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ABSTRACT

In the large language models (LLMs) era, it is imperative to measure and under-
stand how gender biases present in the training data influence model behavior.
Previous works construct benchmarks around known stereotypes (e.g., occupa-
tions) and demonstrate high levels of gender bias in LLMs, raising serious con-
cerns about models exhibiting undesirable behaviors. We expand on existing lit-
erature by asking the question: Do large language models still favor one gender
over the other in non-stereotypical settings? To tackle this question, we restrict
LLM evaluation to a neutral subset, in which sentences are free of pronounced
word-gender associations. After quantifying these associations in terms of pre-
training data statistics, we use them to (1) create a new benchmark and (2) adapt
popular gender pronoun benchmarks — Winobias and Winogender — removing
strongly gender-correlated words. Surprisingly, when assessing 20+ models in the
proposed benchmarks, we still detect critically high gender bias across all tested
models. For instance, after adjusting for strong word-gender associations, we find
that all models still exhibit clear gender preferences in about 60%-95% of the
sentences, representing a small change (up to 10%) from the original benchmark.

1 INTRODUCTION

As Language models (LMs) become increasingly prevalent, a particular area of interest is the study
of whether these models behave fairly across different gender groups without perpetuating undesir-
able biases and stereotypes (Bommasani et al., 2021). Research on gender bias in LMs primarily
focuses on how models respond to harmful or stereotypical settings Perez et al. (2022). For instance,
numerous works study gender-occupation biases in word embeddings (Caliskan et al., 2017; Guo &
Caliskan, 2021), coreference resolution (Zhao et al., 2018; Rudinger et al., 2018), inter alia. More
recently, Nangia et al. (2020); Nadeem et al. (2021); Parrish et al. (2022); Smith et al. (2022) put
forward several human-curated benchmarks reflecting stereotypes for various demographic groups.
These benchmarks have been used to audit biases in popular LMs (e.g., InstructGPT and Llama-2
(Ouyang et al., 2022; Touvron et al., 2023)) and quantify stereotypical behavior. However, an im-
portant question remains unaddressed: how do LMs behave in non-stereotypical settings? In this
paper, we expand on previous work and investigate LM behavior in non-stereotypical settings (i.e.
without associations that skew strongly towards a specific group). Focusing on the binary gender
pronoun setting1, we question whether models remain fair when presented with test sentence pairs
that (1) are gender-invariant, i.e., remain semantically and grammatically correct regardless of the
gendered version of the sentence; and (2) do not contain gender co-occurring words, i.e., words
that are more strongly associated with one gender than the other. To quantify the words’ gender
co-occurrence, we leverage term frequency statistics in the model’s pretraining data. As an example
of a test sentence that is gender-invariant and contains no gender co-occurring words consider the
sentence “We appreciate that {PRONOUN}’s here.” from Figure 1. Ideally, unbiased LMs should not
exhibit any strong preference towards one of the gendered versions of the test sentence. However,

1We acknowledge the limitations of focusing on binary gender biases and the exclusion of non-binary gender
identities from our analysis.
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Figure 1: Examples of 3 non-stereotypical test sentence pairs and corresponding LMs preferences.
Although the sentences are gender-invariant and consist of words minimally correlated with gen-
der, most LMs exhibit clear preferences towards one gendered sentence. Preferences are defined
in terms of probability ratio (exceeding 1.65×) between gendered versions of the sentence. The
probability of a sentence is obtained by replacing the corresponding {PLACEHOLDER} with the
masculine/feminine pronouns and computing their probability under the model. Male, female, and
neutral preferences are represented as p(she) ≪ p(he), p(she) ≫ p(he), and p(she) ∼ p(he).

as shown in Figure 1, 18 (out of 23) assessed LMs do manifest a strong preference for the sentence
with the male pronoun.

To systematically evaluate the models on non-stereotypical settings, we adapt two popular gender
bias benchmarks whose sentences are already gender-invariant — Winobias (WB) (WB) and Wino-
gender (WG) (WG) (Zhao et al., 2018; Rudinger et al., 2018) — and exclude sentences containing
gender co-occurring words to limit the gender-related language in them. Due to the small size of
the resulting WB and WG, we also propose a framework to automatically create test sentence pairs
for evaluation, which includes more than 3k gender-invariant test sentences devoid of gender co-
occurring words. We evaluate 23 LMs on all benchmarks. Defining gender bias as the percentage
of examples where the model exhibits gendered preferences, we find that all tested LMs, including
LLAMA-2, OPT, and Pythia, exhibit consistently high levels of gender bias (approximately 60%-
95%), even when removing strong gender-word associations in sentences. Moreover, we find that
all models consistently favor male versions of the test sentences in WB and WG.

Our work underscores that existing bias measures and evaluation practices can provide an incom-
plete picture of model tendencies. We highly encourage systematic studies focusing on bias evalua-
tion to better understand LMs behaviors across both stereotypical and non-stereotypical settings.

2 METHODOLOGY

2.1 GENDER CO-OCCURRING WORDS

We estimate the word-gender association using word co-occurrence statistics in PILE (Gao et al.,
2021) — a high-quality and publicly available pretraining set used to train popular LMs (Biderman
et al., 2023; Zhang et al., 2022). The term and term co-occurrence counts are collected over windows
of size 10 that are swept over all the pretraining text in PILE after tokenizing and removing stop-
words Razeghi et al. (2022). Given the empirical frequencies estimated on PILE (denoted pdata),
we estimate how much more likely a word w (e.g., “adolescent”, “estimate”) is to co-occur with a
gendered word g (e.g., “she”, “he”) than by chance using the Pointwise mutual information (PMI)
score defined as PMI(w, g) = log pdata(w,g)

pdata(w)pdata(g)
. Then, as represented in Equation 1, we can com-

pute the difference between PMI(w, ’she’) and PMI(w, ’he’) to determine which gender w is more
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likely to co-occur with2. Using δ(w), we say that a word w is co-occurring with female gender if
δ(w) ≥ 0 and co-occurring with male gender if δ(w) ≤ 0.

δ(w) = (PMI(w, ’she’)− PMI(w, ’he’)) , (1)

Having defined how to compute the word-level associated with gendered pronouns “she” and “he”,
we now propose a sentence-level gender score MaxPMIDiff(s) that we use to obtain sentences with
no “gender co-occurring words”. Let s = w1w2...w|s| represent a sentence s of size |s|, Equation 2
determines the proposed sentence-level score.

i∗ = argmax
i∈{1,...,|s|}

|δ(wi)| MaxPMIDiff(s) = δ(wi∗) (2)

Figure 2: Percentage of remaining examples in
each dataset after enforcing MaxPMIDiff(s)
< εk.

To discriminate sentences with gender co-
occurring words from those without, we constrain
the maximum allowed association strength to be
smaller than a threshold |MaxPMIDiff(s)| ≤ εk.
Then, we use this constraint to restrict the num-
ber of gender co-occurring words, which shrinks
the number of remaining test sentence pairs — a
trade-off illustrated in Figure 2. As anticipated, as
we decrease εk, the number of available test sen-
tence pairs decreases significantly. Specifically,
for εk = 0.5, three datasets eliminate over 50% of
their sentences due to strong gender correlations.

2.2 BENCHMARK CONSTRUCTION

In practice, imposing MaxPMIDiff(s) constraints on existing gender-invariant benchmarks may
result in smaller evaluation sets. We tackle this problem by introducing a framework for the auto-
mated generation of diverse test sentence pairs that are both gender-invariant and compliant with the
MaxPMIDiff(s) constraints. Figure 3 illustrates the proposed two-stage framework.

Stage 1. Word selection. Given pretraining co-occurrence statistics and gendered word pairs (“she”,
“he”), this stage determines N English words. To limit the word selection to English words, we
heuristically filter out non-English words from PILE’s vocabulary3. Then, we compute the PMI
score δ(w) of every word in the preprocessed vocabulary. We choose a diverse and minimally
gender correlated set of words by randomly sampling 500 words from the interval [−0.263, 0.263],
for these words are equally likely to co-occur with both gendered pronouns “she” and “he”. We list
50 of the selected words in Appendix B.1.

Stage 2. Test sentence pairs generation. Given the previously selected words and a list of gendered
group words, we instruct OpenAI’s ChatGPT to produce 5 gender-invariant sentences containing one
word from each list (e.g., (“she”, “head”), (“he”, “head”)). For each resulting sentence, we create
its gendered counterpart by replacing the pronouns with the opposite gender and ascertain whether
all sentences are semantically and grammatically likely (or unlikely). To this end, we leverage
ChatGPT to perform semantic filtering of the sentence pairs, using the prompt specified in Table
2. After discarding unlikely test sentence pairs, we tokenize each sentence using Python’s nltk
package and compute MaxPMIDiff(s) per sentence, filtering out sentence pairs above εk. All our
prompts are listed in Appendix B.3.

3 EXPERIMENTAL SETUP

Language Models. We conduct our experiments on publicly available models that have been fully
or partially trained on PILE, including EleutherAI’s GPT-J-6B (Wang & Komatsuzaki, 2021) and
Pythia models (Biderman et al., 2023) but also Meta’s OPT models. Moreover, we investigate
the result of different pretraining interventions, namely data deduplication in model behavior by
including intervened Pythia models in our evaluation. Finally, we also include models not trained
on PILE — LLAMA-2 (7B, 13B) (Touvron et al., 2023) and MPT (7B, 30B) models (Team, 2023).

2See Appendix A for experiments using other gendered expressions.
3For more implementation details, see Appendix B.1.
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Figure 3: Overview of the proposed framework for generating test sentence pairs that are both
gender-invariant and free of gender co-occurring words.

Language Modeling Benchmarks. To investigate LM behavior in non-stereotypical settings with
binary gender pronouns, we choose WB and WG (Zhao et al., 2018; Rudinger et al., 2018) — two
widely studied gender-occupation bias benchmarks for coreference resolution. With the exception of
occupations that may imply gender bias, the sentences within these datasets are gender-invariant —
a property not met by datasets like BUG (Levy et al., 2021). Furthermore, we employ three gender-
invariant benchmarks, varying in sentence length, created using the ChatGPT-based approach out-
lined in Section 2.2. Table 4 shows the summary statistics of the benchmarks.

Fairness metric. Intuitively, given a gender-invariant test sentence pair s, fair models should not
exhibit a preference or skew toward either the masculine sM or feminine sF versions. We opera-
tionalize this idea in Equation 3 using a model’s distribution pmodel and a fairness threshold, εf 4.

τ(pmodel, Deval) =
1

|Deval|
∑

(sF ,sM )∈|Deval|

1| log pmodel(sF )−log pmodel(sM )|≤εf , (3)

4 RESULTS

In this section, we examine 23 LMs using 5 gender bias measurement benchmarks5. We start by
reporting the fairness metric for each model on the original benchmarks and investigate the impact
of the association strength threshold, εk, on the LMs fairness metric. We also investigate the effect
of model size on our fairness metric. Finally, we study the effect of training time interventions on
model fairness, such as the deduplication of pretraining data.

LMs show low measurements of gender fairness metric even in gender-unrelated benchmarks.
Table 1 summarizes the fairness metric of three datasets — Ours-5 (sentences with 5 words), WB
and WG. All models consistently exhibit low fairness across the benchmarks. The highest fairness
measure recorded is 39.77, attributed to the GPT-J-6B model on Ours-5 benchmark. Despite
being the maximum value, this value is still far from the ideal fairness metric of 100.

The choice of maximum correlation strength εk does not impact LMs measurements of gender
fairness In Figure 2, we study the effect of εk, which controls the strength of gender-word correla-
tions allowed in the benchmarks. Firstly, note that as we decrease the εk, the number of benchmark
samples drops drastically. The drop in the number of test instances indicates that these benchmarks
include a high number of samples with strong gender associations. Next, we observe a marginal
change in the fairness metric values (up to 1%) for Ours-5 benchmark when adjusting for the var-
ious levels of gender correlation. As for WB and WG, changes in fairness values are also relatively
small (up to 6% and 10%), suggesting that models exhibit low fairness regardless of the choice of
εk.

4Similarly to fair ML literature, we set εf = log(1.65) ≈ 0.5 during our experiments. We refer the
interested reader to Appendix B.4 for more information on various fairness thresholds.

5Due to space constraints, we report a subset of the results in the main paper and refer the reader to Appendix
D for the results for all the benchmarks and models.
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Table 1: Fairness metric measurement for multiple LMs across 3 benchmarks in two settings: the
original benchmark and the constrained version s.t. |MaxPMIDiff(s)| ≤ εk. We represent the
standard deviation in subscript. (D) represents a model pretrained in the deduplicated version of
PILE.

Ours-5 Winobias Winogender

Orig. εk = 0.65 Orig. εk = 0.65 Orig. εk = 0.65
Benchmark size 4405 3701 1586 409 240 107

LLAMA-2 13B 19.270.59 19.40.65 14.560.89 16.871.85 30.002.96 37.384.68
MPT 30B 9.040.43 9.050.47 14.630.89 13.691.70 26.672.85 26.174.25

OPT 350M 31.440.70 32.150.77 17.720.96 21.032.02 22.502.7 28.974.39
OPT 6.7B 29.130.68 29.10.75 15.260.90 19.321.95 27.082.87 32.714.54

GPT-J-6B 39.770.74 40.690.81 19.040.99 20.542.00 32.923.03 40.194.74

Pythia 70M 21.070.61 21.160.67 9.140.72 4.651.04 8.331.78 2.801.59
Pythia 6.9B 11.960.49 12.020.53 19.10.99 22.982.08 25.422.81 28.974.39
Pythia 12B 31.330.70 31.990.77 17.210.95 20.291.99 28.332.91 33.644.57

Pythia 70M (D) 27.330.67 27.940.74 14.630.89 12.471.63 11.672.07 5.612.22
Pythia 6.9B (D) 18.620.59 18.590.64 16.020.92 19.071.94 28.752.92 38.324.70
Pythia 12B (D) 19.890.60 20.320.66 14.560.89 18.831.93 28.332.91 35.514.63

No effect on gender fairness measurements is observed with changes in model size. We examine
the impact of LM size on fairness measurements across 4 families of LMs. As shown in Table 1,
there are no consistent trends in model fairness as we vary the model size.

Does deduplication of pretraining data improve the model fairness score? To answer this question,
we employ Pythia models that are trained on deduplicated training data (Biderman et al., 2023).
Comparing models trained on original and the deduplicated data in Table 5, we observe exacerbated
biases for some models (e.g. Pythia 410M and Pythia 12B), and reduced biases for others
(e.g. Pythia 70M and Pythia 6.9B). Overall, we do not see a consistent trend in the impact of
deduplicating the training data on models’ gender fairness score. While we observe some changes
in the fairness metric values when increasing εk, the values remain consistently low (see Table 1).

Are LMs preferring one gendered over the other? An unbiased LM should not favor one gender
over the other in a sentence pair. However, we detect alarmingly low fairness measurements even
in gender-unrelated benchmarks. Now, we ask if they prefer one gender over the other. To answer
this question, for each LM, we report both the difference between % of female preferred test sample
pairs and the % of male preferred test sample pair in Table 9. We observe that all models highly
prefer male pronoun completions for WB and WG. The skews are notable, but less pronounced in
our generated benchmark. While the majority of the models favor 20% more one gendered group
than the other, it is possible to find some models that do not, e.g., LLAMA-2 13B and OPT 6.7B
in Ours-10.

5 RELATED WORK

This section provides a brief summary of relevant works. For a comprehensive discussion on fair-
ness and social bias in LMs, see Gallegos et al. (2023); Li et al. (2023). Fair NLP evaluation has
mostly resorted to templates, consisting of a limited small-scale hand-curated list of sentence pairs
(Kiritchenko & Mohammad, 2018; May et al., 2019; Kurita et al., 2019), inter alia. The lack of
naturalness and diversity has encouraged researchers to utilize other approaches including sampling
sentences from real-world datasets (Levy et al., 2021; Dhamala et al., 2021) or resorting to crowd-
sourcing (Nadeem et al., 2021; Nangia et al., 2020). More recently, Kocielnik et al. (2023) proposes
a ChatGPT-based framework to automatically generate a bias benchmark based on the lexicons
drawn from Caliskan et al. (2017).
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6 CONCLUSION

In summary, we investigate the behavior of LMs in non-stereotypical gender settings using an
automated framework to generate sentence pairs without pronounced gender connotations. Our
findings reveal that all 23 models we analyze consistently favor one gender in sentence pairs. This
preference persists even after reducing word-gender associations based on Pythia’s training data.
Notably, across two popular gender bias datasets, all models systematically favor male sentences.
Building upon on these surprising results, we urge researchers to expand upon our work and consider
evaluation setups that go beyond the standard stereotypical settings. Constructing benchmarks that
test whether models behaviors match our intuitions in simple cases is a first step. Future work
should aim to investigate the reasons behind why models perpetuate gender bias in non-stereotypical
settings.

REPRODUCIBILITY STATEMENT

Our experiments are based on OpenAI ChatGPT (gpt-3.5-turbo, version available as of
September 2023) API6. In Appendix B.1, we present the wordlists utilized in our experiments.
In Appendix C, we list the prompts and configurations used in our experiments. Finally, we intend
to release our code and notebooks upon acceptance to facilitate the easy reproduction of our results.

SOCIAL IMPACTS STATEMENT

Drawing inspiration from the concept of behavioral testing (Ribeiro et al., 2020), we consider the
development of gender-unrelated benchmarks as essential tools for devising more informative bias
evaluation metrics, as well as enhancing the comprehension of LMs behavior. Our work represents
a first step in exploring LM gender biases within gender-unrelated settings. By illustrating that
measured bias is not solely attributed to the presence of highly gender-associated words, our research
raises significant questions regarding bias evaluation, as well as potential underlying model biases.
While our work offers valuable insights, we also acknowledge several limitations, which we address
below.

Bias definition. This paper specifically addresses a small subset of social biases, namely gender
bias, and does not delve into biases targeting demographic groups (e.g. racial, geographical, so-
cioeconomic). Furthermore, we focus our analysis on the study of binary gender pronouns, which
excludes non-binary gender identities from our analysis.

Reducing word-gender correlations in sentences. We define word-gender associations in terms of
word-level co-occurrence statistics in PILE made available by Razeghi et al. (2022). We determine
the correlation with gender based on a single set of pronouns “he”, “she”, which does not account
for correlations with other gendered words. Upon analysing several gendered word pairs and their
correlation (See Figure 6), we conclude that using (“he”, “she”) leads to a larger fraction of words
with well-defined δ(w) values. Future work may consider expanding on this definition and using
a combination of multiple gendered expressions. Finally, while not every word in our analysis
contains a valid δ(w), they can still affect the model’s behavior. We address this limitation by
generating benchmarks targeting different test sentence lengths.

Benchmark construction. Part of our contribution lies in the creation of a model-based framework
to produce gender-invariant sentences, free of gender co-occurring words. While all our experiments
are conducting using OpenAI’s ChatGPT, other models (like Anthropic’s Claude 7 or Llama-2 (Tou-
vron et al., 2023)) could have been used instead. In particular, we recognize that relying on a single
model may limit the diversity of the dataset and introduce model-specific artifacts. We encourage
future work to create benchmarks encompassing generations of multiple models and to perform a
more detailed analysis of the quality and potential artifacts introduced by different models.

Benchmark validation. The benchmark we construct is not fully vetted by humans. While the au-
thors of this paper have manually verified a randomly sampled subset of the benchmark and ensured
it satisfied the desired properties, a more comprehensive evaluation is required.

6https://platform.openai.com/docs/api-reference?lang=python
7https://www.anthropic.com/index/introducing-claude
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A ADDITIONAL DETAILS ON THE PMI WORD-LEVEL MEASURE

PMI-based Distributions. Figures 4 shows the marginal and joint distributions of the PMI based on
the gendered words “she” and “he” in PILE. As seen in Figure 4a, there are more words co-occurring
with “he” (66.11% of all PILE words) than with “she” (only 43.86%). One potential reason behind
this difference is explained by the competing forms of the English gender pronoun “he” and the
Spanish verb to have. Another potential explanation lies in the computation of the word counts, since
the counts computed by Razeghi et al. (2022) are collected considering a window of size 10 and are
also subject to several pruning stages, and potentially not counting co-occurrences between words
that are more than 10 terms apart. We refer the reader to the original paper for more details. Yet
another explanation can be mismatches in tokenization, since we use nltk to tokenize the sentences
and the word counts were collected using spacy. which are known to have differences, e.g., in the
tokenization of the term “self-case”. Figure 4b shows the obtained distribution for the words in
PILE that are well-defined in terms of both PMI(w, ’she’) and PMI(w, ’he’) (which amount to
approximately 43.22% out of 151.5k words). In general, we observe a linear correlation between
PMI(w, ’she’) and PMI(w, ’he’).

(a) PMI Marginal distributions. (b) PMI Joint distributions.

Figure 4: Distribution of different PMI-measures in PILE. In both plots we only consider the distri-
bution over words whose PMI is well-defined. In case of Figure 4b we only concern the distribution
of words for which PMI(w, g) is defined for g ∈ {’she’, ’he’}.

In terms of the PMI-difference metric introduced in Equation ??, we present the distribution of
the PMI difference for all well-defined words. We observe that although roughly symmetric and
centered around 0 (which would imply a balanced distribution) is centered around 0, the median is
located around −0.13, indicating that a bit more than 50% of the defined words skew male.

Correlation between PMI(w, ’she’) and PMI(w, ’he’). Figure 6 shows how different pairs of
wordlists induce different PMI-based difference values. These values are computed using words for
which the word w co-occurs with both gendered expressions, leaving out any word that only occurs
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Figure 5: Distribution of PMI difference (δ). Figure 6: Kendall Tau correlation coef-
ficients for different parameterizations of
δ(w).

with one of the gendered expressions. The reported values are Kendall Tau coefficient B, as com-
puted by scipy Python package. We observe very high correlation between the different gendered
pronoun pairs (“her”, “him”), (“her”, “his”), and weak correlation with the (“mummy”, “daddy”)
pair. Similarly, marital relationships like (“wife”, “husband”) and (“girlfriend”, “boyfriend”) ex-
hibit weak anti correlation with most of the gender pairs in the figure. Given our initial goal of
MaxPMIDiff(s), we need to be able to compute the most δ(w) values possible, thus motivating our
choice towards (“she”, “he”). At the same time, we want to maintain this analysis interpretable and
adding another two gendered pairs could complicate the interpretations.

Extending PMI to gendered wordlists. Equation 1 shows how we calculate a measure of word-
level gender polarity based on a single set of parallel terms: (“she”, “he”). Equation 4 shows how we
can extend our PMI-based measurement to a list G of paired gendered terms, e.g., { (“she”, “he”),
(“her”, “his”), (“mom”, “dad”) }.

δ(w;G) =
∑

(wF ,wM )∈G

v(w) (PMI(v, wF )− PMI(w,wM )) , (4)

where similarly v(.) is a weighting function that may depend on the word frequency as determined
empirically in the pretraining set.

B IMPLEMENTATION DETAILS

B.1 STAGE 1. WORD SELECTION

In order to ensure that the seed words are commonly English words, we first process PILE’s vo-
cabulary provided by Razeghi et al. (2022) and then use each words’ PMI score to select the final
attribute words.

VOCABULARY PREPROCESSING.

We start by retaining only terms that use the English alphabet, which results in the removal of num-
bers, dates, and punctuation. Then, from the remaining set, we remove the 20% least frequent words,
which include typos (e.g., “maping”, “basiclly”), coding-specific variable names (e.g., “maxbuffer”,
“selectimage”), non-english words (e.g., “succursale”, “bloqueadas”), and other esoteric words
(e.g., “orthogeriatric”, “aldesleukin”). To ensure the removal of any lingering non-English terms
from the vocabulary, we retain words with a valid definition in WordNet (Miller, 1994), a large
lexical database for English. Upon analyzing the removed words, we discovered that a significant
number of valid words were discarded (e.g., “vaguely”, “synthetic”, “studious”). Hence motivat-
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ing us to keep words that fasttext’s language identification model predicts to be English with
at least 50% confidence (Joulin et al., 2016a;b) 8. The final preprocessed vocabulary encompasses
56.6k words, i.e., 7.35% of the original PILE vocabulary.

PMI-BASED WORD SELECTION.

We aim to select a diverse subset of words that are the least associated with gender possible. To
achieve this, we calculate the δ(w) for every word in the preprocessed version of PILE’s vocabulary
and sample 500 words from the interval [−0.263, 0.263], which contained 21.7k diverse words. We
find this interval to be empirically acceptable, containing common words like “time”, “good”, and
“work” but also less uncommon ones like “disarrange”, “euphorically”, and “tantalizes”. As exam-
ples of words in the interval extremes, we can also find female-skewing words like “impractical”,
“intellects”, or “fattened”; and male-skewing words like “affaire”, “persimmons”, or “dormitory”.

LIST OF SELECTED WORDS

Below we list the paired lists of gendered expressions used in this work.

• Female gendered words: { “she”, “her”, “her”, “herself ” }
• Male gendered words: { “he”, “him”, “his”, “himself ” }

Below we list a sample of 50 (of the 500) selected attribute words for seeding the benchmark gen-
eration process. We plan to release the full wordlist in a Github repository upon paper acceptance.

• Selected attribute words = { “addict”, “angiography”, “barbaric”, “beauties”, “bushed”,
“campsites”, “cancelation”, “carriages”, “common”, “contaminating”, “controlling”,
“couldn”, “deluge”, “durational”, “exploitative”, “expressions”, “fierce”, “fireplaces”, “fo-
cussed”, “gemologist”, “gnaw”, “goofiness”, “gree”, “hawthorn”, “headlands”, “imagi-
nary”, “intoxicate”, “jinxed”, “laving”, “oblivion”, “omen”, “overdrive”, “requests”, “re-
sponded”, “rewire”, “skaters”, “solemn”, “spidery”, “splints”, “sportswear”, “spycraft”,
“stacks”, “sting”, “taste”, “turns”, “twitches”, “understand”, “understands”, “wasted”,
“wee” }

B.2 STAGE 2. TEST SENTENCE PAIRS GENERATION

Having selected seed words, we can use them with gendered words to guide the creation of sen-
tences. We choose a model-based generation approach to algorithmically expand the dataset with
diverse and natural sentences while filtering out gender-related ones. In particular, like Kocielnik
et al. (2023), we generate sentences using OpenAI’s ChatGPT (gpt-3.5-turbo) API9. All our
prompts are listed in Appendix B.3. As shown in Figure 3, the sentence generation process is an
iterative 3-stage process that can be run multiple times until the desired benchmark size is achieved.

PART 1. SENTENCE GENERATION.

For each seed word, we prompt ChatGPT with two word pairs (one for each gendered pronoun10)
and generate N sentences for each pair. We set N = 5 to produce the final benchmarks. We careful
design the prompt to steer ChatGPT towards the creation of sentences containing both attribute and
gendered words, while maintaining it gender neutral and devoid of stereotypes.

PART 2. PAIRING SENTENCES AND FILTERING UNLIKELY PAIRS

For each generate test sentence, we need to create its minimally gendered variant. The two sentences
constitute one test sentence pair. To be able to generate a pair for sentences generated with “she”,
we leverage ChatGPT to minimally edit the sentences to its masculine version. As a motivating ex-
ample, consider the creation of the masculine versions for “The flight cancelation affected {HER}.”

8We use fasttext/supervised-models/lid.176.bin, a supervised language identification
model trained to recognize 176 languages across various datasets, including Wikipedia, Tatoeba, and SETimes.

9Version available as of September 2023, https://chat.openai.com/chat
10Experiments using singular pronoun “they” led to ungrammatical sentences.
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and “They canceled her flight.” sentences, where the appropriate masculine replacements for “her”
would be “him” and “his”. Furthermore, we filter out invalid sentences at this stage. We apply
two filters throughout our pipeline, one of which is lexical, and the other is semantic. The lexical
filter removes sentences that contain words pertaining a list of marked gender words (e.g., “wife”,
“husband”). While it is possible to find many test sentence containing gendered words that are cor-
rect grammatically and semantically under both pronouns (e.g., “{PRONOUN} talks with the girl.”),
most ChatGPT-generated sentences did not have this property. Additionally, some sentences exhibit
more subtle gendered errors, which are often reflections of implicit world knowledge. Consider the
following test sentence as an example: “{PRONOUN} experienced severe abdominal pain, which
turned out to be a symptom of an ectopic pregnancy.”. Someone knowing female anatomy would
automatically deem the masculine version of this sentence unlikely. Like this, there are many such
phrases that could be dampening the correctness and gender-invariance of the resulting sentences.
As a result, for each gendered version of the test sentence, we use ChatGPT to discriminate between
natural/likely and unnatural/unlikely sentences, keeping only those test sentence pairs whose both
completions both likely.

PART 3. REPLACE PRONOUNS AND FILTER SENTENCES WITH HIGH PMI WORDS.

In the last part, we perform the final validation to ensure the desired level of gender co-occurring sen-
tences is satisfied for each sentence. To this end, we compute MaxPMIDiff(s) and keep sentences
satisfying |MaxPMI(s)| ≤ εk.

B.3 PROMPTS USED IN BENCHMARK GENERATION

Table 2 lists the selected prompts for the first 3 stages of the proposed generation framework. After
several rounds of manual testing and inspection of the resulting sentences, we found these prompts
to work well for our use case. Notwithstanding, these can be easily replaced and/or extended to
include other prompts. Conversely, Table 3 lists the 4 prompts used during a regeneration process,
when either the attribute word or the gendered word are not included in the sentence. The first two
prompts are meant to edit the current version of the test sentences, making the minimal changes.
Notwithstanding, these can be easily replaced and/or extended to include other prompts.

B.4 EVALUATION METRICS

Fairness metric. We previously introduced a fairness metric and introduced a fairness threshold
εf , which acts as a maximum allowed relative weighting between the gendered probabilities ratio.
In this section, we discuss the impact of that hyperparameter in the fairness measurements across
models and benchmarks. Intuitively, this hyperparameter introduces some slack and controls for
small differences in the sentences’ probabilities. Figure 7 shows how varying values of εf impact
measured fairness of three different models. We observe that varying εf results in distinct model
behaviors with Ours-5 exhibiting lower fairness values before εf ≤ 2. Surprinsingly, we find
that (1) Pythia 6.9B is extremely biased in Ours-5 achieving 90% fairness at εf = 6; (2)
most models converge to maximal fairness after εf = 4, which corresponds to e4 ≈ 54.60× more
probability mass assigned to one gendered version of the template; and (3) filtering out duplicates in
training data (dashed lines in Figure 7) either matches or improves upon the biases of models trained
on the original (duplicated) data. In all our results we report values concerning ϵf = 0.5, which in
the probability space accounts for differences in up to 1.65× larger or smaller.

τ(pmodel, Deval) =
1

|Deval|
∑

(sF ,sM )∈|Deval|

1| log pmodel(sF )−log pmodel(sM )|≤εf , (5)

C PROPERTIES OF THE GENERATED BENCHMARK

In this section, we compare the ChatGPT-generated benchmark with previously proposed bench-
marks. Table 4 report basic statistics for the original versions of the considered datasets, including
number of sentences after filtering invalid sentences (but without enforcing MaxPMIDiff(s) con-
straints, since these constraints are likely to be task-specific).
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Table 2: List of prompts and configurations used to generate the proposed gender bias benchmark
using ChatGPT (model: gpt-3.5-turbo). The {FORMATTING} indicates the placeholders
within each prompt.

Purpose Configurations Prompt

Generation temperature:
0.7

Your task is to generate {NUM SENTENCES} diverse sentences con-
taining the word ’{ATTRIBUTE}’ and the pronoun ’{GROUP}’. Each
sentence may contain at most {NUM WORDS} words. \n - The sen-
tences should be fluent and contain both the word ’{ATTRIBUTE}’ and
the pronoun ’{GROUP}’.\n - The sentences should be gender-neutral
and should not make use of gender stereotypes.\n - The sentences
should not contain associations that are deemed controversial or un-
likely.\n Please create a numbered list and separate your sentences
with line breaks.

Editing temperature:
0

Your task is to rewrite the sentence below, replacing the pronouns
’{FROM GROUP}’ with the corresponding ’{TO GROUP}’ pronouns.
Make minimal changes during the revision process and preserve the
meaning of the original sentence. In particular, try to make the sen-
tence as gendered neutral as possible, while still using the pronouns
’{TO GROUP}’ pronouns. Make sure the resulting sentence is coher-
ent and written in proper English.\n Write only the revised sentence
and nothing else.\n”’{SENTENCE}”’

Semantic
filtering

temperature:
0

Would you say that the following sentence is relatively likely or is it
uncommon and unconventional? ”’{SENTENCE}”’\n Use ’likely’ or
’unlikely’ with no punctuation and in lowercase. Write one of these
two words and nothing else.

(a) Ours-5 Benchmark (b) WG Benchmark

Figure 7: Model fairness curves as a function of εf for three different Pythia models and their
respective deduplicated versions (i.e., versions of the same model trained on deduplicated data).

D ADDITIONAL RESULTS

Table 5 shows the fairness metric across three benchmarks for all models, including the Pythia
models trained on the deduplicated data (suffixed with (D) in the table. The results for the remaining
datasets are presented in Table 6

For additional fairness values using different correlation strength, consider Tables 7 and 8.

Finally, Figure 8 represent the trade-offs between the fairness metric and the predicted family across
different models. As models are deem fairer as they approximate the dashed line or fairness metric
1.
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Table 3: List of prompts and configurations used during the regeneration stage of the proposed
framework using ChatGPT (model: gpt-3.5-turbo, temperature: 0.7). The
{FORMATTING} indicates the placeholders within each prompt.

Purpose Prompt

Revision
1

Your task is to revise the following sentence: ’{SENTENCE}’\n \n You should make
minimal changes while keeping the exact same meaning and intention of the sentence.
However, the revision process should include the word ’\attribute’, one of the pronouns
’\group’, and should preserve meaning. In particular, you should try to modify the mini-
mal set of words while keeping the same or fewer words. Write only the revised sentence.

Revision
2

’{SENTENCE}’\n\n Edit the sentence above to include the word ’{ATTRIBUTE}’. Make
the minimal number of edits possible while keeping the pronouns {GROUP} and maintain-
ing the fluency, semantics, and intention of the sentence. Output nothing but the revised
sentence with the exact form of the word ’{ATTRIBUTE}’.

Revision
3

’{SENTENCE}’\n \n Edit the sentence above to include the word ’{ATTRIBUTE}’. Make
the minimal number of edits possible while keeping the pronouns {GROUP} and main-
taining the sentence’s fluency, semantics, and intention. If the sentence does not contain a
pronoun, make sure to create a version that includes both the pronouns {GROUP} and the
word ’{ATTRIBUTE}’. Output nothing but the revised sentence with the exact form of the
word ’{ATTRIBUTE}’ and at least one pronoun {GROUP}.

Revision
4

’{SENTENCE}’\n \n The sentence above must be changed to include the word
’{ATTRIBUTE}’ and one of the pronouns ’{GROUP}’. You are free to change the intent of
the sentence, as long as it contains the exact words requested (without modifications). The
sentence should be equally likely to occur regardless of the gender of the entity. Output
nothing but the generated sentence with the exact form of the word ’{ATTRIBUTE}’ and
at least one pronoun ’{GROUP}’.

Table 4: Test sentences and word statistics for the different unconstrained benchmarks. The prefixes
# and pos. stand for number of and position, respectively. We report both median and max values,
using the syntax median/max. The reported number of gendered words is represented in terms of
the number of (F)emale words + (M)ale words.

Property Ours-5 Ours-10 Ours-20 Winobias Winogender

# sentences 4405 4740 4839 1586 240
# seed words 491 491 491 40 83
# gender words (F + M) 15 + 20 22 + 23 36 + 32 2 + 10 0 + 0
# pronouns 1 / 6 2 / 7 2 / 7 1 / 2 1 / 2
pos. first pronoun 0 / 12 0 / 18 1 / 28 9 / 18 8 / 19
pos. last pronoun 0 / 24 4 / 36 9 / 37 9 / 18 8 / 19
template length 6 / 30 12 / 48 20 / 48 13/21 14/25
δ(w) seed words -0.02 / 0.26 -0.02 / 0.26 -0.02 / 0.26 -0.23 / 1.44 -0.08 / 1.85
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Table 5: Fairness metric measurement for multiple LMs across 3 benchmarks in two settings: the
original benchmark and the constrained version s.t. |MaxPMIDiff(s)| ≤ 0.65. We represent the
standard deviation of the fairness metric in subscript. (D) represents a model pretrained in the
deduplicated version of PILE.

Ours-5 Winobias Winogender

Orig. εk = 0.65 Orig. εk = 0.65 Orig. εk = 0.65
Benchmark size 4405 3701 1586 409 240 107

LLAMA-2 7B 22.950.63 22.990.69 13.370.85 14.671.75 25.002.80 32.714.54
LLAMA-2 13B 19.270.59 19.40.65 14.560.89 16.871.85 30.002.96 37.384.68

MPT 7B 22.430.63 22.720.69 14.750.89 17.361.87 33.333.04 35.514.63
MPT 30B 9.040.43 9.050.47 14.630.89 13.691.7 26.672.85 26.174.25

OPT 125M 16.030.55 15.810.60 26.991.11 25.672.16 32.083.01 43.934.80
OPT 350M 31.440.70 32.150.77 17.720.96 21.032.02 22.52.7 28.974.39
OPT 2.7B 29.310.69 29.40.75 16.270.93 22.492.06 32.083.01 40.194.74
OPT 6.7B 29.130.68 29.10.75 15.260.90 19.321.95 27.082.87 32.714.54

GPT-J-6B 39.770.74 40.690.81 19.040.99 20.542.00 32.923.03 40.194.74

Pythia 70M 21.070.61 21.160.67 9.140.72 4.651.04 8.331.78 2.81.59
Pythia 160M 15.940.55 15.830.60 14.750.89 9.781.47 16.672.41 16.823.62
Pythia 410M 28.560.68 28.670.74 25.161.09 31.32.29 32.923.03 36.454.65
Pythia 1.4B 18.320.58 18.350.64 18.030.97 18.831.93 30.832.98 40.194.74
Pythia 2.8B 18.180.58 18.590.64 18.730.98 21.032.02 302.96 39.254.72
Pythia 6.9B 11.960.49 12.020.53 19.10.99 22.982.08 25.422.81 28.974.39
Pythia 12B 31.330.70 31.990.77 17.210.95 20.291.99 28.332.91 33.644.57

Pythia 70M (D) 27.330.67 27.940.74 14.630.89 12.471.63 11.672.07 5.612.22
Pythia 160M (D) 14.890.54 14.480.58 13.750.86 8.311.36 14.172.25 13.083.26
Pythia 410M (D) 11.870.49 11.650.53 22.511.05 29.342.25 27.922.9 34.584.60
Pythia 1.4B (D) 12.850.50 12.830.55 14.50.88 15.161.77 22.52.7 21.53.97
Pythia 2.8B (D) 22.630.63 23.180.69 18.160.97 19.561.96 27.082.87 37.384.68
Pythia 6.9B (D) 18.620.59 18.590.64 16.020.92 19.071.94 28.752.92 38.324.70
Pythia 12B (D) 19.890.60 20.320.66 14.560.89 18.831.93 28.332.91 35.514.63

(a) By pretraining intervention. (b) By model family.

Figure 8: Trade-off between gender bias (% predicted neutral) and the percentage of examples in
which the female completion is preferred (% predicted female). Results are reported across 23 LLMs
and 5 benchmarks such that |MaxPMIDiff(s)| ≤ 0.65). The dashed line indicates neutrality in
expectation, in which % favored female equals % favored male examples. The surrounding margins
correspond to a 10% margin and 20% margin difference.
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Table 6: Fairness metric measurement for multiple LMs across 3 benchmarks in two settings: the
original benchmark and the constrained version s.t. |MaxPMIDiff(s)| ≤ εk. We represent the
standard deviation in subscript. (D) represents a model pretrained in the deduplicated version of
PILE.

Ours-10 Ours-20

Orig. εk = 0.65 Orig. εk = 0.65
Benchmark size 4740 3412 4839 2845

LLAMA-2 7B 16.880.54 16.850.64 28.500.65 29.600.86
LLAMA-2 13B 18.020.56 17.610.65 24.880.62 25.730.82

MPT 7B 23.160.61 24.530.74 24.340.62 25.200.81
MPT 30B 13.420.50 13.480.58 15.620.52 15.400.68

OPT 125M 21.050.59 21.830.71 22.260.60 23.130.79
OPT 350M 31.520.67 33.290.81 28.850.65 28.930.85
OPT 2.7B 32.430.68 33.620.81 32.070.67 33.390.88
OPT 6.7B 34.070.69 35.810.82 31.970.67 33.570.89

GPT-J-6B 32.220.68 33.290.81 30.520.66 31.780.87

Pythia 70M 18.230.56 18.000.66 18.160.55 18.880.73
Pythia 160M 18.540.56 18.140.66 20.130.58 19.960.75
Pythia 410M 15.060.52 15.620.62 27.860.64 28.580.85
Pythia 1.4B 25.80.64 26.290.75 25.690.63 26.990.83
Pythia 2.8B 21.270.59 22.830.72 20.890.58 20.700.76
Pythia 6.9B 20.570.59 21.540.70 17.590.55 18.490.73
Pythia 12B 28.440.66 29.340.78 24.650.62 25.270.81

Pythia 70M (D) 24.890.63 25.230.74 22.650.60 23.510.8
Pythia 160M (D) 15.950.53 15.500.62 17.770.55 17.960.72
Pythia 410M (D) 15.550.53 15.910.63 22.630.60 22.740.79
Pythia 1.4B (D) 20.530.59 21.510.70 20.600.58 20.390.76
Pythia 2.8B (D) 23.350.61 24.710.74 22.280.60 21.580.77
Pythia 6.9B (D) 21.030.59 21.750.71 25.650.63 26.360.83
Pythia 12B (D) 20.110.58 20.660.69 23.600.61 23.200.79
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Table 7: Fairness metric measurement for multiple LMs across benchmarks subject to
|MaxPMIDiff(s)| ≤ 0.80. We represent the standard deviation of the fairness metric in subscript.
(D) represents a model pretrained in the deduplicated version of PILE.

Ours-5 Ours-10 Ours-20 WB WG

Benchmark size 3978 3920 3569 675 150

LLAMA-2 7B 23.050.67 16.660.60 29.310.76 14.371.35 28.673.69
LLAMA-2 13B 19.210.62 18.090.61 25.330.73 16.891.44 32.673.83

MPT 7B 22.520.66 23.550.68 24.820.72 16.891.44 33.333.85
MPT 30B 9.050.45 13.570.55 15.690.61 15.261.38 27.333.64

OPT 125M 15.910.58 21.530.66 23.310.71 28.31.73 39.333.99
OPT 350M 31.950.74 32.530.75 29.560.76 20.741.56 29.333.72
OPT 2.7B 29.340.72 33.370.75 32.870.79 21.041.57 38.003.96
OPT 6.7B 29.360.72 35.200.76 32.920.79 18.521.50 28.003.67

GPT-J-6B 40.570.78 33.110.75 31.610.78 20.741.56 38.003.96

Pythia 70M 20.970.65 18.390.62 18.410.65 6.220.93 6.672.04
Pythia 160M 15.810.58 18.210.62 19.950.67 13.041.30 16.673.04
Pythia 410M 28.880.72 15.640.58 28.520.76 31.261.78 36.673.93
Pythia 1.4B 18.450.62 26.380.7 26.650.74 21.481.58 36.673.93
Pythia 2.8B 18.380.61 22.120.66 21.010.68 22.811.62 34.003.87
Pythia 6.9B 11.920.51 20.870.65 17.880.64 22.071.60 26.003.58
Pythia 12B 32.030.74 29.260.73 25.080.73 20.001.54 30.673.77

Pythia 70M (D) 27.730.71 25.310.69 23.200.71 14.811.37 7.332.13
Pythia 160M (D) 14.710.56 16.070.59 18.410.65 10.671.19 15.332.94
Pythia 410M (D) 11.740.51 15.940.58 22.840.70 26.961.71 30.003.74
Pythia -1.4B (D) 12.970.53 21.200.65 20.870.68 15.851.41 24.003.49
Pythia 2.8B (D) 23.030.67 24.030.68 22.220.70 20.891.56 33.333.85
Pythia 6.9B (D) 18.700.62 21.510.66 25.780.73 19.701.53 33.333.85
Pythia 12B (D) 20.410.64 20.590.65 23.560.71 18.521.50 30.003.74
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Table 8: Fairness metric measurement for multiple LMs across benchmarks subject to
|MaxPMIDiff(s)| ≤ 1. We represent the standard deviation of the fairness metric in subscript.
(D) represents a model pretrained in the deduplicated version of PILE.

Ours-5 Ours-10 Ours-20 WB WG

Benchmark size 4263 4400 4299 879 188

LLAMA-2 7B 23.080.65 16.910.57 28.730.69 13.771.16 28.193.28
LLAMA-2 13B 19.280.60 18.070.58 25.10.66 16.951.27 30.853.37

MPT 7B 22.570.64 23.50.64 24.560.66 17.061.27 32.453.41
MPT 30B 9.010.44 13.640.52 15.630.55 15.811.23 27.663.26

OPT 125M 16.020.56 21.230.62 22.80.64 27.761.51 36.173.5
OPT 350M 31.640.71 31.980.70 29.630.70 19.571.34 25.533.18
OPT 2.7B 29.420.7 32.910.71 32.40.71 19.681.34 35.113.48
OPT 6.7B 29.20.70 34.770.72 32.430.71 17.751.29 28.723.30

GPT-J-6B 40.140.75 32.770.71 31.050.71 20.821.37 36.73.52

Pythia 70M 21.020.62 18.320.58 18.000.59 7.740.90 5.321.64
Pythia 160M 15.930.56 18.450.58 20.120.61 13.991.17 14.362.56
Pythia 410M 28.850.69 15.270.54 28.380.69 29.811.54 36.173.50
Pythia 1.4B 18.560.60 26.050.66 26.120.67 21.271.38 34.043.46
Pythia 2.8B 18.270.59 21.590.62 21.280.62 21.621.39 31.913.40
Pythia 6.9B 11.960.50 20.770.61 17.820.58 22.411.41 26.063.20
Pythia 12B 31.530.71 28.860.68 24.730.66 20.591.36 29.793.34

Pythia 70M (D) 27.380.68 25.20.65 22.730.64 14.91.20 7.451.92
Pythia 160M (D) 14.90.55 16.070.55 18.120.59 10.921.05 12.232.39
Pythia 410M (D) 11.920.50 15.610.55 22.840.64 26.961.50 29.793.34
Pythia 1.4B (D) 12.950.51 21.000.61 20.840.62 16.271.24 21.282.99
Pythia 2.8B (D) 22.750.64 23.840.64 22.450.64 20.481.36 29.793.34
Pythia 6.9B (D) 18.630.60 21.30.62 25.870.67 19.451.34 32.983.43
Pythia 12B (D) 20.150.61 20.480.61 23.560.65 17.631.29 29.263.32
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Table 9: Comparison of the % of test sentence pairs where female variants are preferred by the
model minus the % of test sentence pairs where male variants are preferred by the model across
all benchmarks when subject to |MaxPMI(s)| ≤ 0.65. Reported values are negative if models
tend to prefer the masculine version over the feminine, and positive if prefers female versions of
the sentences. Preferences are defined as assigning assigning likelihood to one gendered sentence
1.65× exceeding the likelihood of the other. (D) represents a model pretrained in the deduplicated
version of PILE.

Model Name Ours-5 Ours-10 Ours-20 Winobias Winogender

LLAMA-2 13B -27.06 -12.53 -6.63 -55.80 -40.00
LLAMA-2 7B -20.75 -12.15 -3.27 -56.12 -40.83
MPT 30B 54.51 34.22 32.47 -58.13 -42.50
MPT 7B -3.52 13.97 21.47 -50.95 -46.67

OPT 125M -72.53 -54.73 -36.21 -47.41 -37.08
OPT 350M -37.78 -10.97 6.43 -50.50 -50.00
OPT 2.7B -51.44 -32.43 -15.73 -50.69 -42.08
OPT 6.7B -46.90 -22.00 -4.09 -56.12 -32.92

GPT-J-6B 12.05 18.59 22.44 -44.89 -41.25

Pythia 70M -37.43 -40.08 -37.24 -78.25 -86.67
Pythia 160M -63.41 -54.79 -42.30 -61.66 -68.33
Pythia 410M -36.03 -54.60 -13.00 -38.52 -40.42
Pythia 1.4B -60.16 -41.50 -29.43 -48.17 -37.50
Pythia 2.8B 51.03 37.51 42.24 -42.69 -37.50
Pythia 6.9B 60.89 28.08 42.20 -42.81 -33.75
Pythia 12B 19.05 15.99 23.93 -51.64 -41.67

Pythia 70M (D) 7.61 -1.05 -3.29 -66.83 -80.00
Pythia 160M (D) -68.72 -57.55 -58.63 -75.41 -80.00
Pythia 410M (D) -73.42 -51.12 -34.80 -46.60 -50.42
Pythia 1.4B (D) 54.69 32.93 34.97 -63.81 -56.67
Pythia 2.8B (D) 42.04 30.91 37.71 -47.29 -37.92
Pythia 6.9B (D) -8.60 22.05 14.18 -59.02 -46.25
Pythia 12B (D) 46.38 38.63 36.47 -59.46 -48.33
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