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Abstract

In many real-world sequence modeling problems, the underlying process is in-
herently modular and it is important to design machine learning architectures
that can leverage this modular structure. In this paper, we introduce SlotSSMs,
a novel framework for incorporating independent mechanisms into State Space
Models (SSMs), such as Mamba, to preserve or encourage separation of informa-
tion, thereby improving visual reasoning. We evaluate SlotSSMs on long-sequence
reasoning, 3D visual reasoning, and real-world depth estimation tasks, demon-
strating substantial performance improvements over existing sequence modeling
methods. Our design efficiently exploits the modularity of inputs and scales ef-
fectively through the parallelizable architecture enabled by SSMs. We hope this
approach will inspire future research on compositional reasoning architectures.

1 Introduction

Recent progress in object-centric learning [23, 26, 18] has led to several methods for discovering
modular object-centric structures and modeling their dynamics from videos with no or only weak
supervision [20, 19, 5, 28]. Similar to RIMs [8], they build modularity into the RNN architecture
to separately keep track of the dynamics of each object. However, RNNs are prone to vanishing
gradients [25] and are not amenable to parallel training, making it hard to scale these methods up to
modeling long-range effects that span hundreds of time steps.

In this paper, we propose Slot State Space Models (SlotSSMs), a novel and general SSM framework
that have built-in inductive biases for discovering and maintaining independent mechanisms. Unlike
conventional SSMs that maintain a monolithic state vector, SlotSSMs maintain a set of modular slot
states whose transition dynamics are designed to be largely independent, with only sparse interaction
across slots introduced through the bottleneck of self-attention. Furthermore, SlotSSMs inherit the
strengths of SSMs, namely parallelizable training, memory efficiency, and long-range reasoning
capabilities, giving it an advantage over methods based on RNNs and Transformers.

In experiments, we evaluate SlotSSMs on visual reasoning and long-context reasoning tasks. By
visualizing the decoder patterns, we reveal the emergent modularity in the model, demonstrating that
SlotSSMs can successfully identify and leverage the modular structure of the input to complete the
tasks.
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Figure 1: SlotSSMs vs existing models. (a) SlotSSMs incorporate modularity through independent state
transitions and sparse interactions via self-attention. (b) Traditional SSMs utilize a monolithic state vector for
all past information. (c) Multi-slot Transformer-based models offer modularity but with high computational
complexity. (d) Multi-slot RNN-based models have modular states but can’t parallelize training (red lock).
SlotSSMs combine parallelizable training, memory efficiency, and modularity for efficient temporal modeling.

2 Preliminary

A state space model (SSM) defines a sequence-to-sequence mapping between the input e1:T ∈ RT×D

and the output y1:T ∈ RT×D by the following recurrence [13, 12, 29, 24]:

ht = Atht−1 +Btet ,

yt = Ctht .
(1)

Here, T denotes the sequence length, et,yt ∈ RD are the input and output vectors at each time step
t, and ht ∈ RH is the hidden state that summarizes the history e≤t. Recent works [9, 3] propose to
employ learnable functions At = A(et) , Bt = B(et) , Ct = C(et) . This brings the ability
to selectively emphasize or ignore certain information based on the input.

3 Slot State Space Models (SlotSSMs)

SlotSSMs are fully parallelized sequential models consisting of three key components: the Slot
Encoder, SlotSSM, and Slot Mixer, which we describe below.

3.1 SlotSSM

The core idea of SlotSSMs is to maintain separate slot state representations (or slots) and process them
independently. This is achieved by making At,Bt,Ct block-diagonal, with each block conditioned
on its corresponding slot:

At = diag
(
{A(skt )}Kk=1

)
, Bt = diag

(
{B(skt )}Kk=1

)
, Ct = diag

(
{C(skt )}Kk=1

)
. (2)

Next, we complement SlotSSM with a slot encoder that extracts slot representations from unstructured
inputs (Section 3.2), and a slot mixer that introduces sparse interactions across slots (Section 3.3).

3.2 Slot Encoder

We represent the unstructured input xt at each time step as a sequence of M tokens, xt =
(x1

t , . . . ,x
M
t ). For example, image inputs may be represented as CNN feature maps or embed-

dings of non-overlapping image patches, as in ViT [4]. Slot representations {skt }Kk=1 are extracted
via cross-attention using a Transformer [33]:

{skt }Kk=1 ← Transformer
(
q = {skt }Kk=1, kv = {xm

t }Mm=1

)
. (3)

The learned queries, {skt }Kk=1, allow the Transformer to facilitate the emergence of modularity by
capturing information across different input regions. Alternatively, the Transformer can be replaced
with inverted attention [32, 34], which is cross attention with Softmax over queries instead of keys.
This design softly assigning each input token to a slot, thereby promoting modularity, resulting in our
varient Object-Centric SlotSSMs (OC-SlotSSMs).
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Figure 2: Long-Context Reasoning in the Blinking Balls Benchmark. SlotSSM maintains consistent
performance across sequence lengths from 80 to 2560, while baseline models show degraded performance or
fail to complete training due to high memory and computational demands.

3.3 Slot Mixer

SlotSSM processes each slot fully independently, making it hard to correct mistakenly decomposed
slots or model interarctions across slots. To resolve both issues, we interleave SlotSSM with slot
mixers which consists of self-attention [33] and MLP layers. Note that the output of Slot Mixer
carries information from the entire history of each slot, it provides the opportunity to refine the slot
representations based on temporal dynamics.

4 Related Work

State Space Models (SSMs). SSMs, popularized by S4 [12], have gained significant attention in
language and sequence modeling. S4 leverages HiPPO theory [10] to parameterize state transition
matrices, though this approach is mathematically complex. Recent works have simplified SSMs
with diagonal transition matrices [14, 11, 29] and RNN-based formulations without relying on ODE
discretization [15, 24, 3]. Mamba [9] introduced a more flexible approach by conditioning SSM
parameters on inputs, improving adaptability in sequence modeling. Object-Centric Learning.
Object-centric learning aims to discover modular representations [1, 6, 22, 17, 19, 8], such as objects
and their interactions, from images and videos with minimal supervision. Slot Attention [23] has
become a dominant model in this area, utilizing GRUs [2] and competitive attention mechanisms to
iteratively refine slot representations [26, 28, 20, 5, 35, 27, 18, 36]. However, RNN-based methods
face limitations such as vanishing gradients and the inability to parallelize training. In contrast, our
SlotSSMs, built on SSMs, enable parallel training and exhibit strong long-term memory capabilities.

5 Experiments

5.1 Long-Context Video Reasoning

We evaluate the model’s ability to handle long-context reasoning using the Blinking Color Balls
Benchmark, a novel task designed to test sequence modeling over extended time frames.

Blinking Color Balls Benchmark. This benchmark consists of video sequences x1:T with bouncing
balls. The sequences are divided into context frames x1:T−1 and a target frame xT . Initially, all balls
are white. At each timestep in x1:T−1, one ball is randomly assigned a non-white color. The task is
to predict the color of each ball in the target frame based on two variants: (1) Earliest Color: each
ball retains the earliest non-white color assigned to it; and (2) Most Frequent Color: each ball is
colored according to the most frequent non-white color it received across the context frames. Balls
that remain white in all context frames stay white in the target frame.

To convert the task into a long-range reasoning problem, we patchify each context image into non-
overlapping patches and provide the flattened sequence of patches as input. We use T = 6 for the
Earliest Color variant and T ∈ {6, 11} for the Most Frequent Color variant, with patch sizes of
P ∈ {4, 8, 16}, resulting in input sequence lengths L ∈ {80, 160, 320, 640, 1280, 2560}. The task
for the models is to generate the target image based on this long sequential input.
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Figure 3: Emergent Scene Decomposition from Depth Estimation Tasks. We use the TikTok dataset as an
example. Colors represent the ID of slots used for predicting each position. SlotSSM is capable of exploiting the
inherent modular structure of real-world videos for efficient inference, without explicit segmentation supervision.

Models. We compare SlotSSM to several baselines: (1) Single State SSM, which shares the same
architecture as SlotSSM but uses a single, monolithic state; (2) SlotTransformer, a Transformer model
with multiple slots at each timestep; (3) RIM [8], and (4) SlotRNN, a variant of RIM with shared
RNN weights across slots and dense state updates. All models share the same Transformer-based
image decoder for a fair comparison.

Results. The results, shown in Figure 2, highlight SlotSSM’s clear advantages over the baselines
across all sequence lengths. While Single State SSM and SlotRNN perform well on shorter sequences,
their performance deteriorates significantly for sequences longer than 320 frames. Surprisingly, RIM
fails at all sequence lengths, likely due to optimization challenges arising from separate weights for
each slot. SlotRNN partially addresses this issue by sharing weights across slots while preserving
modularity. SlotTransformer performs well up to 640 frames, benefiting from direct access to all
historical inputs. However, SlotSSM excels in long-range reasoning, particularly on sequences of
1280 and 2560 frames, where other models either fail to train or face severe memory constraints.

5.2 3D Visual Reasoning

Finally, we explore the application of SlotSSM and OC-SlotSSM to 3D visual reasoning tasks using
the CATER benchmark [7].

CATER Benchmark. CATER consists of 300-frame video episodes of objects moving in a 3D
environment. The movement can lead to partial occlusions and even complete coverage of smaller
objects by larger ones. The primary task is snitch localization—predicting the golden snitch’s location
in the final frame. The snitch is always present but may be occluded. Models must reason about
its location based on the last visible position and other objects’ movements. Success in this task
demonstrates models’ capacity for complex visual reasoning in dynamic 3D environments.

Experimental Setup. We consider two experiment settings: direct training and pre-training + fine-
tuning. In direct training, models are trained end-to-end on the snitch localization task. In pre-training
+ fine-tuning, models are first pre-trained on video inputs using a reconstruction objective, then
fine-tuned on the task-specific signal. During pre-training, we randomly sample 32 frames from the
300-frame videos. For direct training and fine-tuning, we split the sequence into 50 non-overlapping
segments of 6 frames each, randomly selecting one frame from each to create a 50-frame sequence
spanning the entire video. At test time, we evenly sample 50 frames by skipping every 6 frames. The
snitch’s final location is quantized into a 6×6 grid, framing the problem as a classification task.

Models. We evaluate the performance of SlotSSM, OC-SlotSSM, Single State SSM, and Slot-
Transformer. We exclude RNN-based baselines, as our preliminary experiments reveal that they are
unstable when handling long video inputs and prone to collapse to a constant output. For the visual
pre-training setting, we employ a spatial broadcast decoder to reconstruct the input images. During
downstream training/fine-tuning, we feed the slots from the final step to a transformer predictor with
single CLS token, followed by a linear layer on the output CLS token to predict the snitch’s position.

Results. Table 1 presents the Top-1 and Top-5 accuracy on the CATER Snitch Localization task.
Consistent with our previous findings, SlotSSM outperforms Single State SSM, highlighting the
importance of modular latent structures. Comparing SlotSSM with SlotTransformer, we see notable
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Table 1: Performance on CATER Snitch Localization Task.

Model No Pre-train Pre-train
Top-1 Acc (%) Top-5 Acc (%) Top-1 Acc (%) Top-5 Acc (%)

Single State SSM 10.27 27.21 41.15 65.70
SlotTransformer 41.09 62.24 49.21 70.24
SlotSSM 25.64 45.03 54.73 74.42
OC-SlotSSM 61.58 84.00 69.27 90.48

differences between direct training and pre-training settings: in direct training, SlotTransformer
surpasses SlotSSM, possibly due to optimization advantages from direct access to all previous states;
however, SlotSSM benefits more from pre-training, likely due to the explicit memory capacity of
SSM states, consequently, pre-trained SlotSSMs outperforming their SlotTransformer counterparts.

Remarkably, OC-SlotSSM achieves the highest accuracy, outperforming all baselines by a large
margin in both direct training and pre-training settings. This performance gain may be attributed
to the explicit decomposition into object-centric representations, which facilitates reasoning about
object properties, relationships, and interactions.

5.3 Real-World Depth Estimation

In this experiment, we aim to observe how SlotSSMs utilize the modular representations to interpret
and process real-world video data. Following previous works in object-centric learning [5], we
evaluate this through a depth estimation task.

Datasets and Tasks. We select three datasets that represent distinct real-world application scenarios
to observe the behavior of SlotSSMs across diverse contexts: (1) the UT Egocentric video dataset [21],
(2) the Waymo autonomous driving video dataset [30], and (3) the TikTok dancing dataset [16].

The primary task is to estimate the depth of each pixel in the video frames. However, it is important
to emphasize that our main focus is to use this task, manageable with our lab resources, to showcase
the emerging modularity in SlotSSMs for real-world video inputs.

Models. We compare OC-SlotSSM, which uses inverted attention in the Slot Encoder, against
SAVi++ [5], an RNN-based object-centric learning method. Both models use a CNN encoder to
extract input tokens, which are processed using their respective attention mechanisms (inverted
attention for OC-SlotSSM and slot attention for SAVi++) to produce slot representations. These
slots are then used to reconstruct the image and generate object segmentation masks using a spatial
broadcast decoder, with reconstruction as the training objective.

Results. The quantitative results in Table 2 show that OC-SlotSSM consistently outperforms the
SAVi++ baseline across all datasets, demonstrating its superior video modeling capabilities. Moreover,
the attention patterns in Figure 3 reveal that unsupervised scene decomposition emerges during
training without any segmentation supervision, highlighting OC-SlotSSM’s ability to leverage the
inherent modular structure of real-world videos for downstream tasks.

Table 2: Depth Estimation MSE (↓) on Different Datasets.
Model UT Egocentric Waymo TikTok
SAVi++ 0.5885 0.804 1.412
OC-SlotSSM (Ours) 0.4640 0.653 1.180

6 Conclusion

We introduced SlotSSMs, a novel approach to incorporating modular structures and inductive biases
into State Space Models for improved sequence modeling. By maintaining independent slot vectors
and performing state transitions independently with sparse interactions via self-attention, SlotSSMs
effectively capture the modularity inherent in real-world processes. Our experiments demonstrate
significant performance improvements over existing sequence modeling methods.
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A Limitations & Broader Impact

Limitations SlotSSMs’ success illustrates the importance of designing architectures that align with
the problem domain’s underlying modular structure. It also paves the way for future research in
modular and object-centric sequence modeling. However, it has some limitations that future studies
could address. First, compared to Transformer architectures, we find that SlotSSMs could benefit
more from a pre-training phase in visual reasoning tasks. For example, in the 3D visual reasoning
task, SlotSSMs underperform Transformer models when trained without pretraining. However, when
combined with task-free pretraining, SlotSSMs demonstrate significant improvement, enabling them
to outperform Transformer models. We note that this effect of task-free pre-training is more prominent
in SlotSSMs than in Transformer baselines. This suggests that for tasks with sparse training signals,
the sequential nature of SlotSSM performs better with a pre-training phase to learn to effectively
utilize information from all time steps. We believe this phenomenon is worth further investigation in
future research. Second, although the proposed architecture is not only applicable to video modeling
but also to other modalities like text, we have not explored this aspect in this study. It remains a
matter for future work. Thrid, due to our academic research lab’s computing resource constraints,
we were unable to significantly scale up the proposed model to industry-scale in terms of model
size and data size. Lastly, future studies should investigate the effect of increased visual complexity
in videos. To this end, in Appendix ??, we present a preliminary study applying SlotSSMs to
natural videos, demonstrating how modularity emerges from SlotSSMs’ independent mechanisms in
real-world scenes. We hope these findings will inspire future research on the industry-scale adoption
of SlotSSMs.

Impact Statement The introduction of SlotSSMs, a novel framework that incorporates independent
mechanisms into State Space Models (SSMs), has the potential to significantly impact the field of
sequence modeling. By leveraging the modular structure inherent in many real-world processes,
SlotSSMs offers a more intuitive and effective approach to modeling long-range temporal depen-
dencies in object-centric video understanding and prediction tasks. The substantial performance
gains demonstrated by SlotSSMs over existing sequence modeling methods highlight the importance
of designing architectures that align with the underlying structure of the problem domain. This
breakthrough could lead to the development of more efficient and accurate models for a wide range
of applications, such as robotics, autonomous vehicles, and video surveillance systems. Moreover,
the success of SlotSSMs in capturing the modular nature of real-world processes could inspire further
research into modular and object-centric sequence modeling. This could result in the development of
even more advanced architectures that can better handle the complexity and diversity of real-world
data. Because this is a general backbone architecture for sequence modeling, it doesn’t raise direct
ethical concerns. However, its ethical implications depend on the way downstream application
developers use the model.

(a) Long-Context Construction (b) Model Efficiency

Figure 4: Long-Context Construction and Model Efficiency in the Blinking Color Balls Benchmark. Left:
We construct long-sequence inputs by patchifying the context images. Right: Comparison of model inference
latency with batch size 6. SlotSSM demonstrates computational efficiency for long-sequence processing tasks.
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B Blinking Color Balls Benchmark

B.1 Motivation

Real-world videos are often inherently modular, involving multiple dynamic entities and their interac-
tions across time. However, existing long-range reasoning tasks, such as those in the Long-Range
Arena Benchmark [31], are typically designed to focus on single-object settings and recognizing a
single dynamic pattern in the observations. To bridge this gap and facilitate more comprehensive
evaluation, we propose the Blinking Color Balls Benchmark, a long-range visual reason benchmark
desgined in a multi-object setting.

Earliest Color

Rules

Most Frequent

Color Rules

Context Sequence

Color Assignment

Target Images

Figure 5: Blinking Color Balls Benchmark Overview. Left: Context frames with independent random ball
picking and color assignments for each frame. Top figures indicate the sequential color assignment. Right:
Target image for the Earliest Color and Most Frequent Color variants. Top figures indicate the color assignment
rules.

B.2 Dataset Design

We provide an illustrative example of the dataset design in Figure 5. Each episode of the dataset
contains a context-target pair (x1:T−1,xT ). At each timestep in x1:T−1, all bouncing balls are first
colored white, and then one ball is randomly picked and colored with one of 5 non-white colors. This
process is repeated for all context frames, and it is represented in the rows in Figure 5(top). Note that
the object picking and coloring are performed independently for each timestep, thus one ball could
be selected none or multiple times and colorized with the same or different colors across different
timesteps.

The target images are then constructed with two rules: Earliest Color and Most Frequent Color. The
Earliest Color rule picks the earliest non-white color assigned to the ball as the final color, while the
Most Frequent Color rule counts the assignment of each non-white color and picks the color with
the highest count (if there are ties, the earlier color among the highest is chosen). In Figure 5, we
differentiate the two datasets using the same context sequence, which will result in different target
images based on the rule. Note that regardless of the color assignment, the objects are moving and
follow the physical bouncing rules throughout the full sequence. More image samples can be found
in Figure 6.

(a) Earliest Color Variant (b) Most Frequent Color Variant

Context Sequence Context SequenceTarget Target

Figure 6: Blinking Color Balls Samples.
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SlotSSMGT SlotRNN SingleSSM RIMSlotTransContext Frames

Time Step

Figure 7: Blinking Color Balls Qualitative Comparison. Results shown for the Most Frequent Color variant
with a sequence length of 80 frames.

Finally, as illustrated in Figure 4(a), we transform the conditional image generation task into a
long-range reasoning task by using patchified context images as input. Instead of providing the
T − 1 context images directly to the model, we flatten non-overlapping patches of the original
images to create a long input sequence. Given P × P patches per image, the context length becomes
L = (T − 1)× P 2. Note that patchification is used intentionally to construct long sequences for the
benchmark; SlotSSMs in general do not inherently require patchified inputs and instead use a Slot
Encoder to extract slots as input at each time step.

B.3 Challenges and Qualitative Comparison

The Blinking Color Balls tasks pose significant challenges for the models, as they are required
to reason about the object movement and color assignment rules from partial views of objects in
temporally distant image patches. We can define two levels of challenges: (1) identifying the objects
from image patches and predicting their future positions based on their dynamics, and (2) determining
the final color assignment of each object based on the given rules. The first challenge is relatively
simple, as it primarily involves learning the dynamics of objects from the past two frames prior to
the target time step. However, the second challenge is particularly difficult, as it requires the model
to reason over the entire input sequence, necessitating the identification of an object’s history from
partially observed patches in a long-range context.

Figure 7 presents a qualitative comparison of the models’ performance on the task. The results reveal
a clear categorization of the models based on their capability to address the two levels of challenges.
The baseline RIM model successfully predicts the object positions in the target image but struggles
with learning the color assignment rules. Consequently, it predicts the color white that generally
have the highest appearance probability for all objects. Note that the rendered images are based
on the argmax of the logits over the color categories. Models such as SlotRNN and Single State
SSM demonstrate the ability to learn color assignments, but they make mistakes in some cases. In
contrast, SlotSSM and SlotTransformer successfully achieve both accurate position prediction and
color assignment.

C Additional Implementation Details

C.1 SlotSSMs and OC-SlotSSMs

Slot Encoder. The main difference between the SlotSSMs and OC-SlotSSMs variants is in the design
of the Slot Encoders as illustrated in Figure 8. The Slot Encoder in SlotSSMs is implemented as
a multi-layer transformer with self-attention and cross-attention modules. Given the input tokens
Xt = {xm

t }Mm=1, the structure of each layer in the Slot Encoder can be delineated into three modules:

Ct = SelfAttn(Ct) , (4)
Ct = CrossAttn (q = Ct, kv = Xt) , (5)
Ct = MLP(Ct) . (6)
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We use 3 layers in all our experiments. Note that we also apply skip connections and layer normaliza-
tion in the input for all three modules, but have omitted them in the equations for brevity. The regular
cross-attention used here employs softmax normalization over the attention weights applied to the
input tokens:

Q = WQ(Ct), K = WK(Xt), V = WV (Xt) , (7)

Cout
t = softmax

(
QKT

√
D

, axis=‘keys’
)
V . (8)

In the OC-SlotSSMs layers, the Slot Encoder is implemented as a single inverted attention layer. This
layer differs from the regular cross attention by the way attention weights are normalized:

Q = WQ(Ct), K = WK(Xt), V = WV (Xt) , (9)

A = softmax
(
QKT

√
D

, axis=‘queries’
)

, (10)

Ai,j =
Ai,j∑NK

j=1 Ai,j

, (11)

Cout
t = AV . (12)

The inverted attention layer applies softmax normalization over the queries, introducing a competition
among the query tokens over the attention to the input tokens and thereby promoting disentanglement
for the input tokens.

Dataset & Models

Module Hyperparameter Blinking Color Balls (SlotSSMs) MOVi-A (OC-SlotSSMs)

General Batch Size 128 24
Training Steps 300K 500K
Sequence Length {80, 160, 320, 640, 1024, 2048} 6
Optimizer AdamW AdamW
Weight Decay 0.1 0.1
Learning Rate 8e-4 3e-4

Slot Encoder Input Tokenizer MLP(Patchify(xinput)) Flatten(CNN(xinput))
Encoder Type Self-Cross Attention Inverted Attention
Applied Layers First Layer All Layers
Hidden Size 64 192
Dropout 0 0
Heads 4 4

SlotSSM Hidden Size 64 192
# Slots 6 11
SSM Model Mamba Block Mamba Block
State Size 16 16
State Expand 1.25 1.25

Slot Mixer Dropout 0 0
Heads 4 4

Table 3: Hyperparameters of our model used in our experiments.

SSM Blocks. For the implementation of the SSM models, we leverage recent advances in linear
state space models and design our SSM block in SlotSSM based on the Mamba architecture [9]. The
block-diagonal transition of slots is implemented as parallel runs of SSM blocks that share the same
model weights.
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Slot Encoder (Inverted Attention)

Slot Mixer
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(b) OC-SlotSSMs

(a) SlotSSMs

MLP MLP

Self Attention

Transformer

Linear

Cross AttentionSlot Encoder (Optional for layer           )

Slot Mixer

SlotSSM

Figure 8: SlotSSMs vs OC-SlotSSMs.
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skt|l,h

k
t−1|l

)
, ∀k ∈ {1, . . . ,Kl} (14)

We include pseudo-code of the Mamba block implementation in Algorithm ??. For a more detailed
description of the Mamba architecture and its underlying principles, we refer the readers to the
original paper [9].

C.2 Baseline Models

We use the official implementation of RIM from GitHub 2, as well as the SAVi implementation from
STEVE 3. We describe the implementation of the proposed baselines SlotRNN and SlotTransformer
in the following.

SlotRNN. SlotRNN adopts a similar design to SlotSSM, but replaces the SSMs with GRUs [2].
In this architecture, the slots are processed in parallel across different slots at each time step and
sequentially across time steps. The implementation of each layer is summarized as follows.

2https://github.com/anirudh9119/RIMs
3https://github.com/singhgautam/steve
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)
, (15)

hk
t|l = GRU

(
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k
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)
, ∀k ∈ {1, . . . ,Kl} , (16)
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(
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k=1

)
, (17)

{xk
t|l}

Kl

k=1 = {hk
t|l}

Kl

k=1 (18)

SlotTransformer. SlotTransformer uses the same SlotEncoder as SlotSSM to obtain slot represen-
tations. At each time step, the slots from the current step are concatenated with the slots from all
previous time steps. This combined sequence is then processed using a Transformer with causal mask
in time dimension which ensures that each slot can only obtain information from prior or current time
steps. The implementation of each layer is summarized as follows:

{skt|l}
Kl

k=1 = SlotEncoder
(
{xk

t|l−1}
Kl−1

k=1

)
, (19)

{xk
<=t|l}

Kl

k=1 = Transformer
(
{skt|l}

Kl

k=1 ∪ {s
k
<t|l}

Kl

k=1

)
, (20)

C.3 Blinking Color Balls Experiemtns

We show the hyperparameters used in the experiments in Table 3.

Input Tokenizer. Each patch in the input sequence is treated as an image and further split into
non-overlapping patches of size 4 × 4. Each patch is then augmented with spatial and temporal
positional embeddings, followed by an MLP layer to compute the final tokens for the Slot Encoder.

Decoder. During image decoding, we use a self-cross attention layer with positional embeddings as
input and slots as context. Given the positional embeddings Pt = {pm

t }HW
m=1 and slots from SlotSSM

St = {skt }Kk=1, each layer of the transformer decoder can be described as follows:

Pt = SelfAttn(Pt) , (21)
Pt = CrossAttn (q = Pt, kv = St) (22)
Pt = MLP(Pt) . (23)

We use a total of 3 layers, and the final pixel logits are computed using a linear head.

Training Objective. During training, we transform the image prediction problem into a pixel-wise
classification task. Specifically, for a target image xN ∈ RH×W×3, we compute a quantization by
categorizing each pixel into one of 7 discrete color categories:

xQ
N (i, j) = Q(xN (i, j)) ∀ i ∈ {1, 2, . . . ,H}, j ∈ {1, 2, . . . ,W} (24)

where Q : R3 → C is the quantization function that maps a 3-dimensional color vector to one of the 7
color categories in the set C = {c1, . . . , c7}. Each ck ∈ R3 represents a color vector corresponding
to a discrete color category. This is a lossless quantization process since the raw images are generated
with the same set of discrete colors. The final training objective is the cross-entropy loss between the
model output x̂N and the target xQ

N :

L = −
H∑
i=1

W∑
j=1

6∑
k=1

xQ
N (i, j, k) log(x̂N (i, j, k)) (25)
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