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Abstract

This paper introduces a flexible, scalable approach that gen-
erates contrastive explanations of navigation plans based on
multiple objectives. These explanations in natural language
describe a robot controller’s beliefs, intentions, and confi-
dence to any person who travels with or near the robot. A
new multi-objective path planning algorithm generates opti-
mal single-objective plans, evaluates each of them with re-
spect to the other objectives, and selects one. The objectives
that favored the selected plan over the others become reasons
in the explanation. Extensive evaluation in simulation demon-
strates the system’s ability to produce diverse, readily under-
standable explanations that provide counterfactual examples.

Introduction
Autonomous robots indoors must often plan paths that sat-
isfy multiple competing objectives, such as speed and safety.
To appear accountable and trustworthy to the people they
encounter in the real world, these robots should offer clear
but nuanced explanations of their intentions in natural lan-
guage. Faced with multiple objectives, traditional path plan-
ners have either compromised among those objectives to se-
lect each step or relied on a mathematical combination of
them hand-tuned for a particular environment. It is more dif-
ficult, however, to explain the full trajectory of such a plan to
a human companion, especially one who is not an expert. A
contrastive explanation provides an alternative counterfac-
tual that may address a human questioner’s concerns (Miller
2019). The thesis of this work is that humans’ demon-
strated preference for contrastive explanations should drive
the planning process itself. This paper introduces a novel
approach, where a set of single-objective planners each con-
structs an optimal plan and then votes to identify the plan
that best suits them all. This enables our robot controller to
advocate for its chosen plan in contrast to another through
their underlying objectives. The resultant natural language
explanations address the controller’s beliefs, intentions, and
confidence. We demonstrate this in a challenging real-world
environment.

*The work reported here was performed while the first author
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An agent’s mental model captures the internal represen-
tations and thought processes of another agent in the same
environment. Communication helps people construct a men-
tal model of how the robot perceives and reasons about their
shared space, and thereby helps to establish trust (Kulesza
et al. 2013). Questions from a person about a robot naviga-
tor’s plan arise from a gap in the human’s mental model of
the robot or from a mismatch in their beliefs (Shvo, Klassen,
and McIlraith 2020). Production of explanations that reduce
or eliminate this gap is a difficult problem because it is hard
for a person to judge what knowledge the robot possesses,
and difficult for a robot to convey its knowledge given the
mismatch in its actuators and sensors (Thellman and Ziemke
2021). The contrastive explanations introduced here address
a person’s confusion about a robot navigator’s plan, both to
improve the person’s trust in future plans and to build their
understanding of the robot’s reasoning mechanism.

A single-objective plan can be justified simply by a state-
ment of that objective (e.g., “I decided to go this way be-
cause it is the shortest path”). Such an explanation, however,
does not address the questioner’s reason for asking, nor does
it provide any spatial context. Here, a multi-objective path
planner considers several reasons to construct a plan, and
uses those objectives to provide a contrastive explanation
(e.g., “Although I may come close to obstacles, I’d rather
go this way because it is shorter”). Moreover, the system
measures a selected plan’s adherence to the objectives to de-
scribe the controller’s confidence in it.

The next sections provide background and related work
in multi-objective path planning and Explainable AI Plan-
ning (XAIP). Subsequent sections describes VBMO, our
voting-based multi-objective path planning approach, and
the contrastive plan explanation procedure. The final section
presents empirical results and discusses future work.

Background
An optimal graph-search algorithm finds the least cost path
from the robot’s current location to its target’s location. Typ-
ically, the algorithm exploits a weighted graph that describes
navigable two-dimensional space. Such a graph G repre-
sents unobstructed locations there as vertices. An edge in
G between two vertices indicates that one can move directly
between them, with a label for the cost to do so. For ex-
ample, if the objective were to minimize path length, labels



could record the Euclidean distance between pairs of ver-
tices. Without loss of generality, we cast optimization here
as search for minimum cost.

A simple path planner Hβ seeks a plan P in G that mini-
mizes a single objective β, such as distance. A plan P is op-
timal with respect to β only if no other plan P ′ has a lower
total cost β(P ) for that objective, that is, for every other plan
P ′, β(P ) ≤ β(P ′). Even an industrial robot, however, is
subject to error. Its sensors may report inaccurately due to
lighting or reflective surfaces, and its motors may produce
unintended movements, particularly where surfaces are im-
perfect. Both kinds of errors make it difficult to maneuver
along a carefully chosen path. As a result, a path planner is
often tasked with multiple objectives, such as distance and
proximity to obstacles.

A multi-objective path planner HB seeks a plan P that
performs well with respect to a setB of objectives. If, for ex-
ample, B = {β1, β2}, where β1 is travel distance and β2 is
proximity to obstacles, HB would seek a plan P that scores
well on both objectives. Because objectives may conflict, no
single plan is likely to be optimal with respect to all of B.
Typically, a potential plan will perform better with respect
to some β’s and worse with respect to others.

Let B = {β1, β2, . . . , βJ} be a set of planning objectives
with respective plan costs {β1(P ), . . . , βJ(P )} calculated
in graphs labeled by their individual objectives. A plan P1

dominates another planP2 (P1 � P2) when β(P1) ≤ β(P2)
for every β ∈ B and βj(P1) < βj(P2) for at least one
objective βj ∈ B. Dominance is transitive, that is, if P1 �
P2 and P2 � P3, then P1 � P3 (Pardalos, Migdalas, and
Pitsoulis 2008). Among all possible plans, a non-dominated
plan lies on the Pareto frontier, the set of all solutions that
cannot be improved on one objective without a penalty to
another objective (LaValle 2006). A typical multi-objective
planner searches for plans that lie on the Pareto frontier and
then an external decision maker chooses among them.

Related Work
Transparent, intelligible communication enables a robot to
gain social acceptance and reduce confusion about its abil-
ities (Rosenfeld and Richardson 2019; Wallkötter et al.
2021). While previous work focused on communication with
experts (Scalise, Rosenthal, and Srinivasa 2017), this work
focuses on explanations for laypeople. Although explica-
ble, understandable behavior (e.g., (Chakraborti et al. 2019;
Huang et al. 2019)) is a topic of importance, it often comes
at the cost of suboptimality. Instead, the robot controller de-
scribed here produces plans that are both explainable and
optimal with respect to at least one objective.

Recent XAIP approaches rely on classical planning (Grea,
Matignon, and Aknine 2018; Krarup et al. 2019) or logic
(Nguyen et al. 2020) to produce explanations. None of those,
however, explains in natural language. Several approaches to
sequential tasks explained the state-action-reward represen-
tation of Markov decision processes, but the resultant lan-
guage was less human-friendly than our approach and was
not directly based on human reasoning (Ramakrishnan and
Shah 2016; Khan et al. 2011; Hayes and Shah 2017). An-
other approach used deep learning to produce natural expla-

nations for an autonomous vehicle, but required an anno-
tated dataset for training and did not address indoor naviga-
tion (Kim et al. 2018).

A contrastive explanation compares the reason for a de-
cision or plan against another plausible rationale (Hoffmann
and Magazzeni 2019). Counterfactual reasons for behavior
have been shown to improve trust and understanding (Lim,
Dey, and Avrahami 2009). A recent human-subject study
showed that people preferred explanations focused on the
differences between the robot’s planned route and their own
expectations (e.g., “my route is shorter, but overlaps more
and produces less reward”) (Perelman, Evans III, and Schae-
fer 2020). Similar to our approach, other recent work pro-
vided contrastive explanations in natural language for multi-
objective path planning modeled as a Markov decision pro-
cess (Sukkerd, Simmons, and Garlan 2020). It considered
fewer objectives, however, required a hand-labeled map, and
was evaluated in much smaller environments.

An early approach to multi-objective optimization treated
it as a single-objective problem for a simple weighted sum
of the objectives (Zadeh 1963). Others addressed individ-
ual objectives in a weighted sum with constraints (Haimes
1973), minimum values (Lee et al. 1972), or ideal values
(Wierzbicki 1980). The weighted sum approach has also
been applied to the heuristic function of an optimal search
algorithm (Refanidis and Vlahavas 2003). All this work,
however, required a human expert with knowledge of the
relative importance of the objectives to tune the weights
(Marler and Arora 2010). Moreover, small changes in those
weights can result in dramatically different plans.

Many have used metaheuristics (e.g., evolutionary algo-
rithms) to find non-dominated solutions to multi-objective
problems (Deb et al. 2002). Those approaches, however, do
not guarantee optimality, require tuning many hyperparam-
eters, and are computationally expensive (Talbi et al. 2012).
Furthermore, as the number of objectives increases, the frac-
tion of non-dominated solutions approaches one (Farina and
Amato 2002) and the size of the Pareto frontier increases ex-
ponentially (Jaimes and Coello 2015). As a result, methods
that seek Pareto dominance break down with more objec-
tives because it becomes more computationally expensive to
compare all the potential non-dominated solutions. VBMO
avoids this computation on infinitely many points on the sur-
face of the Pareto frontier. Instead, it only ever compares |B|
solutions because it transforms the multi-objective problem
into a set of single-objective problems.

A*, the traditional optimal search algorithm, requires an
admissible heuristic, one that consistently underestimates
its objective (Hart, Nilsson, and Raphael 1968). Several
approaches extend A* to address multi-objective search.
Multi-objective A* tracks all the objectives simultaneously
as it maintains a queue of search nodes to expand (Stew-
art and White III 1991). NAMOA* extends multi-objective
A* with a queue of partial solution paths instead of search
nodes, but it is slow, memory hungry, and does not scale
well (Mandow and De La Cruz 2008). Multi-heuristic A*
modifies A* to consider multiple heuristics, some of which
can be inadmissible (Aine et al. 2016). It interleaves expan-
sion of search nodes selected by an admissible heuristic with



Algorithm 1: VBMO planning algorithm
Input: single-objective planners J , shared graph G
for each planner j ∈ J do

Set j’s graph Gj to a copy of G
Label edges in Gj based on j’s objective
Find optimal plan Pj in Gj

for each planner j ∈ J do
for each planner i ∈ J do

Cij ← cost of plan Pi in Gj
Normalize plan scores Cij in [0,10]

for each plan Pi do
Scorei ←

∑J
j=1 Cij

best← argmini Scorei
return Pbest

expansion on search nodes selected by nonadmissible ones.
This approach was extended to treat the expansion from
nonadmissible heuristics as a multi-armed bandit problem
(Phillips et al. 2015). Other work has addressed these issues
of efficiency and scale but only for two objectives (Ulloa
et al. 2020).

Other multi-objective approaches draw from social choice
theory. For example, in multi-attribute utility theory a func-
tion evaluates the available choices and selects the one with
greatest utility (Keeney, Raiffa, and Meyer 1993). The ap-
proach closest to ours formulated multi-objective path plan-
ning as a reinforcement learning problem, and voted to se-
lect among the actions available at a state based on the ex-
pected reward under each objective (Tozer, Mazzuchi, and
Sarkani 2017). That approach, however, required hundreds
of episodes of training and only considered an artificial
10× 20 grid environment with four obstacles.

VBMO, the path planning algorithm introduced here, uses
topologically identical graphs, each of which has a set of la-
bels that represent a different objectives. VBMO constructs
an optimal plan in each graph, evaluates each plan in ev-
ery graph, and then selects the plan with lowest total cost
across all of them. This avoids the limitations of other ap-
proaches because it addresses each objective independently
and then evaluates the resultant plans from the perspective of
each planner. The full trajectory of a VBMO plan is inher-
ently explainable in natural language and readily provides
contrastive reasons based on the planner’s objectives, even
in a finely-detailed graph for a large, obstacle-ridden envi-
ronment. Given explanations of VBMO’s plan, a non-expert
human could discern the individual rationales that motivated
it, and understand the way VBMO weighed these rationales
to produce the plan, which would improve trust in future
plans.

Voting-based Multi-objective Path Planning
VBMO constructs multiple plans, each of which optimizes a
single objective, and then uses range voting to select the plan
that maximally satisfies the most objectives. Pseudocode for
it appears in Algorithm 1. First, each single-objective plan-

Table 1: Scores Cij for six plans Pi given six objectives βj .
Normalization ensures that each plan is optimal with respect
to its own objective. VBMO selects the plan with minimum
total Scorei, here P2.

β1 β2 β3 β4 β5 β6 Scorei
P1 0.0 1.4 5.0 6.7 2.5 7.5 23.1
P2 1.2 0.0 1.2 1.1 10.0 1.1 14.6
P3 5.7 8.6 0.0 2.2 6.3 5.0 27.8
P4 10.0 7.1 10.0 0.0 3.8 10.0 40.9
P5 5.7 10.0 2.0 10.0 0.0 6.3 34.0
P6 2.9 10.0 2.0 1.1 10.0 0.0 26.0

ner modifies a copy of the shared graph to reflect its objec-
tive in the edge weights. Then VBMO constructs an optimal
plan P in that modified graph. In this way, each submitted
plan is guaranteed to be optimal for at least one objective.

Once it assembles the set of submitted plans P , VBMO
uses each planner’s objective to evaluate all of them. Be-
cause each planner’s underlying graph has the same topo-
logical structure (vertices and edges), every vertex v in any
plan is known to all the planners. To evaluate planner Hi’s
plan Pi = 〈v1, v2, . . . , vm〉 from the perspective of planner
Hj with objective βj , VBMO sums the edge costs from the
same sequence of vertices in Hj’s own graph. In this way,
each planner Hj uses its own objective to calculate a score
Cij for each stored plan Pi.

To avoid any biases that would be introduced by the mag-
nitude of an objective’s values, all scores from any Hj are
normalized in [0, 10]. Because VBMO seeks to minimize its
objectives, a score Cij near 0 indicates that plan Pi closely
conforms to objective βj , while a score near 10 indicates
that Pi strongly opposes βj . Once every planner scores ev-
ery plan, the plan Pbest with the lowest total score from all
J planners is selected by range voting:

Pbest = argmin
Pi∈P

J∑
j=1

Cij (1)

Ties are broken at random. An example appears in Table 1.

Theorem. Algorithm 1 constructs at least one plan guaran-
teed to be on the Pareto frontier.

Proof by induction on the number of objectives J :
Consider first J = 2 with objectives B = {β1, β2} and
respective plans P1 and P2. By definition, planner Hj’s
plan Pj optimally minimizes its objective, that is, βj(Pj) ≤
βj(Pk) for every Pk ∈ P . Another planner Hk can score
equally well on βj , but cannot score lower than βj(Pj); oth-
erwise, search would have returned Hk’s plan to Hj . Thus,
there are only four possible cases

• Case 1: β1(P1) = β1(P2) and β2(P2) = β2(P1)

• Case 2: β1(P1) < β1(P2) and β2(P2) = β2(P1)

• Case 3: β1(P1) = β1(P2) and β2(P2) < β2(P1)

• Case 4: β1(P1) < β1(P2) and β2(P2) < β2(P1)



In case 1, both plans are non-dominated; P1 6� P2 and
P2 6� P1 because neither’s score is strictly less than the
other on any objective. In case 2, P1 � P2 and P2 6� P1,
so P1 is non-dominated. In case 3, P1 6� P2 but P2 � P1,
so P2 is non-dominated. Finally, in case 4, P1 6� P2 and
P2 6� P1, so both plans are non-dominated. Thus, when
J = 2 there is always at least one plan that is non-dominated
(i.e., on the Pareto frontier).

Assume now that for J = k objectives B = {β1, . . . , βk}
with optimal plans {P1, . . . , Pk}, one of them, plan Pn, is
non-dominated. Then, by definition, there is no other plan
Pi such that β(Pi) ≤ β(Pn) for all β ∈ B and for some
j 6= k, βj(Pi) < βj(Pn). Consider now J = k + 1, where
we introduce one additional objective βk+1 and its optimal
plan Pk+1. With respect to dominance, there are three pos-
sible relationships between Pn and Pk+1. If Pn � Pk+1,
then Pn remains on the Pareto frontier because it is still non-
dominated. If Pk+1 � Pn, then Pk+1 is on the Pareto fron-
tier because transitivity ensures that it is not dominated by
any other plan. Finally, if Pn 6� Pk+1 and Pk+1 6� Pn,
both plans are non-dominated. Hence, at least one of Pn or
Pk+1 is non-dominated and lies on the Pareto frontier. �

In summary, VBMO is an efficient multi-objective path
planning approach that always identifies and then selects
a plan on the Pareto frontier, without reliance on finely-
tuned weights. Theorem 1 proves that, given a set of domi-
nated and non-dominated plans, VBMO voting will always
select a non-dominated plan because non-dominated plans
score lower with respect to at least one objective and there-
fore have a lower total score. Given J objectives, VBMO
has complexity O(J2) because each plan is evaluated under
each objective.

Contrastive Plan Explanations
It has long been argued that instead of building systems
to explain black-box models, models should deliberately be
built to be interpretable (Rudin 2019), especially in a robotic
context (Arnold, Kasenberg, and Scheutz 2021). VBMO’s
planning procedure makes it an inherently interpretable sys-
tem without the need for any additional computation. It gen-
erates a set of single-objective plans and their scores with
respect to all the objectives under consideration. These plans
support readily constructed counterexamples for comparison
to produce contrastive explanations.

Given objectivesB = {β1, . . . , βJ}with associated plans
P = {P1, . . . , PJ}, our explanation generator considers the
relative adherence of any plan to those objectives. Each ob-
jective βk is associated with its own partition of [0,10] into
bins that reflect how closely any plan diverges from it. For
example, if the partition for βk were {[0, 2), [2, 7), [7, 10]},
then βk(Pi) = 0 would place Pi in the first bin and
βk(Pj) = 4.7 would place Pj in the second. The genera-
tor associates these bins with natural language that describes
the adherence to βk. To do so it uses the function L, which
maps a score to a partition and outputs the language as-
sociated with that bin. In our example, if βk’s three bins
were translated as “a lot,” “somewhat,” and “a little,” then
L(βk(Pi)) = “a lot” and L(βk(Pj)) = “somewhat.”

To compare two plans Pi and Pj , the generator partitions
their scores Cik and Cjk from each βk, and bins the scores
for the two plans based on each associated partition. It then
identifies those objectives β` where β`(Pi) < β`(Pj), and
those βg where βg(Pi) > βg(Pj). Recall that VBMO min-
imizes, so the β`’s are objectives that favor Pi and the βg’s
favor Pj . This method excludes any objective βk for which
βk(Pi) = βk(Pj) because VBMO focuses on how plans dif-
fer. Finally, the generator produces a contrastive explanation
for a selected plan with natural language descriptions N (β)
of the objectives that favor or oppose the plan and the lan-
guage fromL that associates its scores with those objectives.
To do so it instantiates this template:

Although another way may be [L(β(Pj)) N (β)],
I believe my way is {L(β(Pi)) N (β)}.

With appropriate punctuation and conjunctions, the portion
in square brackets is repeated for every β ∈ B where
β(Pi) > β(Pk), and the portion in curly brackets for ev-
ery β ∈ B where β(Pi) < β(Pk). For example, “Al-
though another way may be somewhat shorter and a little
less crowded, I believe my way is a lot safer, somewhat less
obstructed, and a little more familiar.” The order of the β’s is
randomized to encourage unique explanations. The first line
in the template is omitted if every objective prefers Pi.

While the contrastive explanation above describes the
robot controller’s beliefs and intentions, it does not address
its confidence in Pi, the plan it selected from all the plans in
P . To do so, the generator uses two metrics: overall prefer-
ence for the plan and an overall adherence to the objectives.
Overall preference for a chosen plan compared to the others
is defined as a t-statistic across all total scores. Recall that
Pi’s total score is Scorei =

∑J
j=1 Cij . Let µC be the av-

erage total score for all plans in P and σC be their standard
deviation. The overall preference for the selected plan Pi is

τi =
Scorei − µC

σC
(2)

Overall preference τi for plan Pi indicates how much
more the objectives as a group prefer it to the other plans
in P . Because VBMO minimizes total score, ideally τi is
negative and has a large absolute value, to indicate that it
is far below the mean total score. In Table 1, for example,
µC = 27.7 and σC = 9.05, so the overall preference τ2 for
P2 is−1.45. This indicates a relatively strong preference for
P2 over the other plans because its total score is more than
one standard deviation from the mean.

A plan’s adherence to the objectives in B can be mea-
sured several ways. Intuitively, it should include how often
the plan meets the objectives well and poorly. A simple ap-
proach would count Wi, how many objectives the plan does
well on (e.g.,Cij < 1) andXi, how many it does not do well
on (e.g., Cij > 9). Wi > Xi would then indicate a high ad-
herence,Wi = Xi a medium adherence, andWi < Xi a low
adherence. This approach removes the nuances of VBMO’s
range voting; it replaces sums of real-valued scores from the
objectives with combined approval voting, where a voter can
express only approval, disapproval, or indifference (Felsen-
thal 1989). In Table 1, for example, it would find W2 = 1
and X2 = 1 for P2. That indicates a medium adherence to



Figure 1: Floor plan of a large office environment with the
robot’s initial pose in red, next to the elevators that enter the
floor.

the objectives, even though in the range [0,10], 5 out of 6
objectives scored P2 near 1. Another approach could trans-
form VBMO’s scores into a ranking and then use a measure
of group coherence (Gehrlein and Lepelley 2016) but that
too would ignore the real values.

Instead, the approach used here adapts a measure of inter-
rater agreement. Typically, inter-rater agreement is mea-
sured with the κ statistic, which compares ratings from two
raters on a set of items. Here, we treat each objective β as
a rater that evaluates each plan and produces a score (i.e.,
its rating). While κ indicates whether two objectives score
plans similarly, it is not a good measure of the agreement
among all the objectives on a single plan. Another measure
is the average deviation index, which compares the ratings
from multiple raters on a single item (Burke and Dunlap
2002). This works well as a metric of adherence because
it accounts for the continuous values of VBMO’s scores. Let
Mi be the median of the scores Cij for plan Pi from all ob-
jectives in B. The adherence αi of plan Pi is

αi =

∑J
j=1 |Cij −Mi|

J
(3)

Smaller values of αi indicate strong agreement among the
objectives with respect to a plan. A ceiling of 0.2max(Cij)
has been proposed to indicate agreement (Burke and Dun-
lap 2002). In Table 1, M2 = 1.15, so P2’s adherence α2 is
1.70. This is below the ceiling of 2.0, and so indicates strong
agreement among the objectives in favor of the selected plan.

To bin their values for plan Pi and assign natural lan-
guage with L, we associate both τi and αi with partitions
of the real numbers. For example, τ can be partitioned
as {(−∞,−0.75],(−0.75,−0.5],(−0.5,+∞)}, with asso-
ciated language “really,” “somewhat,” and “not really,” and
α with {[0, 1.5],(1.5, 2.5],(2.5,+∞)}, with associated lan-
guage “certain,” “somewhat certain,” and “conflicted.” In-
stead of a ceiling that partitions α into two bins, we use
three bins to more finely distinguish the adherence values.
Each bin’s associated language is classified by its sentiment,
the affective state of the text, as positive or negative (Kim
and Hovy 2004)). For example, “really,” “somewhat,” “cer-

Figure 2: Distribution of normalized plan scores Cij across
all the planners.

tain,” and “somewhat certain” are positive and “not really”
and “conflicted” are negative.

If the sentiments expressed by L(τi) and L(αi) agree on
Pi, the description of the robot controller’s confidence in its
plan instantiates this template:

I’m L(τi) sure I want to follow this plan,
and I’m also L(αi) about my reasons to go this way.

In Table 1’s example, the two measures share the same senti-
ment for P2 so the confidence explanation would be “I’m re-
ally sure I want to follow this plan, and I’m also certain about
my reasons to go this way.” Otherwise, if the sentiments do
not agree, the description instantiates this template:

Although I’m L(τi) sure I want to follow this plan,
I’m L(αi) about my reasons to go this way.

For example, the measures in Table 1 disagree about P1.
It has the second lowest total score, with τ1 = −0.51 and
α1 = 2.55 so the explanation for P1 would be “Although
I’m somewhat sure I want to follow this plan, I’m conflicted
about my reasons to go this way.”

Empirical Results
VBMO and its contrastive explanations have been evaluated
in extensive simulation experiments with an autonomous
robot controller for navigation in large, complex, indoor en-
vironments (Epstein and Korpan 2019). Written for ROS,
the robot operating system, the simulator places our indus-
trial robot on the fifth floor of a real-world office build-
ing. This environment is the size of a Manhattan city block
(110 × 70m) with 180 rooms of various sizes and several
intersecting hallways. The controller overlays a fine grid on
the environment’s architectural floor plan (shown in Figure
1) to create VBMO’s shared underlying graph.

Our controller also learns a cognitively-based spatial
model while it travels, much the way a human would
(Ishikawa 2021). Table 2 shows its eight planning objectives
B. The first four are based on commonsense principles; the
others reference the learned cognitively-based spatial model
with language appropriately drawn from its constructs (Tay-
lor and Tversky 1996; Talmy 2007). Given a target and plan-
ning objectives B, the controller uses VBMO to modify |B|
copies of the shared graph and constructs the set of plans



Table 2: VBMO’s planners and their objectives

Planner Objective Language N
FAST Minimize distance traveled “shorter”
SAFE Avoid travel near obstructions “less obstructed”
EXPLORE Avoid travel along previous paths “less familiar”
NOVEL Avoid areas covered by the learned model “more likely to reveal new areas”
TRAFFIC Focus on small frequently-traveled areas “more well-traveled”
HALLWAY Exploit frequently-traveled vertical, horizontal, and diagonal routes “more aligned with previous routes”
CIRCLE Exploit a model of unobstructed circular areas “more open”
TRACE Follow refined versions of previous paths “closer to ways we’ve gone before”

Table 3: Average normalized plan scores Cij for each planner in every graph. Each plan is optimal in its own graph (i.e.,
Cii = 0.0). The last column is the frequency with which a planner was selected by VBMO in 200 tasks.

βFast βSafe βExplore βNovel βTraffic βHallway βCircle βTrace Frequency
FAST 0.00 0.20 3.53 5.30 1.74 1.46 1.30 1.93 32.4%
SAFE 0.00 0.00 3.60 5.52 1.46 1.44 1.18 1.55 27.5%
EXPLORE 3.42 3.62 0.00 4.92 4.94 4.63 3.89 4.52 4.9%
NOVEL 8.07 8.27 5.47 0.00 9.08 8.38 9.44 9.38 0.0%
TRAFFIC 1.47 1.64 5.60 7.06 0.00 2.26 0.91 1.02 16.5%
HALLWAY 1.74 1.91 5.86 6.78 1.88 0.00 1.46 1.89 6.6%
CIRCLE 1.83 2.00 5.45 8.60 0.80 2.34 0.00 0.90 0.5%
TRACE 1.88 2.05 5.98 7.68 0.41 2.32 0.76 0.00 11.5%

P . It then evaluates each plan with respect to every objec-
tive and selects a plan. Finally, our controller generates an
explanation for each plan.

At the start of an experiment, the robot controller receives
a sequence of 40 randomly-selected target locations. For the
first target, the robot’s initial pose (location and orientation)
faces east between the elevators. For all other targets, its ini-
tal pose is its final pose on the previous target. Table 3 re-
ports the scores Cij for each planner’s plan in the others’
graphs, averaged over five different sets of 40 targets (200
tasks in all). Some planners perform well in another’s graph
(e.g., FAST and SAFE score each other’s plans near 0). Only
NOVEL scores poorly (i.e., above 9) fairly often. This is be-
cause its objective seeks to explore areas of the environment
not captured in the learned spatial model, whereas four of
the planners exploit that model. As a result, FAST and SAFE
were most often selected by VBMO, and NOVEL never was.

The bimodal distribution in Figure 2 describes the over-
all distribution of all 12800 (8 objectives × 8 plans × 200
tasks) normalized plan scores Cij for all planners. It clearly
indicates that most pairs of plans with distinct objectives ei-
ther strongly conform to an objective or strongly oppose it.
This suggests that the controller’s objectives are sufficiently
different to produce a diverse set of plans. Nearly 7% of
the time, one objective scored another objective’s plan as
0, which occurs when two plans are identical. Figure 3 is the
distribution of the total scores Scorei for the 1600 (8×200)
generated plans. A total score of 0 would represent optimal
adherence to all the objectives, but most often the selected
plan’s total score lies in (10, 20] which indicates some op-
position to it.

Generation of contrastive explanations requires pairwise
plan comparisons. Figure 4(a) reports on 11200 (200×8×7)

Figure 3: Distribution of total score Scorei for plans Pi in
VBMO. Because 0 ≤ Cij ≤ 10 and VBMO scores each
plan in seven other graphs, Scorei ≤ 70. VBMO’s selected
plans have a better (i.e., lower) average Scorei (13.8) than
the unselected plans (27.0).

pairs of distinct objectives βi and βj . It shows how often,
when plan Pi is compared to plan Pj , the objectives favor Pi,
favor Pj , or have no preference between the two. The results
show that a majority of the objectives often favor FAST’s and
SAFE’s plans over other plans, that a majority oppose plans
from EXPLORE and NOVEL, and that they split about evenly
on plans from the other planners.

Figure 4(b) examines how often an objective favors one of
the 200 selected plans over the 7 alternatives to it. In those
1400 tests, on average 4.8 objectives favored VBMO’s se-
lected plan and 2.3 favored an alternative. When each of the
1400 rejected plans is compared to the 7 others, fewer ob-
jectives favor the rejected plan and more objectives favor the



(a) Each planner’s support from the other planners (b) Support for selected and rejected plans from the other planners

Figure 4: How a specific plan P was viewed by other planners’ objectives on 200 tasks. Objectives favor P (green), favor some
other plan (red), or have no favorite (gray). (a) From the perspective of each planner, how a plan it had submitted was scored
by the other planners. For example, when a plan from EXPLORE was evaluated by each of the 7 other objectives, 37% of them
favored PExplore and 56% favored an alternative. (b) On average, a majority of the objectives preferred the selected plan and
about half the objectives often opposed a plan that was not selected.

alternative plan.
For evaluation, the system generated contrastive expla-

nations for every pair of plans. As in the earlier examples,
value partitions were {[0, 2), [2, 7), [7, 10]} for all objectives
β with associated language “a lot,” “somewhat,” and “a lit-
tle”; {(−∞,−0.75],(−0.75,−0.5],(−0.5,+∞)} for over-
all preference τi with associated language “really,” “some-
what,” and “not really”; and {[0, 1.5],(1.5, 2.5],(2.5,+∞)}
for adherence αi with associated language “certain,” “some-
what certain,” and “conflicted.” 96.8% of the explanations
were unique, behavior consistent with the Scorei distri-
butions and the data on objectives’ preferences. Explana-
tions averaged 51.2 words and reading grade level averaged
7.8 on the Coleman-Liau index (CLI) (Coleman and Liau
1975), which indicates that they should be understandable
to a layperson. One generated explanation was “Although
another way may be a lot more well-traveled, a lot closer to
ways we’ve gone before, somewhat more aligned with pre-
vious routes, and somewhat less familiar, I believe my way
is a little more likely to reveal new areas, a lot more open, a
lot shorter, and a lot less obstructed.”

We also examined the values of the two confidence met-
rics, overall preference τi and adherence αi. Figure 5 shows
the distribution of τi values for each plan Pi. VBMO’s se-
lected plan P has an average overall preference of −0.7,
which indicates that it is often “really” or “somewhat” pre-
ferred. For plans not selected by VBMO, this distribution
peaks at about −0.4 with a right skew that indicates many
other much less supported plans. For each plan Pi, whether
it was selected or rejected, 35% of the values for αi fall in
{[0, 1.5] and nearly 45% of plans fall in (1.5, 2.5]. Thus, the
majority of plans are reasonably certain.

With τ and α each partitioned into three bins, the confi-
dence explanation template can produce only nine different
explanations. All nine were generated during the five runs of
the experiment. In 152 instances (19 tasks × 8 plans) con-

fidence explanations were not generated because all plans
had equal total scores. For the 1448 other plans, confidence
explanations averaged 20.6 words with a 5.6 reading grade
level. Table 4 shows that 8.2% of all plans had overall pref-
erence L(τi) = “really,” to be expected because this data
includes seven times more rejected than accepted plans.
The selected plans, however, were “really” preferred 29.4%.
Moreover, no selected plan was ever described as both “not
really” and “conflicted.” Across all plans, the confidence ex-
planation most often produced was “I’m not really sure I
want to follow this plan, and I’m only somewhat certain
about my reasons to go this way.”

Discussion
VBMO’s current explanations address two important ques-
tions: “Why did you select that plan?” and “How confident
are you about your plan?” The same approach could be eas-
ily extended to address other important questions from a hu-
man companion, such as “Why don’t we go that way?” or
“What makes your plan better than mine?” In some way the
person would have to convey either their planning objective
β or their plan route PH to the robot so that VBMO could in-
terpret it in its shared graph and evaluate it with respect to all
the objectives in B. The same process would then compare
VBMO’s selected plan to PH with respect toB. Future work
could incorporate these explanations in a complete dialogue
system for natural conversation with person (e.g., (Krarup
et al. 2021)).

Both evolutionary methods and VBMO consider a pop-
ulation of solutions and select among them with a kind of
fitness function. VBMO, however, does not require multi-
ple iterations to refine its plan. Instead, it starts with at least
one plan already on the Pareto frontier and uses a shared
underlying graph to select a plan that is generally expected
to perform well with respect to all the objectives. Although
VBMO does not need hand-tuned weights to balance multi-



Figure 5: Distribution of overall preference τ for 200 se-
lected plans. τ is a t-statistic and so has mean 0. A selected
plan must have minimum total score, so its τ value must be
negative unless all plans score the same on every objective.

ple objectives, they could be easily incorporated into equa-
tion 1 to change an objective’s influence on the sum.

Currently the planners modify a graph with respect to
features of a learned model and commonsense rationales,
but additional planning objectives could be incorporated to
produce more nuanced explanations and create more robust
plans. For example, path smoothness (how well a path main-
tains a straight trajectory) is an important criterion for in-
door navigation, particularly for transport of fragile mate-
rial. Smoothness could be readily translated into a planning
objective, so that it explicitly impacts plan selection. VBMO
uses A* for its graph search algorithm but another optimal
graph search algorithm could easily be substituted for it.

Because the controller’s learned spatial model becomes
more knowledgeable as the robot experiences the environ-
ment, the planners that rely on the model become better in-
formed over time. As a result, early in an experiment’s 40
tasks, planners that reference the spatial model produce the
same plan as FAST and so their objectives are often excluded
from explanations because they do not differentiate between
the two plans. As a consequence, the average readability of
explanations for the first 5 targets is 6.8 but increases lin-
early to 8.0 for the last 5 targets. The current explanation
process is efficient; it is linear in the number of objectives.
With the 8 objectives here, for example, average response
time for the two questions together was less than 10 msec.

In previous work we generated contrastive explanations
but assumed the alternative objective was fixed, and only
compared performance on the selected plan’s objective and
the fixed objective (Korpan and Epstein 2018). That ap-
proach produced shorter, more understandable explanations
but did not address the nuances of the multiple objectives
under consideration by VBMO. Here, the explanations aver-
aged 51.2 words, which may be too long to hold a person’s
attention or limit their understanding. One way to shorten
VBMO’s explanations would be to include only objectives
that strongly favor or oppose a plan, so that only the most
important reasons are highlighted. Although some objec-
tives’ plans may never be selected by VBMO (e.g., NOVEL),
their rationales may still be significant for selection among

Table 4: How confidence metric sentiments co-occur.

All plans
L(α)

L(τ) certain somewhat
certain

conflicted Total

really 3.5% 3.2% 1.5% 8.2%
somewhat 11.0% 13.7% 1.7% 26.4%
not really 20.4% 28.1% 17.0% 65.5%

Pbest
certain somewhat

certain
conflicted Total

really 13.3% 12.2% 3.9% 29.4%
somewhat 24.9% 25.4% 1.1% 51.4%
not really 12.7% 6.6% 0.0% 19.3%

more desirable plans. This is similar to the way people con-
sider multiple reasons during decision making and weigh
their importance differently (Judd and Lusk 1984; Wilson
and Schooler 1991).

Current work evaluates our contrastive explanations with
human subjects to gauge how well they are trusted and un-
derstood. This study evaluates the language associated with
VBMO’s planning objectives. It will also test the hypothesis
that constrastive explanations improve trust and understand-
ing more in comparison with single-objective explanations.
Future work could identify an upper bound to the number of
objectives used in a plan explanation before understanding
deteriorates.

VBMO can encounter a task where its set of objectives
B generate plans that are equally poor on all the other ob-
jectives. In that case, total scores for all plans are equal and
VBMO selects a plan at random, one that should perform
well only on its own objective and poorly on the others. That
reduces the solution to a planner with a single, randomly
chosen objective. Other multi-objective planning methods
avoid this difficulty by compromise among all the objectives
rather than focus on strong performance from one. To ad-
dress this issue, VBMO could incorporate additional plan-
ners that introduce weighted sums of different objectives so
that the planner is forced to find a plan that compromises
between them but would do less well on any single objec-
tive. Unless these additions were simple, they would make
it more difficult to generate natural language that explains
those weighted sums.

Although VBMO is applied here to path planning for
robot navigation, it is more generally applicable to any
multi-objective planning problem (e.g., motion or task plan-
ning). The contrastive explanation approach described here
could also apply to many multi-objective domains; one
would first generate an optimal single-objective solution for
each objective, and then evaluate the resultant solutions with
each of the other objectives. The same metrics used here
would then apply. For example, a movie recommendation
system could identify the movie most similar to a user’s top
favorites, the most popular movie, and the best reviewed
movie, evaluate each of them on the other objectives, and
then select the movie that scores best across the three. A



contrastive explanation that might be generated is “Although
another movie may be much more popular, I recommend this
one because it is somewhat better reviewed and a lot more
similar to your favorite movies.”

Meanwhile, VBMO is an inherently interpretable ap-
proach that generates plans on the Pareto frontier. The plan
it selects is guaranteed to be optimal with respect to at least
one objective and likely does well on the others. VBMO eas-
ily generates contrastive explanations in natural language.
These explanations flexibly compare plans with respect to
the objectives under consideration and express the con-
troller’s confidence in its selected plan. The results with
voting-based multi-objective path planning presented here
demonstrate that explainable AI planning algorithms need
not sacrifice optimality to be well understood.
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