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Abstract

Recent years have seen fast emergence and adoption of chemical foundation models1

in computational material science for property prediction and generation tasks that2

are focused mostly on small molecules or crystals. Despite these paradigm shifts,3

integration of newly discovered materials in real world devices continues to be a4

challenge due to design problems. New candidate material must be optimized to5

achieve compatibility with other components in the system and deliver the target6

performance. Chemical foundation model benchmarks must evaluate their scope7

in predicting macro scale outcomes that are the result of chemical interactions8

in multi-variate design space. This study evaluates performance of chemical9

foundation models that are pre-trained primarily with SMILES of small molecules,10

in extrapolating learning from molecules to material design challenges across11

multiple length scale in batteries. Ten prediction models are trained covering12

molecular properties, formulations performance, and battery device measurement.13

Material representations from several foundation models are compared and their14

performance is benchmarked against conventional molecular representations such15

as Morgan Fingerprints. The study further examines their capacity to generalize16

to out-of-distribution cases by quantifying prediction errors for novel material17

designs that differ substantially from the training data. Finally, interpretability of18

the trained predictors is assessed by correlating actual outcomes and predictions19

to the chemical moieties in the datasets, with the aim of enabling researchers to20

interpret design rules in chemical space where model has high confidence.21

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



1 Introduction22

With evolving technologies and world economy demands, the field of material discovery has remained23

strongly relevant. Recently, this field has acquired critical importance as new sustainable materials are24

sought to overcome limitations of current material systems (1). Battery technologies are one strong25

societally relevant area of research where the scope of known materials appears to be exhausted, and26

new materials that can deliver high capacities, fast charging and longer cycle stability are continuously27

sought to meet future demands (2; 3). Despite shifts in material research paradigms from slow, labor-28

intensive experiments, to faster data-driven models (4; 1), it remains challenging to integrate new29

materials in real world devices. This is due to several reasons: (i) most computational models30

including simulations and machine learning (ML) can be used to determine intrinsic properties of31

materials based on their chemical structure, but lack in extrapolating their outcome to meso or macro32

scale phenomenon (5); (ii) device performance is governed by complex interactions among several33

constituent materials, presenting vast multivariate design space difficult to screen or optimize (6); (iii)34

limited data availability for extrinsic characteristics such as temperature and concentration dependence35

of multi-constituent properties (7). While ML models accelerate several prediction, generative and36

optimization problems in material science, the field continues to face challenges stemming from37

opaque nature of the model’s decision making, impractical proposed chemical structures, scarcity of38

quality datasets and inability to generalize out-of-distribution (OOD) (8).39

Foundation models (FMs) have emerged as promising models to overcome some aforementioned40

challenges of data scarcity and generalization. These are a class of large language models (LLMs),41

that are pre-trained on a textual or multi-modal representations of materials in open-source databases42

like PubChem and ZINC through self-supervised learning (9; 10). Studies have demonstrated that43

embedding space of these transformer models segregates chemically relevant features of molecules44

making them a suitable general-purpose tool for material science research. These base models can be45

utilized to perform specific functions based on smaller labeled datasets with fine-tuning or transfer46

learning (11). FMs are rapidly evolving, and their adoption in different application areas is on47

the rise (12). Large portion of studies report their use in property prediction and inverse design of48

small molecules or crystals (11). Prior studies also evaluate their scope in predicting performance49

metrics for formulations (mixtures of more than two molecules in certain compositions) based on50

electrolyte-performance experimental datasets curated from literature. Results demonstrate best51

prediction accuracies from foundation models in comparison to other data-driven models (13; 14).52

The research on representing advanced material systems such as formulations, composites and devices53

to learning models is currently in nascent stages due to less understood chemical phenomenon and54

lack of quality datasets. Prior studies on formulation datasets present strong evidence that foundation55

models can extrapolate molecular features to multi-constituent properties.56

In this work, we evaluate the capability of chemical FMs pre-trained with molecular representation57

SMILES (15), to predict material properties and performance resulting from interplay of complex58

chemical phenomenon at macroscale. We take battery electrolytes as an example where electrolyte59

engineering has emerged as a promising approach to improve battery performance metrics such60

as columbic efficiency (CE), cycle life and capacity. To achieve this, electrolytes are carefully61

designed based on the individual properties of constituent molecules, their collective performance62

as formulation and their compatibility with other battery components such as electrodes, separator63

and current collector. Electrolyte Genome initiative in 2015 accelerated electrolyte discovery cycle64

for new emerging battery chemistries by integrating computational workflows with experimentation65

(16). High-throughput screening enabled selection of candidate molecules meeting threshold values66

for HOMO-LUMO energy levels, toxicity and electrochemical stability. Once down-selection is67

done, laborious experimentation is required to find their right combination for a functional electrolyte68

formulation (17). Here, data availability is a primary roadblock in adoption of ML models since69

public datasets are inconsistent and industrial datasets are propriety (18). Thus, models that can be70

efficient with scarce datasets are desired in the domain.71

We use FMs to map electrolyte formulations along with device variables to key performance72

indicators at multiple length scale in batteries as illustrated in Figure 1. In particular,73

• We target prediction of key properties that are considered in electrolyte discovery such as74

molecular properties, formulation performance, manufacturability, surface contact char-75

acteristics and device performance. FMs are used to generate input features for these76
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multivariate battery datasets and predictive capability is compared with standard molecular77

representations like Morgan Fingerprints (MF ) (19).78

• We evaluate out-of-distribution (OOD) capability of prediction models for multi-variate79

battery datasets.80

• Next, extrapolation capability of the models to new material designs is estimated based on81

the semantic similarity between train and test data. This presents a method to approximate82

errors in model predictions across new material landscape.83

• We investigate interpretability of FM -based predictors and evaluate their promise in infer-84

encing new material design rules.85

Figure 1: (a) Scheme illustrating electrolyte design problems at multiple scales. (b) Schematic
summarizing the data representation for material design using pre-trained foundation models for
molecules.

2 Electrolyte Datasets86

Data availability is a major enabler for artificial intelligence (AI) workflows aiming for material87

discovery and design. To discover new material design that meets the performance goals, series88

of data driven predictors must be realized to allow material identification, characterization and89

optimization for achieving compatibility with the device. In this section, we describe battery datasets90

and performance indicators used across multiple length scale for electrolyte development. Most91

datasets are curated from literature and some are experimentally generated in the laboratory (see92

Supplementary Materials for details).93

Molecule screening: Battery electrolytes can comprise of one or more organic solvent, and one or94

more salt, which facilitate Li+ ion transport between electrodes and electrode surface conditioning95

to prevent unwanted degrading side reactions. Each electrolyte component plays a crucial role in96

this ecosystem and is therefore selectively picked based on certain properties like HOMO-LUMO97

levels and redox potentials. While there is plethora of labeled dataset available in literature for98
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these properties (20; 21; 16), we use a data from a singular source to train and evaluate model’s99

performance, i.e., D3TaLES, a database of DFT simulated properties of 40,000 organic molecules for100

battery systems (21).101

Manufacturability: Screened solvents and salts are combined in certain compositions to form102

electrolyte formulations. These formulations must be completely miscible (or soluble) to enable ion103

transport and manufacturing. We curate a heterogeneous dataset containing solubility information of104

single salt-single solvent mixtures, single salt-multi solvent formulations, and multi salt- multi solvent105

electrolytes, enabling development of a generalized model for electrolyte miscibility prediction. Refer106

to A.1 for details on electrolyte solubility data generation. For inclusion of heterogeneous datasets,107

we simplify approach to binary classification indicating insoluble (0) or soluble (1). The combined108

3,300 dataset contained rich diversity of salts, solvents and electrolyte mixtures.109

Formulation property: Another crucial property to consider during electrolyte design is ionic110

conductivity (IC). The salts dissociated into ions within an electrolyte form solvation structures that111

facilitate transport of charge between two electrodes and are responsible for battery’s charge-discharge112

kinetics. For IC, we use 18,000 reported empirical values of electrolyte formulations at different113

temperatures in published literature (7; 14). The dataset constitutes diverse set of solvents and salts.114

Surface contact characterization: An electrolyte interfaces with multiple internal components115

within a battery, including electrodes, separators, and current collectors. Consequently, optimizing116

the surface interactions between the electrolyte formulation and various device constituents is crucial117

for achieving peak performance. Traditionally, such evaluations have relied on the empirical expertise118

of domain experts and expensive computational simulations. Nevertheless, data collected from119

evaluation of one similar system can be used to automate future screening and assessment of120

electrolytes. We use one such in-house generated empirical dataset of 119 electrolyte formulations121

and their contact angle on four different separators to predict surface contact angle of electrolytes122

(see A.2 for experimental details).123

Device performance: The ultimate objective of developing a new battery electrolyte formulation is124

to achieve superior performance metrics, such as enhanced capacity, Coulombic Efficiency (CE), and125

cycle life. The public dissemination of such data is often limited, as its relevance is typically highly126

specific to a particular device configuration, thereby precluding its full adherence to FAIR (Findable,127

Accessible, Interoperable, and Reusable) data principles. To address this challenge, we leverage three128

distinct datasets from previous publications. The first dataset, derived from a study by Kim et al. (3),129

examines the relationship between electrolyte composition and CE across 150 datapoints. A second130

dataset containing 125 electrolytes, originally reported by Sharma et al. (6), explores the influence of131

electrolyte formulation on the specific capacity of a LiI conversion battery. Finally, the third dataset132

constituting 91 datapoints focuses on capacity metric for an interhalogen conversion (Li-ICl) battery,133

incorporating variations in cathode loading, separator type, and electrolyte compositions with fixed134

chemicals (18).135

3 Foundation Models for Material Representation136

Presently, there is a plethora of pre-trained transformer models in literature that are used for specific137

downstream scientific tasks (22; 10; 23; 24; 25). Particularly in the domain of chemistry and material138

science, sequence prediction, molecular property prediction and chemical description generation are139

a few tasks that are used in benchmarking FM . In this work, we aim to evaluate scope of FMs140

pre-trained on molecular representations in addressing material design challenges across multiple141

length scale in batteries. Comparative analyses were performed across multiple FM to elucidate the142

extent to which model performance and generalization behaviors are influenced by differences in143

pretraining modalities.144

SMI-TED: SMI-TED (SMILES Transformer Encoder Decoder) is an open-source chemical FM145

developed by IBM Research (10). This model has acquired a deep understanding of molecular146

structural representations through self-supervised pre-training on a vast dataset containing string147

representation (SMILES) of 91 million molecules, corresponding to 4 billion molecular tokens. Model148

has been previously validated to surpass the performance of conventional data-driven alternatives in149

downstream tasks.150
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MolT5: MolT5 (Molecular T5) is another open sourced chemical FM that is pre-trained with 100151

million SMILES along with 33,000 natural language description of molecules (25). By correlat-152

ing SMILES sequences to textual description of functionalities, the model has shown remarkable153

capabilities in manipulating molecules for discovery tasks.154

Galactica: Galactica is a large language model developed for general scientific tasks by Meta AI155

(24). The model is trained on large corpus of scientific literature, natural sequences of proteins and 2156

million chemical strings (SMILES). The inclusion of broad data makes is a reliable model for general157

scientific tasks such as equation probing, citation prediction, reasoning, etc.158

GraphMVP: GraphMVP is a graphs based pre-trained model that formulates a multi-view self-159

supervised learning, integrating both 2D molecular graphs and rich 3D spatial arrangements of atoms160

(26). The GraphMVP learning framework allows its encoder to integrate topological and geometric161

information within a unified embedding space. It is worth noting that GraphMVP uses much smaller162

graph/conformer datasets in representation learning.163

Morgan Fingerprints: As a benchmark, MF are employed as an established molecular descriptor164

(19). MF are highly effective for predicting molecular properties in ML models because they165

efficiently capture the substructural features of a molecule (27). By representing a molecule as a166

fixed-length binary vector, they encode the presence or absence of specific circular substructures and167

each atom’s chemical environments. The resulting numerical representation is both computationally168

efficient and chemically intuitive, making it an ideal input for various learning algorithms, which can169

then identify complex patterns and relationships that are predictive of a molecule’s behavior.170

For downstream tasks, transfer learning approach is adopted to retain chemical information from the171

pre-trained model as molecular embeddings, and map these to the output label using a regressor model172

such as feed forward neural networks (NN). It is noted that fine-tuning the pre-trained FM containing173

several million parameters with labeled datasets can be computationally expensive. Furthermore,174

fine-tuning current state-of-the-art FM is not expandable to the string representations of formulations175

used in ref(14) as these are vastly different from the molecule representations models were pre-trained176

on. Meanwhile, transfer learning approach is relatively robust and deliver consistently reliable results177

(see Table S1). Therefore, embeddings from the FMs and MF are used to represent individual178

molecules in the battery datasets. Derived molecular embeddings are aggregated into a system179

representation based on their composition, and additional design variables in the dataset such as180

separator, temperature and cathode loading (indicated in Figure 1b). Details of feature engineering181

for appropriate representation of molecules, formulations and devices are described in A.3. For each182

prediction task, feed forward neural network (NN) architectures are optimized and trained using183

FM -derived and aggregated features (described in A.4). NNs were trained using five independent184

80%-20% train–test splits, and prediction errors were quantified using the mean absolute error (MAE)185

metric.186

4 Results and Discussion187

4.1 Model performance188

We use FMs that recognize SMILES modality for training electrolyte design predictors due to ease of189

chemical data representation and their demonstrated best performance in predicting molecular proper-190

ties in several benchmark datasets (10). Prediction results for 10 battery datasets are summarized in191

Table 1 for FMs and MF . Tabulated are the average MAE across 5 random train-test splits for all192

models. Results show that SMI-TED and MolT5 based representations outperform MF in 7 out of193

10 datasets. Meanwhile predictive capability of Galactica and GraphMVP is observed to be the lowest194

in all 10 datasets. Particularly for molecular properties, where several prior studies have backed that195

2048 bits of MF are more predictive than domain-intuitive features (27), results in Table1 indicate196

SMI-TED outperforms MF . SMI-TED demonstrates notable computational efficiency despite using197

significantly smaller feature vector size (768). This efficacy of SMI-TED embeddings testifies that198

learnt representations encode more comprehensive set of structural features that are meaningful and199

comprehensive.200

In the context of more complex systems, such as formulations, we observed a systematic divergence201

in model performance based on data size. On datasets characterized by a large volume of data, such202

as solubility (3300 data) and IC (18,000 data), MF outperform all FM in the present evaluation,203
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categorizing miscible and immiscible electrolytes with 93.77% accuracy, and predicting log IC with204

MAE 0.0629, surpassing previously best reported results in ref (14). This outcome is consistent with205

the design of conventional ML methods that are optimized for large-scale data problems. MF ’s206

enhanced performance on these datasets suggests that the fundamental properties like IC and solubility207

are more contingent on specific functional groups in the system that are captured precisely by MF .208

This finding presents a critical consideration for the future development of foundation models.209

SMI-TED and MolT5 demonstrated clear and consistent advantage over MF in low data regimes (100210

to 200 data points), achieving superior predictive accuracy and robustness across these challenging211

multiscale problems. Particularly MolT5, having pre-trained on largest corpus of molecular data (100212

Million SMILES), has the lowest prediction errors for contact angle (MAE 12.944 Degrees) and LiI213

capacity ( MAE 22.408 mAh/g) datasets, and is second to MF for solubility (93.65% Accuracy) and214

IC (log IC MAE 0.0722) prediction. SMI-TED demonstrates next best predictive capability among215

FMs, reporting low prediction errors for all formulation datasets and outperforming all models for216

CE dataset (6; 3). These results highlight applicability of FM pretrained with molecules alone to217

multi-variate material design problems. Possible interpretation is that macroscale outcomes, such as218

electrolyte performance, are dictated by hierarchical interactions between chemical moieties. Ion219

aggregates and solvation substructures are examples of chemical moiety interactions responsible for220

charge-discharge kinetics in battery electrolytes. Models such as MolT5 and SMI-TED successfully221

predicts these macroscale outcomes due to having rich chemical vocabulary comprising of thousands222

of unique chemical tokens or moieties as reported in ref(10). Hence, latent space of SMILES-based223

FM is enriched with basic understanding of the chemical space formed by the combinations of224

chemical moieties in molecules (10). The downstream training utilizing aggregated formulation225

embeddings vs performance label is useful to correlate chemical moieties and compositions to the226

label, enabling multi-scale learning (see Figure 2). This knowledge transfer is particularly useful in227

low data regimes. Li-ICl Capacity data is a singular instance where MF outperforms FMs despite228

low data regime, highlighting FMs are likely not suitable for datasets lacking chemical variability.229

Results from MolT5 present additional interesting observations on multi-modal pre-training. Latent230

space of MolT5 is augmented with semantic understanding of molecular string representation,231

correlating molecule structures to specific functions (25). In Table 1, advantages of pretraining with232

multi-modal datasets is noted in multi-variate battery datasets but not in molecular datasets. Despite233

pre-training on largest SMILES corpus, predictive capability of MolT5 model is lower than SMI-TED234

for molecular properties, likely due to noted functional biases and scarcity of natural language235

datasets used during model development(25). Regardless, good predictive performance on multi-236

variate datasets underscore the critical importance of incorporating multi-modal data representations237

during the pretraining, enabling model to learn complex inter-dependencies and semantic nuances238

across datasets.239

Poor performance of Galactica in predicting material properties underline limitations of high gen-240

erality. Despite training on large corpus of scientific knowledge and 2 Million SMILES, model241

lacks sufficient specificity required to capture critical domain-relevant features. In lieu, GraphMVP242

also shows poor predictive power despite high specialization in molecular geometries. The model243

captures the 3-D topological and geometric features of molecules but lacks sufficient representational244

capacity to resolve finer substructural moieties and their inter-dependencies. Ultimately, the choice245

of representation is critical and must be determined by the nature of downstream task, quantity and246

the quality of the labeled dataset.247

Figure 2: Multi-step training capturing complex chemical interactions at multiple length scale.
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Table 1: Average mean absolute error (MAE) and prediction accuracy (%) for the battery datasets
using embeddings from foundation models

Model ⇓ Oxidation Reduction HOMO LUMO Solubility IC Contact Angle LiI Capacity CE Li-ICl Capacity
MAE Units → eV eV eV eV Accuracy % Log Degrees mAh/g Log mAh/g

SMI-TED 0.2559 0.5825 0.4405 0.3663 93.11 0.0910 16.243 22.449 0.185 47.93
MolT5 0.2679 1.7375 0.4451 0.3836 93.65 0.0722 12.944 22.408 0.188 37.57

Galactica 0.2714 0.7134 0.4802 0.4283 93.05 0.1035 23.982 25.011 0.225 39.570
GraphMVP 0.3355 0.6586 0.4987 0.4432 91.17 0.0939 22.099 29.051 0.209 42.451

MF 0.2594 0.5854 0.4580 0.3746 93.77 0.0629 17.815 28.990 0.223 32.24

4.2 Quantifying out-of-distribution performance248

Formulations present multi-variate design space with infinite possibilities emerging from several249

million known compounds, their inestimable potential combinations, and composition variations.250

Given this, electrolyte design discovery becomes inherently an OOD problem as novel formulations251

will most likely be in unseen or unfamiliar data. Thus, evaluating OOD performance is crucial252

for ensuring the reliability and robustness of models. One can define OOD based on divergence253

between train-test sets with respect to either input distribution (chemical and composition space) or254

output distribution (property values). Presented OOD evaluation of FMs for formulation and device255

performance datasets spans both input and output distributions.256

First, we start with most accepted OOD evaluation based on output distribution (28). We separate test257

sets based on tail ends of numerical outcome distribution, for instance, lower and upper end values of258

ionic conductivity, capacity, contact angle, etc. Tail-end distributions used as tests in 5 electrolyte259

regression datasets are highlighted in A.5. This distribution estimates extrapolation capabilities of260

the models beyond the training data. Results of OOD predictions are presented in Table 2 along261

with prediction uncertainty observed across 3 predictions. Both SMI-TED and MolT5 demonstrate262

best OOD prediction with each having lowest MAE in 2 out of 5 datasets. Both models also had263

high consistency in predicted outcomes as indicated by low uncertainty. Overall extrapolation across264

outcome values is promising for electrolyte datasets except for Li-ICl Capacity dataset where models265

perform poorly as seen in previous section.266

Table 2: Mean absolute error (MAE) for out-of-distribution predictions using foundation models and
Morgan Fingerprints

Model ⇓ CE Contact Angle LiI Capacity IC Li-ICl Capacity
MAE Units → Log Degrees mAh/g Log mAh/g

SMI-TED 0.0548 ±0.04 13.5216 ±0.41 27.128 ±0.70 0.1938 ±0.01 109.21 ±0.95
MolT5 0.0819 ±0.00 14.0539 ±0.98 31.2229 ±1.61 0.1669 ±0.01 108.2197 ±0.93

Galactica 0.4635 ±0.39 31.4742 ±0.82 28.2692 ±14.38 0.2262 ±0.08 110.391 ±1.50
GraphMVP 2.7758 ±2.36 34.8031 ±1.88 7.9974 ±4.17 0.7429 ±0.04 108.6611 ±0.03

MF 0.1295 ±0.05 19.3304 ±1.26 29.5058 ±2.22 0.1717 ±0.03 114.3028 ±31.07

Next, ML models frequently show poor transferability across chemical spaces and fall short in267

predicting properties for materials outside their training scope (29). Generalizable base models like268

FM have seen increased adoption in the community for these reasons (29). Unlike small molecules,269

where property can be traced to substructures and chemical motifs (10), cause-effect in formulations-270

like materials are more complex and intertwined in multi-variate dynamic inter-dependencies (14).271

Therefore, the boundaries of OOD for dynamic multi-variate chemical space is needed to be explored272

in a focused study. In present study, we use chemical similarity as a metric for characterizing OOD273

based on inputs. A chemical similarity score is employed as an approximation for how close test data274

is to training data in model’s latent space, and is estimated by calculating maximum of average cosine275

similarity (normalized) of each test datapoint with all training samples. Upon evaluating the chemical276

similarity between embeddings of train-test sets for tail-end OOD evaluation in Table S3, we observe277

there is an inverse trend between chemical similarity of OOD train-test sets and prediction MAE from278

the models, suggesting model prediction errors are high for chemically disparate test sets. These279

results confirm chemical similarity can be a reliable metric to determine distance between test and280

train sets in model’s latent space and characterize OOD.281

This trend paves the way to ascertain reliability of a model when extrapolating to unexplored regions282

of the materials design space. By error estimation, we can systematically pinpoint regions where283

model lacks predictive capability, facilitating intelligent allocation of resources toward targeted284

experimental validation and data enrichment. We create several subsets of train-test data for battery285
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across different length scale based on their relative distance in latent space of SMI-TED, given its286

reliable performance in both molecules and macroscale outcomes. These subsets were carefully287

curated to represent a different testing scenario than the ones used in the tail-end OOD evaluation288

such as distinct constituent count and chemicals. Relationship between semantic similarity between289

the input embeddings of train-test distributions (in red) across datasets is compared with prediction290

MAE for the respective train-test subset (in blue) in Figure 3. Trends confirm an inverse relationship291

between prediction MAE and semantic proximity of test data to the training samples, yielding a292

linear relationship MAE = m.Similarity + c that estimates the approximate MAE of model293

predictions on new data points by quantifying their Similarity to the model’s training data. The294

slope (m) and intercept (c) for analyzed datasets are presented in Table S4. This approach enables295

systematic assessment of prediction uncertainty and confidence for new data, thereby supporting296

efficient screening in materials design and discovery.297

Figure 3: Relationship between prediction MAE (in blue) and chemical similarity (in red) between
train and test datasets.

4.3 Interpretability298

A widely embraced strategy in materials discovery involves interpreting chemical data into useful299

knowledge and chemical insights, uncovering conclusive design rules and trends for decision making300

(30; 31). The efficacy of this approach is maximized when it leverages accurate empirical data301

or highly reliable model-generated outputs spanning the intended design landscape. However,302

interpretability is frequently hindered by the intrinsic opacity of AI models, which predominantly303

operate as “black boxes” with internal mechanisms that remain inaccessible to researchers. This304

challenge is further exacerbated as training pipeline grow in complexity, for instance, input features305

are derived from transformer model and post processed before the training (18). Quantifying model306

uncertainty in new material regions can facilitate users in identifying scope of the model. However,307

application of these models to uncover material design rules for interpretability remains a persistent308

challenge.309

We propose a method to evaluate interpretability of FM derived predictors by investigating correlation310

of performance outcomes with chemical moieties in the datasets and compare trends in train and311

test subsets. First, a list of several potential chemical substructures and their SMARTS (SMILES312

Arbitrary Target Specification) string is devised (32). Over 550 chemical substructures are defined313

including general and specific moieties. For instance, amine is a general functional group of material314

containing Nitrogen atom with lone pair of electrons, and specific derivatives for the same include315

aromatic amine, heterocyclic amine, tertiary amine etc. Chemical moieties in molecules are identified316

by matching SMARTS and presence of every moiety is indicated by a bit in a fixed length vector.317

This vector is taken as molecular fingerprints and aggregated for constituents in each formulation by318
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composition scaling and addition to represent concentration of each chemical moiety in a formulation.319

We adopt Spearman’s correlation coefficient (SCC) (33) to determine strength and direction of320

monotonic relationship between chemical moieties in the dataset and the outcome performance. The321

analysis provides meaningful insights towards the positive or negative influence of a chemical moeity322

in the formulation towards the outcome. Analysis is performed for data used in training and test set to323

correlate moieties to actual outcomes. Simultaneously, the analysis is also extended to the outcomes324

predicted by the models based on SMI-TED representation for the very same test set. Figure 4325

illustrates these correlations in three formulation datasets CE, LiI capacity and IC.326

Comparison of correlation analysis for model prediction outcomes and actual performance within327

test sets is meant to demonstrate the capability of model in deriving sound chemical insights across328

unseen datapoints. Particularly in Figure 4, examples highlighted in green illustrate cases where the329

correlations in the training and test datasets were opposite, and the model correctly predicted the330

opposing trends. Instances highlighted in yellow represent scenarios where the model accurately331

identified chemical trends for the outcome, despite these trends being absent from the training data.332

Cases highlighted in pink show perfect alignment among all three correlations. The remaining333

instances in white indicate correlations that the foundation model misinterpreted. This analysis334

reveals the chemical insights misunderstood by the model and allows users to selectively apply these335

models for design interpretation and discovery within a chemical space where confidence is justified.336

Figure 4: Correlation of chemical functional groups in formulations with performance in train
(orange) - test (blue) dataset, compared with correlation to the predicted outcomes (green) in test
data.

5 Conclusion337

In this work, we evaluate the scope of foundation models in addressing material design challenges338

across multiple length scale in batteries: molecules, formulations and device. Multiple foundation339

models are used to derive multi-variate representations of datasets by combining molecular represen-340

tations with other variables such as compositions, temperature, electrode and separator variations.341

Results show FMs pre-trained with large corpus of SMILES modality, such as SMI-TED and MolT5,342

can be used to extrapolate learning from moiety-level interactions to macroscopic outcomes like343

specific capacity, surface characteristics, and battery performance using scarce datasets. These models344
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are particularly useful in low data regimes where conventional molecular representations such as345

Morgan Fingerprints are found to be limiting. It is also observed that pre-training on multi-modal data346

representations has the scope to achieve superior performance in multi-variate material design space.347

The study also presents a method to analyze model’s ability to generalize out-of-distribution and348

quantify model prediction errors across new material designs based on chemical similarity between349

train-test sets. SMILES-based models demonstrated reliable out-of-distribution performance trends.350

However, it is noted that out-of-distribution criterion for dynamic multi-variate chemical space351

needs further comprehensive investigation. Lastly, we demonstrate an approach to identify chemical352

space where model confidence is high by correlating actual outcomes and predicted outcomes to the353

chemical moieties in the datasets. The approach allows dependable material design interpretation354

from the model for discovery tasks.355
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A Supplementary Material447

A.1 Solubility Data Collection448

Complete electrolyte miscibility is desired in batteries for manufacturing to ensure that the electrolyte composi-449

tion is consistent batch to batch and devoid of any phase separation for uniformity in battery performance at450

production scale. Therefore, it is essential to identify potentially miscible formulations from the vast combinato-451

rial design space. Heterogeneous solubility dataset is generated through experimentation:452

Single salt- single solvent solubility assessment: A dataset of binary system containing single salt and453

a single organic solvent was collected experimentally in the laboratory. The dataset spans five most popular454

electrolyte salts, LiNO3, LiFSI, LiBOB, LiFOB, and LiPF6, and up to fifty organic solvents. The experiments455

were conducted in an inert glovebox (Argon, < 0.1 ppm H2O and O2) and all salts were dried on a hotplate at456

150 °C, except for LiFSI and LiPF6 , which were used as received due to their lower thermal stability. Solvents457

were dried over 3Å molecular sieves for at least 24 hours prior to use. An upper salt concentration limit of 2M458

was set during the data collection. Salts were weighed to make 2M solution and the respective organic solvent459

was then added to decrease the concentration by a 0.25M interval until the solutions were visually clear without460

any precipitation or undissolved materials. The salt-solvent combination was considered insoluble if the solution461

was not clear at 0.25M concentration.462

Single salt- Multi solvent solubility assessment: The dataset has measurement of the highest molar con-463

centration of single salt dissolved in mixture of organic solvents. The data was curated during the development464

of electrolyte for our prior study where four salts and four solvents were shortlisted for lithium metal battery465

electrolyte (18). The four salts, LiCl, LiNO3, LiTFSI and LiBOB, are individually dissolved in solvent formula-466

tions containing different compositions of ethylene carbonate, Tetraglyme, 1,3-Dimethyl-2-imidazolidinone and467

1,3-Dioxolane. The solubility measurements were made as per the method described above.468

Multi salt-multi solvent solubility assessment: Conventionally, functioning and high-performing469

electrolytes are published in literature (3; 18; 6). We also share a few "failed" non-miscible electrolytes in470

our previous works (18; 14). We curated 300 electrolyte formulations from these studies. Simplification of471

solubility metric to (0) or (1) enabled inclusion and test across widespread electrolyte dataset. The combined472

dataset contained rich diversity of salts, solvents and electrolyte mixtures.473

Post processing: The solubility of single salt- single solvent pairs and single salt- multi solvent formulations474

were measured in terms of highest soluble molarity of the salt. To further add context to the solute molarity475

noted as metric in empirical dataset, data augmentation was done to interpolate solubility of target salt in each476

respective solvent system to include soluble(1) datapoints below highest soluble molarity, and insoluble(0)477

datapoints above recorded metric until the tested molarity. Next, the constituent moles in each formulation system478

were converted to molar percentage (mole%). Post data processing, there are 3300 electrolyte formulation vs479

solubility data that is used in the study.480

A.2 Contact Angle Measurement Experiments481

Electrolyte uptake by separator is an important parameter that determines ion transport and electrolyte per-482

formance. There are several separators in the commercial market based on constitution such as polymer and483

quartz. Within a single category like polymer separators, vast variations can be noted based in changes in484

polymer monomers and ratios. Electrolyte formulations are prepared inside an Ar-filled glove box (<1 ppm O2,485

<1 ppm H2O). Prior to mixing, solvents that are liquid at room temperature are dried using molecular sieves486

(Millipore Sigma, 3 ) and salts are dried on a hot plate at 100 °C. Electrolytes are mixed for 24 hrs prior to487

contact angle measurement. Contact angle measurements were conducted using an OCA video-based contact488

angle goniometer (FDS Future Digital Scientific Corporation) employing the sessile drop technique. Prior to489

measurement, the separator was carefully placed on a flat silicon wafer substrate to ensure a uniform surface. A490

2L droplet of electrolyte was then dispensed onto the separator surface and allowed to equilibrate for 800ms.491

Image analysis was performed on a selected video frame by manually defining the baseline and applying an492

ellipse-fitting algorithm to achieve optimal conformity to the droplet profile. The reported static contact angles493

represent the average of 3–5 independent measurements. All procedures were carried out with minimal air494

exposure to preserve the integrity of the electrolyte and ensure reproducibility. A dataset of 119 experiments is495

created using the electrolyte constituents, their respective concentrations, the experimentally measured contact496

angle, and a separator label. There are four different Celgard separators in the dataset, identified by unique label497

(1-3).498
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A.3 Feature engineering499

The application of data-driven models in material systems rely on the correct transformation of system into500

a numerical representation suitable for mathematical operations. Accordingly, the intricate description of a501

battery’s formulation, which includes the identity of constituent molecules, their composition, and additional502

configuration parameters, must be systematically converted into a relevant numerical descriptor. For this503

purpose, pretrained FMs are used to acquire molecular representations which are then transformed to represent504

multi-scale systems as described below:505

Molecules: FMs are used to derive numerical embeddings of molecules present in the target datasets similar to506

previous studies (10; 34).507

Formulations: Three formulation datasets including solubility, CE and LiI battery capacity map electrolyte508

formulations to the outcome. Formulation inputs constitute multiple constituents per datapoint and their509

respective composition as mole percent (mol%) in the mixture. Here, constituent molecules are transformed to510

FM embeddings, and are then scaled based on their mol% in the formulation to indicate their activity within the511

system. The scaled embeddings are aggregated to form a formulation descriptor by addition as also summarized512

in Figure 1. There are more than one method to aggregate formulation descriptor (18; 35; 13). Each method has513

its own merit and preferred use. We observe that scaled addition is most convenient aggregation as the resultant514

formulation descriptor size is invariant to the formulation constituent count. IC dataset contains temperature as515

an additional extrinsic variable that is concatenated with the formulation descriptor for training.516

Surface contact characterization: In present study, contact angle of electrolyte on several polymer-based517

separators are measured to assess their compatibility. For best representation, a FM for polymer can be518

used. However, since present study is focused on assessing molecular FM , separator representation has been519

simplified by the use of labels. There are four polymer separators in the dataset labeled 0-3. These labels are520

concatenated with formulation representation analogous to temperature in IC dataset.521

Device: Li-ICl battery dataset reports specific capacity of the battery with varying compositions of 8 electrolyte522

constituents for a range of active material loadings (30% to 60%) in cathode and varying separators (18).523

Electrolyte formulations are aggregated as defined for formulations and additional cell variables are concatenated524

to formulation descriptor as model inputs.525

For each dataset, neural network (NN) architectures are individually optimized and trained using the derived526

dataset inputs. This feature engineering for representing molecules, formulations and devices was consistent527

across all FMs and MF .528

A.4 Model Training529

It is noted that fine-tuning FMs such as SMI-TED with string representation of formulations could result in530

relatively higher mean squared error (MSE) than the transfer learning approach where formulation descriptor531

aggregates pre-learned molecular embeddings scaled with the composition. MSE for both the approaches are532

compared in Table S1 for IC dataset where finetuning achieves MSE 0.155 and transfer learning combined by533

NN regressor achieved MSE 0.025.534

Table S1: Mean squared error (MSE) for property prediction using SMI-TED

Dataset MSE
Fine-tuning Transfer learning

Reduction Potential 0.65 0.68
Oxidation Potential 0.13 0.14
Ionic Conductivity 0.155 0.025

Hyperparameter Tuning: Neural network (NN) architectures were individually optimized and trained535

using FM–derived molecular embeddings or formulation descriptor. NN with 2 or 3 hidden layers, with nodes536

500-250-100 or 500-250, and activation function relu was found optimum. Model was trained with learning rate537

0.0001, factoring 0.5 every 200 epochs of no reduction in loss function. The model was trained for maximum of538

2500 epochs or until 200 iterations of no improvement in validation loss. Batch size was varied based on data539

size. For datasets < 200, batch size was kept 1, batch size was 12 for dataset <5000, and batch size of 32 was540

used for data >5000. Regression loss was measured using mean squared error (MSE) and mean absolute error541

(MAE) was the used metric. For binary classification of electrolyte solubility, binary cross entropy was the loss542

function and accuracy was the metric.543
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Table S2: Tuning neural network hyperparameters for SMI-TED predictors
Dataset Hidden layers Activation Function MAE

LCE 500-250-100 relu 0.17
LCE 500-250 relu 0.16
LCE 500-250 sigmoid 0.32
LCE 500-250-100 sigmoid 0.32
LCE 500-250-250 relu 0.16
LCE 500-500 relu 0.17
LCE 250-100 relu 0.16
IC 500-250-100 relu 0.08
IC 500-250-100 sigmoid 0.22
IC 500-250 relu 0.09
IC 500-500 relu 0.10
IC 250-250-250 relu 0.08
IC 700-700 relu 0.11
IC 500-250-100-50 relu 0.08

HOMO 500-250-100 relu 0.43
HOMO 500-250-100 sigmoid 0.44
HOMO 500-250 relu 0.44
HOMO 250-100 relu 0.44
HOMO 500-500-500 relu 0.44
HOMO 250-250-250 relu 0.44

A.5 Out-of-distribution (OOD) evaluation544

Two-fold OOD evaluation is done: (1) tail end evaluation based on numerical distribution of outcome labels, and545

(2) chemical design evaluation based on chemical similarity between train-test sets. For tail-end evaluation, test546

set are created from the training data to include lower and upper end values. In certain cases such as in Figure S3547

and Figure S4, only one end of data was considered as the outcome label was highly biased towards the other548

end.549

Figure S1: Tail-end OOD and parity plots for ionic conductivity test sets using benchmarking models.
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Figure S2: Tail-end OOD and parity plots for contact angle test sets using benchmarking models.

Figure S3: Tail-end OOD and parity plots for LiI capacity test sets using benchmarking models.
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Figure S4: Tail-end OOD and parity plots for LCE test sets using benchmarking models.

Figure S5: Tail-end OOD and parity plots for Li-ICl Capacity test sets using benchmarking models.

Table S3: Chemical similarity of out-of-distribution test datasets with training data using embeddings
from foundation models and Morgan Fingerprints

Model CE Contact Angle LiI Capacity IC Li-ICl Capacity
SMI-TED 0.3324 0.6791 0.2557 0.9244 0.6021

MolT5 0.2592 0.5472 0.1868 0.8209 0.641
Galactica 0.1925 0.6556 0.4531 0.9178 0.681

GraphMVP 0.0514 0.1099 0.0619 0.1814 0.0206
MF 0.2198 0.3281 0.1144 0.751 0.4748
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Table S4: Parameters to estimate mean absolute error (MAE) in model prediction based on similarity
between test-train data for SMI-TED

Datasets Slope(m) Intercept(c)
HOMO -0.1602 0.5699
Ionic Conductivity -0.5724 0.6377
Contact Angle -19.6820 0.7601
Specific Capacity -24.9776 33.2050
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