
Learning Chern Numbers of Multiband Topological
Insulators with Gauge Equivariant Neural Networks

Longde Huang
Department of Mathematical Sciences
Chalmers University of Technology

University of Gothenburg
longde@chalmers.se

Oleksandr Balabanov
Department of Physics
Stockholm University

Hampus Linander
VERSES AI

Los Angeles, CA, USA
hampus.linander@verses.ai

Mats Granath
Department of Physics

University of Gothenburg
mats.granath@physics.gu.se

Daniel Persson
Department of Mathematical Sciences
Chalmers University of Technology

University of Gothenburg
daniel.persson@chalmers.se

Jan E. Gerken
Department of Mathematical Sciences
Chalmers University of Technology

University of Gothenburg
gerken@chalmers.se

Abstract

Equivariant network architectures are a well-established tool for predicting invariant
or equivariant quantities. However, almost all learning problems considered in
this context feature a global symmetry, i.e. each point of the underlying space is
transformed with the same group element, as opposed to a local gauge symmetry,
where each point is transformed with a different group element, exponentially
enlarging the size of the symmetry group. We use gauge equivariant networks to
predict topological invariants (Chern numbers) of multiband topological insulators
for the first time. The gauge symmetry of the network guarantees that the predicted
quantity is a topological invariant. A major technical challenge is that the relevant
gauge equivariant networks are plagued by instabilities in their training, severely
limiting their usefulness. In particular, for larger gauge groups the instabilities
make training impossible. We resolve this problem by introducing a novel gauge
equivariant normalization layer which stabilizes the training. Furthermore, we
prove a universal approximation theorem for our model. We train on samples with
trivial Chern number only but show that our model generalizes to samples with
non-trivial Chern number and provide various ablations of our setup.

1 Introduction

Geometric deep learning is a subfield of machine learning that takes advantage of the geometric
and topological structures inherent in complex data to construct more efficient neural network
architectures [1]. This approach has been successfully applied in a variety of domains, from medical
imaging [2] to high-energy physics [3] and quantum chemistry [4]. As we show in this paper, this
perspective is particularly valuable for studying topological insulators, a class of materials which has
been one of the main areas of interest in condensed matter physics over the last two decades [5, 6],

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

with a broad range of applications, including spintronics and magnetoelectronics [7], photonics [8],
quantum devices [9], and quantum computing [10, 11, 12].

The mathematical field of topology studies objects which cannot be deformed continuously into
each other. For instance, a doughnut is topologically equivalent to a coffee cup (the hole in the
doughnut becoming the hole in the handle) but not to a ball (which does not have a hole). Topological
insulators are materials whose interior is insulating yet whose surface or boundary is conducting,
with a prime example being materials characterized by a Chern number. The Chern number is an
integer topological quantity that originates from the fact that the phase of a quantum mechanical
wave-function is not a physically measurable quantity, thus corresponding to a gauge symmetry. The
fact that a material with finite Chern number cannot be continuously deformed into a material with
Chern number 0 without closing the energy gap (which make the materials insulating) implies that
there has to be a zero energy (conducting) state at the boundary.

So far, deep learning models have only been able to predict Chern numbers for materials with the
abelian gauge group U(1), corresponding to 1 filled band [13, 14]. However, these models fail to
learn Chern numbers for higher-rank gauge groups U(N), pointing to a fundamental challenge in the
multi-band regime N > 1.

We identify the gauge symmetry of the system as the central reason for the failure of traditional
approaches in the high-band setting and instead propose to use a gauge equivariant network for
learning topological invariants such as the Chern number. Consider a neural network N : X → Y
which maps a set of inputs x = (x1, . . . , xn) ∈ X (one for each site in a lattice) into a set of
outputs y = N (x1, . . . , xn) = (y1, . . . , yn)

⊤ ∈ Y . Usual group equivariant networks N satisfy the
constraint N (ρX(g)x1, . . . , ρX(g)xn) = (ρY (g)y1, . . . , ρY (g)yn)

⊤ ∀g ∈ G with symmetry group
G and representations ρX,Y on the input- and output spaces, respectively. In contrast, a network is
gauge equivariant if it is equivariant under the action of different elements of the symmetry group G
on the different inputs, i.e. N (ρX(g1)x1, . . . , ρX(gn)xn) = (ρY (g1)y1, . . . , ρY (gn)yn)

⊤.

In a discretized input domain X in d dimensions with p points per dimension, a gauge symmetry
effectively means that the total symmetry group of the problem consists of pd copies of G. This
exponential enlargement of the symmetry group explains why non-equivariant networks are often
unable to learn tasks which feature a gauge symmetry. We therefore claim that gauge-equivariant
networks are necessary to learn high-band Chern numbers of topological insulators. This is a novel
application for gauge equivariant neural networks, which thus far have mainly found applications
within the realm of lattice gauge theories for quantum chromodynamics. In particular, we cast the
problem at hand in a form in which we can use an adapted version of the Lattice Gauge Equivariant
Convolutional Neural Networks (LGE-CNNs) [15] to learn multiband Chern numbers.

However, LGE-CNNs have been plagued with instability problems. These networks feature bilinear
layers which frequently lead to exploding or vanishing gradients, making the training process
unstable. With growing depth or for larger gauge groups, this problem becomes more severe, limiting
the applicability of LGE-CNNs. We provide a solution by introducing a new gauge equivariant
normalization layer that stabilizes the training and leads to consistent convergence of deep networks.

Our main contributions are as follows:

• We resolve the instability issues of LGE-CNNs by introducing a new gauge equivariant
normalization layer. By training our purely local network with a novel combinations of loss
functions, we obtain a model which generalizes from trivial to non-trivial Chern numbers
and to unseen lattice sizes.

• We prove a universal approximation theorem for our architecture in this context which
shows that our model can approximate all U(N) gauge invariants arbitrarily well. We
perform ablations over different gauge equivariant architectures motivated by this theoretical
investigation.

• We provide a novel application of U(N)-gauge equivariant neural networks to the task of
learning higher-band Chern numbers. The resulting model can predict Chern numbers in
two dimensions for systems with at least N = 7 filled bands. In contrast, previous models
could only handle the trivial case of a U(1)-symmetry.

• Our model is also the first to be able to learn higher-dimensional (D = 4) Chern numbers of
multi-band topological insulators.

2

2 Literature Review

Equivariance under global matrix groups have been considered in [16] and for the orthogonal groups
in [17]. Gauge equivariant networks have been considered in two different settings. In the first setting,
the gauge symmetry concerns local coordinate changes in the domain of the feature maps [18, 19, 1].
This case was first studied theoretically in [20] and models respecting this symmetry were introduced
in [21, 22]. Applications of gauge equivariant networks to lattice quantum chromodynamics (QCD)
fall into the second setting, where the gauge transformations act on the co-domain of the feature maps.
An important problem in lattice QCD is sampling configurations from the lattice action, a problem
for which gauge equivariant normalizing flows [23, 24, 25, 26, 27] as well as gauge equivariant
neural-network quantum states [28] have been used. In contrast, our model is based on a gauge
equivariant prediction model developed for lattice QCD [15].

Machine learning for quantum physics has seen an explosive development over the last decade with
applications in condensed matter physics, materials science, quantum information and quantum
computing to name a few [29, 30, 31, 32]. In this brief overview we focus on deep learning and
applications to topological states of matter. Early ground-breaking work in this area includes [33]
that used supervised learning on small convolutional neural networks for identifying the ground state
of the Ising lattice gauge theory, as well as [34] that developed an unsupervised method “learning by
confusion” to study phase transitions including topological order of the Kitaev chain. Of particular
relevance to our work are the papers [35, 13] that used convolutional neural networks and supervised
learning to predict U(1) topological invariants. This work was later extended to an unsupervised
setting in [14, 36] by incorporating the scheme of learning by confusion and augmenting data using
topology-preserving deformations.

3 Learning Multiband Chern Numbers

In this section, we will introduce the learning task of predicting multiband Chern numbers. We
will first outline the features, targets, and relevant symmetries and then demonstrate that two naive
approaches of learning in this context fail. The discussion of how the learning task presented here is
related to the physics of multiband topological insulators is relegated to Appendix A.

3.1 Features, targets and symmetries

For most of our experiments, we consider features on a two-dimensional rectangular lattice Λ with
periodic boundary conditions with a total of Nx ×Ny = Nsite grid points. At each grid point (i, j),
we have features which are complex unitary N ×N matrices Wi,j ∈ U(N), the so-called Wilson
loops. These will be the inputs for most of our models. The Wilson loops can be written in terms of
Hermitian link matrices Ux

i,j , U
y
i,j ∈ CN×N which are attached to the edges in x- and y directions

connected to the grid point (i, j). The Wilson loops are given by a product of links along a 1 × 1
loop of edges,

Wi,j = Ux
i,jU

y
i−1,jU

x
i−1,j−1U

y
i,j−1 . (1)

The learning target is the Chern number C̃ defined by

C̃
(
{Wi,j | (i, j) ∈ Λ}

)
=

∑
(i,j)∈Λ

ImTr log Wi,j . (2)

It can be shown that C̃ defined in this way is an integer [37]. The learning task we want to study in this
article is to predict the Chern number C̃ ∈ Z given the Wilson loops {Wi,j | (i, j) ∈ Λ}. Although
the Chern number is given by the innocuous-looking equation (2), learning it is not straightforward
as demonstrated in the next subsections. We will show that the main reason for the difficulty of
learning (2) lies in the gauge invariance of C̃.

Due to the gauge invariance in the mathematical description of topological insulators, the Chern
number C̃ is invariant under transformations W ′

i,j = Ω†
i,jWi,jΩi,j of the Wilson loops, where

crucially the transformation matrices Ωi,j ∈ U(N) depend on the lattice site. The fact that the
symmetry holds even if the Wilson loops at different lattice sites are transformed with different

3

group elements of U(N) makes this into a gauge symmetry which is exponentially large in Nsite. In
summary, C̃ satisfies

C̃
(
{Wi,j | (i, j) ∈ Λ}

)
= C̃

(
{Ω†

i,jWi,jΩi,j | (i, j) ∈ Λ}
)

∀ {Ωi,j ∈ U(N)} . (3)

In the following two sections, we will demonstrate that two naive approaches to learn (2) both fail,
motivating the use of LGE-CNNs which are by construction equivariant with respect to local gauge
transformations.

3.2 Learning Chern numbers using ResNets

Using the fact that Tr log(X) = log det(X), it follows that the Chern number defined in (2) can
be written as a sum over Im log det(W). As a warmup to predicting Chern numbers, we start by
considering the simpler problem of predicting determinants of N ×N real matrices A.

2 3 4 5 6 7 8
Matrix size N

10 5

10 3

10 1

Re
la

tiv
e

er
ro

r

Figure 1: Best relative error of predicted matrix determinants for
polynomial architectures as a function of increasing matrix size.
The ablations include layers up to order 4. Dashed line indicates
relative error of a mean predictor. Architectures considered
include layers of order ≤ 4, and depth ≤ 4, containing terms of
up to order 16 by composition.

Table 1: Relative error δ for linear MLP
and bilinear residual architectures pre-
dicting the determinant of real 4×4 ma-
trices with uniform random elements in
[0, 1]. Standard MLP architecture fails
to learn the determinant relation.

Architecture Layers δ

MLP 2 1.02
3 1.02

Bilinear 2 0.01
3 0.01

We construct a dataset containing N ×N matrices with elements sampled from a uniform distribution
on the unit interval [0, 1]. As a baseline, we use a naive multilayer perceptron (MLP) with residual
connections f : RN2 → R, taking the matrix elements as input and predicting the determinant value.

The determinant of an N × N matrix can be expressed as an order N polynomial in the matrix
elements. Inspired by this, we consider higher order layers with structure

Aout
ij =

∑
k1,...,k2R

θij
k1...k2RAin

k1k2
. . . Ain

k2R−1k2R
, (4)

whereR is the number of factors ofA in the layer, and θk1...k2R
ij are learnable parameters. An architec-

ture containing layers with R = 2 will be referred to as bilinear. As the number of parameters grows
quickly with order R, we use layers of order R ≤ 4 and construct higher order terms by composition
of multiple layers and residual connections. Predicted determinants f(A) are evaluated against the
target determinant value det(A) using absolute relative error δ = |f(A)− det(A)| / |det(A)|.
Table 1 shows the failure of a residual MLP architecture to learn the determinant of 4 × 4 real
matrices with uniformly distributed elements on [0, 1], whereas a bilinear architecture with layers of
order 2 can achieve low relative error. Even though these higher order layers provide an architecture
that is expressive enough for determinants in small dimensions, they quickly run into issues for
larger matrices. Figure 1 shows that for matrix sizes corresponding to band size ≥ 4, learning the
determinant becomes prohibitively hard without better model priors. See Appendix F for more details
on the architecture ablation.

3.3 DeepSpec: Baseline Equivariant Model

The gauge symmetry of the system implies the equivalence relation

W ∼ Ω†WΩ, ∀Ω ∈ U(N) (5)

on the set of Wilson loops at each grid point. According to the spectral theorem, there is exactly
one diagonal matrix in each equivalence class (group orbit) with elements in U(1), up to reordering

4

Nch

Nx

Ny

Input: W

Nch

GEBL GEAct TrNorm

Nch

GEBL GEAct TrNorm

Nch

Trace Dense

Sum

Figure 2: Architecture of GEBLNet. In this figure, the rectangles represent the spatial grid, and the
number of layers (Nch) represents the number of channels (γ). Each circle represents a site on the
grid, and quantities on different sites do not interact with each other, until the last summation on
grids.

of the diagonal elements. In other words, the set of equivalence classes for this relation is given
by U(1)N/SN

. This fact has been used in the construction of gauge equivariant spectral flows [24].
Based on this, we construct a baseline invariant model DeepSpec.

DeepSpec preprocesses the flux data with a diagonalization, and then feeds the eigenvalues into a
DeepSet-like model, which is invariant under permutation of the input data, calculating locally the
output as N (λik)k = ρ

(∑
i ϕ(λ

i
k)
)

where ρ, ϕ are arbitrary neural networks, set as MLPs.

We train DeepSpec to predict Chern numbers on 5× 5 grids while gradually increasing the number
of bands. The data generation scheme is consistent with other experiments, as formally introduced in
Section 6. The model successfully learns Chern numbers for the trivial case (N = 1), but fails as the
number of bands increases and the system complicates. Specifically, the accuracy at evaluation drops
drastically to 44.7% for N = 2, and 7.8% for N = 4.

Rather than enforcing group equivariance layer-by-layer, DeepSpec predicts gauge-invariant quantities
by restricting its input to invariant features only. We attribute its failure to this structural characteristic
and thus aim to develop models that manifestly respect gauge equivariance.

4 Network Architecture

As demonstrated in the previous section, even hand-crafted polynomial architectures fail to learn a
simplified version of the Chern number. Furthermore, naive equivariant models that operate solely on
invariant features, such as DeepSpec, also struggle to effectively learn the target quantity. Motivated
by the performance of our gauge equivariant networks, we propose that this is due to the size of the
gauge symmetry present in this problem. Since the Wilson loops at each site can be transformed
independently, the total symmetry group is exponentially larger than the symmetry groups of more
traditional group equivariant networks.

The input data in our network is the set of discretized Wilson loops W γ
k ∈ U(N) and all equivariant

layers in our setup operator on tensors of this form. Here, we use the shorthand k = (i, j) for the
lattice point. The index γ counts the number of different orientations of the Wilson loops per site (in
2D, there is only one) for the input and serves as a general channel index in deeper layers. Hence, our
layers operate on complex tensors of the shape Nch ×Nsites ×N ×N .

4.1 Gauge equivariant layers

Our model is composed of the following equivariant layers, which were introduced in [15] as well as
our new gauge equivariant normalization layer.

GEBL (Gauge Equivariant Bilinear Layers) Given an input tensor W γ
k , the layer computes

a local quantity per site as W ′γ
k =

∑
µ,ν αγµνW

µ
kW

ν
k , where W ′ has Nout channels and αγµν ∈

CNin×Nin×Nout are trainable parameters. This is the primary feature mixing layer, since it not only
extends the feature space, and also captures higher order terms of the original flux data W , which is
demonstrated to be crucial for the model’s expressivity in Section 5. It can easily be checked that this
layer is equivariant. In practice, GEBL includes also a linear and a bias term which are obtained by

5

enlarging W with its Hermitian conjugate and the identity matrix. In order to merge two branches of
the network, two different W can also be used on the right-hand side.

GEAct (Gauge Equivariant Activation Layers) Given a tensor W γ
k , the layer maintains a channel

size of Nin and serves as an equivariant nonlinearity defined by W ′γ
k = σ(TrW γ

k)W
γ
k , where σ is a

usual activation function. In Section 5, we prove a universal approximation theorem for a certain type
of σ. In practice, we use σ(z) = ReLU(Rez) to avoid gradient vanishing; hence, we also refer to
this layer as GEReLU.

GEConv (Gauge Equivariant Convolution Layers) Given a tuple (Uµ
k ,W

γ
k), the layer performs

a convolution as
W ′γ

k =
∑
µ,d

∑
σ

ωµdγσ(U
dµ
k+dµ̂)

†Wσ
k+dµ̂U

dµ
k , (6)

where Udµ
k = Uµ

k . . . U
µ
k+(d−1)µ̂ and dµ̂ are the length-d vectors in the µ direction in the lattice.

Mathematically, this layer is capable of simulating the integral of the flux over any closed area,
therefore, it is the only layer in our setup that uses link variables Uγ

k and introduces interactions
between neighboring points.

The output W ′ of this layer has the shape Nout ×Nsite ×N ×N and ω are trainable weights of shape
Ndim × d×Nout ×Nin. Note that this layer does not update the links. Using the transformations (15)
of the link variables and the transformation of the Wilson loops (3), one can verify that this layer
is equivariant as well. When we take a zero convolution kernel size, the layer degenerates into an
equivariant linear layer that is completely local.

Trace Layer Given a tensor W γ
k , this layer maintains the channel size and takes the trace of the

fluxes as T γ
k = TrW γ

k . Since the trace is invariant under the transformations (3), this layer renders
the features gauge invariant. The output has the shape Nin ×Nsite.

Dense Layer After the trace layer, we perform a real valued linear layer on Tk as T ′
k = wRe ·

Re(Tk) + wIm · Im(Tk) + b for the final prediction, where wRe, wIm and b are trainable parameters.
The output features have shape Nout ×Nsite. Note that we only transform gauge invariant features
with this layer since it does not respect the gauge symmetry.

TrNorm (Trace Normalization Layers) The bilinear GEBL-layers introduced above quickly
lead to training instabilities when stacked deeply, as demonstrated in Section 6 below. To solve
this problem, we introduce a novel gauge-equivariant normalization layer which we insert after
the nonlinearities. Given an input tensor W γ

k , this layer maintains the channel size and performs a
channel-wise normalization as

W ′γ
k =

1

|meanγ{TrW γ
k }|

W γ
k . (7)

This operation is gauge equivariant since the prefactor is gauge invariant. After the normalization, the
output features W ′ satisfy meanγ{TrW ′γ

k } = eiϕk for some ϕk ∈ R.

4.2 Network Architecture

We now use the layers introduced in the previous section to construct three different equivariant
network architectures.

GEBLNet (Gauge Equivariant Bilinear Network) GEBLNet is a model that only operates locally,
i.e. the inputs are the fluxes W γ

k alone, and features at different sites only interact with each other in
the final sum. It processes the fluxes through repeated blocks of GEBL , GEAct , and TrNorm layers.
The outputs are then aggregated through a Trace layer, followed by a dense and a summation over
sites to produce the prediction on the Chern number. This is our primary model to study. An example
structure is shown in Figure 2.

6

GEConvNet (Gauge Equivariant Convolutional Network) GEConvNet is a model that features
GEConv layers, therefore takes both the links (Uµ) and the fluxes (W γ) as input. Each GEBL-
GEAct-TrNorm block, similar to that of GEBLNet, is paralleled by a GEConv-GEAct-TrNorm block,
with their outputs combined through a subsequent GEBL layer. This process is repeated through
several iterations, after which the resulting output is passed to the Trace- Dense- and sum sequence to
produce the final prediction. An example structure is shown in Figure 8 in Appendix E.

5 Theoretical Foundations of the Model

In this section we will present a universal approximation theorem for our models. We focus on
GEBLNet, whose inputs are solely Wk. Recalling the equivalence relation (3), the local quantity is in
fact a class function on the gauge group U(n), which is defined as follows:

Definition 5.1. A (complex) class function on a Lie group is a function f : G → C such that
f(g−1hg) = f(h), for all g, h ∈ G.

We denote the closed subspace formed with square integrable class functions as L2
class(G).

We now present our main theoretical result, which shows our model’s capability to learn an arbitrary
class function.

Theorem 5.2 (Universal Approximation Theorem). For a compact Lie group G, and with the
nonlinearity σ in GEAct taking the form σ̃ ◦ Re, where σ is bounded and non-decreasing, GEBLNet
could approximate any class function on G.

The full proof is presented in Section D in the Appendix. Here we present a brief sketch of it.

Sketch of Proof. Consider a network with M GEBL layers and sufficient width. One can show that
the output of such a network can approximate any function of the form

wiσ(Re
2M∑
j=0

αijTrgi)(
2M∑
j=0

αijTrgi) + b. (8)

However, this is equivalent to a one-layer MLP on the polynomials (Trg, . . . ,Trg2
M

). Therefore
it can approximate any function in {f(Trg, . . . ,Trg2

M

)} ∩ L2(G). By showing that the space⋃
M{f(Trg, . . . ,TrgM)} ∩ L2(G) is dense in L2

class(G), we conclude that (8) can approximate any
function in L2

class(G).

The argument above can be generalized to the following theorem in higher dimensions if we restrict
the group G to be the unitary group, and we discuss this further in Section D in the Appendix.

Theorem 5.3 (Higher-Dimensional UAT for GEBLNET). Denote the unitary group as G. Under
the same assumptions on the nonlinearity, GEBLNET can approximate arbitrarily well any square-
integrable function f ∈ L2(GK) such that

f(g1, . . . , gK) = f(hg1h
−1, . . . , hgKh

−1), ∀h ∈ G. (9)

6 Experiments

To assess the performance of our gauge-equivariant neural network, we conducted extensive numerical
experiments. As is standard in the literature in this domain [13, 34, 35, 38, 39], we train on
synthetically generated data. In particular, we train on uniformly distributed link variables and on
link variables whose distribution was adjusted for a specific distribution of Chern numbers. These
allow us to test our model on input configurations spanning a wide range of Chern numbers with
many filled bands, going beyond the Hamiltonian models common in the literature. Our datasets have
varying grid sizes and distributions and are based on 2D grids, unless otherwise stated. Data samples
have the form (Ux

k , U
y
k ,Wk)k.

7

6.1 Data Generation

General Dataset The data generation pipeline consists of two main steps. Given a grid size
Nx ×Ny , we first generate random link variables using the following algorithm:

1. For µ = x, y, draw Aµ
k ∼ N (0, 1)N×N .

2. Perform a QR decomposition on Aµ
k , decomposing it into the product of a unitary matrix

Uµ
k and a semi-definite matrix Σµ

k , Aµ
k = Uµ

k Σ
µ
k .

3. Use Uµ
k as the link variable for site k in direction µ.

It can be shown that the distribution of the links generated in this way is uniform on U(N), i.e. the
random variables U and gU are identically distributed for all g ∈ U(N). See Appendix C for details.
In the next step, we compute the fluxes Wk using (1) and the discrete Chern number C̃ using (2).
Ultimately, this yields a dataset of data-value pairs ((Uµ

k ,W
γ
k), C̃). We generate the training samples

continuously during training to avoid overfitting.

Diagonal Dataset For some of our experiments, we require control over the distribution of the
Chern numbers in our training data. To this end, we employ a different data generation strategy. Due
to the invariance of our model under gauge transformations, training samples which lie in the same
gauge orbit are equivalent in the sense that the parameter updates they induce are the same. This
implies that we can select an arbitrary element along the gauge orbit for training. As discussed in
Section 3.3, there is always a diagonal matrix with U(1)-valued components in the orbit. Therefore,
by training on these matrices in U(1)N and manipulating the distribution of the diagonal values,
we can generate datasets with different distributions of Chern numbers. Note that networks trained
on these datasets of course generalize to non-diagonal Wilson loops since they are gauge invariant.
Detailed discussions are provided in Appendix C.

6.2 Training and Evaluation

We adopt two loss functions for our training: the global loss Lg and the standard deviation loss
Lstd. Specifically, given the network f(W) and the Chern number C̃, Lg calculates ∥f(W)− C̃∥1.
Meanwhile, Lstd evaluates the entrywise standard deviation of the network output after the dense
layer, denoted as (g(Wk))k, namely ∥max({std(g(Wk)k), δ})− δ∥1, where δ is a hyperparameter,
set to 0.5 by default. The standard deviation loss is necessary to prevent the model from collapsing to
only zero outputs, since it forces the model to output locally different quantities. This is particularly
relevant for the training on trivial topologies only, as described below. The total loss function Ltotal
adds these two terms, Ltotal = Lg + Lstd.

For evaluation, we compute the accuracy by rounding the network output f(W) to the nearest integer
and comparing it with the Chern number C̃, unless otherwise stated. For the main GEBLNet, we set
a representative model configuration, whose GEBL layers and hyperparameters are listed in Table 4
in Appendix E.

6.3 Experimental Results

Model Comparison For a basic model comparison, we train GEBLNet, GEConvNet, and TrMLP
on 2D grids to learn Chern numbers by training on non-diagonal data. We find that GEBLNet
outperforms the other models in both accuracy and robustness, see Figure 9 in the Appendix.

Using a benchmark grid size of 5× 5 and N = 4 filled bands, GEBLNet achieved approximately
95% accuracy across different seeds, demonstrating strong robustness. In contrast, GEConvNet
struggled to learn correct results with positive kernel sizes, likely due to redundant information. We
also tested a degenerate GEConvNet with kernel size 0 (a local network) which performed better
than its non-local counterpart, but it remained less robust than GEBLNet. A complexity-accuracy
comparison in Figure 9 in Appendix C demonstrates the balance achieved by the representative model,
which performed consistently well while maintaining efficiency. Additionally, tests on increasing
band sizes (Table 2) show that the representative model effectively learns Chern numbers up to 7
bands, retaining high accuracy and robustness.

8

Table 2: Accuracy of GEBLNet trained and evaluated on a 52 grid.

Bands 4 5 6 7 8

Accuracy 95.9% 94.0% 93.8% 91.7% 52.5%

0k 1k 2k 3k
Epochs

0.00

0.05

0.10

G
lo

ba
l L

os
s

0.496

0.498

St
d

Lo
ss

Global Loss Lg

Standard Deviation Loss Lstd

0k 1k 2k 3k
Epochs

0.0

0.2

0.4

G
lo

ba
l L

os
s

0.0

0.2

0.4

St
d

Lo
ss

Global Loss Lg

Standard Deviation Loss Lstd

Figure 3: Comparison of global and standard deviation loss on validation data between the same two
runs learning on only zero Chern numbers, as shown in Figure 4. The former, without TrNorm layers,
collapses to zero local quantities everywhere, hence having a lower Lg on trivial samples, yet could
not generalize to nontrivial cases. In contrast, the latter, with TrNorm layers, succeeds in learning
global quantities and local differences simultaneously.

Training on Trivial Topologies In order to test the generalization properties of our model, we
train exclusively on topologically trivial samples. To achieve this, non-trivial samples were manually
filtered out during data generation, turning Lg effectively into ∥f(W)∥1.

GEBL
GEAct

TrN
orm

GEBL
GEAct

TrN
orm

GEBL
GEAct

TrN
orm Trac

e
Den

se

Layers

10 1

100

101

102

103

104

105

Va
lu

e

Mean Value of TrWk , Model without TrNorm Layers
Variance of TrWk , Model without TrNorm Layers
Mean Value of TrWk , Model with TrNorm Layers
Variance of TrWk , Model with TrNorm Layers

Figure 4: Comparison of statistics of ∥Trw′γ
k ∥

across each layer, between two training runs on
a 5× 5 grid, with 4 filled bands, with or without
TrNorm Layers.

0 100 200 300 400 500
Grid size for evaluation

90.0%

95.0%

100.0%

A
cc

ur
ac

y

GEBLNet Trained on 52 Grid
GEBLNet Trained on 82 Grid
GEBLNet Trained on 102 Grid

Figure 5: Comparison of model accuracy across
different grid sizes. Each run, represented by
markers of the same color, has identical configu-
rations, but is trained on grids of a different size.
Each line represents a linear regression on the
corresponding run.

A naive GEBLNet model without TrNorm layers can learn the Chern number for up to 3 bands but
fails for 4 bands and above, mostly outputting zero local quantities except for a few random seeds.
Analyzing the statistics of output traces (Figure 4) reveals that variance accumulates across layers,
reaching 105 after the final GEAct layer, causing numerical instability and vanishing gradients.

Introducing TrNorm layers mitigates this issue, stabilizing the variance and enabling the model to
learn Chern number of systems with more than 4 bands. Figure 3 compares the loss curves between
models with and without TrNorm layers, demonstrating the effectiveness of this modification.

Furthermore, training solely on trivial samples limits the model to learning the Chern number up
to a global, sample independent, rescaling factor, i.e. f(W) ≈ kC̃ for some k. To evaluate on
general samples, we compute the rescaling factor Rscale = mean(C̃)/mean(f(W)) using a large
set of non-trivial samples and scale the output as Rscalef(W). The training results demonstrated
prediction accuracy comparable to that of training on general datasets, as detailed in Table 3 in the
Appendix, we obtain an accuracy of approximately 94.1% on four bands, comparable to 95.9% for
training on data which includes non-trivial Chern numbers. Meanwhile, Figure 6a shows the model’s
ability to capture local quantities accurately.

Larger grids Due to its local structure, GEBLNet can process samples of arbitrary grid sizes.
We evaluate its generalization abilities by testing samples on larger grids using a representative

9

2.5 0.0 2.5
True Labels

2

0

2

O
ut

pu
ts

Rescaled Local Quantity
Std of Error:
 0.322

(a) 2D grids

0.2 0.0 0.2
True Labels

0.2

0.1

0.0

0.1

0.2

O
ut

pu
ts

Local Quantity
Std of Error:
 0.023

(b) 4D grids

Figure 6: Comparison of rescaled local outputs with local true values. Points closer to the reference
line y = x indicate higher accuracy in capturing local quantities.

model trained on smaller grids. The results, shown in Figure 5, indicate that our models show
excellent generalization ability to larger grid sizes. The moderate accuracy decrease we observe is
approximately linearly with the number of grid sites, likely due to accumulating errors. Training on
larger grids slightly improves performance but comes at a considerable computational cost.

Learning higher-dimensional Chern numbers We extended the task to learning Chern numbers
to 4D grids, whose definitions are significantly more complex than the 2D case (see Appendix B).
Furthermore, instead of a single flux Wk, there are C2

4 = 6 Wilson loops per site in 4D. Since for
higher dimensions, the discrete approximation to the Chern number is not necessarily an integer,
we cannot use the accuracy for evaluation. Therefore, we use the MAE (global loss Lg) instead,
see Figure 10 in the Appendix. With an MAE of around 0.25, our models can predict these higher-
dimensional Chern numbers well within rounding errors. Figure 6b demonstrates the predictions of
local quantities, showing good agreement with the targets.

7 Conclusions and Limitations

In this paper we have introduced a gauge equivariant model that can learn Chern numbers of certain
simplistic topological insulators. A limitation of our work is that we only consider Chern numbers
and not other topological invariants. We expect that our model can be adapted to a more general
setting, and thereby deal with other interesting invariants. In fact, our construction may be viewed
as a toy model for more interesting physical systems. Since even learning the Chern number is
challenging, this is a stepping stone towards more sophisticated condensed matter systems exhibiting
richer topological properties.

Acknowledgments

We want to thank David Müller and Daniel Schuh for inspiring discussions. The work of J.G. and D.P.
is supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by
the Knut and Alice Wallenberg (KAW) Foundation. M.G. acknowledges support from KAW through
the Wallenberg Centre for Quantum Technology (WACQT). The computations were enabled by
resources provided by the National Academic Infrastructure for Supercomputing in Sweden (NAISS),
partially funded by the Swedish Research Council through grant agreement no. 2022-06725.

10

References
[1] Jan E. Gerken et al. “Geometric Deep Learning and Equivariant Neural Networks”. In: Artificial

Intelligence Review (June 2023). ISSN: 1573-7462. DOI: 10.1007/s10462-023-10502-7.
arXiv: 2105.13926. (Visited on 06/04/2023).

[2] Erik J. Bekkers et al. “Roto-Translation Covariant Convolutional Networks for Medical Image
Analysis”. In: Medical Image Computing and Computer Assisted Intervention – MICCAI
2018. Ed. by Alejandro F. Frangi et al. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2018, pp. 440–448. ISBN: 978-3-030-00928-1. DOI: 10.1007/978-
3-030-00928-1_50.

[3] Alexander Bogatskiy et al. “Lorentz Group Equivariant Neural Network for Particle Physics”.
In: Proceedings of the 37th International Conference on Machine Learning. Ed. by Hal Daumé
III and Aarti Singh. Vol. 119. Proceedings of Machine Learning Research. PMLR, 2020,
pp. 992–1002. arXiv: 2006.04780.

[4] Alexandre Duval et al. A Hitchhiker’s Guide to Geometric GNNs for 3D Atomic Systems. Dec.
2023. DOI: 10.48550/arXiv.2312.07511. arXiv: 2312.07511 [cs, q-bio]. (Visited on
12/13/2023).

[5] Joel E Moore. “The birth of topological insulators”. In: Nature 464.7286 (2010), pp. 194–198.
DOI: 10.1038/nature08916.

[6] M. Z. Hasan and C. L. Kane. “Colloquium: Topological insulators”. In: Rev. Mod. Phys.
82 (4 Nov. 2010), pp. 3045–3067. DOI: 10.1103/RevModPhys.82.3045. URL: https:
//link.aps.org/doi/10.1103/RevModPhys.82.3045.

[7] Qing Lin He et al. “Topological spintronics and magnetoelectronics”. In: Nature materials
21.1 (2022), pp. 15–23. DOI: 10.1038/s41563-021-01138-5.

[8] Ling Lu, John D. Joannopoulos, and Marin Soljačić. “Topological photonics”. In: Nature
Photonics 8.11 (Nov. 2014), pp. 821–829. ISSN: 1749-4893. DOI: 10.1038/nphoton.2014.
248. URL: https://doi.org/10.1038/nphoton.2014.248.

[9] Kyung-Hwan Jin et al. “Topological quantum devices: a review”. In: Nanoscale 15.31 (July
2023). DOI: 10.1039/d3nr01288c.

[10] Paolo Zanardi and Mario Rasetti. “Holonomic quantum computation”. In: Physics Letters A
264.2-3 (1999), pp. 94–99.

[11] Chetan Nayak et al. “Non-Abelian anyons and topological quantum computation”. In: Rev.
Mod. Phys. 80 (3 Sept. 2008), pp. 1083–1159. DOI: 10.1103/RevModPhys.80.1083. URL:
https://link.aps.org/doi/10.1103/RevModPhys.80.1083.

[12] Carlo W. J. Beenakker. “Search for Majorana fermions in superconductors”. In: Annual Review
of Condensed Matter Physics 4 (2013), pp. 113–136. DOI: 10.1146/annurev-conmatphys-
030212-184337. URL: https://doi.org/10.1146/annurev-conmatphys-030212-
184337.

[13] Ning Sun et al. “Deep learning topological invariants of band insulators”. In: Phys. Rev.
B 98 (8 Aug. 2018), p. 085402. DOI: 10.1103/PhysRevB.98.085402. URL: https:
//link.aps.org/doi/10.1103/PhysRevB.98.085402.

[14] Oleksandr Balabanov and Mats Granath. “Unsupervised learning using topological data
augmentation”. In: Phys. Rev. Res. 2 (1 Mar. 2020), p. 013354. DOI: 10.1103/PhysRevRes
earch.2.013354. URL: https://link.aps.org/doi/10.1103/PhysRevResearch.2.
013354.

[15] Matteo Favoni et al. “Lattice Gauge Equivariant Convolutional Neural Networks”. In: Physical
Review Letters 128.3 (Jan. 2022), p. 032003. DOI: 10.1103/PhysRevLett.128.032003.
arXiv: 2012.12901. (Visited on 03/29/2023).

[16] Marc Finzi, Max Welling, and Andrew Gordon Wilson. “A practical method for constructing
equivariant multilayer perceptrons for arbitrary matrix groups”. In: International conference
on machine learning. PMLR. 2021, pp. 3318–3328.

[17] Soledad Villar et al. “Scalars are universal: Equivariant machine learning, structured like clas-
sical physics”. In: Advances in Neural Information Processing Systems 34 (2021), pp. 28848–
28863.

[18] Michael M. Bronstein et al. Geometric Deep Learning: Grids, Groups, Graphs, Geodesics,
and Gauges. Apr. 2021. arXiv: 2104.13478 [cs, stat]. (Visited on 04/29/2021).

11

https://doi.org/10.1007/s10462-023-10502-7
https://arxiv.org/abs/2105.13926
https://doi.org/10.1007/978-3-030-00928-1_50
https://doi.org/10.1007/978-3-030-00928-1_50
https://arxiv.org/abs/2006.04780
https://doi.org/10.48550/arXiv.2312.07511
https://arxiv.org/abs/2312.07511
https://doi.org/10.1038/nature08916
https://doi.org/10.1103/RevModPhys.82.3045
https://link.aps.org/doi/10.1103/RevModPhys.82.3045
https://link.aps.org/doi/10.1103/RevModPhys.82.3045
https://doi.org/10.1038/s41563-021-01138-5
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1039/d3nr01288c
https://doi.org/10.1103/RevModPhys.80.1083
https://link.aps.org/doi/10.1103/RevModPhys.80.1083
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1103/PhysRevB.98.085402
https://link.aps.org/doi/10.1103/PhysRevB.98.085402
https://link.aps.org/doi/10.1103/PhysRevB.98.085402
https://doi.org/10.1103/PhysRevResearch.2.013354
https://doi.org/10.1103/PhysRevResearch.2.013354
https://link.aps.org/doi/10.1103/PhysRevResearch.2.013354
https://link.aps.org/doi/10.1103/PhysRevResearch.2.013354
https://doi.org/10.1103/PhysRevLett.128.032003
https://arxiv.org/abs/2012.12901
https://arxiv.org/abs/2104.13478

[19] Maurice Weiler et al. Equivariant and Coordinate Independent Convolutional Networks. A
Gauge Field Theory of Neural Networks. 2023. DOI: 10.1142/14143.

[20] Miranda C. N. Cheng et al. “Covariance in Physics and Convolutional Neural Networks”. In:
arXiv:1906.02481 [hep-th, stat] (June 2019). arXiv: 1906.02481 [hep-th, stat]. (Visited
on 06/13/2019).

[21] Taco S. Cohen et al. “Gauge Equivariant Convolutional Networks and the Icosahedral CNN”.
In: arXiv:1902.04615 [cs, stat] (Feb. 2019). arXiv: 1902.04615 [cs, stat]. (Visited on
06/13/2019).

[22] Pim de Haan et al. “Gauge Equivariant Mesh CNNs: Anisotropic Convolutions on Geometric
Graphs”. In: arXiv:2003.05425 [cs, stat] (Mar. 2020). arXiv: 2003.05425 [cs, stat].
(Visited on 03/12/2020).

[23] Gurtej Kanwar et al. “Equivariant Flow-Based Sampling for Lattice Gauge Theory”. In:
Physical Review Letters 125.12 (Sept. 2020), p. 121601. DOI: 10.1103/PhysRevLett.125.
121601. (Visited on 10/18/2024).

[24] Denis Boyda et al. “Sampling Using SU(N) Gauge Equivariant Flows”. In: Physical Review
D 103.7 (Apr. 2021), p. 074504. DOI: 10.1103/PhysRevD.103.074504. (Visited on
10/18/2024).

[25] Kim A. Nicoli et al. “Estimation of Thermodynamic Observables in Lattice Field Theories
with Deep Generative Models”. In: Physical Review Letters 126.3 (Jan. 2021), p. 032001. DOI:
10.1103/PhysRevLett.126.032001. (Visited on 06/14/2023).

[26] Simone Bacchio et al. “Learning Trivializing Gradient Flows for Lattice Gauge Theories”. In:
Physical Review D 107.5 (Mar. 2023), p. L051504. DOI: 10.1103/PhysRevD.107.L051504.
(Visited on 10/19/2024).

[27] Ryan Abbott et al. “Sampling QCD Field Configurations with Gauge-Equivariant Flow
Models”. In: Proceedings of The 39th International Symposium on Lattice Field Theory
— PoS(LATTICE2022). Vol. 430. SISSA Medialab, Apr. 2023, p. 036. DOI: 10.22323/1.430.
0036. arXiv: 2208.03832. (Visited on 01/16/2025).

[28] Di Luo et al. “Gauge Equivariant Neural Networks for Quantum Lattice Gauge Theories”. In:
Physical Review Letters 127.27 (Dec. 2021), p. 276402. DOI: 10.1103/PhysRevLett.127.
276402. arXiv: 2012.05232. (Visited on 01/16/2025).

[29] Giuseppe Carleo et al. “Machine learning and the physical sciences”. In: Reviews of Modern
Physics 91.4 (Dec. 2019). ISSN: 1539-0756. DOI: 10.1103/revmodphys.91.045002. URL:
http://dx.doi.org/10.1103/RevModPhys.91.045002.

[30] Juan Carrasquilla. “Machine learning for quantum matter”. In: Advances in Physics: X 5.1
(Jan. 2020), p. 1797528. ISSN: 2374-6149. DOI: 10.1080/23746149.2020.1797528. URL:
http://dx.doi.org/10.1080/23746149.2020.1797528.

[31] Mario Krenn et al. “Artificial intelligence and machine learning for quantum technologies”.
In: Phys. Rev. A 107 (1 Jan. 2023), p. 010101. DOI: 10.1103/PhysRevA.107.010101. URL:
https://link.aps.org/doi/10.1103/PhysRevA.107.010101.

[32] Anna Dawid et al. Modern applications of machine learning in quantum sciences. 2023. arXiv:
2204.04198 [quant-ph]. URL: https://arxiv.org/abs/2204.04198.

[33] Juan Carrasquilla and Roger G. Melko. “Machine learning phases of matter”. In: Nature
Physics 13.5 (Feb. 2017), pp. 431–434. ISSN: 1745-2481. DOI: 10.1038/nphys4035. URL:
http://dx.doi.org/10.1038/nphys4035.

[34] Evert P. L. van Nieuwenburg, Ye-Hua Liu, and Sebastian D. Huber. “Learning phase transitions
by confusion”. In: Nature Physics 13.5 (Feb. 2017), pp. 435–439. ISSN: 1745-2481. DOI:
10.1038/nphys4037. URL: http://dx.doi.org/10.1038/nphys4037.

[35] Pengfei Zhang, Huitao Shen, and Hui Zhai. “Machine Learning Topological Invariants with
Neural Networks”. In: Physical Review Letters 120.6 (Feb. 2018). ISSN: 1079-7114. DOI: 10.
1103/physrevlett.120.066401. URL: http://dx.doi.org/10.1103/PhysRevLett.
120.066401.

[36] Oleksandr Balabanov and Mats Granath. “Unsupervised interpretable learning of topological
indices invariant under permutations of atomic bands”. In: Machine Learning: Science and
Technology 2.2 (2020), p. 025008. DOI: 10.1088/2632-2153/abcc43.

[37] Takahiro Fukui, Yasuhiro Hatsugai, and Hiroshi Suzuki. “Chern numbers in discretized Bril-
louin zone: efficient method of computing (spin) Hall conductances”. In: Journal of the
Physical Society of Japan 74.6 (2005), pp. 1674–1677. DOI: 10.1143/JPSJ.74.1674.

12

https://doi.org/10.1142/14143
https://arxiv.org/abs/1906.02481
https://arxiv.org/abs/1902.04615
https://arxiv.org/abs/2003.05425
https://doi.org/10.1103/PhysRevLett.125.121601
https://doi.org/10.1103/PhysRevLett.125.121601
https://doi.org/10.1103/PhysRevD.103.074504
https://doi.org/10.1103/PhysRevLett.126.032001
https://doi.org/10.1103/PhysRevD.107.L051504
https://doi.org/10.22323/1.430.0036
https://doi.org/10.22323/1.430.0036
https://arxiv.org/abs/2208.03832
https://doi.org/10.1103/PhysRevLett.127.276402
https://doi.org/10.1103/PhysRevLett.127.276402
https://arxiv.org/abs/2012.05232
https://doi.org/10.1103/revmodphys.91.045002
http://dx.doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1080/23746149.2020.1797528
http://dx.doi.org/10.1080/23746149.2020.1797528
https://doi.org/10.1103/PhysRevA.107.010101
https://link.aps.org/doi/10.1103/PhysRevA.107.010101
https://arxiv.org/abs/2204.04198
https://arxiv.org/abs/2204.04198
https://doi.org/10.1038/nphys4035
http://dx.doi.org/10.1038/nphys4035
https://doi.org/10.1038/nphys4037
http://dx.doi.org/10.1038/nphys4037
https://doi.org/10.1103/physrevlett.120.066401
https://doi.org/10.1103/physrevlett.120.066401
http://dx.doi.org/10.1103/PhysRevLett.120.066401
http://dx.doi.org/10.1103/PhysRevLett.120.066401
https://doi.org/10.1088/2632-2153/abcc43
https://doi.org/10.1143/JPSJ.74.1674

[38] Yanming Che et al. “Topological quantum phase transitions retrieved through unsupervised
machine learning”. In: Phys. Rev. B 102 (13 Oct. 2020), p. 134213. DOI: 10.1103/PhysRevB.
102.134213. URL: https://link.aps.org/doi/10.1103/PhysRevB.102.134213.

[39] Mathias S. Scheurer and Robert-Jan Slager. “Unsupervised Machine Learning and Band
Topology”. In: Phys. Rev. Lett. 124 (22 June 2020), p. 226401. DOI: 10.1103/PhysRevLett.
124.226401. URL: https://link.aps.org/doi/10.1103/PhysRevLett.124.226401.

[40] C Procesi. “The Invariant Theory of n × n Matrices”. In: Advances in Mathematics 19.3 (Mar.
1976), pp. 306–381. ISSN: 0001-8708. DOI: 10.1016/0001-8708(76)90027-X. (Visited on
10/17/2025).

13

https://doi.org/10.1103/PhysRevB.102.134213
https://doi.org/10.1103/PhysRevB.102.134213
https://link.aps.org/doi/10.1103/PhysRevB.102.134213
https://doi.org/10.1103/PhysRevLett.124.226401
https://doi.org/10.1103/PhysRevLett.124.226401
https://link.aps.org/doi/10.1103/PhysRevLett.124.226401
https://doi.org/10.1016/0001-8708(76)90027-X

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The key claims made in the abstract and introduction align with theoretical
analysis and the experimental findings presented in Sections 5 and 6.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the proposed model are discussed in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

14

Justification: The complete proof and the full set of assumptions of the sole theoretical result,
which is the universal approximation theorem of our paper, are provided in Appendix D.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The complete code necessary to reproduce the main experimental results
is provided in the supplementary material as an anonymized zip file. This includes all
preprocessing scripts, model checkpoints, and evaluation scripts, along with instructions for
replicating the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

15

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The anonymized code is submitted as supplementary material, and will be
deanonymized and made public once the paper is accepted.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: While the main text does not explicitly list the optimizer and hyperparameter
configurations, the complete experimental setup, including optimizer, learning rate, batch
size, and training epochs, is provided in the supplementary material as default settings.
These configurations reflect the settings used for all reported experiments. Additionally,
experiment-specific settings deviating from the default configuration are clearly stated in
Section 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The reported results do not include error bars or confidence intervals, as the
compute required for a quantitative variability analysis exceeds our budget. Qualitatively,
we confirmed robust performance against frequently diverging runs as shown in Figure 3.
Guidelines:

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The general computational resources used for the experiments, including
GPU/CPU specifications and runtime estimates, are documented in Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in this paper conform with the NeurIPS Code of Ethics
in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]

17

https://neurips.cc/public/EthicsGuidelines

Justification: The motivation for this work lies in theoretical physics, specifically on the
topological invariants of multiband systems. The research is foundational in nature and
therefore not directly linked to specific applications with potential societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The dataset used in this work is entirely synthetic and generated through an
original data generation scheme that does not involve real-world data or sensitive information.
Consequently, there is no identifiable risk of misuse and no specific safeguard is necessary.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The proposed network architecture is conceptually inspired by the Lattice
Gauge Equivariant Convolutional Neural Networks (LGE-CNNs) introduced in [15], which
we have credited at various point in the manuscript.

18

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code submitted as supplementary material will be appropriately docu-
mented such that the novel normalization layer can be used by the community.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve crowdsourcing, human subjects, or any data
collected from human participants. The dataset used in this work is synthetically generated
and does not involve human intervention or personal data collection.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

19

paperswithcode.com/datasets

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [N/A] The study does not involve human subjects or sensitive data collection
that would require IRB approval. All datasets used in this work are synthetic and generated
independently without involving real-world participants or personal data.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The research methodology does not involve the use of Large Language Models
(LLMs) as a core component. LLMs were not utilized in the model development, data
generation, experimental analysis, or any scientific methodology concerned.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Physical Background

In this section, we give a brief overview of the physics of topological insulators and show how the
expression (2) arises as a discretization of the contiuous Chern number.

The band structure of the topological insulators we want to consider here is described by so-called
Bloch Hamiltonians H(k) which are maps from the Brillouin zone to the space of M ×M complex
Hermitian matrices. The Brillouin zone is the space of momenta k of the electrons which is periodic
in each dimension. At each point k in the Brillouin zone, we consider the eigenvectors vn(k) ∈ CM ,
n = 1, . . . , N , of the Bloch Hamiltonian with negative eigenvalues since these correspond to the
bands occupied by electrons in the material.

A nontrivial Chern number means that it is impossible to find smoothly varying eigenvectors over the
entire Brillouin zone. In two dimensions, it is defined via

C =
1

2πi

∫
BZ

Tr [F(k)] d2k , (10)

where F is an N ×N -matrix known as the non-abelian Berry curvature defined by

F = ∂kxAy(k)− ∂kyAx(k) + [Ax(k),Ay(k)] . (11)

Here, Aµ(k), µ = x, y is the non-abelian Berry connection, anotherN×N -matrix whose components
are C2-vectors given by

[Aµ(k)]n,m = vn(k)
⊤∂kµ

vm(k) (12)

in terms of the eigenvectors of the Bloch Hamiltonian with negative eigenvalues.

It can be shown that the Chern number defined by (10) is an integer and there are generalizations to
higher dimensional Brillouin zones, on which we performed experiments, see Section 6.3.

The link matrices Ux
i,j , U

y
i,j ∈ CN×N in terms of which the Wilson loops are constructed according

to (1) capture the overlap between the eigenvectors of the Bloch Hamiltonians of neighboring grid
points and have components

[Ux
i,j]m,n = vm(ki,j)

⊤vn(ki−1,j) (13)

[Uy
i,j]m,n = vm(ki,j)

⊤vn(ki,j−1) . (14)

The links are discrete analogous of the operator exp(iA(k)dk). Under gauge transformations, the
links transform according to

Ux
i,j → Ω†

i,jU
x
i,jΩi,j , Uy

i,j → Ω†
i,jU

y
i,jΩi,j . (15)

The Wilson loops correspond to closed 1× 1 loops of the link variables. Their gauge transformation
Wi,j → Ω†

i,jWi,jΩi,j follows from the transformation (15) of the links. In higher dimensions, there
are several Wilson loops W γ

k per grid point k which are aligned with different directions γ in the
lattice.

B Higher Order Chern Numbers

In 3.1, we defined in (2) for two dimensional Brillouin zones the non-abelian Berry curvature as

F = ∂kx
Ay(k)− ∂ky

Ax(k) + [Ax(k),Ay(k)] .

For 2n dimensional Brillouin zones, which are topologically equivalent to R2n/Z2n , there are P 2
2n

different oriented planes, i.e. for every two directions kµ, kν , there is a planar flux

Wµ,ν
k = Uµ

k U
ν
k+µ̂(U

µ
k+ν̂)

†(Uν
k)

†. (16)

It is easy to verify that Wµ,ν
k = (W ν,µ

k)†. Similarly, there is a planar curvature

Fµ,ν = ∂kµ
Aν(k)− ∂kν

Aµ(k) + [Aµ(k),Aν(k)] . (17)

21

Where Aµ is similarly defined as in (12). We showed in 3.1 the definition of Chern numbers on a 2D
Brillouin zone in (10). For a 2n dimensional Brillouin zone, a nth order Chern number is defined as

Cn =

(
1

2πi

)n ∫
BZ

Tr [F(k)n] d2nk . (18)

Here, F(k)n represents a wedge product of differential forms Fµ,ν(k) dkµ dkν , which could be
written equivalently as

2nn!

(2n)!

∑
µ1,µ2,...,µ2n−1,µ2n

ϵµ1,µ2,...,µ2n−1,µ2n

n∏
t=1

Fµ2t−1,µ2t(k). (19)

It could be shown that C is always an integer, ∀n ≥ 1.

In practice, since the fluxes Wµ,ν
k is an approximation of exp(Fµ,ν), we calculate the discrete version

of higher order Chern numbers with the following equation

C̃n =
n!

(2n)!(πi)n

∑
k

∑
µ1,µ2,...,µ2n−1,µ2n

Trϵµ1,µ2,...,µ2n−1,µ2n

n∏
t=1

logW
µ2t−1,µ2t

k . (20)

When taking n = 1, Equation (20) coincides with (2). Since log function is analytical, which means
could be represented by a power series, and (Ω†WΩ)n = Ω†WnΩ, we have

C̃(W
µ2t−1,µ2t

k) = C̃(Ω†W
µ2t−1,µ2t

k Ω), ∀Ω ∈ U(N)

This discretized Chern number is an integer only in the continuum limit, therefore we use the MAE
(global loss Lg) instead for evaluation.

C Data Generation

C.1 Uniform Distribution on U(N) with QR Decomposition

In the experiments we generate U(N) with QR Decomposition on a matrix A ∈ CN×N , whose
entries have i.i.d. N (0, 1) real and imaginary parts. We assume the algorithm to generate U from A is
single-valued, i.e. U = f(A) for some function f : CN×N → U(N). We show the ”left invariance”
of the random variable U .

Proposition C.1. U and gU are identically distributed, ∀g ∈ G.

Proof. By definition, gU = f(gA). Then it suffices to show gA and A are identically distributed.

For complex matrices, we consider the two bijections. The first one is p : A →
(

ReA
ImA

)
. Then

p(gA) =

(
Reg −Img
Img Reg

)
= ĝp(A). It is easy to verify ĝ is orthogonal. We then flatten the matrix

with a vec operator

vec(A) = (A11, A12, . . . , A1N , . . . , AM1, . . . , AMN)

The following property is well known.

Proposition C.2 (Vec Operator Identity). vec(gA) = (g ⊗ IN)vec(A)

Where ⊗ is the Kronecker product. Then vec(p(gA)) = (ĝ ⊗ IN)vec(p(A)). However, vec(p(A))
is just (ReAij , ImAij), which follows the distribution N (0, I2N2), and ĝ ⊗ IN is still orthogonal, it
follows that

vec(p(gA)) ∼ N (0, (ĝ ⊗ IN)I2N2(ĝ ⊗ IN)T) = N (0, I2N2)

Therefore vec(p(gA)) ∼ vec(p(A)). By bijectivity, gA ∼ A.

22

C.2 Diagonal Dataset

There is a equivalance relation among samples Wk: Wk ∼ ΩkW̃xΩ
†
k, ∀Ωk ∈ U(n), ∀k. Namely the

equivalent classes of fluxes is a subset of (U(n)/Ad)Nsite . By the isomorphism
U(n)/Ad ∼= U(1)n/Sn, (21)

we could generate plaquettes Wk as diagonal matrices, i.e. Wk = diag{eiθ1
k , . . . , eiθ

N
k }.

Notice that each link appears exactly twice in all plaquettes, once in itself, and once inversed. For
example, Ux

k appears in itself in Wk and inversed in Wk−ŷ . Then we have:∏
k

detWk =
∏
µ,k

detUµ
k (detU

µ
k)

−1 = 1

Specifically, since
∑

k Im(log(detWk)) = Im(log(
∏

detWk)) mod 2π, the discrete Chern num-
ber C̃ is an integer.
Proposition C.3. C̃ = 1

2π

∑
x Fx = n ∈ Z.

Then the necessary condition for a set of plaquettes to be generated from some links is:∏
k

∏
λ

eiθ
λ
k = ei

∑
k

∑
λ θλ

k = 1, (22)

On the other hand, given any Wk that is diagonal per site, suppose it is generated by diagonal links
Uµ
k = diag{eiτ

1
k,µ , . . . , eiτ

N
k,µ}. Then for each index λ we have the following equations:∏

eiτ
λ
k,xeiτ

λ
k+x̂,ye−iτλ

k+ŷ,xe−iτλ
k,y = 1,∀k (23)

This implies a necessary condition for Wk to be generated from diagonal links is that, for any λ,∑
θλk = 0. We omit the subscript λ for now.

Recall that k is the flattened index of (i, j), which could have the possible form k = Nsitei+ j. If we
further flatten the index (k, µ) as k for µ = x, k +Nsite for µ = y, then the equations become linear:

τk + τ(k+Nsite+1) mod 2Nsite − τ(k+Nx) mod Nsite − τk+Nsite = θx̂,∀k (24)
Which is just:

1 −1 −1 1
.

−1
. . . −1

.
. 1

−1 1 1 −1



T 
τ0
τ1
...

τ2Nsite−1

 =


θ0
θ1
...

θNsite−1


(25)

The coefficient matrix has rank Nsite − 1, and it is solvable iff.
∑

k θk = 0, and that is exactly what
the necessary condition specifies. Therefore, the fluxes Wk can be generated from diagonal Uµ

k if
and only if

∀λ,
∏
k

eiθ
γ
k = 1. (26)

This determines a submanifold M ′ in M = {m ∈ U(1)N×Nsite : m satisfies (22)} with codimension
N − 1. With the natural metric on U(N)Nsite ⊃M , defined as d(g, h) = ∥ψλ

k∥2, where ψλ
k are phase

angles of eigenvalues of gh−1, M ′ is a π
√

N
Nsite

-net of M . For each channel λ, suppose
∑

k θ
λ
k = ϕλ,

ϕλ ∈ [−π, π). Let the new θ be θ̃γk = θλk +−ϕk/Nsite. Then

d(W, W̃) ≤

√√√√∑
k,λ

(
1

Nsite

)2

ϕ2k ≤ π

√
N

Nsite
.

As the number of sites gets larger (the grid gets more refined), the net gets denser. We can further
extend the sufficient condition by considering the permutations, since the permutation matrices are
also unitary and their actions on fluxes are adjoint.

We now propose the diagonal data generation scheme:

23

0k 1k 2k 3k
Epochs

0.0

0.2

0.4
G

lo
ba

l L
os

s

0.0

0.2

0.4

St
d

Lo
ss

Global Loss Lg

Standard Deviation Loss Lstd

Figure 7: Global Loss and Standard Deviation Loss curve of the baseline model, trained on a diagonal,
trivial dataset, to learn the Chern number on a 52 grid, with 4 filled bands.

Table 3: Accuracy of the same run in Figure 7, evaluated on non-diagonal, non-trivial data on a 5× 5
grid, with 4 filled bands.

Seeds No.1 No.2 No.3 No.4

Accuracy 92.7% 94.3% 95.4% 93.8%

1. Generate label Fk ∈ [−π, π), such that
∑
Fk = 2πn.

2. If only zero samples: check if
∑
Fk = 0.

3. For every k but the last one, generate (ϕk)x such that
∑

λ ϕ
λ
k = Fk.

4. For every k but the last one, let Wk be diag{eiθ1
k , . . . , eiθ

N
k }.

5. Let the last Wk̂ be
∏

k ̸=k̂W
−1
k .

The last product will not cause confusion since diagonal matrix multiplication is commutative.

It could also go the other way around: generate the fluxes first, then find a solution to (25) to get the
links. This way, we could operate directly on the distribution of eigenvalues, thus customizing the
data generation process. Furthermore, the diagonal dataset reduces the computation cost significantly
for training.

For validation, we show in Figure 7 the loss curves and in Table 3 accuracies of evaluation on
nontrivial, general (non-diagonal) datasets, of a training run on a diagonal, trivial dataset.

24

D Proof of the Universal Approximation Theorem

Here we give the complete proof of Theorem 5.2, or, rather its stronger form in Theorem D.3. We
begin with some properties of the class functions defined in 5.1.
Theorem D.1. The space of symmetric polynomials {sk} over eigenvalues {λk} forms an orthonor-
mal basis of L2

class(G).

Proof. Follows directly from the Peter-Weyl theorem and the expansion of class functions in terms
of irreducible characters.

Furthermore, consider the set of polynomials over eigenvalues of g: {pk(λ1, . . . , λn) =
∑

i λ
k
i }. In

our setting these polynomials can be identified with the set of traces of group elements of the form
Trgk. Using Newton’s identities for symmetric polynomials:

kek =

k∑
j=1

(−1)j−1ek−jpj , ek =
∑

∑
n kn=k

∏
λki
i (27)

one may deduce the following
Corollary D.2. The space

⋃
M{f(Trg, . . . , TrgM)} ∩ L2(G) is dense in L2

class(G).

Now, we consider the network architecture GEBLNet. Given the flux tensor Wk, we stack the identity
and its Herimitian conjugate to a second channel as

W ′γ
k = (Wk,0,Wk,1,Wk,−1) := (I,Wk,W

−1
k).

Afterwards we put it through several blocks, each containing three layers: GEBL, GEAct and TrNorm.
In this section, we ignore TrNorm Layers, since they are introduced to boost training results. We call
each block a “packed layer”.

After several packed layers we calculate the trace per-channel and add a linear layer (the “Dense
layer”) in the end. The Dense layer acts on the real and imaginary parts separately. Then we take the
sum over the site index (to calculate the topological invariant).

So the outputs have the following form:

Wk 7−→ w · σ̂ ◦ GEBLn ◦ · · · ◦ σ̂ ◦ GEBL1(Wk)) + b.

Where σ̂(W γ
k) = σ(TrW γ

k)W
γ
k . We denote the set of these functions by BLN σ(G), where the

subscript σ indicates the choice of activation function. We further denote by BLN k
σ(G) the subset of

BLN σ(G) with k packed layers.

Since we attempted to learn local quantities F (Wk), we omit the subscript k. Furthermore, we treat
the flux W as an abstract element in the Lie group G, denoted as g. In this case, where the input
channel size is one, we propose the main result:
Theorem D.3 (Universal Approximation Theorem). For any activation function σ = σ̃ ◦ Re, where
σ̃ is bounded and non-decreasing, BLN σ(G) is dense in L2

class(G).

The proof of this will require the following lemma.

Lemma D.4. BLN k
σ(G) is dense in {f(p1, · · · , p2k) : ∥f∥∞ <∞} ⊂ L∞(G), where pi = Trgi.

Proof. We prove this lemma by induction. For k = 1, the output has the following form

g 7−→

(
2∑

i=0

αt
ig

t

)
i

7−→ ωiTrσ

(
2∑

i=0

αt
ig

t

)
i

+ b.

Note that Trσ̂(
∑2

i=0 α
t
ig

t) = σ(Reαt
ipt)α

t
ipt. For any channel index i, when taking only the real

part (in other words, forcing wi,Im in the dense layer to be zero), the output is simply

σ

(∑
t

Reαt
iRept − Imαt

iImpt

)(∑
t

Reαt
iRept − Imαt

iImpt

)
= σ̂

(∑
i

Reαt
iRept − Imαt

iImpt

)
(28)

25

Therefore, it is essentially a one-hidden-layer fully connected network on {(p1, p2)} ≃ R4 . Thus
the set is dense.

Assume this is the case for n, and we would like to prove the lemma for n+ 1. We denote 2n = N .
Then the layer input has the following form:

σ̃

(
N∑
t=0

ati(p0, · · · , pN/2)pt

)(
N∑
t=0

ati(p0, · · · , pN/2)g
t

)
,

Now the new “ati”(denoted as bti) takes the following form:

bti =
∑

p+q=t

∑
j,k

αijkσ̃(a
t
jpt)σ̃(a

t
kpt)a

p
ja

q
k.

Consider the bijection F : CN+1 → PN (C), given by F (⃗a) =
∑

t atz
t. Using this we define

a⃗ ∗ b⃗ = F−1(F (⃗a)F (⃗b)).

Then
b⃗i = αijkσ̃(a⃗j · p⃗)σ̃(a⃗k · p⃗)a⃗j a⃗k = αijkH(p, a⃗j , a⃗k).

This forms a linear space Bn+1 ⊂ (L∞(Kn+1))
2N+1. For simplicity we henceforth omit the

subscript on Kn+1.

We assume (ati)
N
t=0 could approximate any constant function of p1, · · · , pN/2. This is trivially true

when n = 1, since it is a function on a constant and takes arbitrary constant values.

Denoting e0 = F−1(1/d), where d = dimG, we have e0 · p = 1, ∀p ∈ K. Since K is compact,
there exists an open set U s.t. e0 ∈ ∂U , and b · p ∈ (1,+∞), ∀b ∈ U, p ∈ K.

On the other hand, it is easy to see that
{
b ∗ b : b =

(
1, z, · · · , zN

)}
is linearly independent as a

subset. This way we could choose 2N + 1 elements {bzt}2Nt=0 from its intersection with U , such that
span{bzt ∗ bzt} = C2N+1.

Now given a constant vector b⃗ = (b0, · · · , b2N), there exits {αt} such that b⃗ = αtb
zt ∗ bzt . We want

to show that b⃗ can be approximated by any precision ϵ.

Without loss of generality, assume sup σ̃ = 1 and inf σ̃ = 0. Then, for all ϵ, there exists M0 > 0
such that for all x > M0/2, σ̃(x) ∈ (

√
1− ϵ, 1). This gives∣∣∣∣ d2M2

H (p,Me0,Me0)− 1

∣∣∣∣ = |1− σ̃(M)2| < ϵ, ∀M > M0.

By induction, there exists at such that ∥at − bzt∥∞ < min{ϵ,M/2}. Consider

b⃗′ = αt
1

M2
H(p, at, at) = αtσ̃(Mαt · p)2at ∗ at.

Then

|b⃗′ − b⃗| = |αt(σ̃(Mαt · p)2 − 1)bzt ∗ bzt + σ̃(Mαt · p)(bzt ∗ bzt − αt ∗ αt)|
≤ αtϵ|bzt ∗ bzt |+ 2ϵ|bzt |+ ϵ2

≤ C (⃗b,N)ϵ. (29)

When the coefficient functions approximate constants, the last layer is essentially a one-hidden-layer
fully connected network over p1, · · · , p2N . Similar to the N = 1 case, as the width grows larger the
network can approximate any function f(p1, · · · , p2N). the concludes the proof of the lemma.

We may now complete the proof of Theorem D.3.

Proof. (Proof of Theorem D.3)
Recall that by Theorem D.1 the space of class functions L2

class(G) is spanned by symmetric polyno-
mials in the eigenvalues of group elements. Since these symmetric polynomials can be expressed

26

in terms of traces Tr(g),Tr(gn), . . . ,Tr(gM) it follows that any class function can be written as a
function of these traces. Now, since G is compact, we have L2(G) ⊃ L∞(G) and ∥f∥2 ≥ C∥f∥∞.
Therefore, for all f ∈ L2

class(G), and for any ϵ > 0, there exists

fn = fn(p1, · · · , pn) ∈ L∞(K)

such that ∥f − fn∥2 < 1/2ϵ. By Lemma D.4 the function class BLN k
σ̂(G), consisting of neural

networks with k gauge equivariant bilinear layers, can approximate any function f(p1, . . . , pk)
arbitrarily well, provided k is large enough. We deduce that there exists g ∈ BLNn

σ̂(G) ⊂ L∞(G)
such that ∥g − fn∥∞ < 1/2Cϵ. Therefore

∥g − f∥2 < (C · 1/2C + 1/2)ϵ = ϵ.

This concludes the proof of the main theorem.

Restricting our scope to unitary groups, we could further generalize to the case where the input data
has more than one channels. In other words, the function f(g1, . . . , gK) we attempt to learn has the
following property,

f(gh1g
−1, . . . , ghKg

−1) = f(h1, . . . , hK),∀g, hi ∈ G. (30)

For inputs with n channels, we denote the set of functions that could be represented by GEBLNet as
BLN σ̂(G

n).
Theorem D.5. For any activation function σ̂ that is bounded and non-decreasing, BLN σ̂(G

n) could
approximate any function with the property specified in (30) in the L2 norm.

The proof requires the following theorem in [40].
Theorem D.6 (Procesi, 1976). Let F be a field of character 0, and let

F
[
Ak = (xij)

(k)
N×N

∣∣ 1 ≤ k ≤ K
]

be the polynomial ring in KN2 variables, corresponding to scalar-valued polynomials on FN×N×K .
Then the subalgebra{

p ∈ F [Ak]
∣∣ p(A1, . . . , AK) = p(gA1g

−1, . . . , gAKg
−1), ∀g ∈ GLN (F)

}
(31)

is generated by
{
Tr
∏K

k=1A
nk
ik

}
.

Proof of Theorem D.5. It is well-known that the unitary group is not contained in the root set of any
nonzero polynomial on the set of n by nmatricesMn(C). Therefore, for an arbitarily chosen sequence
of (A1, . . . , Ak) inG, if for any g ∈ Gwe have p(A1, . . . , Ak) = p(gA1g

−1, . . . , gAkg
−1), ∀g ∈ G,

then this also holds for any g ∈Mn(C). Analogously we could show that the equation in Eq. (31)
is equivalent to Eq. (30) for polynomials. Namely, functions satisfying Eq. (30) are spanned by{
Tr
∏K

k=1A
nk
ik

}
, and the proof, analogous to the one-dimensional case, follows.

27

Nch

Nx

Ny

Input: (U,W)

Nch

GEBL
GEAct

TrNorm

Nch

GEConv
GEAct

TrNorm

Nch

GEBL

Nch

GEBL
GEAct

TrNorm

Nch

GEConv
GEAct

TrNorm
Nch

GEBL

Nch

Trace
Dense

Sum

Figure 8: Architecture of GEConvNet. In this figure, the rectangles represent the spatial grid, the
arrows on the grid represent links, and the number of layers (Nch) represents the number of channels
(γ). Each circle represents a site on the grid, and quantities on different sites do not interact with each
other, except for the GEConv Layers, and the last summation on grids.

Table 4: Configuration of GEBL layers for the representative model. See its architecture in Figure 2.
In addition, every GEBL layer is followed by a GEAct layer and a TrNorm layer that maintains
channel size.

Layer Input Channel Output Channel

GEBL 1 1 32
GEBL 2 32 16
GEBL 3 16 8

E Further Details regarding the Network

Architecture of GEConvNet Figure 9 is a demonstration of the architecture of GEConvNet. It has
GEConv layers implemented inside, therefore it takes the links Uµ

k as inputs, beside the fluxes Wk, if
the kernel size is set as positive.

Configuration of the representative model Table 4 lists the hyperparameters for GEBL layers
in the representative model. Since the GEBL layers are consecutive with channel size-maintaining
layers, GEAct and TrNorm layers in between, the former layer’s output channel equals the latter’s
input channel.

Complexity-Accuracy Comparison Figure 9 is a comparison of model complexity and accuracy
across different models. All the models are trained on a 5× 5 grid with 4 filled bands. Due to the
instability of TrMLP, there are only 3 successfull runs with this model.

General Compute Resource Requirements All experiments were conducted on a computing
cluster equipped with NVIDIA T4 GPUs. For the baseline task of training GEBLNet to predict Chern
numbers on a 5× 5 grid, training typically required approximately 15 to 20 hours with 1 T4 GPU and
32 CPU cores. The same hardware resources are sufficient to train models for tasks on 4D systems or
on larger grids; however, the computational time generally increases with the task complexity. While
it is possible to train on personal computers, we do not provide guarantees for the feasibility of such
setups.

Global Loss Curve for Training on Higher Order Chern Numbers Figure 10 shows the global
loss curve for training on second order Chern numbers. Since we adopt the L1-norm ∥ · ∥1 here, Lg

essentially measures the mean absolute error of global outputs.

28

104 105 106 107
Number of Parameters

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ac
cu

ra
cy

Representative Model
GEBLNet
DeepSpec
GEConvNet, sk = 4
GEConvNet, sk = 2
GEConvNet, sk = 0
95% Accuracy
Benchmark prediction;
27.2% Accuracy

Figure 9: Comparison of model complexity and accuracy across different architectures. Complexity
is measured by the number of learnable parameters, and sk denotes the kernel size for GEConv layers.
Each marker represents a training run with variations in models, learnable parameters, and random
seeds.

0k 1k 2k 3k
Epochs

0.25

0.50

0.75

1.00

G
lo

ba
l L

os
s Global Loss Lg

Figure 10: Global validation loss curve of the representative model, trained on a 34 grid, with 3 filled
bands to learn the second order Chern number C̃2.

F Learning Chern numbers using ResNets

Figure 11 shows an ablation over a number of different architectures considered for the task of
predicting the determinant of N ×N real matrices.

29

4 5 6 7
Matrix size N

0

1

2

3

4

Re
la

tiv
e

er
ro

r

Architecture
1
2
4
1,1
2,2
3,3
3,2
1,1,1
2,2,2
3,3,2

3,2,2,2
3,2,2,2,2
2,2,2,2,2,2
2,3,2,2,2
N layers
2
3
4
5
6

Figure 11: Architecture ablation over different layer orders (see section 3.2) and depths. Best relative
error δ for each architecture for different matrix sizes N ×N .

30

	Introduction
	Literature Review
	Learning Multiband Chern Numbers
	Features, targets and symmetries
	Learning Chern numbers using ResNets
	DeepSpec: Baseline Equivariant Model

	Network Architecture
	Gauge equivariant layers
	Network Architecture

	Theoretical Foundations of the Model
	Experiments
	Data Generation
	Training and Evaluation
	Experimental Results

	Conclusions and Limitations
	Physical Background
	Higher Order Chern Numbers
	Data Generation
	Uniform Distribution on U(N) with QR Decomposition
	Diagonal Dataset

	Proof of the Universal Approximation Theorem
	Further Details regarding the Network
	Learning Chern numbers using ResNets

