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Abstract001

In this paper, we propose contextualized and002
situated text-to-speech (CS-TTS), a novel003
TTS task to promote more accurate and cus-004
tomized speech generation using prompts with005
Dialogues, Narratives, and Actions (DNA).006
While prompt-based TTS methods facilitate007
controllable speech generation, existing TTS008
datasets lack situated descriptive prompts009
aligned with speech data. To address this010
data scarcity, we develop an automatic an-011
notation pipeline enabling multifaceted align-012
ment among speech clips, content text, and013
their respective descriptions. Based on this014
pipeline, we present DNASpeech, a novel CS-015
TTS dataset with high-quality speeches with016
DNA prompt annotations. DNASpeech con-017
tains 2,395 distinct characters, 4,452 scenes,018
and 22,975 dialogue utterances, along with019
over 18 hours of high-quality speech record-020
ings. To accommodate more specific task021
scenarios, we establish a leaderboard featur-022
ing two new subtasks for evaluation: CS-TTS023
with narratives and CS-TTS with dialogues.024
We also design an intuitive baseline model025
for comparison with existing state-of-the-art026
TTS methods on our leaderboard. Experi-027
mental results indicate the quality and effec-028
tiveness of DNASpeech, validating its poten-029
tial to drive advancements in the TTS field.030
Dataset is available at https://anonymous.031
4open.science/r/DNASpeech-FDCD 1032

1 Introduction033

Text-to-speech (TTS) aims to convert input text034

into human-like speech, attracting significant at-035

tention in the audio and speech processing com-036

munity (Shen et al., 2018; Ren et al., 2020; Shen037

et al., 2023; Ju et al., 2024). Previous studies have038

shown that incorporating more detailed descrip-039

tions of the input text is crucial for improving the040

accuracy of speech synthesis (Guo et al., 2023; Li041

1Dataset will be made public once accepted.

et al., 2022b; Yang et al., 2024). The speaker’s 042

contextual information, such as dialogue history, 043

significantly impacts the generated speech (Li et al., 044

2022a; Guo et al., 2021; Liu et al., 2023). Addi- 045

tionally, situated descriptions are also beneficial to 046

enhance the expressiveness of the speech by provid- 047

ing environmental background (Lee et al., 2024). 048

Consequently, we propose a new TTS task termed 049

Contextualized and situated Text-To-Speech (CS- 050

TTS), which considers the impact of contextual- 051

ized and situated descriptions on speech synthesis. 052

By integrating these detailed descriptions, CS-TTS 053

enables more accurate and expressive speech gener- 054

ation, improving the applicability of TTS systems 055

across diverse scenarios. 056

Recently, prompt-based TTS methods have 057

gained increasing research interest, providing tech- 058

nical support for customized speech generation (Li 059

et al., 2024). While formulating detailed descrip- 060

tions as prompts can potentially address the CS- 061

TTS task, current datasets lack comprehensive 062

prompts that align with text and speech. Their 063

limitations include: (1) Existing prompts with sev- 064

eral key phrases lack sufficient contextual descrip- 065

tions (Kim et al., 2021; Guo et al., 2023); (2) 066

Dialogue-only prompts fail to incorporate multi- 067

faceted situated descriptions required for precise 068

speech customization (Lee et al., 2023; Li et al., 069

2022a); (3) Limited speaker characters restrict the 070

exploration of various acoustic characteristics in 071

TTS generation. 072

These constraints render existing datasets insuf- 073

ficient for CS-TTS research. Therefore, we aim 074

to construct a new CS-TTS dataset incorporating 075

more comprehensive contextualized and situated 076

descriptions. As illustrated in Figure 1, we system- 077

atically summarize the necessary descriptions into 078

three categories, abbreviated as “DNA”: Dialogues 079

provide the conversational context of speech con- 080

tent; Narratives describe the environmental scenes 081

surrounding the speaker’s speech; and Actions de- 082
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Andy Dufresne Red Samuel Norton Byron Hadley

ANDY DUFRESNE is on the witness stand, hands 
folded, suit and tie pressed, hair meticulously combded.

He picks up a revolver, spins the cylinder before their 
eyes like a carnival barker spinning a wheel of fortune.

soft, measured tones suspicious, aggressive hesitate showing the gun to 
JUROUS 

Scene: COURT - DAY
TimeStamp: 00:02:19-00:05:50
Shots: {�0, �1, �2⋯��}
Sub-Script: Andy Dufresne in court, facing the lawyer's 
questioning...

Scene: A CORNER OF THE PRISON - DAY
TimeStamp: 01:40:45-01:45:56
Shots: {�0, �1, �2⋯��}
Sub-Script: ANDY curled up in a corner and RED 
came to comfort him...

Scene: ANDY'S PRISON CELL - NIGHT
TimeStamp: 01:53:22-02:00:25
Shots: {�0, �1, �2⋯��}
Sub-Script: Norton was furious because of ANDY's 
disappearance. At this time, ANDY had escaped from the 
prison...

Andy Dufresne, a banker wrongly convicted of murdering his wife and 
her lover, who is sent to Shawshank State Penitentiary. There, he forms 
a close friendship with Ellis "Red" Redding, a lifer who helps him 
adjust to prison life. Over the years, Andy uses his banking skills to 
help the prison staff with financial matters and becomes involved in 
money-laundering schemes. Despite the corruption around him, Andy 
maintains hope and works secretly on an escape plan. After decades of 
enduring hardship, Andy escapes Shawshank through a tunnel he dug 
over 19 years, and he ultimately finds freedom in Mexico.

SpeakersScript Synopsis
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Figure 1: An illustration of DNASpeech Dataset. “DNA” descriptions for our proposed CS-TTS task. Dialogues,
Narratives, and Actions are annotated to capture the contextualized and situated background essential for TTS
generation.

tail the speaker’s actions and expressions during083

speech production.084

Among various data sources, movies offer a nat-085

ural solution due to their rich speech content and086

diverse character timbres. Movie scripts include087

not only conversational lines but also environmen-088

tal scenes that guide the speaker’s performance,089

aligning well with our “DNA” descriptions. Taking090

advantage of this, we develop an automated anno-091

tation pipeline for multifaceted alignment among092

content text, speech clips, and their correspond-093

ing “DNA” descriptions. Based on our efforts in094

processing movie videos and scripts through this095

pipeline, we finally collect a new CS-TTS dataset096

DNASpeech that contains 2,395 distinct charac-097

ters, 4,452 scenes, and 22,975 dialogue utterances,098

along with over 18 hours of high-quality speech099

recordings.100

To accommodate more specific task scenarios,101

we establish a leaderboard featuring two new sub-102

tasks: CS-TTS with narratives and CS-TTS with103

dialogues. Both subtasks are used to evaluate the 104

ability of TTS systems to leverage environmen- 105

tal scenes and dialogue context, along with the 106

speaker’s actions, to customize speech. We also 107

introduce an intuitive CS-TTS baseline model for 108

comparison with existing representative TTS meth- 109

ods on our leaderboard. Extensive experimental 110

results validate the effectiveness and quality of 111

DNASpeech, contributing to the advancements of 112

prompt-based TTS. 113

Our main conclusions can be summarized as 114

follows: 115

(1) To support research in CS-TTS, we collect a 116

novel dataset DNASpeech, containing high-quality 117

speech recordings annotated with comprehensive 118

“DNA” prompts: dialogues, narratives, and actions. 119

(2) We elaborately present an automatic anno- 120

tation pipeline for multifaceted alignment among 121

content text, speech clips, and their corresponding 122

descriptions, enabling the efficient collection of 123

high-quality aligned TTS data. 124
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(3) We establish a leaderboard featuring two new125

subtasks: CS-TTS with narratives and CS-TTS126

with dialogues. We also propose an intuitive base-127

line model for the CS-TTS task. Comprehensive128

experimental results indicate the quality and effec-129

tiveness of DNASpeech.130

2 Related Work131

2.1 Text-to-speech without prompts132

Text-to-speech (TTS) systems have been signif-133

icantly propelled by the availability of diverse134

and extensive speech datasets. LJSpeech (Ito and135

Johnson, 2017) stands out with its 13,100 high-136

quality short speech clips of a single speaker, de-137

rived from readings of passages from seven non-138

fiction books. Another key resource is the Lib-139

riSpeech corpus (Panayotov et al., 2015), an exten-140

sive collection encompassing approximately 1,000141

hours of audiobook recordings from the LibriVox142

project (Kearns, 2014).143

To expand these resources, LibriTTS (Zen et al.,144

2019) offers a multi-speaker English corpus with145

around 585 hours of read speech, recorded at a146

24kHz sampling rate, enhancing the variability and147

richness of the speech data available for TTS re-148

search. The CSTR VCTK Corpus 2 further diversi-149

fies the available data with contributions from 110150

English speakers exhibiting various accents, each151

providing approximately 400 sentences sourced152

from diverse texts, such as newspapers and accent153

elicitation passages. Moreover, the Hi-Fi Multi-154

Speaker English TTS Dataset (Hi-Fi TTS) (Bakh-155

turina et al., 2021) delivers a robust multi-speaker156

dataset, consisting of approximately 291.6 hours157

of speech from 10 speakers, with each contributing158

at least 17 hours of recordings. These datasets col-159

lectively furnish a rich foundation for developing160

and refining TTS systems, enabling significant im-161

provements in the naturalness and intelligibility of162

synthetic speech.163

2.2 Text-to-speech with prompts164

With the advancement of TTS technology, there has165

been an increasing emphasis on using prompts to166

guide speech generation, enabling a more diverse167

and customized generation process. Initially, semi-168

nal works (Adigwe et al., 2018; Livingstone and169

Russo, 2018; Zhou et al., 2021) identify the pres-170

ence of emotional information in speech and con-171

struct corresponding datasets by annotating speech172

2https://datashare.ed.ac.uk/handle/10283/3443

with emotions. However, these datasets primar- 173

ily focus on emotional labels within speech and 174

categorize them into a limited number of classes. 175

To achieve more comprehensive representations, 176

FSNR0 (Kim et al., 2021) introduces 327 differ- 177

ent labels covering a variety of emotions, inten- 178

tions, tones, and speech rates. To further advance 179

prompt-based TTS, the PromptSpeech dataset from 180

PromptTTS (Guo et al., 2023) utilizes continuous 181

text to describe speech across multiple dimensions, 182

including gender, pitch, loudness, speech rate, and 183

emotion. Similarly, NLSpeech (Yang et al., 2024) 184

and TextrolSpeech (Ji et al., 2024) employ continu- 185

ous text descriptions of speech, incorporating more 186

detailed and daily expressions. 187

The datasets mentioned above mainly focus on 188

describing the speech, lacking contextual informa- 189

tion crucial for speech generation. Despite these 190

advancements, datasets with contextual prompts re- 191

main relatively scarce. DailyTalk (Lee et al., 2023) 192

is a highly popular dataset consisting of 20 hours 193

of speech data from 2,541 dialogues, spoken by 194

two fluent English speakers, a male and a female. 195

The dialogues in DailyTalk are sampled from an- 196

other dialogue dataset DailyDialog (Li et al., 2017). 197

ECC (Li et al., 2022a) collects 24 hours of speeches 198

from 66 conversational videos from YouTube. Each 199

dialogue has a duration of 79.3 seconds and fea- 200

tures around 2.9 speakers on average. In contrast, 201

MM-TTS (Li et al., 2024) highlights the influence 202

of environmental information on speech, amassing 203

expressive speech from film and television data, 204

aligned with corresponding facial expressions and 205

actions. 206

Unlike existing contextual prompt-based TTS 207

datasets (Lee et al., 2023; Li et al., 2022a, 2024), 208

our DNASpeech systematically integrates and 209

aligns three distinct types of descriptive prompts, 210

providing more comprehensive contextualized and 211

situated information to enhance the richness and 212

relevance of the generated speech. Moreover, 213

DNASpeech presents a substantial enhancement 214

in speaker diversity, enabling the exploration of 215

various acoustic characteristics in TTS generation. 216

3 DNASpeech Dataset 217

3.1 Overview 218

What is DNASpeech? We aim to construct a pio- 219

neering prompt-based TTS dataset tailored for the 220

CS-TTS task. The proposed dataset DNASpeech 221

aggregates a significant corpus of speech clips 222
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Figure 2: The DNASpeech Dataset. Pie Chart: Proportion of movie categories. Histograms, from left to right:
Distribution of the number of scenes, sentences, and speech clip duration in movies. Best viewed online and zoomed
in.

sourced from movies and their accompanying223

scripts. Each speech clip is aligned with three224

types of prompts: dialogues (D), narratives (N), and225

actions (A). These prompts, collectively referred226

to as “DNA”, are intricately intertwined with the227

corresponding speeches, enhancing the contextual228

richness and situational relevance of the dataset.229

Specifically, dialogues contain the conversational230

context preceding the speech; narratives depict the231

environmental scenes surrounding the speech; and232

actions describe the speaker’s actions and expres-233

sions during speech production.234

Why are contextualized and situational235

prompts necessary? Textual prompts serve as236

crucial directives for controlling speech generation,237

guiding the extraction of emotional and acoustic238

features necessary for speech synthesis. However,239

current datasets typically employ direct prompts,240

which explicitly describe the desired speech at-241

tributes such as "Angry, High pitch, Low speed,242

Loudly." These prompts essentially function as243

speech annotations and may not always be readily244

available, particularly in scenarios like audiobooks245

where detailed prompts are lacking (Anguera et al.,246

2011). In contrast, contextual prompts are closely247

associated with speech and reflect the situational248

context in which the speech occurs. For instance,249

the speech in a spooky and fearful scene is expected250

to convey low-pitched and tense tones. Despite251

their prevalence, datasets incorporating such con-252

textualized and situated prompts remain scarce in253

the field of TTS. Moreover, contextualized prompts254

require TTS systems to identify subtle nuances of255

the surrounding context. Therefore, the inclusion256

of contextual prompts holds promise for driving ad-257

vancements in TTS by enabling more contextually258

appropriate and natural speech synthesis.259

3.2 Dataset Construction Pipeline 260

To efficiently and automatically annotate descrip- 261

tive prompts aligned with text and speech, we 262

develop a new annotation pipeline. Fig 3 illus- 263

trates the overview of this pipeline for DNASpeech, 264

which consists of five fundamental steps: (1) data 265

collection, (2) information extraction, (3) cross- 266

modal alignment, (4) speech denoising, and (5) 267

automatic speech recognition. Data collection and 268

information extraction provide and preprocess the 269

raw movie materials. Cross-modal alignment in- 270

tegrates speech and textual descriptions through 271

both coarse-grained and fine-grained alignment pro- 272

cesses. Speech denoising and automatic speech 273

recognition ensure the quality of the speeches. 274

Step 1: Data Collection Movies serve as an in- 275

valuable resource for TTS research due to their 276

rich speech data and detailed contextual informa- 277

tion found in corresponding scripts, such as dia- 278

logue lines, narrative scenes, and action depictions. 279

Therefore, we choose movies as the primary data 280

source to construct DNASpeech. 281

Inspired by the Condensed Movies Dataset 282

(CMD) (Bain et al., 2020) compiling a substan- 283

tial collection of licensed movie clips from the 284

MovieClip YouTube channel 3, we augment our 285

dataset by collecting newly uploaded movies from 286

the MovieClip channel and purchasing additional 287

movies from legitimate sources. Eventually, we col- 288

lect a total of 126 movies released between 1940 289

and 2023, spanning up to 14 common movie cate- 290

gories, to enrich the diversity of our dataset. 291

Step 2: Information Extraction Following col- 292

lecting the raw movie videos, the next step is to 293

extract the necessary information, including the 294

3https://www.youtube.com/c/MOVIECLIPS
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speaker’s voice and its corresponding lines. Sub-295

titles in SRT format 4 contain the content text296

along with timestamps for the start and end of each297

speech segment. We leverage timestamps to obtain298

aligned text-speech pairs. For other subtitles in299

image format, we employ SubtitleEdit5, a widely300

used software to convert image subtitles into text301

format using Optical Character Recognition (OCR)302

technology. Once all subtitles are converted into303

SRT format, we extract the corresponding speech304

clips from the movie soundtracks, sampled at a rate305

of 16,000 Hz, thus obtaining both the speech clips306

and their associated content text.307

Next, our focus shifts to movie scripts obtained308

from the Internet Movie Script Database (IMSDb)6,309

a comprehensive repository of thousands of movie310

scripts. However, original movie scripts are lengthy311

and unstructured, necessitating parsing into struc-312

tured units. Following the script writing paradigm,313

we extract four key elements from each movie314

script: Dialogues Narratives, Actions, and Charac-315

ters. Dialogues denote the speaker’s conversational316

context and line content of their speech within a317

scene. Narratives represent the basic units defining318

the overall setting of a shot in the movie. Actions319

provide supplementary details about characters, de-320

scribing their actions and expressions. Characters321

denote the actors for each conversational session.322

This process allows us to gather the contextualized323

and situated information of speeches in movies.324

Step 3: Cross-modal Alignment Prompt-based325

TTS tasks necessitate aligning each speech with326

its corresponding prompts, which is crucial for ef-327

fective speech synthesis. Leveraging the shared328

content text between speeches and lines provides329

a foundation for tackling this alignment challenge.330

However, while it is theoretically straightforward,331

aligning speeches with lines directly from the script332

encounters discrepancies in the content text. To333

address this issue, we implement a two-stage align-334

ment module combining coarse-grained and fine-335

grained alignment.336

coarse-grained alignment. To match each337

speech with its corresponding line in the script,338

more than 800 million potential matches are re-339

quired, which is computationally intensive and in-340

creases the cost of manual verification. Hence, we341

initially filter out pairs with low textual similar-342

4https://docs.fileformat.com/video/srt/
5https://www.nikse.dk/subtitleedit
6https://imsdb.com/

ity by performing coarse-grained matching. To be 343

more specific, we preprocess both speech and script 344

content by removing stop words, punctuation, and 345

lemmatizing words. We then employ the Longest 346

Common Subsequence (LCS) method to compute 347

textual similarity, retaining (speech, text) pairs with 348

a similarity score of 0.9 or higher for subsequent 349

fine-grained alignment. 350

fine-grained alignment. After coarse-grained 351

alignment, we obtain approximately 30,000 352

(speech, text) pairs. However, the overlap be- 353

tween textual strings may not adequately capture 354

the alignment degree between speech and text. 355

Therefore, in this stage, we utilize the official sen- 356

tence model all-mpnet-base-v27 presented by 357

sentence-transformers group to calculate the se- 358

mantic similarity between speech and text. Pairs 359

with a semantic similarity score of 0.7 or higher 360

are retained. Finally, this process yields 22,975 361

(speech, text) pairs, totaling 18.37 hours of speech 362

data. 363

Step 4: Speech Denoising The speech clips ex- 364

tracted from the movies in Step 2 usually contain 365

background noises that degrade the quality of the 366

human voice. Therefore, it is essential to separate 367

the human voice from the background noise. Ad- 368

ditionally, the speech may sometimes be unclear 369

due to the filming environment, which makes it 370

also important to further enhance the human voice. 371

To eliminate these disturbing noises, we employed 372

Resemble Enhance8, a common tool designed for 373

noise reduction and speech enhancement. This 374

tool comprises a denoiser and an enhancer, which 375

extract human voices from complex background 376

noise and further improve perceived audio quality 377

by restoring audio distortions and extending the 378

audio bandwidth. Both models are trained using 379

high-quality 44.1kHz voice data, ensuring superior 380

speech enhancement. 381

Step 5: Automatic Speech Recognition Al- 382

though speech clips are extracted from movies 383

based on their corresponding subtitle timestamps, 384

discrepancies in duration and clarity may arise, es- 385

pecially in complex dialogue scenes and extended 386

speeches. In addition, denoising speeches can 387

sometimes distort human voices, making them chal- 388

lenging to recognize amidst background noise. To 389

7https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

8https://github.com/resemble-ai/
resemble-enhance

5

https://docs.fileformat.com/video/srt/
https://www.nikse.dk/subtitleedit
https://imsdb.com/
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://github.com/resemble-ai/resemble-enhance
https://github.com/resemble-ai/resemble-enhance


Figure 3: The automatic annotation pipeline for DNASpeech consists of five fundamental steps: (1) data collection
of movie materials, (2) information extraction of textual content, (3) cross-modal alignment among “DNA” prompts,
text, and speech, (4) speech denoising to reduce background noises and (5) automatic speech recognition to ensure
the speech quality. An illustrative example from DNASpeech is provided on the right side.

ensure the quality and accuracy of the extracted390

speeches, it is necsssary to verify them against two391

criteria: (1) their recognizability and (2) alignment392

between their content text and the corresponding393

subtitles. We employ Automatic Speech Recogni-394

tion (ASR) technology and make the reasonable395

assumption that if a speech clip can be accurately396

transcribed by an ASR model, it can also be recog-397

nized by humans. We use OpenAI’s whisper-large-398

v39 for automatic speech recognition. Samples that399

do not match their corresponding subtitles after the400

ASR transcription are eliminated. With this valida-401

tion process, we finish the construction pipeline of402

DNASpeech, ensuring its integrity and reliability403

for subsequent research.404

3.3 Manual Assessment405

After a series of rigorous filtering and screening406

processes in the pipeline, the quality of samples407

in DNASpeech generally meets our requirements.408

Next, further manual assessment is implemented409

to ensure the high quality of the data and consis-410

tency in the subjective evaluation of multiple eval-411

uators. We manually evaluate each sample and412

assign scores ranging from 1 to 3 based on the413

overall quality of the sample. The specific criteria414

for scoring include (1) clarity; (2) emotional rich-415

ness; (3) speech speed, avoiding excessively fast or416

slow pacing and (4) the relevance of the speech to417

the contextual information. Evaluators first score418

the samples based on each criterion independently,419

disregarding the other factors. Subsequently, we420

9https://huggingface.co/openai/
whisper-large-v3

aggregate the evaluators’ scores to obtain an overall 421

quality assessment of each sample and the mean 422

evaluation score for DNASpeech is 2.57. For de- 423

tailed information about the evaluators, please refer 424

to Appendix H.1. 425

3.4 Data Quality Verification 426

Although the primary purpose of DNASpeech is 427

to aid in CS-TTS task, its inherent text-to-speech 428

mappings make it also suitable for general TTS 429

tasks. Therefore, we can verify its quality by exam- 430

ining the performance of DNASpeech on general 431

TTS tasks. To demonstrate this, we select two 432

TTS models: Tacotron2 and FastSpeech2, along 433

with our baseline model DNA-TTS. Besides, we 434

choose LJSpeech (Ito and Johnson, 2017) and Dai- 435

lyTalk (Lee et al., 2023) as the comparison datasets. 436

For DNASpeech, we first clustered the data by 437

speaker, then randomly sampled 90% of the exam- 438

ples from each speaker for the training set, with the 439

remaining 10% forming the test set. By comparing 440

the performance of these models on DNASpeech 441

with their performance on the comparison datasets, 442

we can assess the effectiveness of DNASpeech as 443

a general TTS dataset. 444

Following the same setting as DailyTalk, we use 445

mean opinion score (MOS) test as our evaluation 446

metrics. MOS requires evaluators to rate the over- 447

all quality of the speech from 1 to 5, with higher 448

scores representing better quality. Three listeners 449

participated in the evaluation process, each holding 450

a master’s degree and having completed prior train- 451

ing. After each round of testing, we calculate the 452

Kendall’s W coefficient for the scores provided by 453
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the three listeners. The results are accepted only454

when the Kendall’s W coefficient ≥ 0.5, ensuring455

consistency in the ratings. Results in Table 1 show456

that models trained on DNASpeech sound as natu-457

ral as those trained on other datasets, which proves458

the data quality of DNASpeech.

Model LJSpeech DailyTalk DNASpeech

GT 4.07 ± 0.08 3.97 ± 0.07 4.05 ± 0.08
Tacotron2 3.87 ± 0.09 3.85 ± 0.10 3.90 ± 0.07

FastSpeech2 3.98 ± 0.07 3.97 ± 0.08 4.01 ± 0.07

Table 1: TTS integrity test result for DNASpeech. Score
from 1 to 5. A higher score indicates better speech qual-
ity. GT refers to the speeches converted from ground
truth mel-spectrograms.

459

4 Experiments460

4.1 Existing Baselines461

To evaluate the CS-TTS task, we select several462

representative text-to-speech methods as baselines463

for comparison. Based on the input data format464

and the architecture of models, we categorize these465

baselines into 3 types:466

None-Prompt TTS, including Tacotron2 (Shen467

et al., 2018), FastSpeech2 (Ren et al., 2020),468

StyleTTS (Li et al., 2022b) and StyleSpeech (Min469

et al., 2021).470

Prompt based TTS, including PromptTTS2471

(Leng et al., 2023), PromptTTS++ (Shimizu472

et al., 2024), InstructTTS (Yang et al., 2024) and473

VoiceLDM (Lee et al., 2024).474

Codec TTS, including VALL-E (Wang et al.,475

2023), NaturalSpeech2 (Shen et al., 2023) and476

VoiceCraft (Peng et al., 2024).477

More details about these baselines are introduced478

in Appendix G.479

4.2 Proposed Baseline480

Since previous works are not tailored for the481

CS-TTS task, we design an intuitive baseline482

model to better evaluate the proposed benchmark.483

Our baseline model draws from the structure of484

PromptTTS (Li et al., 2022b) and consists of five485

main modules: Phoneme Encoder, Context En-486

coder, Style Fusion, Variance Adaptor, and Genera-487

tor. Please refer to Appendix D for more details.488

4.3 Leaderboard489

To comprehensively evaluate baseline models’ per-490

formance on CS-TTS benchmark, we use a combi-491

nation of objective and subjective metrics.492

4.3.1 Objective Metrics 493

Since ground truth waveform is available, follow- 494

ing (Wang et al., 2023; Peng et al., 2024), we 495

use four different objective metrics: MCD (Ku- 496

bichek, 1993), F0, WER and PESQ (Rix et al., 497

2001). Please refer to Appendix E for detailed 498

definitions. 499

4.3.2 Subjective Metrics 500

CS-TTS with Narratives Previous work has 501

been limited by the form of prompts, typically only 502

considering prompts that directly describe speech 503

and lacking the ability to utilize environment infor- 504

mation (Guo et al., 2023; Leng et al., 2023; Yang 505

et al., 2024). Therefore, we propose CS-TTS with 506

narratives as our first benchmark. We maintain 507

the same training and testing sets as mentioned 508

in Chapter 3.4. For each sample, its environment 509

description is adopted as the input prompt. 510

To better assess speech quality, our MOS eval- 511

uations focus on different aspects: MOS-E em- 512

phasizes the alignment of the speech with the en- 513

vironment description, including volume, timbre, 514

and conveyed emotion, aiming to test the ability 515

to utilize information within the environment de- 516

scription. MOS-C focuses on the consistency of 517

the speech itself, with the goal of evaluating the 518

stability of the model when generating speech with 519

the environment description. Please refer to Ap- 520

pendix H.2 for detailed evaluation guidelines. 521

CS-TTS with Dialogues Although previous 522

work has explored the use of dialogue to control 523

speech generation (Li et al., 2022a; Guo et al., 524

2021; Liu et al., 2023), they primarily focus on 525

the content of the dialogue itself, neglecting the 526

influence of the conversational scenario (e.g., the 527

speaker’s actions and expressions). Therefore, we 528

propose CS-TTS with dialogues, which utilizes the 529

speaker’s action states as supplementary informa- 530

tion to simulate the scenario of live conversations. 531

We first use MOS-D to assess the coherence be- 532

tween the speech and the dialogue context. During 533

the evaluation, we primarily consider two factors: 534

the overall emotional tone of the dialogue and the 535

content of the most recent dialogue turn. To evalu- 536

ate the impact of the action states on the speech, we 537

employ MOS-S to determine whether the speech 538

aligns with the action states. In this assessment, 539

evaluators are initially provided with the dialogue 540

context and action states to infer the speech’s emo- 541

tion, pitch, volume, etc., before listening to the 542
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Model Narrative Dialogue Objective Metrics

MOS-E ↑ MOS-C ↑ MOS-D ↑ MOS-S ↑ PESQ ↑ MCD ↓ F0 ↓ WER ↓

None-Prompt TTS Models

Tacotron2 3.86 ± 0.05 3.92 ± 0.09 3.73 ± 0.06 3.65 ± 0.07 3.67 8.25 76.29 10.10
FastSpeech2 3.84 ± 0.08 3.97 ± 0.13 3.75 ± 0.09 3.69 ± 0.09 3.49 8.45 78.26 11.94

StyleTTS 3.92 ± 0.11 3.93 ± 0.07 3.78 ± 0.07 3.72 ± 0.06 3.22 8.34 69.57 9.76
StyleSpeech 3.89 ± 0.08 3.90 ± 0.09 3.77 ± 0.09 3.72 ± 0.11 3.70 8.06 71.04 8.63

Prompt-based TTS Models

PromptTTS2 3.93 ± 0.07 3.92 ± 0.11 3.83 ± 0.11 3.80 ± 0.07 3.89 7.92 72.77 8.02
PromptTTS++ 3.93 ± 0.09 3.99 ± 0.10 3.78 ± 0.08 3.70 ± 0.09 3.68 7.82 74.59 8.69

InstructTTS 3.94 ± 0.09 4.12 ± 0.08 3.83 ± 0.13 3.75 ± 0.08 3.89 7.50 72.65 7.56
VoiceLDM 3.94 ± 0.07 3.86 ± 0.06 3.83 ± 0.09 3.72 ± 0.08 3.75 7.57 76.83 6.74

DNA-TTS (Ours) 3.96 ± 0.09 4.01 ± 0.13 3.85 ± 0.06 3.83 ± 0.07 4.10 7.35 71.45 6.36

Codec TTS Models

VALL-E 3.89 ± 0.06 3.95 ± 0.09 3.76 ± 0.05 3.74 ± 0.09 4.27 7.39 67.05 6.40
NaturalSpeech2 3.92 ± 0.04 4.03 ± 0.07 3.82 ± 0.05 3.79 ± 0.06 4.38 7.47 66.20 6.22

VoiceCraft 3.94 ± 0.08 4.16 ± 0.10 3.88 ± 0.06 3.89 ± 0.07 4.18 7.16 68.90 6.03

Table 2: Leaderboard results of DNASpeech. MOS-E and MOS-C are metrics of CS-TTS with narratives. MOS-D
and MOS-S are metrics of CS-TTS with dialogues. The best results are highlighted in bold.

generated speech. They then evaluate the degree543

of alignment between the two and provide a final544

score. Please refer to Appendix H.2 for detailed545

evaluation guidelines.546

4.4 Discussions547

The evaluation results are presented in Table 2.548

Based on the results, we find that:549

MOS-E and MOS-C metrics are generally550

correlated. This correlation suggests that models551

adept at capturing and integrating environmental552

descriptions—such as volume, timbre, and con-553

veyed emotion—tend to maintain a high degree554

of consistency in their speech generation. This555

alignment underscores the importance of robust556

environmental context integration mechanisms in557

TTS systems to achieve both expressive and reli-558

able speech synthesis.559

Prompt-based methods perform better in560

terms of MOS-D, highlighting the efficacy of in-561

corporating dialogue context in speech synthesis.562

This improvement is likely attributable to the mod-563

els’ ability to leverage contextual information from564

preceding dialogue turns, thereby producing more565

contextually appropriate and emotionally resonant566

speech. This advantage underscores the importance567

of dialogue-aware mechanisms in TTS systems,568

particularly for applications requiring dynamic and569

context-sensitive interactions. We further explore570

the influence of dialogue turns in Appendix F.571

Codec TTS Models lead in both subjective572

and objective evaluations. The superior perfor-573

mance of Codec TTS models can be attributed to 574

their advanced encoding mechanisms, which effec- 575

tively capture and reproduce intricate speech nu- 576

ances, including prosody, intonation, and emotional 577

subtleties. These sophisticated encoding strategies 578

enable Codec TTS systems to generate speech that 579

not only aligns closely with environmental and con- 580

textual descriptions but also maintains high fidelity 581

and naturalness, thereby setting a benchmark for 582

future advancements in text-to-speech technology. 583

5 Conclusion 584

In this work, we introduce Contextualized and Sit- 585

uated Text-to-Speech (CS-TTS), aiming to gener- 586

ate speech that adapts to its surrounding context. 587

To address the limitations of existing datasets, we 588

collected a new dataset called DNASpeech to fa- 589

cilitate the development of CS-TTS. This dataset 590

contains high-quality speech recordings annotated 591

with "DNA" prompts that consist of Dialogues, Nar- 592

ratives, and Actions. 593

Furthermore, we establish a leaderboard to com- 594

pare the performance of various TTS models on 595

the CS-TTS task and propose a baseline method 596

to serve as a reference for future research in this 597

area. The results indicate that incorporating con- 598

textual and situated information can further en- 599

hance the performance of TTS models. We be- 600

lieve that DNASpeech can drive progress in TTS 601

research, moving toward generating smooth and 602

natural speech without manual intervention. 603
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Limitations604

There are two main key aspects we aim to address605

in our future work. Firstly, DNASpeech collects606

speech data from movie scenes rather than from607

real-world scenarios, which might affect the char-608

acteristics of the speech. We plan to diversify our609

dataset by incorporating speech data from more610

varied and real-world contexts to better reflect au-611

thentic speech patterns. Additionally, although we612

define more comprehensive contextualized and sit-613

uated prompts than previous TTS datasets, it does614

not cover all possible prompt types. We intend to615

explore and integrate additional types of textual616

prompts to further enrich the dataset, enhancing its617

utility for a wider range of TTS applications.618
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A License800

The dataset 10 is available for free download and801

non-commercial use under the CC BY-NC-SA 4.0802

license.803

B Social Impact804

Given the sensitive nature of biometric data,805

particularly vocal recordings, all data undergo806

anonymization to protect personal privacy. How-807

ever, despite these measures, there exists a potential808

risk of misuse. To prevent unauthorized usage or809

dissemination, access to the dataset is subject to a810

rigorous review process. Regarding the intended811

use, users are permitted to define their own tasks812

in our dataset under the license, upon advanced813

contact with us.814

C Statistics815

We analyze the statistics of speeches, focusing on816

both pitch and speed to overall present DNASpeech.817

We extract the F0 fundamental frequency from818

speeches to obtain their pitch. As shown in Fig 4,819

the pitch distribution range for female speakers820

is wider than that for male speakers, evenly dis-821

tributed from 70Hz to 150Hz; in contrast, the pitch822

for male speakers is more concentrated, mostly ap-823

pearing in the 65Hz-95Hz range. Overall, the pitch824

of female speakers is generally higher than that of825

male speakers. To more accurately measure the826

speed of a speech, we calculate the syllables per827

second (SPS) after removing its silent segments.828

The distribution shown in the figure indicates that829

the speakers’ speech speed ranges from 6 SPS to 22830

SPS, with the 12-15 SPS being the most frequent.831

D Proposed Baseline832

D.1 Model Architecture833

We propose a specific baseline for CT-TTS task,834

as shown in Fig 5. The Phoneme Encoder uses835

BERT (Devlin et al., 2019) to encode the phonemes836

of the speech. The Context Encoder shares the837

same structure as the Phoneme Encoder but in-838

cludes classification tasks for emotion, pitch, en-839

ergy, and speed during training. To ensure that840

the generated speech accurately reflects the con-841

textualized and situated descriptions provided in842

the prompts, we introduce a Style Fusion module843

10https://anonymous.4open.science/r/
DNASpeech-FDCD

that employs a cross-attention mechanism for fine- 844

grained feature fusion. 845

Given that prompts in the CS-TTS task do not 846

include descriptions of acoustic features, we insert 847

a speaker embedding into the fused representation 848

to control the characteristics of the speech. Inspired 849

by the setup of FastSpeech2 (Ren et al., 2020), we 850

incorporate a Variance Adaptor module following 851

the Style Fusion. This module predicts informa- 852

tion such as duration, pitch, and loudness, further 853

clarifying the speech characteristics and address- 854

ing the one-to-many problem in prompt-based TTS 855

tasks. The final output of our baseline model is a 856

mel-spectrogram, which is transformed into speech 857

using a pre-trained HiFiGAN (Kong et al., 2020), 858

ensuring high-fidelity speech synthesis. 859

D.2 Effect of Modules 860

In our proposed baseline (DNA-TTS), the Con- 861

text Encoder and Style Fusion module collec- 862

tively serve as the core dialogue-aware components. 863

Specifically: 864

• Classification Task of Context Encoder: 865

This module employs BERT to encode con- 866

textual features. More importantly, during 867

training, it performs auxiliary classification 868

tasks for emotion, pitch, and energy, enabling 869

it to capture nuanced conversational cues (e.g., 870

shifts in tone or intent across dialogue turns). 871

• Style Fusion: Leveraging cross-attention, this 872

module dynamically aligns the encoded dia- 873

logue context with the current input phonemes. 874

This ensures that synthesized speech reflects 875

the inferred emotional trajectory and speaker 876

intentions from prior dialogue turns, thereby 877

improving coherence (MOS-D). 878

To quantify the impact of these two components, 879

we add ablation experiments, where we progres- 880

sively remove these two components during both 881

training and inference stages. The results are as 882

follows: 883

Stage MOS-D PESQ MCD F0 WER

Original Model 3.85 4.10 7.35 71.45 6.36
- CLS Task 3.80 3.86 7.78 72.37 7.78

- Style Fusion 3.74 3.59 8.29 74.38 8.03

Based on the experimental results, it can be ob- 884

served that the model’s performance gradually de- 885

clines as components are disabled. Specifically, 886

when only the classification task is removed, there 887
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Figure 4: The statistical distribution of the mean F0 and SPS. Each point in the scatter figure represents a speaker.
The top and right figures are stacked histograms of mean F0 and SPS by gender.

(a) DNA-TTS

Figure 5: Illustration of the architecture of the proposed
baseline for CS-TTS tasks.

is a noticeable drop in performance. This may888

be because the contextual information was not su-889

pervised and aligned during training, leading to890

insufficient handling of detailed features such as891

emotion, pitch, and speed. When style fusion is fur-892

ther removed, the model’s performance degrades893

to a level comparable to that of None-Prompt TTS894

models, at which point the contextual information895

can not be integrated with the text input.896

E Definition of Objective Metrics897

MCD (Mel-Cepstral Distortion) (Kubichek, 1993)
measures the difference of Mel Frequency Cep-
strum Coefficients (MFCC) between generated and

ground truth, defined as

MCD =
10

ln 10

√√√√1

2

L∑
i=1

(mg
i −mr

i )
2

where L is the order of MFCC, which we set to be 898

13. mg
i is the ith MFCC of ground truth recording 899

and mr
i is the ith MFCC of the generated speech. 900

We use the pymcd package 11 for calculating MCD. 901

F0 is measured by estimating the fundamental 902

frequency of the audio and calculating the F0 dis- 903

tance between the grounding truth and the gener- 904

ated speech. A smaller F0 distance indicates that 905

the generated speech is closer to the grounding 906

truth. For F0 estimation, we use the pYIN algo- 907

rithm implemented in librosa, with a minimum 908

frequency of 65 Hz and a maximum frequency of 909

200 Hz. 910

WER (Word Error Rate) is used to measure the
difference between the predicted and actual tran-
scription of speech by calculating the minimum
number of substitutions, deletions, and insertions
required to change the system’s output into the ref-
erence text:

WER =
S +D + I

N

where S refers to substitutions, D refers to dele- 911

tions, I refers to insertions and N is the total num- 912

ber of words in the reference transcription. We use 913

whisper-large-v3 12 as our ASR model. 914

11https://github.com/chenqi008/pymcd
12https://huggingface.co/openai/

whisper-large-v3

12
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PESQ (Perceptual Evaluation of Speech Qual-915

ity) (Rix et al., 2001) is an objective metric de-916

veloped by the International Telecommunication917

Union (ITU) in recommendation P.862 and is com-918

monly used for evaluating the quality of speech919

in telecommunication systems, such as voice over920

IP (VoIP) and TTS. It models the human auditory921

system’s perception of speech. We use the pesq922

package 13 for calculating PESQ.923

F Influence of Dialogue Turns924

To assess the impact of contextual information925

quantity on speech quality, we conduct additional926

experiments. Specifically, we further divided the927

DNASpeech test set into four categories based on928

the number of dialogue turns: 1-3 turns, 4-6 turns,929

7-8 turns, and 8 turns or more. We then test both930

DNA-TTS (Prompt-based TTS Models) and VALL-931

E (Codec TTS Models) on these subsets, and the932

results are shown in Table 3:933

The results show that contextual information has934

a positive effect on speech quality within a certain935

range, with the model performance typically peak-936

ing around the 4-6 dialogue turns. However, as937

the number of dialogue turns increases, the speech938

quality begins to decline. When the contextual939

information becomes too lengthy (i.e., beyond 8940

turns), the speech quality significantly deteriorates.941

This may be due to the contextual information be-942

coming too dispersed, losing its supervisory effect943

on speech generation. This serves as a reminder to944

be cautious when using contextual information to945

avoid such issues.946

G Baseline details947

G.1 Introduction of Baselines948

Tacotron2 (Shen et al., 2018) leverages an end-to-949

end deep learning framework, where the input is a950

sequence of text and the output is a spectrogram,951

which is then used to generate natural-sounding952

speech. The model uses a sequence-to-sequence953

architecture with attention mechanisms, allowing it954

to learn a direct mapping between textual features955

and audio characteristics.956

FastSpeech2 (Ren et al., 2020) designed to en-957

hance the efficiency, reliability, and flexibility of958

speech synthesis systems. Unlike traditional autore-959

gressive models that generate audio sequentially,960

FastSpeech employs a non-autoregressive architec-961

ture, enabling parallel generation of speech outputs.962

13https://github.com/ludlows/PESQ

Additionally, FastSpeech incorporates mechanisms 963

to improve robustness against input variations and 964

allows for greater controllability over speech char- 965

acteristics such as prosody and intonation. 966

PromptTTS2 (Leng et al., 2023) incorporates a 967

variation network that predicts voice variability not 968

captured by text prompts, and a prompt genera- 969

tion pipeline that leverages large language models 970

(LLMs) to compose high-quality text prompts au- 971

tomatically. The variation network in PromptTTS 972

2 works by predicting the representation from ref- 973

erence speech based on the text prompt represen- 974

tation, allowing for the sampling of diverse voice 975

variability. 976

PromptTTS++ (Shimizu et al., 2024) designed to 977

synthesize the acoustic characteristics of various 978

speakers based on natural language descriptions. 979

This method employs an additional speaker prompt 980

to efficiently map natural language descriptions to 981

the acoustic features of different speakers. 982

PromptTTS++ (Shimizu et al., 2024) builds upon 983

the concept of prompt-based TTS, where voice 984

characteristics can be manipulated through descrip- 985

tive prompts. A key innovation in PromptTTS++ is 986

the introduction of "speaker prompts", which are 987

designed to describe voice attributes like gender- 988

neutral, young, old, and muffled, and are intended 989

to be independent of speaking style. To facilitate 990

this, the authors constructed a dataset based on 991

the LibriTTS-R corpus with manually annotated 992

speaker prompts, as no large-scale dataset with 993

such annotations existed. The system employs a 994

diffusion-based acoustic model along with mixture 995

density networks to capture diverse speaker charac- 996

teristics from the training data. 997

InstructTTS (Yang et al., 2024) is designed to syn- 998

thesize speech with varying speaking styles by us- 999

ing natural language as style prompts. This model 1000

introduces an insightful approach to controlling the 1001

expressiveness of synthetic speech, such as emo- 1002

tion and speaking rate, through natural language 1003

descriptions, which can include detailed instruc- 1004

tions. It models acoustic features in a discrete la- 1005

tent space, using a discrete diffusion probabilistic 1006

model to generate vector-quantized (VQ) acoustic 1007

tokens instead of the traditional mel spectrogram. 1008

StyleSpeech (Min et al., 2021) is designed to gen- 1009

erate high-quality, personalized speech for multiple 1010

speakers with minimal audio samples from the tar- 1011

get speaker. This model is particularly adept at 1012

adapting to new speakers with short-duration audio 1013

samples. StyleSpeech introduces a novel Style- 1014
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Model Turns MOS-D↑ MOS-S↑ PESQ↑ MCD↓ F0↓ WER↓

DNA-TTS

1-3 3.87 3.85 4.16 7.03 69.53 6.03
4-6 3.89 3.85 4.23 7.25 68.90 6.29
7-8 3.84 3.83 4.12 7.52 71.45 6.43
>8 3.80 3.79 3.89 7.60 75.87 6.69

VALL-E

1-3 3.77 3.78 4.28 7.45 66.69 6.28
4-6 3.79 3.76 4.31 7.38 67.19 6.45
7-8 3.73 3.73 4.24 7.62 67.75 6.55
>8 3.68 3.65 4.15 7.94 68.27 6.72

Table 3: The performance of DNA-TTS and VALL-E using different dialogue turns. The best results are highlighted
in bold, while the worst results are marked with underline.

Adaptive Layer Normalization (SALN) technique1015

that aligns the text input’s gain and bias according1016

to the style extracted from a reference speech audio.1017

This allows the model to synthesize speech in the1018

style of the target speaker effectively.1019

StyleTTS (Li et al., 2022b) focuses on generating1020

natural and diverse speech. StyleTTS is designed1021

to overcome the challenges of producing speech1022

with realistic prosodic variations, speaking styles,1023

and emotional tones. A key innovation of StyleTTS1024

is the integration of style-based generative model-1025

ing into a parallel TTS framework, which allows it1026

to synthesize speech that captures the stylistic nu-1027

ances of reference audio. This is achieved through1028

the use of a novel Transferable Monotonic Aligner1029

(TMA) and duration-invariant data augmentation,1030

enhancing the model’s ability to produce speech1031

with natural prosody and speaker similarity.1032

VoiceLDM (Lee et al., 2024) sets a new standard in1033

audio generation by incorporating environmental1034

context into the synthesis process. Unlike tradi-1035

tional TTS models that focus solely on linguistic1036

content, VoiceLDM is designed to respond to two1037

types of natural language prompts: a description1038

prompt that outlines the environmental setting of1039

the audio, and a content prompt that specifies the1040

linguistic content of the speech.1041

VALL-E (Wang et al., 2023) represents a signif-1042

icant shift in the approach to TTS. Unlike tradi-1043

tional methods that treat TTS as a continuous sig-1044

nal regression problem, VALL-E frames TTS as a1045

conditional language modeling task. This model1046

leverages discrete codes derived from an off-the-1047

shelf neural audio codec model, which allows it to1048

synthesize high-quality, personalized speech with1049

minimal acoustic prompts. VALL-E outperforms1050

existing state-of-the-art zero-shot TTS systems in1051

terms of speech naturalness and speaker similarity. 1052

Additionally, VALL-E is capable of preserving the 1053

speaker’s emotion and acoustic environment in the 1054

synthesized speech. 1055

NaturalSpeech2 (Shen et al., 2023) aims to syn- 1056

thesize natural and human-like speech with high 1057

quality and diversity. NaturalSpeech 2 employs 1058

a neural audio codec that converts speech wave- 1059

forms into sequences of latent vectors and a diffu- 1060

sion model that generates these vectors based on 1061

text input. A key feature of NaturalSpeech 2 is 1062

its zero-shot capability, which allows the system to 1063

synthesize diverse speech even for unseen speakers, 1064

demonstrating superior prosody/timbre similarity, 1065

robustness, and voice quality compared to previous 1066

TTS systems. 1067

VoiceCraft (Peng et al., 2024) is a token-infilling 1068

neural codec language model that excels in both 1069

speech editing and zero-shot text-to-speech appli- 1070

cations. VoiceCraft is designed to work with vari- 1071

ous audio sources, including audiobooks, internet 1072

videos, and podcasts. It utilizes a Transformer de- 1073

coder architecture and employs a unique token re- 1074

arrangement process that combines causal masking 1075

and delayed stacking. This innovative approach 1076

allows the model to generate speech that is nearly 1077

indistinguishable from original recordings in terms 1078

of naturalness, as evaluated by human listeners. 1079

G.2 Training Parameters 1080

Training parameters are listed in Table 4 and Ta- 1081

ble 5. 1082

H Evaluation Details 1083

H.1 Evaluator Information 1084

A total of eight evaluators participated in the man- 1085

ual evaluation process of this work. All evaluators 1086
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Model Optimizer β1 β2 ϵ Batch size Training steps Learning rate

Tacotron2 Adam 0.9 0.99 10−6 16 2 epochs 10−4

FastSpeech2 Adam 0.9 0.98 10−9 16 2 epochs 10−5

StyleTTS AdamW 0 0.99 10−7 16 2 epochs 10−4

StyleSpeech Adam 0.9 0.98 10−9 16 2 epochs 2× 10−4

PromptTTS2 Adam 0.9 0.99 10−7 16 2 epochs 10−5

PromptTTS++ Adam 0.9 0.99 10−7 16 2 epochs 10−5

InstructTTS AdamW 0.9 0.94 10−7 16 2 epochs 3× 10−6

VoiceLDM AdamW 0.9 0.99 10−7 16 2 epochs 2× 10−5

Table 4: Training configurations for different models

Model Schedule Other params

Tacotron2 / /
FastSpeech2 Linear schedule Warm up step=200
StyleTTS OneCycleLR Weight decay=10−4, λs2s = 0.2, λadv = 1, λmono = 5,

λfm = 0.2, λdur = 1, λf0 = 0.1, λn = 1
StyleSpeech / /
PromptTTS2 / /
PromptTTS++ / /
InstructTTS Linear schedule Warm up step=200
VoiceLDM / Drop rate of cdesc=0.1, Drop rate of ccont=0.1

Table 5: Training configurations for different models

held a graduate degree or higher, including three1087

individuals of Asian descent and five native English1088

speakers. Prior to the evaluation, all participants1089

were thoroughly briefed on the evaluation methods1090

and specific guidelines.1091

H.2 Guidelines1092

H.2.1 MOS-E1093

Purpose. MOS-E evaluates how well the sys-1094

tem’s speech aligns with the environment descrip-1095

tion, taking into account volume, timbre, and the1096

emotion conveyed. The focus is on how effectively1097

the system incorporates the environmental context1098

into its speech, ensuring that the output feels con-1099

textually appropriate, emotionally consistent, and1100

well-matched to the described surroundings.1101

Criteria.1102

1. Volume Appropriateness: Does the system1103

adjust its volume in a way that matches the de-1104

scribed environment? For instance, if the envi-1105

ronment is a quiet room, is the speech soft and1106

subtle? If the setting is a loud, bustling street,1107

does the system compensate with louder or1108

more intense speech?1109

2. Timbre Alignment: Does the system adjust1110

the tone or texture of its voice to fit the en-1111

vironment? For example, in a serene setting1112

like a forest, is the voice calm and soothing,1113

whereas in a high-energy environment like a 1114

sports stadium, does the voice reflect excite- 1115

ment or intensity? 1116

3. Emotion Conveyed: Is the emotional tone of 1117

the speech consistent with the environment 1118

description? If the environment is described 1119

as tense or somber (e.g., a dark alley or a 1120

funeral), does the speech reflect that tension or 1121

sadness? If the environment is happy or lively, 1122

does the voice convey a matching positive 1123

emotion? 1124

4. Contextual Adaptation: How well does the 1125

system integrate information from the environ- 1126

ment description into its speech output? Does 1127

the system fully utilize the given context, or 1128

does it fail to adapt its voice appropriately? 1129

Scoring Instructions. 1130

1. Very Poor (1): The speech is completely out 1131

of sync with the environment description. Vol- 1132

ume, timbre, and emotion are inappropriate, 1133

making the system’s output feel disconnected 1134

from the described surroundings. 1135

2. Poor (2): The speech shows some effort to 1136

match the environment but is still significantly 1137

mismatched. There may be a lack of emo- 1138

tional depth or incorrect volume/timbre ad- 1139

justments that detract from the immersion. 1140
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3. Moderate (3): The speech aligns to some de-1141

gree with the environment, but it is inconsis-1142

tent. Volume and timbre might be correct in1143

some cases, but emotional expression or con-1144

textual adaptation could be improved.1145

4. Good (4): The speech is generally well-1146

aligned with the environment. Volume, timbre,1147

and emotion are appropriately adjusted most1148

of the time, with only minor discrepancies.1149

5. Excellent (5): The system’s speech perfectly1150

matches the environment description. It seam-1151

lessly adjusts volume, timbre, and emotion1152

to create a highly immersive and contextually1153

accurate experience.1154

Considerations. Evaluate the system’s ability to1155

adapt dynamically to the environmental cues. Pay1156

attention to the subtlety of the system’s voice ad-1157

justments: a high-quality system should be able to1158

make these adjustments in a natural, unobtrusive1159

way that enhances the realism of the interaction.1160

H.2.2 MOS-C1161

Purpose. MOS-C evaluates the consistency of1162

the system’s speech when generating responses1163

based on the given environment description. The1164

focus is on assessing how stable the system is in1165

maintaining a steady and coherent output through-1166

out the interaction, ensuring that the speech re-1167

mains consistent in terms of tone, style, and quality,1168

regardless of environmental shifts or changes in the1169

context.1170

Criteria.1171

1. Tone Consistency: Is the system’s tone con-1172

sistent throughout the interaction? Does the1173

system maintain a coherent style (e.g., formal,1174

informal, casual, etc.) without unnecessary1175

fluctuations in tone?1176

2. Volume Stability: Does the system keep a1177

stable volume level during the interaction?1178

Even if the environment description changes,1179

is there an appropriate, but consistent, volume1180

level maintained without abrupt changes?1181

3. Timbre Consistency: Is the timbre (quality of1182

the voice) stable and consistent across multi-1183

ple turns? Does it retain its distinct character-1184

istics, or does it fluctuate in a way that feels1185

unnatural?1186

4. Emotional Consistency: Does the system 1187

maintain a stable emotional tone, or does it 1188

randomly fluctuate? Emotional shifts should 1189

occur only when the environment changes in 1190

a way that justifies them (e.g., a shift from a 1191

happy environment to a sad one). 1192

5. Stylistic Continuity: Does the system main- 1193

tain consistency in its speaking style, such 1194

as formality, in line with the environment de- 1195

scription? 1196

Scoring Instructions. 1197

1. Very Inconsistent (1): The system’s speech 1198

is highly unstable, with frequent and notice- 1199

able shifts in tone, volume, timbre, or emotion 1200

that do not match the environment or create a 1201

jarring user experience. 1202

2. Inconsistent (2): There are noticeable fluctu- 1203

ations in the speech output that disrupt the 1204

flow of the interaction. These shifts may seem 1205

unnatural or out of place in the context of the 1206

environment. 1207

3. Moderately Consistent (3): The system main- 1208

tains an overall stable speech output, but some 1209

inconsistencies are present. There may be oc- 1210

casional fluctuations in tone or volume, but 1211

they don’t significantly impact the coherence 1212

of the speech. 1213

4. Consistent (4): The speech remains fairly sta- 1214

ble throughout the interaction, with minor in- 1215

consistencies that do not detract from the over- 1216

all experience. The system maintains an ap- 1217

propriate tone, volume, timbre, and emotional 1218

consistency. 1219

5. Highly Consistent (5): The system’s speech 1220

is completely stable, with no noticeable fluc- 1221

tuations. Tone, volume, timbre, and emotion 1222

remain coherent and aligned with the environ- 1223

ment description throughout the entire inter- 1224

action. 1225

Considerations. Evaluate the uniformity of the 1226

speech characteristics. A consistent system will 1227

adapt to environmental changes subtly without sud- 1228

den shifts that could break immersion or distract 1229

from the user experience. 1230
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H.2.3 MOS-D1231

Purpose. MOS-D evaluates the coherence of the1232

system’s speech in relation to the ongoing dialogue1233

context. The goal is to assess how well the system’s1234

responses align with the previous conversation his-1235

tory and whether they maintain logical flow and1236

relevance. This score focuses on the system’s abil-1237

ity to stay on-topic, build on prior exchanges, and1238

provide responses that are contextually appropriate1239

within the dialogue.1240

Criteria.1241

1. Relevance to Previous Turns: Does the sys-1242

tem’s response directly address the most re-1243

cent user input? Are there clear connections1244

to prior exchanges, or does the response seem1245

disconnected or out of place?1246

2. Logical Flow: Does the system’s speech fol-1247

low a natural progression from previous dia-1248

logue? Are responses structured in a way that1249

makes sense given what has been discussed1250

so far?1251

3. Turn-taking and Timing: Does the system un-1252

derstand and respect the natural flow of con-1253

versation, responding at appropriate moments1254

and allowing for smooth turn-taking? Does1255

it avoid interrupting or providing responses1256

that feel out of sync with the timing of the1257

conversation?1258

Scoring Instructions.1259

1. Very Incoherent (1): The system’s response1260

is completely disconnected from the previous1261

dialogue. It may ignore or misunderstand the1262

context, resulting in responses that feel irrele-1263

vant or random.1264

2. Incoherent (2): The response is partially rele-1265

vant but lacks clear connection to the ongoing1266

conversation. There are significant gaps in1267

logical flow or misunderstandings of the con-1268

text.1269

3. Moderately Coherent (3): The system’s re-1270

sponse is somewhat relevant, but there may1271

be minor lapses in coherence. It addresses the1272

user’s input, but the response could be more1273

fluid or better integrated with the context.1274

4. Coherent (4): The response is mostly rele-1275

vant and logically follows from previous turns.1276

There are minor inconsistencies, but the over- 1277

all flow of the conversation is maintained. 1278

5. Highly Coherent (5): The system’s response 1279

is seamlessly integrated into the ongoing di- 1280

alogue. It builds naturally on previous ex- 1281

changes, remains relevant, and maintains 1282

a logical and smooth conversational flow 1283

throughout. 1284

Considerations. Pay close attention to how well 1285

the system recognizes the dialogue history and con- 1286

text. The response should not only be appropriate 1287

to the immediate previous turn but also reflect un- 1288

derstanding of the overall direction of the conver- 1289

sation. A highly coherent system will effectively 1290

navigate and build on the evolving dialogue while 1291

keeping responses consistent and contextually rele- 1292

vant. 1293

H.2.4 MOS-S 1294

Purpose. MOS-S evaluates how well the sys- 1295

tem’s speech aligns with the action states described 1296

in the given dialogue context. This assessment fo- 1297

cuses on determining whether the speech accurately 1298

reflects the inferred emotion, pitch, volume, and 1299

other relevant qualities based on the action states 1300

provided to the evaluator. The goal is to assess the 1301

system’s ability to generate speech that is consis- 1302

tent with the intended emotional tone, energy level, 1303

and contextual cues. 1304

Criteria. 1305

1. Emotion Alignment: Does the speech accu- 1306

rately reflect the emotion inferred from the 1307

action states and dialogue context? For exam- 1308

ple, if the action state indicates anger, is the 1309

speech delivered with an appropriate intensity 1310

and emotional weight? 1311

2. Pitch Consistency: Is the pitch of the speech 1312

consistent with the emotional tone and action 1313

state? A heightened pitch might be expected 1314

for excitement, while a lower pitch may suit a 1315

calm or serious environment. 1316

3. Volume Appropriateness: Does the volume 1317

of the speech align with the inferred action 1318

state? For example, if the action state sug- 1319

gests an intense or confrontational situation, 1320

should the speech be louder or more forceful, 1321

as opposed to a quiet, subdued volume for a 1322

calm or intimate setting? 1323
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4. Timbre Alignment: Is the timbre (quality of1324

the voice) consistent with the action states?1325

For example, a high-energy situation might1326

require a brighter, more vibrant voice, while a1327

somber situation could demand a more muted,1328

heavy tone.1329

Scoring Instructions.1330

1. Very Poor (1): The speech is completely mis-1331

matched with the action states. Emotion,1332

pitch, volume, and timbre are completely1333

off, making the generated speech feel discon-1334

nected from the described action states.1335

2. Poor (2): The speech has some attempt at1336

matching the action states, but significant dis-1337

crepancies exist. The emotional tone, volume,1338

or pitch are not fully aligned with the intended1339

action states, resulting in a noticeable mis-1340

match.1341

3. Moderate (3): The speech aligns moderately1342

well with the action states. There are some no-1343

ticeable differences in emotion, pitch, volume,1344

or timbre, but the overall speech still corre-1345

sponds with the intended context and action1346

states.1347

4. Good (4): The speech is generally well-1348

aligned with the action states. The emotion,1349

pitch, volume, and timbre are mostly consis-1350

tent with the inferred context, with only minor1351

inconsistencies.1352

5. Excellent (5): The speech perfectly aligns1353

with the action states. The emotion, pitch,1354

volume, and timbre are precisely matched to1355

the action states and the overall dialogue con-1356

text, enhancing the realism and immersion of1357

the interaction.1358

Considerations. Evaluate how well the system1359

translates the inferred action states (emotion, vol-1360

ume, pitch, etc.) into speech characteristics. The1361

more closely the generated speech matches the ac-1362

tion states, the higher the alignment score. Pay1363

special attention to subtle aspects like the emo-1364

tional tone and how the system handles shifts in the1365

action state across different turns.1366
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