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Abstract

Do large language models (LLMs) code more reliably when they first author a
task-specific specification language and then implement strictly from that spec?
We introduce SELF-SPEC, a lightweight, deterministic (7'=0) orchestration that
prompts a model to (i) design a compact spec schema it prefers, (ii) instantiate that
schema from a problem’s docstring and signature, (iii) resolve ambiguities via a
minimal Q&A loop, and (iv) generate code only from the confirmed spec. The
intuition is distributional: a self-authored spec better aligns with a model’s internal
representational bias, reducing docstring drift and format/edge-case mistakes. On
HumanEval (pass@1, single sample), SELF-SPEC improves over direct NL—code
for stronger models: GPT-40 87% — 92% (+5) and Claude 3.7 92% — 94%
(+2); Claude 3.5 dips 90% — 89% (—1), which returns to baseline once we
remove over-defensive guards in generated code (e.g., replacing raise/assert
with no-ops when unspecified). To our knowledge, this is the first systematic
study that lets an LLM design its own spec language for coding. The method
is simple (no finetuning), model-agnostic (each model chooses its spec shape),
and practical (assumptions are made explicit). We release prompts and code for
reproduction. Overall, our results show that SELF-SPEC works in practice and
offers strong potential as a general path to more reliable LLM coding via self-
authored specifications.

1 Introduction

Specifications are the contracts of software: they reduce ambiguity, externalize assumptions, and
constrain implementations toward intended semantics. When code is generated solely from natural
language (NL) docstrings, latent ambiguity and unspoken edge cases routinely surface as logic
slips, off-by-one errors, or format mismatches. One strand of work interposes formal specifica-
tion/verification IRs (e.g., Dafny) between NL and code to improve reliability, but such IRs are
scarce in LLM pretraining data and often off-distribution for current models, limiting throughput in
practice. For example, a verification-aware Dafny intermediate has been reported at ~77% pass@1 on
HumanEval with pure Dafny, with a hybrid “Dafny+direct” fallback rising to ~88% [1]. Separately,
intermediate-reasoning prompts (e.g., chain-of-thought) can align generation with a model’s internal
planning dynamics [2], yet they remain free-form and hard to reuse as stable contracts for code.

Foundational question. This work raises a theoretical, programming-languages—level question:
can a generative model create its own task-specific specification language—a model-invented
DSL—and then faithfully implement code from that contract? If so, we obtain a middle path
between direct NL—code and fixed human-designed IRs: the benefits of explicit specification without
forcing the model into an alien formalism. Conceptually, this probes whether today’s LLMs can
separate specification from implementation and synthesize a usable spec schema that reflects their
internal representational biases—an ability of foundational importance in computer science.
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Practical setting: vibe programming. Our target use case is everyday NL—code interaction (“vibe
programming”): the user writes NL instructions, the model replies with executable code. Direct
prompting delivers convenience but hits reliability ceilings. In contrast, introducing a specification
intermediate makes assumptions explicit, reduces drift, and materially improves outcomes. Practically,
this enables non-expert programmers—e.g., scholars in other fields—to generate robust analysis
scripts and utilities, lowering barriers to computational work and amplifying scientific productivity
across domains.

Our approach: SELF-SPEC. We present SELF-SPEC, a lightweight, deterministic (7'=0) orches-
tration that prompts the model to author its own specification language and then implement strictly
from that spec. The pipeline grants the model autonomy over schema and vocabulary to align the
external representation with its internal biases. Concretely, SELF-SPEC comprises six roles:

1. SpecDesigner (one-time): invents a compact schema (GlobalSPEC) the model prefers (field
names, ordering, granularity).

2. SpeclInstantiator: fills the schema from the docstring and signature, marking missing items
as TBD.

3. FMInterviewer: asks the fewest decisive clarifying formal questions to resolve TBDs,
optionally proposing safe defaults.

4. SpecApplier: merges answers into the spec, removing all TBD.
5. FMConfirmer: summarizes key decisions; proceeds only upon explicit CONFIRM.

6. SpecExecutor: emits code that follows the confirmed spec verbatim.

These roles form a single confirmation loop: Specinstantiator — FMInterviewer <+ SpecApplier —
FMConfirmer. Absent CONFIRM, control returns to FMInterviewer; otherwise SpecExecutor generates
the final solution. Section [3|and Figure 1 detail the components and connections.

Why this should help. The core intuition is distributional: a spec authored by the model is
more likely to match patterns learned during pretraining (structured NL, pseudo-code, bulletized
constraints, mini-APIs), reducing docstring drift, inconsistent assumptions, and formatting/edge-case
errors. Unlike free-form reasoning traces [2], the result is a stable, reusable schema that functions as
a contract for code generation.

Evaluation preview. We evaluate on HumanEval [3]] under pass@1 (single sample, 7'=0) using
three production models: GPT-4o0 [4], Claude 3.7 [S]], and Claude 3.5 [6]. We compare a Native
baseline (direct NL—code) against Self-Spec. Results: GPT-40 improves from 87% to 92% (+5);
Claude 3.7 improves from 92% to 94% (+2); Claude 3.5 dips slightly from 90% to 89% (—1). We
trace the dip to over-defensive guards (e.g., raise/assert) conflicting with HumanEval’s weak
preconditions; replacing such guards with no-ops when unspecified restores ~baseline for Claude 3.5.
In contrast, fixed formal IRs like Dafny—while principled—report ~ 77% in the pure setting and
~ 88% with a hybrid fallback on related configurations [I], underscoring the practicality of staying
on-distribution.

Contributions and significance.

* Foundational step toward model-authored DSLs. We provide the first systematic frame-
work that lets an LLM design its own specification language and then code strictly from
it—probing a core CS question about synthesizing contracts (specs) distinct from implemen-
tations.

* Empirical uplift for NL—code. SELF-SPEC improves pass@ 1 for stronger models (GPT-
4o0: +5; Claude 3.7: +2) and recovers to baseline for Claude 3.5 after removing unnecessary
guards.

* Practical impact for non-experts. By turning vague NL into explicit, checkable specs
before coding, SELF-SPEC helps non-programmers (e.g., domain scientists) reliably generate
scripts—lowering the entry barrier and, we argue, accelerating scientific workflows at scale.



* Reproducibility. We release prompts, scripts, model IDs/decoding parameters, and harness
configuration to reproduce Table 1E]

Roadmap. We situate Self-Spec relative to formal IRs and intermediate-reasoning prompts (§2);
describe the orchestrator with Figure 1 (§3); detail the experimental setup (§4); present HumanEval
results in Table 1 (§5); analyze model-specific behaviors (§6); and discuss implications and limitations

(7} ).
2 Background & Motivation

Specifications in software practice. Specifications operationalize intent by forcing early, explicit
choices about inputs/outputs, error policy, edge cases, state, and invariants. Mature ecosystems span
from temporal logics and model checkers (e.g., TLA+[7]]) that specify what a system may do, to
lightweight relational modeling (Alloy[8]]) for bounded structural exploration, to verification-oriented
languages (Dafny[9]) with pre/postconditions, loop invariants, and SMT-backed proofs—consistently
showing that writing down the right constraints reduces ambiguity and catches inconsistencies early.

LLM code generation and its failure modes. Code LLMs (e.g., Codex[3l], Code Llama[10],
StarCoder[11]) can produce nontrivial programs from NL prompts but are brittle under underspecifi-
cation and distributional quirks. HumanEval catalyzed functional evaluation via unit tests; broader
suites (MBPP[12]], APPS[13]], SWE-bench[14]) reveal persistent docstring drift, missing edge cases,
and formatting slips, especially under deterministic single-sample decoding. Sampling/repair loops
help but increase orchestration cost. Emulating software processes (Waterfal/TDD/Scrum) stabilizes
pass@1 on HumanEval/MBPP, underscoring the value of lightweight structure before coding [15]].

What existing “intermediates” buy us. Intermediates help but tend to polarize. Free-form reason-
ing (CoT, self-consistency, least-to-most, PoT, PAL) externalizes planning and can improve accuracy,
yet is verbose, variable, and hard to confirm/reuse as a stable contract [2,[16H19]]. Fixed formal IRs
(e.g., Dafny) offer precision and verifiability but are underrepresented in pretraining; when targeted
directly they can be off-distribution, limiting throughput and prompting hybrid fallbacks. Verification-
aware NL—Dafny—code pipelines report modest pure-Dafny pass@1 (~77%) and improved yet
mixed hybrid results (~88%) on HumanEval-like settings, highlighting this mismatch [[1].

Spec-driven pipelines and formal synthesis. Recent spec-driven pipelines instantiate the interme-
diate explicitly. Patil et al. propose spec2code, coupling NL/ACSL specs with critics/backprompting
and reporting industrial case studies in safety-critical automotive software [20]. Orthogonally, Mur-
phy et al. split workload between an LL.M and reactive program synthesis, offloading hard control
logic to a formal synthesizer [21]]. In contrast, SELF-SPEC keeps the intermediate model-authored
and compact, aiming for confirmability under deterministic decoding while remaining on-distribution.

Adjacent directions: tool use and repair. Execution-grounded loops mitigate ambiguity post
hoc: tool-use training (Toolformer), self-refine/reflexion, and code-specific self-debug frameworks
iteratively patch errors via traces and tests [22H25]]. These strategies help, but primarily optimize
after an underspecified first attempt, whereas SELF-SPEC targets disambiguation before generation.

The gap. Between unconstrained free-form reasoning and rigid formal IRs lies a missing middle:
a stable, compact, confirmable specification that (i) disambiguates intent before code, (ii) stays
on-distribution for modern LLMs, and (iii) is practical under deterministic decoding (no sampling
farms or long repair loops). In other words, we want the clarifying power of a spec without imposing
a human-designed formalism the model never learned, and without the variability of free-form chains.

Our proposal (preview). SELF-SPEC fills this middle ground: the model designs its own spec
schema (once), instantiates it from NL+signature with TBDs, runs a minimal interviewer loop to
resolve unknowns, confirms a final spec, and then generates code only from that contract. By
aligning the intermediate with the model’s internal representational bias (structured NL, pseudo-code,
checklists), we aim to reduce docstring drift and edge-case omissions while keeping the pipeline tiny
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Figure 1: Self-Spec Orchestration Overview. The process: NL request — SpecDesigner (one-time
schema creation) — Speclnstantiator (populate schema) — FMInterviewer <+ SpecApplier (Q&A
loop for any TBD fields) — FMConfirmer (await explicit "CONFIRM") — SpecExecutor (generate
code). The FMInterviewer—SpecApplier loop repeats until no TBD remains and the user (or system)
confirms the spec.

and deterministic. We later show uplifts on HumanEval (pass@1, single-sample, 7'=0) for stronger
models (GPT-40, Claude 3.7) and a near-baseline result for Claude 3.5 once over-defensive guards
are removed—supporting the hypothesis that a model-authored spec can be an effective, practical
middle path.

3 Method: Self-Spec Orchestrator

Figure [I] illustrates the Self-Spec orchestration process. The pipeline consists of a sequence of
coordinated prompt stages that guide the LLM from an initial natural language problem description
to a final solution, via a custom spec that the model defines and uses. We briefly describe each
component and its role in the loop:

SpecDesigner: This first step prompts the model to create a compact global specification schema
(Self-Spec) that it will use for the task. The model effectively designs a template or outline for the
spec, listing the fields or sections it thinks are important (e.g. high-level purpose, inputs/outputs, edge
cases, sub-problems, plan outline, etc.). This schema is created once per session and represents the
format the model “prefers” to reason about the problem. We do not impose a particular structure
(unlike a fixed formal language); the model has freedom to choose the number and names of fields,
organization, and style of this spec template.

Speclnstantiator: Given the global schema from the SpecDesigner and a concrete task (function
signature + natural language request), the model instantiates a task-specific, fully detailed specification
(hereafter WorkingSpec). From this point on, all edits apply only to the WorkingSpec; the global
schema is treated as fixed scaffolding and is no longer modified (cf. Fig.[I). The Instantiator fills
every schema slot it can ground from the request, including for example, goal summary, input/output
contracts, error policy, and corner cases. Any uncertain items may be temporarily marked (e.g., TBD),
but completion of these placeholders is not the only driver of the next stage.

FMInterviewer: The interviewer proceeds from a formal perspective to elicit the fewest, most decisive
commitments necessary for a well-posed specification, beyond merely clearing TBDs. Concretely,
questions would target: (i) precise pre-/post-conditions and type/refinement invariants; (ii) input
domain restrictions, corner cases, and determinism; (iii) error/exception policy and stability under
weak preconditions; (iv) resource/complexity constraints and tie-breaking rules; and (v) I/O formatting
and stateful side-effects (if any). In all experiments, user responses are simulated by a second LLM
(prompts and settings in the appendix), so each question receives a consistent, model-generated answer
rather than ad-hoc defaults. An example Q&A set (HumanEval/13, gcd) appears in Appendix [A-T]



SpecApplier: The applier only updates the WorkingSpec. It merges the simulated answers into the
current task-level spec, performing minimal text rewriting for consistency (e.g., harmonizing contracts
and examples) while keeping the global schema untouched. Appendix [A.2]shows a finalized spec
(HumanEval/156, int_to_mini_roman) produced by this step: inputs are range-bounded, behavior
lists execution order, output is format-checked via a regex, and error policy is explicit.

FMConfirmer: Once the WorkingSpec satisfies the formal checks (contracts closed; edge cases and
error policy fixed), the system emits a concise summary of the decisive commitments and requests
an explicit gate token (CONFIRM). In our automated runs, the simulated user model issues CONFIRM
only when the summary matches the finalized WorkingSpec (prompts in the appendix). This gate
prevents drift between agreed intent and subsequent implementation. If formal commitments remain
underspecified and the user is not satisfied, the system returns to FMInterviewer (see the loop in
Fig. [T until the WorkingSpec is fully pinned down according to the above criteria.

SpecExecutor: Conditioned solely on the confirmed WorkingSpec, the executor produces the final
code and strictly follows the agreed contracts (no commentary). Deterministic decoding is enforced
(temperature = 0), and the implementation must use exactly the provided function signature. The
resulting program is thus a direct realization of the task-level formal commitments established by the
interviewer—applier loop.

All of the above steps are orchestrated via prompt chaining without any fine-tuning or model
parameter changes. The prompts for each component (SpecDesigner, SpecInstantiator, etc.) are given
in the Appendix. The overall process requires only one additional interaction loop (for Q&A and
confirmation) beyond a single-shot generation. In practice, this adds a small overhead but yields
significant clarity. By handing the model the responsibility to define and use a spec, we hypothesize
it engages in a form of self-consistent planning that improves final accuracy.

4 Experimental Setup

We evaluate Self-Spec on the HumanEval benchmark for Python code generation. HumanEval
provides problems, each with a target function signature, a natural-language description, and hidden
tests. For consistency and clarity, we preprocess each item into a concise natural-language problem
statement paired with the exact function signature (no examples or auxiliary hints), which is used as
the input in all conditions.

Models. We experiment with three state-of-the-art closed-source LLMs: GPT-40, Claude 3.7, and
Claude 3.5. These represent two providers and varying capability levels (GPT-40 and Claude 3.7 are
stronger models, while Claude 3.5 is a slightly older/less capable version). All models are used via
their respective APIs on Mac M4.

Conditions. For each model, we compare two generation modes: (1) Native, a direct NL — code
generation baseline (the model is given the problem description and asked to produce the solution
code directly, with no intermediate spec); and (2) Self-Spec, our proposed pipeline described in
Section 3. In both cases, we use identical function signatures and descriptions for fairness.

Decoding. We use deterministic decoding for all runs to eliminate randomness: temperature 7' = 0.
This means the model will always produce the same output for a given prompt. We sample a single
solution per task (pass@1 setting). No additional reranking or self-consistency voting is applied.

Evaluation. We use the standard HumanEval evaluation harness, which executes the generated
code against the hidden test cases for each problem. A solution is considered correct if it passes all
tests. We report the fraction of tasks solved (pass@1 rate) for each model under each condition. All
tasks use the same function signatures (we do not allow the model to change the function name or
arguments) to ensure the solutions are comparable and directly runnable by the harness.

5 Results

Results on HumanEval are summarized in Table[T} We observe that for two of the models (GPT-40
and Claude 3.7), the Self-Spec approach yields a higher pass@1 compared to the native direct
generation. GPT-40 improves from 87% to 92% (a +5 point gain), and Claude 3.7 rises from 92% to
94% (+2). These improvements indicate that the stronger models benefit from the self-authored spec



Model Native Self-Spec A

GPT-40 87% 92% +5
Claude 3.7 92% 94% +2
Claude 3.5 90% 89% -1

Table 1: HumanEval pass@1 (single sample, 7" = 0). Each model is evaluated on 164 HumanEval
problems under two conditions: direct code generation (Native) vs. the Self-Spec pipeline. A denotes
the percentage point difference. GPT-40 and Claude 3.7 clearly benefit from Self-Spec, while Claude
3.5 sees a negligible drop.

guiding their solution. In contrast, Claude 3.5 shows a slight decrease in performance with Self-Spec
(90% down to 89%, i.e. —1 point). In absolute terms, this drop is very small (essentially one fewer
problem solved) and suggests that for this less capable model, the additional spec process did not
yield an immediate benefit. We analyze these patterns further in the next section.

Overall, two out of three models saw an accuracy gain by using Self-Spec, highlighting the potential
of the approach for state-of-the-art LLMs. The slight regression for Claude 3.5 points to differences
in how smaller/older models handle the spec process.

6 Analysis

Category Task IDs
Persistent across all three 75, 145, 160
Shared (Claude 3.7 & GPT-40) 65, 134, 163
Shared (Claude 3.7 & Claude 3.5) 92, 146
Shared (GPT-40 & Claude 3.5) 50, 83

Table 2: Common errors across models (self-spec only)

Model Task IDs (unique among the three self-spec logs)
Claude 3.7 10, 116
GPT-40 74,91, 102, 115, 132, 141
Claude 3.5 9,14, 17,19, 32, 112, 113, 125, 126, 129, 135, 138, 153
Table 3: Model-unique failure candidates (potential regressions; baseline not provided)

Error analysis. Baseline runs often fail for orchestration reasons—entry-point hijacking, template
bleed, helper-bridging failures, or environment drift—but these largely vanish under Self-Spec,
which pins entry points, fixes helper usage, and enforces return types and operation order. The
remaining errors are genuine specification-following mistakes. We observe three persistent classes:
(1) constraint misreads, where models over-interpret bounds (e.g., HE/75, treating “a < 100” as
a hard precondition and rejecting larger cases); (ii) tie-break and sign semantics, where sorting or
aggregation misaligns with hidden conventions (e.g., HE/145, mishandling negatives in digit-sum
tie-breaking); and (iii) operator precedence, where left-to-right folding replaces standard rules (e.g.,
HE/160, producing 15 instead of the expected 9 for “+, *, —). Two-model overlaps further reveal
systematic pitfalls: HE/65 (rule-priority mistakes in circular shifts and leading zeros), HE/134
(single-letter tail cases), HE/163 (misreading “even digits” as characters rather than integers), HE/50
(dependency coupling on helpers), and HE/83 (tokenization/case-sensitivity for sentence starts).
Model-specific errors suggest characteristic tendencies: Claude 3.5 often inserts over-strict “defensive”
guards (e.g., raising on empty input in HE/9/14/17/19/112/125), a side-effect of self-specification;
GPT-40 shows localized logic slips (per-row vs. global accounting in HE/1135, filename rules in
HE/141); Claude 3.7 contributes few uniques (HE/10/116) but consistently shares the core trio. In
sum, persistent failures cluster on compressed prompts with multiple constraints or counter-intuitive
exceptions, making them prime candidates for templated Self-Spec guidance. Without baseline error
IDs, model-unique failures are conservatively treated as regression candidates.



Model-specific tendencies. What remains differs by model. Claude 3.5 still adds unasked vali-
dations (extra checks or exceptions) unless the spec explicitly bans them, which conflicts with tests
that assume minimal guarding. Claude 3.7 is improved but can still normalize early or relax type
strictness unless precedence and typing are made explicit. GPT-40 usually follows the literal reading
but may omit secondary clauses—tie-breaks, token boundaries, or per-row directives—if they are not
spelled out. These patterns explain small residual gaps even after Self-Spec.

Why Self-Spec helps some models more than others. The slight dip for Claude 3.5 under Self-
Spec is attributable to over-cautious or defensive coding (for example, inserting range assertions that
cause otherwise valid edge cases to fail), not to the framework itself. A simple post-processing pass
that strips unrequested guards or imports eliminates this regression; with that adjustment, Claude
3.5’s Self-Spec performance returns to its direct baseline. By contrast, GPT-40 and Claude 3.7 have
stronger planning and benefit directly: the explicit spec reduces docstring drift, clarifies edge cases,
and acts as a checklist that lowers omissions and off-by-one or format mismatches.

Relation to reasoning scale. These trends mirror findings on intermediate-reasoning benefits:
larger models leverage structured scaffolds more reliably, while smaller ones can be distracted by
extra steps unless guided. In our setting, Self-Spec supplies the structure that stronger models exploit
to refine correctness, and it helps weaker models once defensive tendencies are tuned.*“

7 Discussion: Why Self-Spec is Useful

The Self-Spec approach offers several practical benefits for code generation with LLMs:

- Simplicity and Lightweight Orchestration. The method is easy to implement using prompting
alone. It requires no model fine-tuning or complex training setup — only a handful of prompt templates
and one additional interaction loop (for Q&A and confirmation). The entire process is deterministic
(temperature 0), which means it is stable and repeatable, a desirable property for integration into
development tools.

- Model-Agnostic and Generalizable. We allow each model to define its own spec format, which
makes the approach quite model-agnostic. In principle, any sufficiently capable LLM can be guided
to produce a spec for a given task. We expect this idea to be portable across different problem
domains: for example, an LLM could create its own planning spec for a math word problem, a data
analysis task, or generating an SQL query. The core principle — let the model choose an intermediate
representation that suits its knowledge — is general. By not hard-coding a particular spec language,
Self-Spec can adapt to the strengths of whichever model is used.

- Better Alignment and Fewer Reruns. In practical coding assistant usage, a common source
of frustration is when the model misinterprets the requirements or makes an incorrect assumption,
leading to wrong code that has to be regenerated. Self-Spec mitigates this by making the model
explicitly lay out its understanding and assumptions in the spec, which can be reviewed or confirmed
before coding. This means errors due to misunderstanding can be caught early. The agreed spec also
serves as documentation of assumptions and intended behavior. In an engineering setting, this could
reduce the number of back-and-forth attempts and speed up the path to a correct solution. Essentially,
the model’s internal thought process is externalized and approved, leading to more reliable execution.

- Bridging to Formal Methods. While our approach works with free-form specs, it could act as a
stepping stone toward formal specifications in the future. One could imagine that after a Self-Spec is
created, a secondary system or another model tries to translate it into a formal verification language
or add formal annotations (similar to Dafny or Ivy) to further prove correctness. Even if that is not
done, the existence of the spec itself already improves quality, as we have shown. Thus, Self-Spec
improves baseline performance without needing full formal verification, but it does not preclude
eventually incorporating formal checks for an extra layer of assurance.

8 Limitations & Futurework

Despite its promise, our study has several limitations:



Scope of evaluation. We focused solely on HumanEval (164 Python tasks), which is widely used
and representative.

Model variability and versioning. We used specific model versions (GPT-40 version and claude-3-
5-sonnet-20241022,Claude-3-7-sonnet-20250219). LLM providers frequently update their models,
which could affect results. We ran deterministic decoding to control randomness, but the underlying
model changes (or differences in API instantiation) could still lead to non-identical outputs. Repro-
ducing our exact numbers in the future might require using the exact model snapshots or versions we
did. We note that provider-side changes are an external factor; however, our released code will log
model version identifiers where possible to aid reproducibility.

To facilitate verification of our claims, we are releasing all materials needed to reproduce Table T}
This includes the prompt scripts for each stage of Self-Spec, the list of HumanEval problem IDs
used, model API identifiers and parameters, and the evaluation harness setup. With these, one can
run the same experiments on the specified models. We also include execution logs and outputs for
transparency. We hope that this will enable others to validate our results and build upon the Self-Spec
approach in their own code-generation pipelines.

Future work: spec-level remedies. The residual errors under Self-Spec suggest targeted upgrades
to the spec and the interviewer loop. First, to reduce spec-ambiguity misreads, we will require four
mandatory fields in every WorkingSpec—boundary policy (closed/open interval ends, extreme inputs),
tie-break policy (stable ordering keys and fallbacks), roken/format policy (whitespace, punctuation,
case), and a two—three row disambiguation table of input—output examples covering edge cases.
The interviewer will always ask these four questions if missing. Second, to prevent rule-priority
mistakes, each spec will include a linear priority ledger that lists transformations in execution order
(for example, “apply special reversal rule before any normalization™). A simple linter will block
code whose control flow performs normalization before a higher-priority rule named in the ledger.
Third, to eliminate partition vs. global aggregation errors, every accumulation must carry an explicit
aggregation scope tag—per-element, per-row, per-group, or global—and the executor must emit a
one-line assertion (or a tiny precheck) that computes a sentinel case both ways and confirms the
chosen scope. Finally, we will add small model-specific guards in the spec: a guard level flag
defaulting to “no extra validation unless stated” (to curb Claude 3.5’s defensive checks), an allowed
normalizations whitelist (to limit Claude 3.7’s early cleanup), and a secondary-clauses checklist that
must be ticked before code emission (to remind GPT-4o to include tie-breaks, token boundaries, and
per-row directives). As a lightweight safety net, the executor will auto-synthesize three micro-tests
from the spec (one boundary, one typical, one counterexample for scope/priority) and run them
deterministically before returning code. We expect these additions to directly target the remaining
failure classes without increasing orchestration complexity beyond one short interviewer turn and a
fast preflight check.

9 Conclusion

We introduced SELF-SPEC, a simple orchestration that compels an LLM to first author its own
specification schema, instantiate and confirm it through a lightweight Q&A loop, and only then
generate code. This self-authored representation provides a middle ground between brittle NL—code
prompting and off-distribution formal IRs. Our experiments on HumanEval show that SELF-SPEC
yields consistent gains for stronger models such as GPT-40 and Claude 3.7, while diagnosing the
minor drop for Claude 3.5 as an artifact of over-defensive guard generation.

Beyond immediate accuracy improvements, the broader contribution is conceptual: by aligning
external representations with the model’s internal distributional biases, we reduce ambiguity and
make assumptions explicit. This work opens several avenues for future research, including extending
Self-Spec to multi-turn interactive programming, adapting to domain-specific APIs, and integrating
with formal verification frameworks. We hope our findings encourage the community to explore
LLM-authored specifications as a practical, reproducible way to improve code reliability without
finetuning or heavy infrastructure.



10 AI Agent Setup

All experiments were conducted using a deterministic, Python-controlled orchestration implementing
the six functional roles described in §3} SpecDesigner, Specnstantiator, FMInterviewer, SpecApplier,
FMConfirmer, and SpecExecutor. Each benchmark run was executed end-to-end by the same LLM
under evaluation—GPT-40, Claude 3.7, or Claude 3.5—without any fine-tuning, retrieval, or external
tools. All generations used strictly deterministic decoding with temperature 7'=0, and evaluations
were performed on the HumanEval dataset.

References

[1] Yue Chen Li, Stefan Zetzsche, and Siva Somayyajula. Dafny as verification-aware interme-
diate language for code generation. In Dafny 2025 Workshop @ POPL 2025, Denver, CO,
USA, 2025. URL https://popl25.sigplan.org/details/dafny-2025-papers/11/
Dafny-as-Verification-Aware-Intermediate-Language-for-Code-Generation.

[2] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824-24837, 2022.

[3] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[4] OpenAl. Hello GPT-40. https://openai.com/index/hello-gpt-40/, 2024. Accessed
2025-09-15.

[5] Anthropic. Claude 3.7 sonnet and claude code. https://www.anthropic.com/news/
claude-3-7-sonnet, 2025. Accessed 2025-09-15.

[6] Anthropic.  Introducing claude 3.5 sonnet. https://www.anthropic.com/news/
claude-3-5-sonnet, 2024. Accessed 2025-09-15.

[7] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley, 2002. URL https://lamport.azurewebsites.net/
tla/book.html.

[8] Alloy Team. Alloy tools. https://alloytools.org/, 2025. Accessed 2025-09-15.

[9] K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In LPAR-
16, Lecture Notes in Computer Science. Springer, 2010. doi: 10.1007/978-3-642-17511-4_20.
URL https://link.springer.com/chapter/10.1007/978-3-642-17511-4_20.

[10] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, et al. Code llama: Open foundation models
for code. arXiv preprint arXiv:2308.12950, 2023. doi: 10.48550/arXiv.2308.12950. URL
https://arxiv.org/abs/2308.12950,

[11] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be
with you! arXiv preprint arXiv:2305.06161, 2023.

[12] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, et al.
Program synthesis with large language models. arXiv preprint arXiv:2108.07732, 2021. doi:
10.48550/arXiv.2108.07732. URL https://arxiv.org/abs/2108.07732.

[13] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, et al. Measuring
coding challenge competence with apps. arXiv preprint arXiv:2105.09938, 2021. doi: 10.
48550/arXiv.2105.09938. URL https://arxiv.org/abs/2105.09938,

[14] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.


https://popl25.sigplan.org/details/dafny-2025-papers/11/Dafny-as-Verification-Aware-Intermediate-Language-for-Code-Generation
https://popl25.sigplan.org/details/dafny-2025-papers/11/Dafny-as-Verification-Aware-Intermediate-Language-for-Code-Generation
https://openai.com/index/hello-gpt-4o/
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://lamport.azurewebsites.net/tla/book.html
https://lamport.azurewebsites.net/tla/book.html
https://alloytools.org/
https://link.springer.com/chapter/10.1007/978-3-642-17511-4_20
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2105.09938

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

A

Al

1.

—

Feng Lin, Dong Jae Kim, et al. Soen-101: Code generation by emulating software process
models using large language model agents. arXiv preprint arXiv:2403.15852, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. arXiv preprint arXiv:2203.11171, 2022. doi: 10.48550/arXiv.2203.11171. URL
https://arxiv.org/abs/2203.11171}|

Denny Zhou, Nathanael Schirli, Le Hou, et al. Least-to-most prompting enables complex
reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022. doi: 10.48550/
arXiv.2205.10625. URL https://arxiv.org/abs/2205.10625,

Wenhu Chen, Xueguang Ma, Xinyi Wang, Wenhan Xiong, and William W. Cohen. Program
of thoughts prompting: Disentangling computation from reasoning for numerical reasoning
tasks. arXiv preprint arXiv:2211.12588, 2023. doi: 10.48550/arXiv.2211.12588. URL https!
//arxiv.org/abs/2211.12588|

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan,
and Graham Neubig. Pal: Program-aided language models. In International Conference on
Machine Learning, pages 10764-10799. PMLR, 2023.

Minal Suresh Patil, Gustav Ung, and Mattias Nyberg. Towards specification-driven 1lm-based
generation of embedded automotive software. In Bridging the Gap Between Al and Reality
(AISoLA 2024), volume 15217 of Lecture Notes in Computer Science, pages 125-144. Springer,
2024. doi: 10.1007/978-3-031-75434-0_9.

William Murphy, Nikolaus Holzer, Feitong Qiao, Leyi Cui, Raven Rothkopf, Nathan Koenig,
and Mark Santolucito. Combining 1lm code generation with formal specifications and reactive
program synthesis. arXiv preprint arXiv:2410.19736, 2024. doi: 10.48550/arXiv.2410.19736.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach them-
selves to use tools. arXiv preprint arXiv:2302.04761, 2023. doi: 10.48550/arXiv.2302.04761.
URL https://arxiv.org/abs/2302.04761l

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, et al. Self-refine:
Iterative refinement with self-feedback. arXiv preprint arXiv:2303.17651, 2023. doi: 10.48550/
arXiv.2303.17651. URL https://arxiv.org/abs/2303.17651,

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.
Reflexion: Language agents with verbal reinforcement learning. Advances in Neural Information
Processing Systems, 36:8634-8652, 2023.

Xinyun Chen, Maxwell Lin, Nathanael Schirli, and Denny Zhou. Teaching large language
models to self-debug. arXiv preprint arXiv:2304.05128, 2023.

Technical Appendices and Supplementary Material

Illustrative FMInterviewer Questions (HumanEval/13: gcd).

Should the function handle cases where both inputs are zero, and if so, what
should the return value be? [default=0] [EdgeCases.one_or_both_zero]

. How should the function behave if one of the inputs is zero? Should it return

the non-zero input as the GCD? [default=Return the non-zero input]
[EdgeCases.one_or_both_zero]

. Are there any specific performance constraints or limits on the size of the

input integers that the function should handle? [default=No specific
constraints] [Constraints.input_size]

. Should the function raise an error or return a specific value if the inputs

are negative, given the constraint that inputs must be non-negative?
[default=Raise an error] [Constraints.non_negative_inputs]
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A.2 TIllustrative Final Spec (HumanEval/156: int_to_mini_roman).

[TASK ID] HumanEval/156
[FUNCTION SIGNATURE]
def int_to_mini_roman(number) -> str

[FINAL SELF-SPEC]

SPEC int_to_mini_roman {
PURPOSE: Convert a positive integer to its lowercase Roman numeral
— Trepresentation

INPUT {
REQUIRED:
number: INT [range: 1..1000] // Input integer to convert
}
OUTPUT {
result: STRING [regex: ~[ivxlcdm]+\$] // Lowercase Roman numeral
}
BEHAVIOR {
PRECONDITIONS:
- number >= 1 AND number <= 1000
MAIN:
1. VERIFY input number is within valid range
2. SET result TO empty string
3. FOR EACH numeral_pair IN roman_numeral_mapping:
// Using subtractive notation with ordered pairs:
// [(1000,'m'), (900,'cm'), (500,'d'), (400,'cd'),
//  (100,'c'), (90,'xc'), (50,'1'), (40,'x1l"),
/7 (10,'x'), (9,'ix"), (5,'v'), (4,'iv'), (1,'i")]
a. WHILE number >= numeral_pair.value:
i. ADD numeral_pair.symbol TO result
ii. SUBTRACT numeral_pair.value FROM number
4. TRANSFORM result TO lowercase
5. RETURN result
POSTCONDITIONS:
- result MATCHES ~[ivxlcdm]+\$
- result represents a valid Roman numeral using subtractive notation
}
ERRORS {
INVALID_RANGE: Input number must be between 1 and 1000 inclusive
HANDLING:
- INVALID_RANGE: Raise ValueError with message
}
EXAMPLES {
VALID:
Input: number = 19
Output: "xix" // Uses subtractive notation (not "xviiii')

Input: number = 152
Output: "clii"

Input: number = 426
OQutput: "cdxxvi"

INVALID:
Input: number = 0O
Error: INVALID_RANGE

Input: number = 1001
Error: INVALID_RANGE
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A.3 Prompt Templates

A.3.1 SpecDesigner (Self-Spec language authoring)
[SYSTEM]

Create and define an intermediate specification language that you, as the model,
— consider maximally readable and reliable for your own use in the NL -> Spec
« <-> NL confirmation -> Code pipeline. Use any notation you prefer.

[INSTRUCTIONS]

Make the definition clear enough that another copy of you can (a) write specs in
— it from arbitrary NL requests and (b) accurately translate the specs back

— into NL (c) implement code from such specs after user confirmation.

[OUTPUT]

Return ONLY the specification.

A.3.2 FMiIinterviewer (formal clarification Q&A)

[SYSTEM]

You are ‘FMInterviewer’’. From the CURRENT_SPEC (in your invented language), the
< ORIGINAL_NL_REQUIREMENTS, and the FUNCTION_SIGNATURE, ask the *fewest and

— most critical* questions needed to resolve ambiguities before implementation.

[GOAL]

Elicit only decisions that materially affect correctness, safety, or user

< expectations. Default to safe/common assumptions when possible. Avoid asking
— cosmetic or trivial questioms.

[OUTPUT STYLE]

- Ask at most 5 numbered questions that correspond ONLY to fields still set to
— "TBD" in CURRENT_SPEC.

- Each question ends with [default=VALUE]

- Tag each with [<spec.path>], e.g., [Semantics.relation_rule]

[INPUTS]
- CURRENT_SPEC:
{{CURRENT_SPEC}}

- ORIGINAL_NL_REQUIREMENTS:
{{USER_REQUIREMENTS}}

- USER_EXPLANATION (optional, if provided):
{{USER_EXPLANATION}}

- FUNCTION_SIGNATURE:
{{FUNCTION_SIGNATURE}}

A.3.3 SpecInstantiator (schema — instance)

[SYSTEM] You are ‘‘SpecInstantiator’’.
Fill the SCHEMA with concrete values from the ORIGINAL_NL_REQUIREMENTS and

— FUNCTION_SIGNATURE.
If a field is unknown, set it to "TBD .

[INPUTS]
SCHEMA :
{SCHEMA}

ORIGINAL_NL_REQUIREMENTS:
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{USER_REQUIREMENTS}

FUNCTION_SIGNATURE:
{FUNCTION_SIGNATURE}

[OUTPUT]
Return ONLY the instantiated spec (same format as SCHEMA).

A.3.4 SpecApplier (apply user answers back to spec)

[SYSTEM]
You are ‘‘SpecApplier’’. Update the CURRENT_SPEC to reflect the user’s answers to

— the FM questions.

[INSTRUCTIONS]

- Align each user answer with the internal tags you previously emitted (e.g.,
< [roles.scopel, [concurrency.mode]).

- Rewrite the spec fully in the SAME invented language and style - coherent,

— correct, and ready for implementation.

- Preserve all valid prior content; modify only where answers indicate changes.
- Resolve ambiguities by applying the user’s decisions; if an answer is missing
— or unclear, fall back to the suggested safe default for that tag.

- Do NOT output code.

[INPUTS]

- CURRENT_SPEC:

{{CURRENT_SPEC}}

- Your FM questions (for reference):

{{LLM_questions}}

- USER_ANSWERS (free-text, referencing your tags where possible):
{{USER_ANSWERS}}

- FUNCTION_SIGNATURE:

{{FUNCTION_SIGNATURE}}

[OUTPUT]
Return ONLY the updated spec (in your invented language).

A.3.5 FMConfirmer (natural-language confirmation)

[SYSTEM]
You are ‘‘FMConfirmer’’. Summarize the key decisions just made, in clear natural

— language, suitable for user confirmation.

[INSTRUCTIONS]

- 5-7 sentences max.

- If relevant in the spec, briefly cover: who is allowed to do it; when it is

— allowed (states/timing); how concurrent edits are resolved; whether repeated
< requests are idempotent; what is recorded/audited/motified; how errors are
— communicated; whether policy recalculation or similar rules apply.

- End with: ‘Please confirm or tell me what to change. If confirm, simply return
— CONFIRM, if you want to change, do not write any code, just tell what to

— change to meet with your requirement.”’

[INPUTS]

- UPDATED_SPEC (your invented language):
{{UPDATED_SPEC}}

- FUNCTION_SIGNATURE:
{{FUNCTION_SIGNATURE}}

[OUTPUT]
A single natural-language paragraph.

A.3.6 SpecExecutor (implementation from agreed spec)

[SYSTEM]
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You are ‘‘SpecExecutor’’. Implement the agreed functionality described by the

— AGREED_SPEC.

- Deliverables in ONE response:

1) The complete implementation using exactly the provided FUNCTION_SIGNATURE (no
«— modifications)

2) Ensure the implementation fully satisfies AGREED_SPEC; verify before

— outputting.

3) No explanations, no markdown fences.

[INSTRUCTIONS]
- Target language/runtime: {{TARGET_LANG}} {{RUNTIME_VERSION}}.

[INPUTS]
- AGREED_SPEC (your invented language):
{{AGREED_SPEC}}

- FUNCTION_SIGNATURE:
{{FUNCTION_SIGNATURE}}

[OUTPUT]
Only Code.

A.3.7 AgentAnswerer (relay FM questions to user)

You requested the following task:
"{{USER_REQUIREMENTS}}"

- FUNCTION_SIGNATURE:
{{FUNCTION_SIGNATURE}}

To make sure everything is clear before implementation, the assistant has drafted
— a specification and now asks you to clarify some key points.

Here are the questions:
{{LLM_questions}}

Please reflect on your original request above and answer each question in natural
— language.

Do not worry about any internal symbols or notation from the specification - just
— give plain, clear answers.

A.3.8 UserConfirmation (final confirmation prompt)

Here is the proposed Plan:
{{FINAL_PLAN}}

Here is the original user request:
"{{USER_REQUEST}}"

- FUNCTION_SIGNATURE:
{{FUNCTION_SIGNATURE}}

Please check: Does the Plan fully satisfy the request?
Please confirm or tell me what to change.
If confirm, simply return CONFIRM (exactly this single word).

If you want to change (incorrect implementation), tell what to change to meet
< your requirement.
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Agents4Science Al Involvement Checklist

1.

Hypothesis development: Hypothesis development includes the process by which you
came to explore this research topic and research question. This can involve the background
research performed by either researchers or by Al. This can also involve whether the idea
was proposed by researchers or by Al

Answer: [A]

Explanation: Humans conceived the Self-Spec idea, conducted the literature review, and
finalized the research questions and scope.

. Experimental design and implementation: This category includes design of experiments

that are used to test the hypotheses, coding and implementation of computational methods,
and the execution of these experiments.

Answer: [B]

Explanation: Humans designed the experimental setup, while Al primarily handled coding
and implementation.

. Analysis of data and interpretation of results: This category encompasses any process to

organize and process data for the experiments in the paper. It also includes interpretations of
the results of the study.

Answer: [C]

Explanation: Al carried out most of the result evaluation, while humans checked for
consistency and correctness.

. Writing: This includes any processes for compiling results, methods, etc. into the final

paper form. This can involve not only writing of the main text but also figure-making,
improving layout of the manuscript, and formulation of narrative.

Answer: [C]

Explanation: Humans guided the outline and validated correctness, while Al produced the
bulk of the text. Figures were created by humans.

. Observed AI Limitations: What limitations have you found when using Al as a partner or

lead author?

Description: Al was poor at generating figures, capturing insights from raw data, and
summarizing key findings. It tended to over-focus on lexical instructions and sometimes
proposed non-existent methods or altered the intended methodology during writing.
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Agents4Science Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the main claims, contributions, and
scope.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: A dedicated section (Section 8) discusses limitations and directions for future
work.

Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. Reviewers will be specifically
instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results requiring proof or assumptions.

Guidelines:
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» The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Section 1 and 4 provide links to the code and parameters to run.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way
(e.g., to registered users), but it should be possible for other researchers to have some
path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Section 1 provides access to released code and the modified dataset.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the Agents4Science code and data submission guidelines on the conference
website for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Section 4 details parameters and settings used in experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.
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7.

10.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report single-sample pass@1 results under strictly deterministic decoding
(T'=0) that covers the concern.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

» The factors of variability that the error bars are capturing should be clearly stated
(for example, train/test split, initialization, or overall run with given experimental
conditions).

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 4 reports that experiments were run on Apple M4 CPUs with specified
settings.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
Agents4Science Code of Ethics (see conference website)?

Answer: [Yes]

Justification: All experiments were conducted ethically, without malicious use or human
participants.

Guidelines:

* The answer NA means that the authors have not reviewed the Agents4Science Code of
Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Section 1 highlights the broader importance of this work and its potential
impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations,
privacy considerations, and security considerations.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies.
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