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Abstract

Do large language models (LLMs) code more reliably when they first author a1

task-specific specification language and then implement strictly from that spec?2

We introduce SELF-SPEC, a lightweight, deterministic (T=0) orchestration that3

prompts a model to (i) design a compact spec schema it prefers, (ii) instantiate that4

schema from a problem’s docstring and signature, (iii) resolve ambiguities via a5

minimal Q&A loop, and (iv) generate code only from the confirmed spec. The6

intuition is distributional: a self-authored spec better aligns with a model’s internal7

representational bias, reducing docstring drift and format/edge-case mistakes. On8

HumanEval (pass@1, single sample), SELF-SPEC improves over direct NL→code9

for stronger models: GPT-4o 87% → 92% (+5) and Claude 3.7 92% → 94%10

(+2); Claude 3.5 dips 90% → 89% (−1), which returns to baseline once we11

remove over-defensive guards in generated code (e.g., replacing raise/assert12

with no-ops when unspecified). To our knowledge, this is the first systematic13

study that lets an LLM design its own spec language for coding. The method14

is simple (no finetuning), model-agnostic (each model chooses its spec shape),15

and practical (assumptions are made explicit). We release prompts and code for16

reproduction. Overall, our results show that SELF-SPEC works in practice and17

offers strong potential as a general path to more reliable LLM coding via self-18

authored specifications.19

1 Introduction20

Specifications are the contracts of software: they reduce ambiguity, externalize assumptions, and21

constrain implementations toward intended semantics. When code is generated solely from natural22

language (NL) docstrings, latent ambiguity and unspoken edge cases routinely surface as logic23

slips, off-by-one errors, or format mismatches. One strand of work interposes formal specifica-24

tion/verification IRs (e.g., Dafny) between NL and code to improve reliability, but such IRs are25

scarce in LLM pretraining data and often off-distribution for current models, limiting throughput in26

practice. For example, a verification-aware Dafny intermediate has been reported at ∼77% pass@1 on27

HumanEval with pure Dafny, with a hybrid “Dafny+direct” fallback rising to ∼88% [1]. Separately,28

intermediate-reasoning prompts (e.g., chain-of-thought) can align generation with a model’s internal29

planning dynamics [2], yet they remain free-form and hard to reuse as stable contracts for code.30

Foundational question. This work raises a theoretical, programming-languages–level question:31

can a generative model create its own task-specific specification language—a model-invented32

DSL—and then faithfully implement code from that contract? If so, we obtain a middle path33

between direct NL→code and fixed human-designed IRs: the benefits of explicit specification without34

forcing the model into an alien formalism. Conceptually, this probes whether today’s LLMs can35

separate specification from implementation and synthesize a usable spec schema that reflects their36

internal representational biases—an ability of foundational importance in computer science.37
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Practical setting: vibe programming. Our target use case is everyday NL→code interaction (“vibe38

programming”): the user writes NL instructions, the model replies with executable code. Direct39

prompting delivers convenience but hits reliability ceilings. In contrast, introducing a specification40

intermediate makes assumptions explicit, reduces drift, and materially improves outcomes. Practically,41

this enables non-expert programmers—e.g., scholars in other fields—to generate robust analysis42

scripts and utilities, lowering barriers to computational work and amplifying scientific productivity43

across domains.44

Our approach: SELF-SPEC. We present SELF-SPEC, a lightweight, deterministic (T=0) orches-45

tration that prompts the model to author its own specification language and then implement strictly46

from that spec. The pipeline grants the model autonomy over schema and vocabulary to align the47

external representation with its internal biases. Concretely, SELF-SPEC comprises six roles:48

1. SpecDesigner (one-time): invents a compact schema (GlobalSPEC) the model prefers (field49

names, ordering, granularity).50

2. SpecInstantiator: fills the schema from the docstring and signature, marking missing items51

as TBD.52

3. FMInterviewer: asks the fewest decisive clarifying formal questions to resolve TBDs,53

optionally proposing safe defaults.54

4. SpecApplier: merges answers into the spec, removing all TBD.55

5. FMConfirmer: summarizes key decisions; proceeds only upon explicit CONFIRM.56

6. SpecExecutor: emits code that follows the confirmed spec verbatim.57

These roles form a single confirmation loop: SpecInstantiator → FMInterviewer ↔ SpecApplier →58

FMConfirmer. Absent CONFIRM, control returns to FMInterviewer; otherwise SpecExecutor generates59

the final solution. Section 3 and Figure 1 detail the components and connections.60

Why this should help. The core intuition is distributional: a spec authored by the model is61

more likely to match patterns learned during pretraining (structured NL, pseudo-code, bulletized62

constraints, mini-APIs), reducing docstring drift, inconsistent assumptions, and formatting/edge-case63

errors. Unlike free-form reasoning traces [2], the result is a stable, reusable schema that functions as64

a contract for code generation.65

Evaluation preview. We evaluate on HumanEval [3] under pass@1 (single sample, T=0) using66

three production models: GPT-4o [4], Claude 3.7 [5], and Claude 3.5 [6]. We compare a Native67

baseline (direct NL→code) against Self-Spec. Results: GPT-4o improves from 87% to 92% (+5);68

Claude 3.7 improves from 92% to 94% (+2); Claude 3.5 dips slightly from 90% to 89% (−1). We69

trace the dip to over-defensive guards (e.g., raise/assert) conflicting with HumanEval’s weak70

preconditions; replacing such guards with no-ops when unspecified restores ∼baseline for Claude 3.5.71

In contrast, fixed formal IRs like Dafny—while principled—report ∼ 77% in the pure setting and72

∼ 88% with a hybrid fallback on related configurations [1], underscoring the practicality of staying73

on-distribution.74

Contributions and significance.75

• Foundational step toward model-authored DSLs. We provide the first systematic frame-76

work that lets an LLM design its own specification language and then code strictly from77

it—probing a core CS question about synthesizing contracts (specs) distinct from implemen-78

tations.79

• Empirical uplift for NL→code. SELF-SPEC improves pass@1 for stronger models (GPT-80

4o: +5; Claude 3.7: +2) and recovers to baseline for Claude 3.5 after removing unnecessary81

guards.82

• Practical impact for non-experts. By turning vague NL into explicit, checkable specs83

before coding, SELF-SPEC helps non-programmers (e.g., domain scientists) reliably generate84

scripts—lowering the entry barrier and, we argue, accelerating scientific workflows at scale.85
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• Reproducibility. We release prompts, scripts, model IDs/decoding parameters, and harness86

configuration to reproduce Table 1.187

Roadmap. We situate Self-Spec relative to formal IRs and intermediate-reasoning prompts (§2);88

describe the orchestrator with Figure 1 (§3); detail the experimental setup (§4); present HumanEval89

results in Table 1 (§5); analyze model-specific behaviors (§6); and discuss implications and limitations90

(§7, §8).91

2 Background & Motivation92

Specifications in software practice. Specifications operationalize intent by forcing early, explicit93

choices about inputs/outputs, error policy, edge cases, state, and invariants. Mature ecosystems span94

from temporal logics and model checkers (e.g., TLA+[7]) that specify what a system may do, to95

lightweight relational modeling (Alloy[8]) for bounded structural exploration, to verification-oriented96

languages (Dafny[9]) with pre/postconditions, loop invariants, and SMT-backed proofs—consistently97

showing that writing down the right constraints reduces ambiguity and catches inconsistencies early.98

LLM code generation and its failure modes. Code LLMs (e.g., Codex[3], Code Llama[10],99

StarCoder[11]) can produce nontrivial programs from NL prompts but are brittle under underspecifi-100

cation and distributional quirks. HumanEval catalyzed functional evaluation via unit tests; broader101

suites (MBPP[12], APPS[13], SWE-bench[14]) reveal persistent docstring drift, missing edge cases,102

and formatting slips, especially under deterministic single-sample decoding. Sampling/repair loops103

help but increase orchestration cost. Emulating software processes (Waterfall/TDD/Scrum) stabilizes104

pass@1 on HumanEval/MBPP, underscoring the value of lightweight structure before coding [15].105

What existing “intermediates” buy us. Intermediates help but tend to polarize. Free-form reason-106

ing (CoT, self-consistency, least-to-most, PoT, PAL) externalizes planning and can improve accuracy,107

yet is verbose, variable, and hard to confirm/reuse as a stable contract [16–20]. Fixed formal IRs (e.g.,108

Dafny) offer precision and verifiability but are underrepresented in pretraining; when targeted directly109

they can be off-distribution, limiting throughput and prompting hybrid fallbacks. Verification-aware110

NL→Dafny→code pipelines report modest pure-Dafny pass@1 (∼77%) and improved yet mixed111

hybrid results (∼88%) on HumanEval-like settings, highlighting this mismatch [1].112

Spec-driven pipelines and formal synthesis. Recent spec-driven pipelines instantiate the interme-113

diate explicitly. Patil et al. propose spec2code, coupling NL/ACSL specs with critics/backprompting114

and reporting industrial case studies in safety-critical automotive software [21]. Orthogonally, Mur-115

phy et al. split workload between an LLM and reactive program synthesis, offloading hard control116

logic to a formal synthesizer [22]. In contrast, SELF-SPEC keeps the intermediate model-authored117

and compact, aiming for confirmability under deterministic decoding while remaining on-distribution.118

Adjacent directions: tool use and repair. Execution-grounded loops mitigate ambiguity post119

hoc: tool-use training (Toolformer), self-refine/reflexion, and code-specific self-debug frameworks120

iteratively patch errors via traces and tests [23–26]. These strategies help, but primarily optimize121

after an underspecified first attempt, whereas SELF-SPEC targets disambiguation before generation.122

The gap. Between unconstrained free-form reasoning and rigid formal IRs lies a missing middle:123

a stable, compact, confirmable specification that (i) disambiguates intent before code, (ii) stays124

on-distribution for modern LLMs, and (iii) is practical under deterministic decoding (no sampling125

farms or long repair loops). In other words, we want the clarifying power of a spec without imposing126

a human-designed formalism the model never learned, and without the variability of free-form chains.127

Our proposal (preview). SELF-SPEC fills this middle ground: the model designs its own spec128

schema (once), instantiates it from NL+signature with TBDs, runs a minimal interviewer loop to129

resolve unknowns, confirms a final spec, and then generates code only from that contract. By130

aligning the intermediate with the model’s internal representational bias (structured NL, pseudo-code,131

checklists), we aim to reduce docstring drift and edge-case omissions while keeping the pipeline tiny132

1Code: https://anonymous.4open.science/r/A4S-0EC2.
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Working Spec for this task
request interpretation goal context constraints components
behavior inputs outputs edge_cases ...

FMInterviewerStep 3

1. If the input contains duplicate words, should that be considered valid
(no special handling) or rejected? [default=valid; duplicates allowed and

don’t affect the outcome] [MaxWordFinder.input_duplicates]
2. ...                                                                                                       

Questions for UserCUE-Spec v1.0
Canonical Form 

Top-Level Structure (YAML) 
Type System (for type fields) 
Expression Language (EEL)

...

Global Spec

Spec DesignerStep 1

Spec InstantiatorStep2

NL  INPUT

USER Question REPLY

SpecApplierStep 4

Use and Update

USER Summary REPLYFMConfirmerStep 5

USER Summary REPLY

SpecExecutorStep 6

CODE OUTPUT

Confirm

Spec Summary

The function will determine the word with the most unique
characters by counting every character exactly as it
appears, including digits, punctuation, and whitespace. Tie-
breaking will use Python’s default lexicographical order....

Not satisfy

Figure 1: Self-Spec Orchestration Overview. The process: NL request → SpecDesigner (one-time
schema creation) → SpecInstantiator (populate schema) → FMInterviewer ↔ SpecApplier (Q&A
loop for any TBD fields) → FMConfirmer (await explicit "CONFIRM") → SpecExecutor (generate
code). The FMInterviewer–SpecApplier loop repeats until no TBD remains and the user (or system)
confirms the spec.

and deterministic. We later show uplifts on HumanEval (pass@1, single-sample, T=0) for stronger133

models (GPT-4o, Claude 3.7) and a near-baseline result for Claude 3.5 once over-defensive guards134

are removed—supporting the hypothesis that a model-authored spec can be an effective, practical135

middle path.136

3 Method: Self-Spec Orchestrator137

Figure 1 illustrates the Self-Spec orchestration process. The pipeline consists of a sequence of138

coordinated prompt stages that guide the LLM from an initial natural language problem description139

to a final solution, via a custom spec that the model defines and uses. We briefly describe each140

component and its role in the loop:141

SpecDesigner: This first step prompts the model to create a compact global specification schema142

(Self-Spec) that it will use for the task. The model effectively designs a template or outline for the143

spec, listing the fields or sections it thinks are important (e.g. high-level purpose, inputs/outputs, edge144

cases, sub-problems, plan outline, etc.). This schema is created once per session and represents the145

format the model “prefers” to reason about the problem. We do not impose a particular structure146

(unlike a fixed formal language); the model has freedom to choose the number and names of fields,147

organization, and style of this spec template.148

SpecInstantiator: Given the global schema from the SpecDesigner and a concrete task (function149

signature + natural language request), the model instantiates a task-specific, fully detailed specification150

(hereafter WorkingSpec). From this point on, all edits apply only to the WorkingSpec; the global151

schema is treated as fixed scaffolding and is no longer modified (cf. Fig. 1). The Instantiator fills152

every schema slot it can ground from the request, including for example, goal summary, input/output153

contracts, error policy, and corner cases. Any uncertain items may be temporarily marked (e.g., TBD),154

but completion of these placeholders is not the only driver of the next stage.155

FMInterviewer: The interviewer proceeds from a formal perspective to elicit the fewest, most decisive156

commitments necessary for a well-posed specification, beyond merely clearing TBDs. Concretely,157

questions would target: (i) precise pre-/post-conditions and type/refinement invariants; (ii) input158

domain restrictions, corner cases, and determinism; (iii) error/exception policy and stability under159

weak preconditions; (iv) resource/complexity constraints and tie-breaking rules; and (v) I/O formatting160

and stateful side-effects (if any). In all experiments, user responses are simulated by a second LLM161

(prompts and settings in the appendix), so each question receives a consistent, model-generated answer162

rather than ad-hoc defaults. An example Q&A set (HumanEval/13, gcd) appears in Appendix A.1.163
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SpecApplier: The applier only updates the WorkingSpec. It merges the simulated answers into the164

current task-level spec, performing minimal text rewriting for consistency (e.g., harmonizing contracts165

and examples) while keeping the global schema untouched. Appendix A.2 shows a finalized spec166

(HumanEval/156, int_to_mini_roman) produced by this step: inputs are range-bounded, behavior167

lists execution order, output is format-checked via a regex, and error policy is explicit.168

FMConfirmer: Once the WorkingSpec satisfies the formal checks (contracts closed; edge cases and169

error policy fixed), the system emits a concise summary of the decisive commitments and requests170

an explicit gate token (CONFIRM). In our automated runs, the simulated user model issues CONFIRM171

only when the summary matches the finalized WorkingSpec (prompts in the appendix). This gate172

prevents drift between agreed intent and subsequent implementation. If formal commitments remain173

underspecified and the user is not satisfied, the system returns to FMInterviewer (see the loop in174

Fig. 1) until the WorkingSpec is fully pinned down according to the above criteria.175

SpecExecutor: Conditioned solely on the confirmed WorkingSpec, the executor produces the final176

code and strictly follows the agreed contracts (no commentary). Deterministic decoding is enforced177

(temperature = 0), and the implementation must use exactly the provided function signature. The178

resulting program is thus a direct realization of the task-level formal commitments established by the179

interviewer–applier loop.180

All of the above steps are orchestrated via prompt chaining without any fine-tuning or model181

parameter changes. The prompts for each component (SpecDesigner, SpecInstantiator, etc.) are given182

in the Appendix. The overall process requires only one additional interaction loop (for Q&A and183

confirmation) beyond a single-shot generation. In practice, this adds a small overhead but yields184

significant clarity. By handing the model the responsibility to define and use a spec, we hypothesize185

it engages in a form of self-consistent planning that improves final accuracy.186

4 Experimental Setup187

We evaluate Self-Spec on the HumanEval benchmark for Python code generation. HumanEval188

provides problems, each with a target function signature, a natural-language description, and hidden189

tests. For consistency and clarity, we preprocess each item into a concise natural-language problem190

statement paired with the exact function signature (no examples or auxiliary hints), which is used as191

the input in all conditions.192

Models. We experiment with three state-of-the-art closed-source LLMs: GPT-4o, Claude 3.7, and193

Claude 3.5. These represent two providers and varying capability levels (GPT-4o and Claude 3.7 are194

stronger models, while Claude 3.5 is a slightly older/less capable version). All models are used via195

their respective APIs on Mac M4.196

Conditions. For each model, we compare two generation modes: (1) Native, a direct NL → code197

generation baseline (the model is given the problem description and asked to produce the solution198

code directly, with no intermediate spec); and (2) Self-Spec, our proposed pipeline described in199

Section 3. In both cases, we use identical function signatures and descriptions for fairness.200

Decoding. We use deterministic decoding for all runs to eliminate randomness: temperature T = 0.201

This means the model will always produce the same output for a given prompt. We sample a single202

solution per task (pass@1 setting). No additional reranking or self-consistency voting is applied.203

Evaluation. We use the standard HumanEval evaluation harness, which executes the generated204

code against the hidden test cases for each problem. A solution is considered correct if it passes all205

tests. We report the fraction of tasks solved (pass@1 rate) for each model under each condition. All206

tasks use the same function signatures (we do not allow the model to change the function name or207

arguments) to ensure the solutions are comparable and directly runnable by the harness.208

5 Results209

Results on HumanEval are summarized in Table 1. We observe that for two of the models (GPT-4o210

and Claude 3.7), the Self-Spec approach yields a higher pass@1 compared to the native direct211

generation. GPT-4o improves from 87% to 92% (a +5 point gain), and Claude 3.7 rises from 92% to212

94% (+2). These improvements indicate that the stronger models benefit from the self-authored spec213
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Model Native Self-Spec ∆

GPT-4o 87% 92% +5
Claude 3.7 92% 94% +2
Claude 3.5 90% 89% −1

Table 1: HumanEval pass@1 (single sample, T = 0). Each model is evaluated on 164 HumanEval
problems under two conditions: direct code generation (Native) vs. the Self-Spec pipeline. ∆ denotes
the percentage point difference. GPT-4o and Claude 3.7 clearly benefit from Self-Spec, while Claude
3.5 sees a negligible drop.

guiding their solution. In contrast, Claude 3.5 shows a slight decrease in performance with Self-Spec214

(90% down to 89%, i.e. −1 point). In absolute terms, this drop is very small (essentially one fewer215

problem solved) and suggests that for this less capable model, the additional spec process did not216

yield an immediate benefit. We analyze these patterns further in the next section.217

Overall, two out of three models saw an accuracy gain by using Self-Spec, highlighting the potential218

of the approach for state-of-the-art LLMs. The slight regression for Claude 3.5 points to differences219

in how smaller/older models handle the spec process.220

6 Analysis221

Category Task IDs
Persistent across all three 75, 145, 160
Shared (Claude 3.7 & GPT-4o) 65, 134, 163
Shared (Claude 3.7 & Claude 3.5) 92, 146
Shared (GPT-4o & Claude 3.5) 50, 83

Table 2: Common errors across models (self-spec only)

Model Task IDs (unique among the three self-spec logs)
Claude 3.7 10, 116
GPT-4o 74, 91, 102, 115, 132, 141
Claude 3.5 9, 14, 17, 19, 32, 112, 113, 125, 126, 129, 135, 138, 153

Table 3: Model-unique failure candidates (potential regressions; baseline not provided)

Error analysis. Baseline runs often fail for orchestration reasons—entry-point hijacking, template222

bleed, helper-bridging failures, or environment drift—but these largely vanish under Self-Spec,223

which pins entry points, fixes helper usage, and enforces return types and operation order. The224

remaining errors are genuine specification-following mistakes. We observe three persistent classes:225

(i) constraint misreads, where models over-interpret bounds (e.g., HE/75, treating “a < 100” as226

a hard precondition and rejecting larger cases); (ii) tie-break and sign semantics, where sorting or227

aggregation misaligns with hidden conventions (e.g., HE/145, mishandling negatives in digit-sum228

tie-breaking); and (iii) operator precedence, where left-to-right folding replaces standard rules (e.g.,229

HE/160, producing 15 instead of the expected 9 for “+, ∗,−”). Two-model overlaps further reveal230

systematic pitfalls: HE/65 (rule-priority mistakes in circular shifts and leading zeros), HE/134231

(single-letter tail cases), HE/163 (misreading “even digits” as characters rather than integers), HE/50232

(dependency coupling on helpers), and HE/83 (tokenization/case-sensitivity for sentence starts).233

Model-specific errors suggest characteristic tendencies: Claude 3.5 often inserts over-strict “defensive”234

guards (e.g., raising on empty input in HE/9/14/17/19/112/125), a side-effect of self-specification;235

GPT-4o shows localized logic slips (per-row vs. global accounting in HE/115, filename rules in236

HE/141); Claude 3.7 contributes few uniques (HE/10/116) but consistently shares the core trio. In237

sum, persistent failures cluster on compressed prompts with multiple constraints or counter-intuitive238

exceptions, making them prime candidates for templated Self-Spec guidance. Without baseline error239

IDs, model-unique failures are conservatively treated as regression candidates.240
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Model-specific tendencies. What remains differs by model. Claude 3.5 still adds unasked vali-241

dations (extra checks or exceptions) unless the spec explicitly bans them, which conflicts with tests242

that assume minimal guarding. Claude 3.7 is improved but can still normalize early or relax type243

strictness unless precedence and typing are made explicit. GPT-4o usually follows the literal reading244

but may omit secondary clauses—tie-breaks, token boundaries, or per-row directives—if they are not245

spelled out. These patterns explain small residual gaps even after Self-Spec.246

Why Self-Spec helps some models more than others. The slight dip for Claude 3.5 under Self-247

Spec is attributable to over-cautious or defensive coding (for example, inserting range assertions that248

cause otherwise valid edge cases to fail), not to the framework itself. A simple post-processing pass249

that strips unrequested guards or imports eliminates this regression; with that adjustment, Claude250

3.5’s Self-Spec performance returns to its direct baseline. By contrast, GPT-4o and Claude 3.7 have251

stronger planning and benefit directly: the explicit spec reduces docstring drift, clarifies edge cases,252

and acts as a checklist that lowers omissions and off-by-one or format mismatches.253

Relation to reasoning scale. These trends mirror findings on intermediate-reasoning benefits:254

larger models leverage structured scaffolds more reliably, while smaller ones can be distracted by255

extra steps unless guided. In our setting, Self-Spec supplies the structure that stronger models exploit256

to refine correctness, and it helps weaker models once defensive tendencies are tuned.“‘257

7 Discussion: Why Self-Spec is Useful258

The Self-Spec approach offers several practical benefits for code generation with LLMs:259

- Simplicity and Lightweight Orchestration. The method is easy to implement using prompting260

alone. It requires no model fine-tuning or complex training setup – only a handful of prompt templates261

and one additional interaction loop (for Q&A and confirmation). The entire process is deterministic262

(temperature 0), which means it is stable and repeatable, a desirable property for integration into263

development tools.264

- Model-Agnostic and Generalizable. We allow each model to define its own spec format, which265

makes the approach quite model-agnostic. In principle, any sufficiently capable LLM can be guided266

to produce a spec for a given task. We expect this idea to be portable across different problem267

domains: for example, an LLM could create its own planning spec for a math word problem, a data268

analysis task, or generating an SQL query. The core principle — let the model choose an intermediate269

representation that suits its knowledge — is general. By not hard-coding a particular spec language,270

Self-Spec can adapt to the strengths of whichever model is used.271

- Better Alignment and Fewer Reruns. In practical coding assistant usage, a common source272

of frustration is when the model misinterprets the requirements or makes an incorrect assumption,273

leading to wrong code that has to be regenerated. Self-Spec mitigates this by making the model274

explicitly lay out its understanding and assumptions in the spec, which can be reviewed or confirmed275

before coding. This means errors due to misunderstanding can be caught early. The agreed spec also276

serves as documentation of assumptions and intended behavior. In an engineering setting, this could277

reduce the number of back-and-forth attempts and speed up the path to a correct solution. Essentially,278

the model’s internal thought process is externalized and approved, leading to more reliable execution.279

- Bridging to Formal Methods. While our approach works with free-form specs, it could act as a280

stepping stone toward formal specifications in the future. One could imagine that after a Self-Spec is281

created, a secondary system or another model tries to translate it into a formal verification language282

or add formal annotations (similar to Dafny or Ivy) to further prove correctness. Even if that is not283

done, the existence of the spec itself already improves quality, as we have shown. Thus, Self-Spec284

improves baseline performance without needing full formal verification, but it does not preclude285

eventually incorporating formal checks for an extra layer of assurance.286

8 Limitations & Futurework287

Despite its promise, our study has several limitations:288
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Scope of evaluation. We focused solely on HumanEval (164 Python tasks), which is widely used289

and representative.290

Model variability and versioning. We used specific model versions (GPT-4o version and claude-3-291

5-sonnet-20241022,Claude-3-7-sonnet-20250219). LLM providers frequently update their models,292

which could affect results. We ran deterministic decoding to control randomness, but the underlying293

model changes (or differences in API instantiation) could still lead to non-identical outputs. Repro-294

ducing our exact numbers in the future might require using the exact model snapshots or versions we295

did. We note that provider-side changes are an external factor; however, our released code will log296

model version identifiers where possible to aid reproducibility.297

To facilitate verification of our claims, we are releasing all materials needed to reproduce Table 1.298

This includes the prompt scripts for each stage of Self-Spec, the list of HumanEval problem IDs299

used, model API identifiers and parameters, and the evaluation harness setup. With these, one can300

run the same experiments on the specified models. We also include execution logs and outputs for301

transparency. We hope that this will enable others to validate our results and build upon the Self-Spec302

approach in their own code-generation pipelines.303

Future work: spec-level remedies. The residual errors under Self-Spec suggest targeted upgrades304

to the spec and the interviewer loop. First, to reduce spec-ambiguity misreads, we will require four305

mandatory fields in every WorkingSpec—boundary policy (closed/open interval ends, extreme inputs),306

tie-break policy (stable ordering keys and fallbacks), token/format policy (whitespace, punctuation,307

case), and a two–three row disambiguation table of input–output examples covering edge cases.308

The interviewer will always ask these four questions if missing. Second, to prevent rule-priority309

mistakes, each spec will include a linear priority ledger that lists transformations in execution order310

(for example, “apply special reversal rule before any normalization”). A simple linter will block311

code whose control flow performs normalization before a higher-priority rule named in the ledger.312

Third, to eliminate partition vs. global aggregation errors, every accumulation must carry an explicit313

aggregation scope tag—per-element, per-row, per-group, or global—and the executor must emit a314

one-line assertion (or a tiny precheck) that computes a sentinel case both ways and confirms the315

chosen scope. Finally, we will add small model-specific guards in the spec: a guard level flag316

defaulting to “no extra validation unless stated” (to curb Claude 3.5’s defensive checks), an allowed317

normalizations whitelist (to limit Claude 3.7’s early cleanup), and a secondary-clauses checklist that318

must be ticked before code emission (to remind GPT-4o to include tie-breaks, token boundaries, and319

per-row directives). As a lightweight safety net, the executor will auto-synthesize three micro-tests320

from the spec (one boundary, one typical, one counterexample for scope/priority) and run them321

deterministically before returning code. We expect these additions to directly target the remaining322

failure classes without increasing orchestration complexity beyond one short interviewer turn and a323

fast preflight check.324

9 Conclusion325

We introduced SELF-SPEC, a simple orchestration that compels an LLM to first author its own326

specification schema, instantiate and confirm it through a lightweight Q&A loop, and only then327

generate code. This self-authored representation provides a middle ground between brittle NL→code328

prompting and off-distribution formal IRs. Our experiments on HumanEval show that SELF-SPEC329

yields consistent gains for stronger models such as GPT-4o and Claude 3.7, while diagnosing the330

minor drop for Claude 3.5 as an artifact of over-defensive guard generation.331

Beyond immediate accuracy improvements, the broader contribution is conceptual: by aligning332

external representations with the model’s internal distributional biases, we reduce ambiguity and333

make assumptions explicit. This work opens several avenues for future research, including extending334

Self-Spec to multi-turn interactive programming, adapting to domain-specific APIs, and integrating335

with formal verification frameworks. We hope our findings encourage the community to explore336

LLM-authored specifications as a practical, reproducible way to improve code reliability without337

finetuning or heavy infrastructure.338
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A.1 Illustrative FMInterviewer Questions (HumanEval/13: gcd).419

1. Should the function handle cases where both inputs are zero, and if so, what
should the return value be? [default=0] [EdgeCases.one_or_both_zero]↪→

2. How should the function behave if one of the inputs is zero? Should it return
the non-zero input as the GCD? [default=Return the non-zero input]
[EdgeCases.one_or_both_zero]
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3. Are there any specific performance constraints or limits on the size of the
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↪→
↪→
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A.2 Illustrative Final Spec (HumanEval/156: int_to_mini_roman).420

[TASK ID] HumanEval/156
[FUNCTION SIGNATURE]
def int_to_mini_roman(number) -> str

[FINAL SELF-SPEC]
SPEC int_to_mini_roman {

PURPOSE: Convert a positive integer to its lowercase Roman numeral
representation↪→

INPUT {
REQUIRED:

number: INT [range: 1..1000] // Input integer to convert
}

OUTPUT {
result: STRING [regex: ^[ivxlcdm]+\$] // Lowercase Roman numeral

}

BEHAVIOR {
PRECONDITIONS:

- number >= 1 AND number <= 1000

MAIN:
1. VERIFY input number is within valid range
2. SET result TO empty string
3. FOR EACH numeral_pair IN roman_numeral_mapping:

// Using subtractive notation with ordered pairs:
// [(1000,'m'), (900,'cm'), (500,'d'), (400,'cd'),
// (100,'c'), (90,'xc'), (50,'l'), (40,'xl'),
// (10,'x'), (9,'ix'), (5,'v'), (4,'iv'), (1,'i')]
a. WHILE number >= numeral_pair.value:

i. ADD numeral_pair.symbol TO result
ii. SUBTRACT numeral_pair.value FROM number

4. TRANSFORM result TO lowercase
5. RETURN result

POSTCONDITIONS:
- result MATCHES ^[ivxlcdm]+\$
- result represents a valid Roman numeral using subtractive notation

}

ERRORS {
INVALID_RANGE: Input number must be between 1 and 1000 inclusive
HANDLING:

- INVALID_RANGE: Raise ValueError with message
}

EXAMPLES {
VALID:

Input: number = 19
Output: "xix" // Uses subtractive notation (not "xviiii")

Input: number = 152
Output: "clii"

Input: number = 426
Output: "cdxxvi"

INVALID:
Input: number = 0
Error: INVALID_RANGE

Input: number = 1001
Error: INVALID_RANGE
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}
}

A.3 Prompt Templates421

A.3.1 SpecDesigner (Self-Spec language authoring)422

[SYSTEM]

Create and define an intermediate specification language that you, as the model,
consider maximally readable and reliable for your own use in the NL -> Spec
<-> NL confirmation -> Code pipeline. Use any notation you prefer.

↪→
↪→

[INSTRUCTIONS]
Make the definition clear enough that another copy of you can (a) write specs in

it from arbitrary NL requests and (b) accurately translate the specs back
into NL (c) implement code from such specs after user confirmation.

↪→
↪→

[OUTPUT]

Return ONLY the specification.

A.3.2 FMInterviewer (formal clarification Q&A)423

[SYSTEM]
You are “FMInterviewer”. From the CURRENT_SPEC (in your invented language), the

ORIGINAL_NL_REQUIREMENTS, and the FUNCTION_SIGNATURE, ask the *fewest and
most critical* questions needed to resolve ambiguities before implementation.

↪→
↪→

[GOAL]
Elicit only decisions that materially affect correctness, safety, or user

expectations. Default to safe/common assumptions when possible. Avoid asking
cosmetic or trivial questions.

↪→
↪→

[OUTPUT STYLE]
- Ask at most 5 numbered questions that correspond ONLY to fields still set to

`TBD` in CURRENT_SPEC.↪→
- Each question ends with [default=VALUE]
- Tag each with [<spec.path>], e.g., [Semantics.relation_rule]

[INPUTS]
- CURRENT_SPEC:
{{CURRENT_SPEC}}

- ORIGINAL_NL_REQUIREMENTS:
{{USER_REQUIREMENTS}}

- USER_EXPLANATION (optional, if provided):
{{USER_EXPLANATION}}

- FUNCTION_SIGNATURE:
{{FUNCTION_SIGNATURE}}

A.3.3 SpecInstantiator (schema → instance)424

[SYSTEM] You are “SpecInstantiator”.
Fill the SCHEMA with concrete values from the ORIGINAL_NL_REQUIREMENTS and

FUNCTION_SIGNATURE.↪→
If a field is unknown, set it to `TBD`.

[INPUTS]
SCHEMA:
{SCHEMA}

ORIGINAL_NL_REQUIREMENTS:
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{USER_REQUIREMENTS}

FUNCTION_SIGNATURE:
{FUNCTION_SIGNATURE}

[OUTPUT]
Return ONLY the instantiated spec (same format as SCHEMA).

A.3.4 SpecApplier (apply user answers back to spec)425

[SYSTEM]
You are “SpecApplier”. Update the CURRENT_SPEC to reflect the user’s answers to

the FM questions.↪→

[INSTRUCTIONS]
- Align each user answer with the internal tags you previously emitted (e.g.,

[roles.scope], [concurrency.mode]).↪→
- Rewrite the spec fully in the SAME invented language and style — coherent,

correct, and ready for implementation.↪→
- Preserve all valid prior content; modify only where answers indicate changes.
- Resolve ambiguities by applying the user’s decisions; if an answer is missing

or unclear, fall back to the suggested safe default for that tag.↪→
- Do NOT output code.

[INPUTS]
- CURRENT_SPEC:
{{CURRENT_SPEC}}
- Your FM questions (for reference):
{{LLM_questions}}
- USER_ANSWERS (free-text, referencing your tags where possible):
{{USER_ANSWERS}}
- FUNCTION_SIGNATURE:
{{FUNCTION_SIGNATURE}}

[OUTPUT]
Return ONLY the updated spec (in your invented language).

A.3.5 FMConfirmer (natural-language confirmation)426

[SYSTEM]
You are “FMConfirmer”. Summarize the key decisions just made, in clear natural

language, suitable for user confirmation.↪→

[INSTRUCTIONS]
- 5–7 sentences max.
- If relevant in the spec, briefly cover: who is allowed to do it; when it is

allowed (states/timing); how concurrent edits are resolved; whether repeated
requests are idempotent; what is recorded/audited/notified; how errors are
communicated; whether policy recalculation or similar rules apply.

↪→
↪→
↪→
- End with: “Please confirm or tell me what to change. If confirm, simply return

CONFIRM, if you want to change, do not write any code, just tell what to
change to meet with your requirement.”

↪→
↪→

[INPUTS]
- UPDATED_SPEC (your invented language):
{{UPDATED_SPEC}}
- FUNCTION_SIGNATURE:
{{FUNCTION_SIGNATURE}}

[OUTPUT]
A single natural-language paragraph.

A.3.6 SpecExecutor (implementation from agreed spec)427

[SYSTEM]
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You are “SpecExecutor”. Implement the agreed functionality described by the
AGREED_SPEC.↪→

- Deliverables in ONE response:
1) The complete implementation using exactly the provided FUNCTION_SIGNATURE (no

modifications)↪→
2) Ensure the implementation fully satisfies AGREED_SPEC; verify before

outputting.↪→
3) No explanations, no markdown fences.

[INSTRUCTIONS]
- Target language/runtime: {{TARGET_LANG}} {{RUNTIME_VERSION}}.

[INPUTS]
- AGREED_SPEC (your invented language):
{{AGREED_SPEC}}

- FUNCTION_SIGNATURE:
{{FUNCTION_SIGNATURE}}

[OUTPUT]
Only Code.

A.3.7 AgentAnswerer (relay FM questions to user)428

You requested the following task:
"{{USER_REQUIREMENTS}}"

- FUNCTION_SIGNATURE:
{{FUNCTION_SIGNATURE}}

To make sure everything is clear before implementation, the assistant has drafted
a specification and now asks you to clarify some key points.↪→

Here are the questions:
{{LLM_questions}}

Please reflect on your original request above and answer each question in natural
language.↪→

Do not worry about any internal symbols or notation from the specification — just
give plain, clear answers.↪→

A.3.8 UserConfirmation (final confirmation prompt)429

Here is the proposed Plan:
{{FINAL_PLAN}}

Here is the original user request:
"{{USER_REQUEST}}"

- FUNCTION_SIGNATURE:
{{FUNCTION_SIGNATURE}}

Please check: Does the Plan fully satisfy the request?

Please confirm or tell me what to change.
If confirm, simply return CONFIRM (exactly this single word).
If you want to change (incorrect implementation), tell what to change to meet

your requirement.↪→
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Agents4Science AI Involvement Checklist430

1. Hypothesis development: Hypothesis development includes the process by which you431

came to explore this research topic and research question. This can involve the background432

research performed by either researchers or by AI. This can also involve whether the idea433

was proposed by researchers or by AI.434

Answer: [A]435

Explanation: Humans conceived the Self-Spec idea, conducted the literature review, and436

finalized the research questions and scope.437

2. Experimental design and implementation: This category includes design of experiments438

that are used to test the hypotheses, coding and implementation of computational methods,439

and the execution of these experiments.440

Answer: [B]441

Explanation: Humans designed the experimental setup, while AI primarily handled coding442

and implementation.443

3. Analysis of data and interpretation of results: This category encompasses any process to444

organize and process data for the experiments in the paper. It also includes interpretations of445

the results of the study.446

Answer: [C]447

Explanation: AI carried out most of the result evaluation, while humans checked for448

consistency and correctness.449

4. Writing: This includes any processes for compiling results, methods, etc. into the final450

paper form. This can involve not only writing of the main text but also figure-making,451

improving layout of the manuscript, and formulation of narrative.452

Answer: [C]453

Explanation: Humans guided the outline and validated correctness, while AI produced the454

bulk of the text. Figures were created by humans.455

5. Observed AI Limitations: What limitations have you found when using AI as a partner or456

lead author?457

Description: AI was poor at generating figures, capturing insights from raw data, and458

summarizing key findings. It tended to over-focus on lexical instructions and sometimes459

proposed non-existent methods or altered the intended methodology during writing.460
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Agents4Science Paper Checklist461

1. Claims462

Question: Do the main claims made in the abstract and introduction accurately reflect the463

paper’s contributions and scope?464

Answer: [Yes]465

Justification: The abstract and introduction clearly state the main claims, contributions, and466

scope.467

Guidelines:468

• The answer NA means that the abstract and introduction do not include the claims469

made in the paper.470

• The abstract and/or introduction should clearly state the claims made, including the471

contributions made in the paper and important assumptions and limitations. A No or472

NA answer to this question will not be perceived well by the reviewers.473

• The claims made should match theoretical and experimental results, and reflect how474

much the results can be expected to generalize to other settings.475

• It is fine to include aspirational goals as motivation as long as it is clear that these goals476

are not attained by the paper.477

2. Limitations478

Question: Does the paper discuss the limitations of the work performed by the authors?479

Answer: [Yes]480

Justification: A dedicated section (Section 8) discusses limitations and directions for future481

work.482

Guidelines:483

• The answer NA means that the paper has no limitation while the answer No means that484

the paper has limitations, but those are not discussed in the paper.485

• The authors are encouraged to create a separate "Limitations" section in their paper.486

• The paper should point out any strong assumptions and how robust the results are to487

violations of these assumptions (e.g., independence assumptions, noiseless settings,488

model well-specification, asymptotic approximations only holding locally). The authors489

should reflect on how these assumptions might be violated in practice and what the490

implications would be.491

• The authors should reflect on the scope of the claims made, e.g., if the approach was492

only tested on a few datasets or with a few runs. In general, empirical results often493

depend on implicit assumptions, which should be articulated.494

• The authors should reflect on the factors that influence the performance of the approach.495

For example, a facial recognition algorithm may perform poorly when image resolution496

is low or images are taken in low lighting.497

• The authors should discuss the computational efficiency of the proposed algorithms498

and how they scale with dataset size.499

• If applicable, the authors should discuss possible limitations of their approach to500

address problems of privacy and fairness.501

• While the authors might fear that complete honesty about limitations might be used by502

reviewers as grounds for rejection, a worse outcome might be that reviewers discover503

limitations that aren’t acknowledged in the paper. Reviewers will be specifically504

instructed to not penalize honesty concerning limitations.505

3. Theory assumptions and proofs506

Question: For each theoretical result, does the paper provide the full set of assumptions and507

a complete (and correct) proof?508

Answer: [NA]509

Justification: The paper does not include theoretical results requiring proof or assumptions.510

Guidelines:511
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• The answer NA means that the paper does not include theoretical results.512

• All the theorems, formulas, and proofs in the paper should be numbered and cross-513

referenced.514

• All assumptions should be clearly stated or referenced in the statement of any theorems.515

• The proofs can either appear in the main paper or the supplemental material, but if516

they appear in the supplemental material, the authors are encouraged to provide a short517

proof sketch to provide intuition.518

4. Experimental result reproducibility519

Question: Does the paper fully disclose all the information needed to reproduce the main ex-520

perimental results of the paper to the extent that it affects the main claims and/or conclusions521

of the paper (regardless of whether the code and data are provided or not)?522

Answer: [Yes]523

Justification: Section 1 and 4 provide links to the code and parameters to run.524

Guidelines:525

• The answer NA means that the paper does not include experiments.526

• If the paper includes experiments, a No answer to this question will not be perceived527

well by the reviewers: Making the paper reproducible is important.528

• If the contribution is a dataset and/or model, the authors should describe the steps taken529

to make their results reproducible or verifiable.530

• We recognize that reproducibility may be tricky in some cases, in which case authors531

are welcome to describe the particular way they provide for reproducibility. In the case532

of closed-source models, it may be that access to the model is limited in some way533

(e.g., to registered users), but it should be possible for other researchers to have some534

path to reproducing or verifying the results.535

5. Open access to data and code536

Question: Does the paper provide open access to the data and code, with sufficient instruc-537

tions to faithfully reproduce the main experimental results, as described in supplemental538

material?539

Answer: [Yes]540

Justification: Section 1 provides access to released code and the modified dataset.541

Guidelines:542

• The answer NA means that paper does not include experiments requiring code.543

• Please see the Agents4Science code and data submission guidelines on the conference544

website for more details.545

• While we encourage the release of code and data, we understand that this might not be546

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not547

including code, unless this is central to the contribution (e.g., for a new open-source548

benchmark).549

• The instructions should contain the exact command and environment needed to run to550

reproduce the results.551

• At submission time, to preserve anonymity, the authors should release anonymized552

versions (if applicable).553

6. Experimental setting/details554

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-555

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the556

results?557

Answer: [Yes]558

Justification: Section 4 details parameters and settings used in experiments.559

Guidelines:560

• The answer NA means that the paper does not include experiments.561
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• The experimental setting should be presented in the core of the paper to a level of detail562

that is necessary to appreciate the results and make sense of them.563

• The full details can be provided either with the code, in appendix, or as supplemental564

material.565

7. Experiment statistical significance566

Question: Does the paper report error bars suitably and correctly defined or other appropriate567

information about the statistical significance of the experiments?568

Answer: [Yes]569

Justification: We report single-sample pass@1 results under strictly deterministic decoding570

(T=0) that covers the concern.571

Guidelines:572

• The answer NA means that the paper does not include experiments.573

• The authors should answer "Yes" if the results are accompanied by error bars, confi-574

dence intervals, or statistical significance tests, at least for the experiments that support575

the main claims of the paper.576

• The factors of variability that the error bars are capturing should be clearly stated577

(for example, train/test split, initialization, or overall run with given experimental578

conditions).579

8. Experiments compute resources580

Question: For each experiment, does the paper provide sufficient information on the com-581

puter resources (type of compute workers, memory, time of execution) needed to reproduce582

the experiments?583

Answer: [Yes]584

Justification: Section 4 reports that experiments were run on Apple M4 CPUs with specified585
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9. Code of ethics593
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Answer: [Yes]596

Justification: All experiments were conducted ethically, without malicious use or human597

participants.598
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Ethics.601
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