trai

—— polynomial (p=2.0)

[} 50 100 150 200 250 300 0 50 100 150 200 250 300

Epochs

(a) Learning rate 7; and batch size b versus epochs

ResNet-18 on CIFAR100

Epochs

(b) Full gradient norm ||V f(6.)|| versus epochs

ResNet-18 on CIFAR100

polynomial (p=2.0) 73

Empirical Loss Value for Training

280 285 290 295 300

0 50 100 150 200 250 300 0 50 100 150 200 250 300
Epochs Epochs.

(c) Empirical loss f(6.) versus epochs (d) Test accuracy score versus epochs

Figure 1: (a) Decaying learning rates (constant, diminishing, cosine, linear, and polynomial) and constant
batch size, (b) full gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing
for SGD to train ResNet-18 on CIFAR100 dataset.

Next, let us consider the case (Figure (a)) of doubly increasing batch size every 30 epochs from an initial
batch size by = 2% and decaying learning rates 7; defined by 7. Figure (a) indicates that the learning
rate of Polynomial LR, updated each step (“linear" and “polynomial (p = 2.0)") becomes small at an early
stage of training. This is because the smaller the batch size b; is, the larger the required number of steps
K, = [ﬁ] per epoch becomes and the smaller the decaying learning rate n; becomes. Hence, in practice,
increasing batch size is not compatible with Polynomial LR updated each step. Meanwhile, Figure a)
indicates Constant LR (“constant") and Cosine LR (4)) (“cosine") were compatible with increasing batch
size, since Constant LR and Cosine LR updated each epoch maintain large learning rates even for
small batch sizes. In particular, Figure b)f(d) indicate that using Constant LR performed well.

Let us consider the case (Figure[3[a)) of doubly increasing batch size (§ = 2) every 30 epochs and increasing
learning rates defined by Exponential growth LR (12|) with 79 = 0.1 . The parameters 7 in the increasing
learning rates considered here were (i) v &~ 1.080 when Nmax = 0.2, (ii) v ~ 1.196 when 7y.x = 0.5, and
(iii) v &~ 1.292 when 7.y = 1.0, which satisfy the condition 42 < § (= 2) to guarantee the convergence of
Algorithm [1] (see Theorem [3.3). Figure [3|compares the result for “constant" in Figure 2| with the ones for the
increasing learning rates (i)-(iii). Figure [3b) indicates that the larger the learning rate 7, was, the smaller
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the full gradient norm ||V f(6,)|| became and that Algorithm [I] with increasing learning rates minimized the
full gradient norm faster than Algorithm [I| with a constant learning rate (“constant’ in Figures [2] and .

Learning Rate and Batch Size Schedular ResNet-18 on CIFAR100
—
2 10° N
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(a) Learning rate n; and batch size b versus epochs (b) Full gradient norm ||V f(6.)|| versus epochs
ResNet-18 on CIFAR100 ResNet-18 on CIFAR100
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(c) Empirical loss f(6.) versus epochs (d) Test accuracy score versus epochs

Figure 2: (a) Decaying learning rates and doubly increasing batch size every 30 epochs, (b) full gradient
norm of empirical loss, (c¢) empirical loss value, and (d) accuracy score in testing for SGD to train ResNet-18
on CIFAR100 dataset.
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Figure 3: (a) Increasing learning rates (fmax = 0.2,0.5,1.0) and doubly increasing batch size every 30 epochs,
(b) full gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for SGD
to train ResNet-18 on CIFAR100 dataset.
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Let us consider the case (Figure a)) of a doubly increasing batch size and decaying learning rates (Constant
LR and Cosine LR @) with warm-up based on Figure a). Figure b) indicates that using decaying
learning rates with warm-up accelerated Algorithm [[]more than using only increasing learning rates in Figure
Bf(b) and only a constant learning rate in Figure [2{(b).
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Figure 4: (a) Warm-up learning rates and doubly increasing batch size every 30 epochs, (b) full gradient
norm of empirical loss, (c¢) empirical loss value, and (d) accuracy score in testing for SGD to train ResNet-18
on CIFAR100 dataset.
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CIFAR100 dataset.
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From the sufficient condition v2 < & to guarantee convergence of Algorithm [If with both batch size and
learning rate increasing (Theorem , we can set a larger v when § is large. Since Algorithm [1| has
an 0(7_%) convergence rate (Theorem , using triply (y = 1.5 < v§ = V/3) and quadruply (y =
1.9 < V/§ = V/4) increasing batch sizes theoretically decreases ||V f(8,)|| faster than doubly increasing batch
sizes (y = 1.080 < V0 = V2 when nmax = 0.2; Figure . Finally, we would like to verify whether the
theoretical result holds in practice. The scheduler was as in Figure a) with 79 = 0.1 and nmax = 0.2, where
schedulers were modified such that batch sizes belong to [23,2?] and learning rates belong to [0.1,0.2] (e.g.,
be = adl5) + b and . = ¢yl50) 4+ d, where a ~ 0.2077, b ~ 7.7923, ¢ ~ 0.00267, and d ~ 0.09733 when
d =3 and v = 1.50 and a ~ 0.0155, b ~ 7.9844, ¢ ~ 0.00031, and d =~ 0.09969 when § = 4 and v = 1.90).
Figure [f|a) and (b) indicate that the larger the increasing rate of batch size was (the cases of § = 3,4 after
180 epochs), the larger the increasing rate of the learning rate became (v = 1.5,1.9 when 6 = 3,4) and the
smaller ||V f(8.)| became. That is, using increasing learning rates based on tripling and quadrupling batch
sizes minimizes ||V f(0.)|| faster than using increasing learning rates based on doubly increasing batch sizes
(see also Appendix[A.4). Figure[5|c) and (d) indicate that using § = 3,4 was better than using § = 2 in the
sense of minimizing f(6,.) and achieving high test accuracy.

5 Conclusion

This paper presented theoretical analyses of mini-batch SGD under batch size and learning rate schedulers
used in practice. Our results indicated that using increasing batch sizes and decaying learning rates guaran-
tees convergence of mini-batch SGD and using both batch sizes and learning rates that increase accelerates
mini-batch SGD. That is, using increasing batch sizes and decaying learning rates with warm-up guarantees
fast convergence of mini-batch SGD in the sense of minimizing the expectation of the full gradient norm of
the empirical loss. This paper also provided numerical results to support the analysis results that increasing
both batch sizes and learning rates accelerates mini-batch SGD. One limitation of this study is that the num-
bers of models and datasets in the experiments were limited. Hence, we should conduct similar experiments
with larger numbers of models and datasets to support our theoretical results.
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A Appendix

We here give the notation and state some definitions. Let N be the set of natural numbers. Define [n] :=
{1,2,--- ,n} and [0:n] :={0,1,--- ,n} for n € N. Let R? be the d-dimensional Euclidean space with inner
product (61,62) = 66> (01,05 € RY) and its induced norm |6 := 1/(6,6) (0 € R?). Let RY := {0 =
(01,0,...,04)" € RY:0; >0 (i € [d)} and R, := {0 = (01,02,...,00)" € R*: 6, >0 (i € [d])}. The
gradient of a differentiable function f: R? — R at 6 € R? is denoted by Vf(0). Let L > 0. A differentiable
function f: R? — R is said to be L-smooth if the gradient Vf: R? — R? is Lipschitz continuous, i.e., for
all 01,0, € R |[Vf(01) — V()| < L||01 — 02| Let (x4),(y:) C Ry be sequences. Let O be Landau’s
symbol, i.e., y; = O(x) if there exist ¢ € Ry and ¢y € N such that, for all ¢t > tg, y; < cay.

A.1 Proofs of Proposition [A.1| and Lemma 2.1

The following proposition holds for the mini-batch gradient.

Proposition A.1 Let t € N and & be a random variable that is independent of & (j € [0 :t —1]); let
0; € R be independent of &;; let V fp,(0;) be the mini-batch gradient defined by Algorithm |1, where feo
(i € [be]) is the stochastic gradient (see Assumption[2.1(A2)). Then, the following hold:

2

g
by’

Ee, [V/5.(0,)

€| = VF(8:) and Ve, |V5,(8))

ét—l] <
where Be,[-|€,_1] and V¢, [|€,_1] are respectively the expectation and variance with respect to & conditioned
on&—1==~&-1.

The first equation in Propositionindicates that the mini-batch gradient V fg, (6;) is an unbiased estimator
of the full gradient V f(6;). The second inequality in Proposition indicates that the upper bound on the
variance of the mini-batch gradient V fp,(0;) is inversely proportional to the batch size b;.

Proof of Proposition : Assumption [2.1( A3) and the independence of b; and &; ensure that

by
Eﬁt [vat (at)’ét—1:| = Eﬁt lli Z vfﬁt,i(ot)
=1

by
ét—l] = ;;Efu [vfft,qy(et) ét—1:| )
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which, together with Assumption A2) (i) and the independence of & and &;_1, implies that

Ee, [V/5,00)|é1] = 5 ZVf (6) = V£(81). (16)
Assumption A3), the independence of b; and &;, and imply that

Ve, [V (00)|é] = Ee, [IIVth (6:) = V£(60)| -]

2

“’ vagu 0,) — V£(6:)

étl]
2
ét—l] .

From the independence of & ; and & ; (¢ # j) and Assumption A2) (i), for all 7,5 € [by] such that i # j,

1

= 5K
e

Z (Vfe,.(6:) — V1(6:))

i=1

Eft,i vafm(at) - vf(et)’ vfﬁt,j (Ot) - vf(et»'ét—l]

= <Eft,i [v.fft,i (gt)‘ét—l] - Eft,i[vf(ot”ét—l]v v.fﬁt,,‘ (et) - vf(et»
=0.

Hence, Assumption [2.1(A2)(ii) guarantees that

Ve, |V/5,(0)

2 2

) o°by o

€t711| S 2 - T
t

. 1 &
é] = g7 2Ea [IVfe. (00 - Vs b

which completes the proof. O
Proof of Lemma : The L-smoothness of f implies that the descent lemma holds; i.e., for all ¢ € N,

L
F(Br41) < £(8:) +(Vf(8r),0r11 — 0r) + 5 [|0r11 — 6.1,
which, together with 0;41 := 0; — 7.V f,(0:), implies that

F(0u1) < f(0:) — (V£ (8,),V f5,(6:)) + L”t NZXCHIR (17)

Proposition guarantees that

Be, [IV/5,001 €1 | = e, [IV5,(60) = V£(8) + V1(0)] |11
= Ee, [|IV/2,(6) = V10 [é-]
+ 2Ee, {(Vth (6:) — V£(6:),Vf(6)) étﬂ} (18)

+Ee, [IV/(8)IF

ét—l]
Z— + V@)

Taking the expectation conditioned on &;_1 = ét_l on both sides of , together with Proposition and
(18), guarantees that, for all k € N,

14
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Ee, [£(0r1)|€i-1] < £(8) = niEe, [(VS(0), V1, (00) €

P (191,600 |

2

2 2
< 100 - m V7@ + 2 (2 + w5617

Hence, taking the total expectation on both sides of the above inequality ensures that, for all t € N,

_02 2
s (1 - Lj) E[[V700)] <Ef(6) = f(Bria)] + Lzbtn -

Let T € N. Summing the above inequality from ¢ = 0 to t = 7" — 1 ensures that

Z o (1- ) &1 s601F] <1100 - s0n) + - T L.

which, together with Assumption A1) (the lower bound f* := %Zie[n] fr of f), implies that

T-1 _% - LT
Son (173 ) [Ivs0r] < o0 -1+ 5 g

Since 1 € [Nmin, Pmax), We have that

w-

1

anax Lo® &~ ¢
(1- ) Z wE[I9s6017] < 00—+ ZE S,
t=0
which, together with 7 € [Nmin, Pmax] C [0, %), implies that
T-1 * = T-1
(f (60) — f7) Lo? 7
SomE [IVIO)] < =4 L3
t=0 — Llmax — Llmax —g Yt
Therefore, from Zthfol nt # 0, we have
2(f(60) — ) 1 Lo? ) 2b_
min E[|Vf(8,)]%] < == —r Tt — = ; (19)
t€[0:T—1] 2 — IMmax Zt:O Nt 2 — Lnmax Zt o M
which implies that the assertion in Lemma [2.1] holds. O

A.2 Proofs of Theorems

We can also consider the case where batch sizes decay. For simplicity, let us set a constant learning rate n; =
n > 0 and a decaying batch size by = t+1’ where b > 0. Then, we have that Vp < ZtT;Ol % = (TH) — +00
(T — +00), which implies that convergence of mini-batch SGD is not guaranteed. Accordlngly7 thls paper
focuses on the four cases in the main text.

Proof of Theorem[3.1} Let nmax = 7.
[Constant LR (2)] We have that
T-1
Br = 1 i Vi = Zt 0 772 _n
Zt on T bZt on b
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[Diminishing LR (3)] We have that

T-1
2 Vi

which implies that

B 1 < 1
T T—1 5 = 1
o T’H (vT+1-1)
We also have that
T-1 T—1
1 dt
—§1+/ —— =1+1logT,
t41 o t+1
t=0
which implies that
T—1 1
Vi — N30 1 _ _n(l+logT)

bzgg¢%ifzde+1—n'

[Cosine LR (4)] We have

KE—-1 n N " N KE—-1 n .
— . KE max ~— //min KE max ~— //min cos | — | =
tz:% 1Mt = Tlmin + 5 + 9 ; x| E

From ngg cos| %)% = K — 1, we have

KE—-1 .
Z COS{J:K—l—COSW:K.

t=0 K] E
We thus have
KE-1 . ) _ )
Z = nminKE + TImax 5 TImin KE + TImax 5 nmmK
t=0
1
= 5{(77min + nmax)KE + (nmax - nmin)K}
2 (nmin + nmax)KE )

2

Moreover, we have that

KE—-1 KE-1 n .
; ’r]t2 = nr2ninKE + nrnin(nmax - nmin) tZ:: (1 + cos LKJ E)

0
KE-1 2
(nmax - 771'11111)2 t ™
~ e 2 7 1 3| — | —
+ 1 Z + cos AR

which implies that

KE-1 (77 — i )2 KE-1 ¢ T
Z 77? - nminnmaxKE + %KE + nrnin(nmax - nmin) Z COS \‘KJ E
t=0 t=0

KE-1 KE-1
(nmax - 771‘nin)2 t 71' (’r]max - nmin)2 2 t ™
+ 5 tz:; COs x| E + 1 tz:; cos aNok

From

(20)
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we have

KEZACOS2 tlx KE + 1 — cos? KE
— | == — — T=—".
FE 2 2

From , we have

KE-1
(nmin + Thme X)Q
D = KE A in (ax — i) +

t=0

(nmax - nmin)2 + (nmax - nmin)2 KE
2 4 2

— 37712nin + 277min77max + 37712nax KE + (nmax - nmin)(nmax + nmin)

8 2
Hence, we have
1 2
BT = §
fiboj_l e (nmin + nmax)KE
and
KE—-1
Vr = - ntz < 377'2mn + 20minNmax + 3nr2nax + Tlmax — Tlmin
by o A(Mmin + Nimax ) bKE

[Polynomial LR (5))] Since f(z) = (1 — z)? is monotone decreasing for z € [0,1), we have that

/01(1—x)pdx< ;Tzl<1—;)p,

t=0

which implies that

T/01(1x)pdx<j§(1;)p. (21)

Since fol(l —2)Pdx = p—il, || implies that

Accordingly,

T-1 T-1

p
Z N = (nmax - nmin) Z <1 - jt—,) + nminT

t=0 t=

T
> max ~ //min) "~ o + minT
(n n )p 1t

1
nmax - nmin
=|———+ "min T
< p+1 K )
— Thmax + nmiin
p+1

Since f(z) = (1 — x)? and g(x) = (1 — 2)?? are monotone decreasing for = € [0, 1), we have that

T-1 AP 1 = AN I 1
1- = = 1 —2)Pdz, — 1— — = 1 —x)%"d
( T) <+ a-o x,TZ< T) <qt [ 1-apa

t=0 t=0

Nl
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which imply that
T-1 \P 1 T—1 P\ 2P 1
(11— <1+T/ (1—a)Pde, Y (1-4 <1+T/ (1 —z)%dz. (22)
t=0 T 0 t=0 T 0

: 1 1
Since we have that [ (1 —z)Pdz = % and [ (1 —z)*Pdz = ﬁ, ensures that

- P T = £\ %P T
E 1—— <l4+ —-F, 1— = <1+ .
— p+1 & T 2 +1

t=

Hence,
T—1 — _
> 1 = (lmax — Mhoin) Z (1 - ) + 2(Tmax — Tmin) Z (1 - ) Nmin + M T
t=0 =0
< (Nmax — Mmin)* <1 + 2p1; 1) + 2(Nmax — Mmin) (1 + pil) Nnin + Tin T
R @D+ T + 1) + 20maxminpT + 0 (202 (T — 1) = 3p — 1)
B (p+1)(2p+1) '
Therefore,
By — 1 p+1
Zt 0 N ~ (Nmax + minp)T
and
Vp = Zt 0 77t
b Zt o "t
R+ D2p+ T + 1) + 20maxminpT + nfin (2% (T — 1) = 3p — 1)
B (2p + 1) (Nmax + Mninp) 0T
20" in t 2PminTmax + (P + Dipaxe . @+ D20+ Dp — 0+ D20 + D
(2p + 1) (Phmin + Mmax)b (2p + 1) (P9min + Mmax)bT
20N+ 2PMminTimax + (P + Dm0+ D (0hax — in)
(204 1) (Pmin + Nmax)b (P min + Tmax)bT
This completes the proof. O

We will now show the following theorem, which includes Theorem [3.2}

Theorem A.1 (Convergence rate of SGD using ) Under the assumptions in Lemma Algo-
m'thm using @ satisfies that, for all M € N,

win E[IVse)Y < 200 =L) 1, L P
te[0:T—1] 2 anax Zt o Mt 2 — L77max Zt —o M =0 by’
—_——
BT VT

where T = Z o0 KmEm, Enax = supyrey supme[0 M] Ey < 400, Kmax = SUP ey SUPpejo:m] Bm < +00,
a =min{a, by}, BT is defined as in @ and Vp is given by

3nmameaxEmax
a’T

37]mameaxEmax
2a¢(VT +1—1)
6n1211ameaxEmax
Qc(nmin + nmax)T

3(]7 + 1)7712nameaxEmax

Qc(nmax + nminp)T

[Constant LR (2)]

[Diminishing LR, (3))]
Vr

IN

([Polynomial BS (9)])

[Cosine LR (4)]

[Polynomial LR (F))]
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6nmameaxEmax
(7= 1)bT
maXKmaxEmax . o . .
I (/T TT-1 [Diminishing LR (3))]
25772) OK E - ([Exponential BS (10)))
max__Iax_mes [Cosine LR (4)]
(6 - 1)(77min + 77max)bOT‘

(9 + 1)002 i K masx Brmax '
(6 - 1)(77max + ’ﬂminp)boT [P01yn0mla1 LR ]

[Constant LR (2)]

Vr

IA

That is, Algom'thm using each of Polynomial BS (@ and Exponential BS (@) has the convergence rate

1o} \/1T> [Constant LR , Cosine LR 7 Polynomial LR (3)]
) 151;11 . EIVf(0:)l] = 1
el 0O Tl) [Diminishing LR ]

Proof of Theorem c Let M ¢ Nand T' = Z o KmEm, where Eyax = Suppsen SUPy,e(0:m] Em < 400,
K. = SUDP p7eN SUP g0 M] K, < 400, Sg := N ﬂ [O,K()E()), and S,, = NN [ m 1KkEk72k QKkEk)
(m € [M]). Let us consider using (). Let nmax = 7 and a = min{a, bo}.

[Constant LR (2)] Let m € [M]. We have that

1 1
DY : <Y ——
teSm tESm ——— t€Sm a’me | ———
(am ’7 - KkEk—‘ + b0> am ’V - KkEk—‘
k=0 k=0
< Z 1 < K E < KmaxEmaxi < KmaxEmaxi
- a®mc — amec a‘c me — ac me
teSn, -

and

KmaxEmax
Z Z = S/

tES() teSo

Accordingly, we have that

1 KmaxEmax M 1 KdeEmd-X +Oo 1
B deme (£ s (£ )

m=01teS,, m= 1 (23)
3KmaxEde
< P
Hence, we have that
S 7 30K imax Bnax
Vi = — - .
Et 0" =0 bt a’T
[Diminishing LR (3))] From (23], we have that
T-1
1 2
Vr = 0 > nl b
Zf 0 VitI t=0 (t+1)

Z 377KmaxEmax
2( T+171 bt_ZaC\/T+1fl)'
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[Cosine LR (4))] The cosine LR is defined for all m € [0: M] and all t € S,,, by

m—1 m—1
o MNmax — "Tmin t— k=0 KkEk ™
i (i | D 0] £

k=0
We have that

T-1

5 _
U Z l
t=0 t=0 be’
which, together with , implies that
T—1
t2 < 37712113)( Kmax Emax
—m——
=0 by a

Hence, we have that

T-1 o 2
It 6nmameax Emax

1 1
Zt o M =0 be = a(Mmin + Mmax) T

Vr =

[Polynomial LR (5)] We have that

T-1 o T-—1 D 2 T-—1
n; 1 t 1
= max min 1-— min <
b {(77 ax = 1) )( T) +n } Mo ) b

t=0 t=0 =0
which, together with , implies that
T71
U w
t=0 't a
Hence, we have that
T—1
V- L 1 30+ DK max Bmax
Zt o M i=g e T @ (Tmax + Nminp) T

Let us consider using . Let Nmax = 7-
[Constant LR (2))] We have that

Z Z = Z 6"bg = dmby

tESm tE€Sm m’rm-‘
KLE
K} Zk:o k™ k bO

which implies that

2y Lo Ko § L Koo
ls e T b A= 0m T bo(6-1)
Hence, we have that
T—1 o
V= e 30 < B

o ZtT:_oln by bo(6 — )T~

[Diminishing LR (3))] From (24)), we have that

Vi 1 Tz_:l 772 < TZ 1 nKmaxEmax(S
= el
St o = (t+1)b (\/T—i—l—l ) = by T 2(WVT+1—1)bo(6—1)

(24)
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[Cosine LR (4)] We have that

which, together with , implies that

Hence, we have that

_ 20t Komax Brnaxd
ZZ;_Ol M ¥ t (6 - 1)(77111111 + nmax)bOT

Bl L t=0 ¢
which, together with , implies that
S M MmascE max Binaxd
o 0 - b0(6 — 1)
Hence, we have that
1 % (04 D0l Kmax Bnaxd
Vr = <
Zt 0 Mt =0 bt (6_ 1)(nmax+nminp)b0
O
Example of b; and 7, satisfying is as follows:
[Polynomial growth BS and LR]
(25)

t c t 2
b, = S T - v
= (o | ) o= (o [ o)

where aq,as > 0; ¢; > 1, co > 0 such that ¢; — 2¢o > 1.

We next show the following theorem, which includes Theorem

Theorem A.2 (Convergence rate of SGD using (11)) Under the assumptions in Lemma Algo-
rithm using satisfies that, for all M € N,

win E[IVs6))?7) < 2L 1 L i
te[0:T—1] T D 2*L77max Zt P e
BT VT

where T = Z%:() KmEm; Emax = SUPjpreN Supme[O:M] Em < +OO; Emin = infMGN infmG[(]:M} Em < +OO,
Kimax = SUPpen SUPmejo:m] Km < 400, Kmin = infyeninfpeong K < 400, 1 = min{ag, Mo}, T =

max{asz, Mo}, b = min{a1,bo}, ¥ = 772 <1,

1
- g 0.2 T [Polynomial growth BS and LR ([25])]
BT S ﬂ ml% min .
oK By M [Exponential growth BS and LR (12)]
0 minf“min
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2-Kvmax-Emax(l + 02)ﬁ252

[(mimEmin77C2bc1 M1ite:
KmaxEmaan(S

[(mmfjmmbo(1 - ) M

That is, Algorithm[1| has the convergence rate

[Polynomial growth BS and LR (25))]
Vr <

[Exponential growth BS and LR (12)].

1
0 1+c2> [Polynomial growth BS and LR ([25))]
min E[V/@) =1 YM
€[ ] 0] M) [Exponential growth BS and LR (12)].
’y 2
Proof of Theorem : Let M €e Nand T = Zm o KmEp, where Epax = supyrey supm€[0 ) Em < +00,
Kpax = SUD preN SUPme[0: M] K, < 400, Sy :=NnN [O,K()Eo) and S,, = NN [ KkEkak OKkEk)

(m € [M]).
[Polynomial growth BS and LR (25)] We have that

XNH_E:GW{ZkZQ&J+%YZEXH@m+%W’

tESm t€Sm tESm

which, together with n = min{az, 70}, implies that

Sz S (mA 1) > % Ko EBain (m + 1)

tESm teESm
Hence,
M+1 co
7] KminEmin 1
Z Z e > 77 ?* KminEmin Z me? > =———M tez,
]. —+ C2
m=0tES,,

We also have that

2C2
asm 771t—‘+77> c
3 o 3 ( ? [ ko KnEr 0 <y (a2m+770)22.

[— C1
teSm bt teSm (a,lm ’th“‘—‘ + bO) teESH (alm + bO)
kk

k=0
Let 7 = max{az, o} and b = min{as,bp}. Then,

M 2 = —9c, M+1

262 M 262
Z Z % S ]:{max-Emax,Z)T1 Z m S }'{max-Emax?Z)T1 ﬁ
m=0teS,, ¢ = m=0 = m=1
2I(mawamaxn
= T
Hence,
1 1
Br = < e
Zt o Mt ﬂc2KminEminM 2
and
n; < 2KmaxEmax 772
Vr Z b, — K .aE .a C(2b:]0\;)1+62 ’
tOnttO t min mmﬂ 4

[Exponential growth BS and LR (12))] We have that

t M
Z Z m = Z Z ¥ ’7 k OKkEk—‘T}() 2 MoK minEmin Z 'Ym

m=0teS,, m=0teS,, m=0

22



Under review as submission to TMLR

M M o
-1 KninFri Koo E
- nOKmiIlErnin ’Y’y — 1 > "o mn’lyzmln’y Tlo mlné min”Y
and
M M 2m "z:thE-‘ Ny
Sy iy s = s
o = max maxb 5
m=01t€S,, © m=0teS,, m[ _ —‘ =
) Zk Ky By bo
2 M 2\ M 9
1
< KBy <W5) < Kmnox Brmax pe 7
0 m=o0 ol —7
where 4 = 52 < 1. Hence,
1 §
Br =
Zt o™ nOKmlnEmm’Y
and
T—-1
VT l K, max Emax Mo 1) '
Zt 0 Tt t=0 bt KminEminbo(l —’S/)’VM

Proof of Theorem[3.f} Theorem [3.4] follows immediately from Theorems [3.2] and

A.3 Comparisons of Case (ii) with Cases (iii) and (iv) for Training ResNet-18 on CIFAR100 using

Increasing Batch Size based on § =3

Learning Rate and Batch Size Schedular

12 on

Learning Rate

Batch Size (6=3.0)
— constant

increasing (y = 1.70)
— warmup constant (y=1.70)
~—— warmup cosine (y=1.70)

os AN

0 50 100 150 200 250 300
Epochs

(a) Learning rate 7 and batch size b versus epochs

ResNet-18 on CIFAR100

— constant
increasing
100 — warmup constant
— warmup cosine

Empirical Loss Value for Training

0 50 100 150 200 250 300
Epochs

(c) Empirical loss f(6.) versus epochs

Figure 6:

Batch Size

Full Gradient Norm of Empirical Loss for Training

10~

Accuracy Score for Test

ResNet-18 on CIFAR100

— constant

increasing
—— warmup constant
— warmup cosine

0 50 100 150 200 250 300
Epochs

(b) Full gradient norm ||V f (0.

ResNet-18 on CIFAR100

)|| versus epochs

— constant
increasing

—— warmup constant

— warmup cosine

0

0 50 100 150 200 250 300
Epochs

(d) Test accuracy score versus epochs

oo

(a) Increasing learning rates (nmin = 0.01) and increasing batch sizes based on § = 3, (b) full

gradient norm of empirical loss, (¢) empirical loss value, and (d) accuracy score in testing for SGD to train

ResNet-18 on CIFAR100 dataset.

Figures compare Case (ii) with Cases (iii) and (iv) for training ResNet-18 on CIFAR100 using increasing

batch size based on ¢ = 2.
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A.4 Training ResNet-18 on CIFAR10 and CIFAR100 using Doubling, Tripling, and Quadrupling Batch

Sizes
Learning Rate and Batch Size Schedular ResNet-18 on CIFAR10
a
- os:conan
o35 ] - BS0-20 T 2
Bs6-50 | :
85:0-40 " &
— LR: constant 2 &
030 (R y=1.40 [
o — WR:y=170 2
3 — Riy=190 g g — constant
@ a 6=2.0,y=140
e 22 £ T scioyminh
£ 3 : el e
0.20 2 107t
= g
o g
0.10 27
5 % % 5 %o % % ; % % o % % %
Epochs Epochs
(a) Learning rate n; and batch size b versus epochs (b) Full gradient norm ||V f(6.)|| versus epochs
ResNet-18 on CIFAR10 ResNet-18 on CIFAR10
100 —— constant . |
. el s
5 5 80
E &
5107 &
€10 <60
g S —— |
H o - — constant
T~ Y~ 5=2.0,y=140
w " B
olisyie
10-3 280 285 290 295 300
5 B3 " 5 % B % ; B B 5 % s B
Epochs Epochs
(c) Empirical loss f(6.) versus epochs (d) Test accuracy score versus epochs

Figure 7: (a) Increasing learning rates and doubling, tripling, and quadrupling batch sizes ((d,7) =
(2,1.4),(3,1.7), (4,1.9) satisfying v/§ > ) every 100 epochs, (b) full gradient norm of empirical loss, (c)
empirical loss value, and (d) accuracy score in testing for SGD to train ResNet-18 on CIFAR10 dataset.

Learning Rate and Batch Size Schedular ResNet-18 on CIFAR100
"
==~ BS: constant -
031 T 630 [ <
BS:6=4.0 g e
L o 2 5
030 LR y=1.40 [
. — triy-170 3
b — LRiy=1.90 g g o L
%"“5 ””””””””””””” 25 & —5:30:::{70
H z 5 — s-40y-190
H 210
020 g
0.15 ;
010 . o
; % 0 & % £ %o ; » % = % po %
Epochs Epochs
(a) Learning rate 7n; and batch size b versus epochs (b) Full gradient norm ||V f(6.)|| versus epochs
ResNet-18 on CIFAR100 ResNet-18 on CIFAR100
e o
107
g 60
; 107 i 50
§ gao
Lo £
3 = e ~—— constant
— 6=3.0,y=170
20 70 — 5=40,y=190
o T w
107
; 7 mn = % oY % ; » % = % o Y
s pods
(c) Empirical loss f(6.) versus epochs (d) Test accuracy score versus epochs

Figure 8: (a) Increasing learning rates and doubling, tripling, and quadrupling batch sizes ((d4,7) =
(2,1.4),(3,1.7), (4,1.9) satisfying v/§ > ) every 100 epochs, (b) full gradient norm of empirical loss, (c)
empirical loss value, and (d) accuracy score in testing for SGD to train ResNet-18 on CIFAR100 dataset.
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A.5 Training Wide-ResNet-28-10 on CIFAR100

Learning Rate and Batch Size Schedular Wide-ResNet-28-10 on CIFAR100
0.10 28
oot
—— diminishing 2 100
—— cosine £
008 — linear £
—— polynomial (p=2.0) s
Batch size [
£ 0.06 o K
E 2 :
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= 2 ¢ E
€ g 100
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2
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=
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Epochs Epochs
(a) Learning rate 7; and batch size b versus epochs (b) Full gradient norm ||V f(6.)|| versus epochs
Wide-ResNet-28-10 on CIFAR100 Wide-ResNet-28-10 on CIFAR100
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: I
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/ —— diminishing
= o
o 0 =
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5 3 > 5 % = % ; 3 g 5 % o i
Epochs Epochs
(c) Empirical loss f(6.) versus epochs (d) Test accuracy score versus epochs

Figure 9: (a) Decaying learning rates (constant, diminishing, cosine, linear, and polynomial) and constant
batch size, (b) full gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing
for SGD to train Wide-ResNet-28-10 on CIFAR100 dataset.

Learning Rate and Batch Size Schedular Wide-ResNet-28-10 on CIFAR100
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(a) Learning rate n; and batch size b, versus epochs (b) Full gradient norm ||V f(6.)|| versus epochs
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(c) Empirical loss f(8.) versus epochs (d) Test accuracy score versus epochs

Figure 10: (a) Decaying learning rates and increasing batch size every 30 epochs, (b) full gradient norm of
empirical loss, (c¢) empirical loss value, and (d) accuracy score in testing for SGD to train Wide-ResNet-28-10
on CIFAR100 dataset.
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Learning Rate and Batch Size Schedular Wide-ResNet-28-10 on CIFAR100
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(a) Learning rate n; and batch size b, versus epochs (b) Full gradient norm ||V f(6.)]|| versus epochs
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(c) Empirical loss f(6.) versus epochs (d) Test accuracy score versus epochs

Figure 11: (a) Increasing learning rates (Mmax = 0.2,0.5,1.0) and increasing batch size every 30 epochs, (b)
full gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for SGD to
train Wide-ResNet-28-10 on CIFAR100 dataset.

Learning Rate and Batch Size Schedular Wide-ResNet-28-10 on CIFAR100
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(a) Learning rate 7n; and batch size b, versus epochs (b) Full gradient norm ||V f(8.)|| versus epochs
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Figure 12: (a) Warm-up learning rates and increasing batch size every 30 epochs, (b) full gradient norm of
empirical loss, (c¢) empirical loss value, and (d) accuracy score in testing for SGD to train Wide-ResNet-28-10
on CIFAR100 dataset.
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Learning Rate and Batch Size Schedular Wide-ResNet-28-10 on CIFAR100
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Figure 13: (a) Increasing learning rates and increasing batch sizes based on 6 = 2,3, 4, (b) full gradient norm
of empirical loss, (c¢) empirical loss value, and (d) accuracy score in testing for SGD to train Wide-ResNet-
28-10 on CIFARI100 dataset.

A.6 Training ResNet-18 on Tiny ImageNet

Learning Rate and Batch Size Schedular ResNet-18 on Tiny ImageNet
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Figure 14: (a) Decaying learning rates (constant, diminishing, cosine, linear, and polynomial) and constant
batch size, (b) full gradient norm of empirical loss, (c¢) empirical loss value, and (d) accuracy score in testing
for SGD to train ResNet-18 on Tiny ImageNet dataset.
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Learning Rate and Batch Size Schedular
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Figure 15: (a) Decaying learning rates and increasing batch size every 30 epochs, (b) full gradient norm of
empirical loss, (¢) empirical loss value, and (d) accuracy score in testing for SGD to train ResNet-18 on Tiny
ImageNet dataset.
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Figure 16: (a) Increasing learning rates (fmax = 0.2,0.5,1.0) and increasing batch size every 30 epochs, (b)
full gradient norm of empirical loss, (¢) empirical loss value, and (d) accuracy score in testing for SGD to
train ResNet-18 on Tiny ImageNet dataset.
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Figure 17: (a) Warm-up learning rates and increasing batch size every 30 epochs, (b) full gradient
empirical loss, (¢) empirical loss value, and (d) accuracy score in testing for SGD to train ResNet-18
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Figure 18: (a) Increasing learning rates and increasing batch sizes based on § = 2, 3,4, (b) full gradient norm
of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for SGD to train ResNet-18 on
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