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Abstract

Graph Neural Networks operate through bottom-up message-passing, fundamen-
tally differing from human visual perception, which intuitively captures global
structures first. We investigate the underappreciated potential of vision mod-
els for graph understanding, finding they achieve performance comparable to
GNNs on established benchmarks while exhibiting distinctly different learning
patterns. These divergent behaviors, combined with limitations of existing bench-
marks that conflate domain features with topological understanding, motivate
our introduction of GraphAbstract. This benchmark evaluates models’ ability
to perceive global graph properties as humans do: recognizing organizational
archetypes, detecting symmetry, sensing connectivity strength, and identifying
critical elements. Our results reveal that vision models significantly outperform
GNNs on tasks requiring holistic structural understanding and maintain general-
izability across varying graph scales, while GNNs struggle with global pattern
abstraction and degrade with increasing graph size. This work demonstrates that
vision models possess remarkable yet underutilized capabilities for graph structural
understanding, particularly for problems requiring global topological awareness
and scale-invariant reasoning. These findings open new avenues to leverage this
underappreciated potential for developing more effective graph foundation mod-
els for tasks dominated by holistic pattern recognition. The code is available at
https://github.com/LOGO-CUHKSZ/GraphAbstract

1 Introduction

Graphs are powerful abstractions to represent complex relationships across entities like social
networks [62] and molecular structures [24, 30]. Learning effective representations of these graphs
is crucial for node classification, graph classification, and link prediction tasks [51, 67, 42, 34, 54].
Over the past decade, Graph Neural Networks (GNNs) have become the dominant paradigm for
graph representation learning, demonstrating impressive performance through their message-passing
mechanism that iteratively aggregates local neighborhood information [37, 24, 27, 59, 71]. Despite
its success, message passing faces several key limitations, such as limited expressiveness [71, 52, 78]
and difficulty in capturing long-range dependencies [2]. Numerous efforts have been trying to address
different aspects of the message passing mechanism limitations, graph transformer architectures have
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enriched this paradigm by incorporating long-range interactions across broader graph contexts [16, 39,
74, 68, 50], positional encodings [76, 17, 31] to inject structural priors to improve global topological
awareness and graph rewiring techniques mitigate structural bottlenecks in graphs by modifying the
topology to enhance information diffusion [58, 48, 5].

However, these advances remain fundamentally constrained by a cognitive discrepancy: While
humans intuitively perceive global structures through visual Gestalt principles - understanding the
whole before analyzing individual parts [57], GNNs and their variants operate through bottom-up
processing. Humans instantly recognize ring structures, symmetric structures, and critical bridges
in graph visualizations, yet even advanced architectures struggle with such basic topological under-
standing [29, 79]. Therefore, although the existing graph learning architecture innovations have made
significant progress from both theoretical and practical perspectives, the essence of these efforts is
still to identify and repair different aspects of the inherent defects in the message passing mechanism,
with limited exploration of vision-based approaches for graph learning despite their natural alignment
with how humans perceive network structures.

The flourishing field of computer vision has produced a rich ecosystem of powerful models and
techniques that excel at holistic pattern recognition and global structure understanding [45, 7, 36, 38].
This vibrant research landscape provides fertile ground for re-imagining graph learning through a
visual lens. Inspired by this potential, we explore a fundamentally different approach: leveraging
powerful vision models by translating graph topology into the visual domain. By simply rendering
graphs as images using standard layout algorithms [22, 14], we apply vision encoders to graph-level
tasks without any graph-specific architectural modifications. This vision-based approach mirrors how
humans perceive graph structures visually rather than through explicit message-passing operations.

Our evaluations demonstrate that pure vision encoders perform comparably to specialized GNNs
on established graph benchmarks, despite having no graph-specific inductive biases or architectural
design. This finding is remarkable considering that these vision models operate solely on graph
layouts without access to node features or explicit connectivity information. However, these traditional
benchmarks tightly couple domain knowledge with topology, making it difficult to quantitatively
study their separate impacts. As shown by [4, 65], models using fixed-structure expander graphs
rather than the true molecular topology can match or exceed performance on multiple molecular
benchmarks, suggesting that node features often dominate over structural information in standard
datasets, potentially masking differences in how models perceive graph topology.

To rigorously evaluate topological understanding, we introduce GraphAbstract, a benchmark
designed to evaluate how well models perceive graph structures in ways that mirror human visual
cognition. We present four carefully crafted tasks that challenge models to abstract critical global
graph properties in ways humans naturally do: recognizing organizational archetypes, detecting
symmetry patterns, sensing connectivity strength, and identifying critical structural elements. For
each task, we meticulously design diverse graph families with well-controlled topological properties.
Our evaluation protocol directly tests out-of-distribution (OOD) generalization by systematically
increasing graph sizes from training to testing, evaluating whether models can recognize the same
structural patterns regardless of scale, a fundamental capability of human cognition.

Our experiments yield several key findings: On tasks requiring the abstraction of global graph
properties, vision models demonstrate significant advantages and superior generalization capabilities
across different graph scales compared to GNNs. For GNNs, we find that positional encoding
methods that inject structural priors achieve substantial improvements over architectural innovations
in message passing. These complementary findings point to a unified insight: successful graph
understanding stems from accessing global topological information, either through structural priors or
visual perception. This “global-first” approach aligns more closely with human cognitive processes for
graph understanding, suggesting that future advances in graph representation learning and foundation
models may benefit from prioritizing global structural perception over refining local message passing
mechanisms. These results open new perspectives for developing graph learning systems that are
more effective, interpretable, and capable of generalizing to complex topological structures.

Our main contributions include: (1) demonstrating that vision-based models, which better align with
human cognition, achieve strong performance without any graph-specific architectural modifications;
(2) introducing a rigorously designed benchmark with diverse graph families that evaluates models’
ability to understand graph structures and generalize across varying scales, which is a fundamental ca-
pability of human cognition; and (3) revealing that “global-first” approaches significantly outperform
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traditional message-passing innovations, suggesting promising directions for visual-centric graph
understanding.

2 Related Work

Graph visualization and graph learning. Graph visualization and graph learning have traditionally
advanced along separate paths. Visualization focuses on creating human-interpretable spatial repre-
sentations that produce graph layouts through techniques like spectral methods and force-directed
algorithms, while graph learning focuses on feature extraction with GNNs. Recent studies indicate a
convergence between these domains [63, 82, 13, 40, 64]. For example, GITA [63], GraphTMI [13],
and DPR [40] incorporate visual graph layouts into vision-language models to improve graph rea-
soning tasks, DEL [82] introduces probabilistic layout sampling to enhance GNN expressivity, and
domain-specific approaches explore visual representations for molecular graphs [77, 69]. However,
these works directly introduced graph layout into existing architectures such as VLMs and GNNs,
treating graph layouts and vision models as black boxes without exploring their fundamental cognitive
differences in graph understanding.

Graph learning benchmarks. Graph representation learning has evolved through two complemen-
tary benchmark traditions. The first utilizes real-world datasets from citation networks [73], molecules
[47], and comprehensive collections like OGB [30] to evaluate practical performance. The second
employs synthetic expressivity tests to probe theoretical limitations through challenges like graph
isomorphism [1, 3, 61], substructure counting [9]. Recent LLM-oriented graph benchmarks focus on
structural analysis tasks such as node counting, cycle detection, and path finding [60, 6, 44]. However,
these benchmarks typically rely on a limited set of random graph generators (e.g., Erdős–Rényi,
Watts-Strogatz) that inadequately capture topological diversity [60, 40, 19, 44, 8, 70]. The critical
gap in existing benchmarks is their inability to assess human-like graph cognition, specifically, the
intuitive ability to recognize and abstract connectivity patterns across varying scales and contexts.

For brevity, we provide extended discussions of GNN architectures and graph positional encoding
methods in Appendix B.

3 Visual vs. Message-Passing: Distinct Cognitive Patterns

We analyze the differences between two model families (GNNs and vision models) in graph tasks
from three perspectives: prediction overlap, interpretability case study, and training dynamics &
prediction confidence. All models are trained on five graph classification benchmarks [47], with
implementation details provided in Appendix J.1.

Prediction Overlap Analysis. Our experiments across five datasets show that vision models achieve
performance competitive with GNNs, as shown in Table 1. However, Figure 1 reveals that while
GNN variants behave similarly to each other, GNNs and vision models show distinct prediction
patterns: they not only differ in their correct predictions, but often succeed on samples where the
other fails. This consistent pattern across all datasets suggests that these two model families develop
fundamentally different strategies for processing graph information. The stark contrast in their
prediction patterns indicates that GNNs and vision models might be capturing different aspects of
graph structure, motivating a deeper investigation into their respective strengths and limitations.

Case Studies. We conduct case studies across multiple benchmark datasets, with detailed analysis
presented here using the first three samples from the test set of PROTEINS dataset in Figure 3. We
leverage GNN Explainer [75] for graph models and Grad-CAM [53] for vision models, generating
visualizations across multiple network layers (2/3/4-layer for GNNs, and low/mid/high-level features
for vision models). The three cases represent distinct structural scenarios commonly found in protein
graphs: hierarchical local-to-global patterns, critical bridge structures, and chain-like configurations.
Through these visualizations, we observe vision models’ remarkable adaptability: exhibiting progres-
sive focus from local to regional features in hierarchical structures, maintaining consistent attention
on critical bridges across all levels, and adopting a global-centric strategy for chain-like patterns.
This flexible processing strategy stands in sharp contrast to GNNs, where GNN Explainer shows
relatively uniform attention patterns constrained by local message passing. Notably, our studies on
ENZYMES dataset (see Appendix J.3) reveal that vision models’ attention regions align better with
previously identified discriminative patterns [12] compared to GNN-based approaches.
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Table 1: Performance comparison on different datasets. Results show the accuracy (%) of different
models, reported as mean ± std over 5 runs.

Model NCI1 IMDB-MULTI ENZYMES IMDB-BINARY PROTEINS

GNN Models
GAT 67.0 ± 0.5 49.7 ± 1.0 27.0 ± 5.9 69.4 ± 2.2 74.1 ± 1.5
GIN 70.4 ± 1.3 50.9 ± 1.7 26.3 ± 3.9 70.0 ± 3.0 75.0 ± 1.1
GCN 65.4 ± 1.1 48.4 ± 1.8 25.3 ± 2.2 71.0 ± 1.3 74.8 ± 1.1
GPS 76.3 ± 3.4 50.1 ± 2.2 34.3 ± 5.6 69.8 ± 2.1 76.0 ± 1.2

Vision Models
RESNET 67.7 ± 1.0 51.2 ± 1.1 36.3 ± 1.6 72.2 ± 2.2 79.6 ± 2.5
VIT 63.5 ± 1.4 50.8 ± 3.3 27.3 ± 3.9 71.8 ± 2.8 83.1 ± 0.9
SWIN 69.0 ± 0.5 52.0 ± 2.0 40.3 ± 3.9 68.8 ± 3.5 81.8 ± 1.8
ConvNeXt 70.2 ± 2.2 53.5 ± 1.3 41.7 ± 3.2 73.8 ± 1.6 80.7 ± 2.6

ConvNeXtV2 ViT Swin
ResNet

GPS GCN GIN GAT

ConvNeXtV2

ViT

Swin

ResNet

GPS

GCN

GIN

GAT

1.000 0.840 0.791 0.739 0.685 0.753 0.800 0.713

0.840 1.000 0.729 0.738 0.723 0.775 0.825 0.732

0.791 0.729 1.000 0.736 0.762 0.815 0.756 0.793

0.739 0.738 0.736 1.000 0.771 0.718 0.765 0.718

0.685 0.723 0.762 0.771 1.000 0.810 0.771 0.833

0.753 0.775 0.815 0.718 0.810 1.000 0.802 0.919

0.800 0.825 0.756 0.765 0.771 0.802 1.000 0.825

0.713 0.732 0.793 0.718 0.833 0.919 0.825 1.000

Correct Prediction Overlap (Jaccard) - IMDB-BINARY

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ConvNeXtV2 ViT Swin
ResNet

GPS GCN GIN GAT

ConvNeXtV2

ViT

Swin

ResNet

GPS

GCN

GIN

GAT

1.000 0.624 0.670 0.625 0.646 0.583 0.635 0.606

0.624 1.000 0.651 0.635 0.589 0.540 0.584 0.541

0.670 0.651 1.000 0.671 0.660 0.627 0.636 0.627

0.625 0.635 0.671 1.000 0.616 0.538 0.589 0.556

0.646 0.589 0.660 0.616 1.000 0.683 0.760 0.720

0.583 0.540 0.627 0.538 0.683 1.000 0.734 0.835

0.635 0.584 0.636 0.589 0.760 0.734 1.000 0.807

0.606 0.541 0.627 0.556 0.720 0.835 0.807 1.000

Correct Prediction Overlap (Jaccard) - NCI1

0.6

0.7

0.8

0.9

1.0

ConvNeXtV2 ViT Swin
ResNet

GPS GCN GIN GAT

ConvNeXtV2

ViT

Swin

ResNet

GPS

GCN

GIN

GAT

1.000 0.734 0.819 0.747 0.667 0.612 0.637 0.608

0.734 1.000 0.787 0.772 0.687 0.614 0.624 0.594

0.819 0.787 1.000 0.745 0.699 0.660 0.670 0.641

0.747 0.772 0.745 1.000 0.650 0.566 0.590 0.562

0.667 0.687 0.699 0.650 1.000 0.789 0.839 0.806

0.612 0.614 0.660 0.566 0.789 1.000 0.898 0.907

0.637 0.624 0.670 0.590 0.839 0.898 1.000 0.941

0.608 0.594 0.641 0.562 0.806 0.907 0.941 1.000

Correct Prediction Overlap (Jaccard) - PROTEINS

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ConvNeXtV2ViT Swin
ResNet

GPS GCN GIN GAT

ConvNeXtV2

ViT

Swin

ResNet

GPS

GCN

GIN

GAT

1.000 0.594 0.438 0.343 0.282 0.417 0.469 0.342

0.594 1.000 0.395 0.421 0.425 0.526 0.588 0.450

0.438 0.395 1.000 0.361 0.444 0.559 0.400 0.514

0.343 0.421 0.361 1.000 0.472 0.385 0.429 0.385

0.282 0.425 0.444 0.472 1.000 0.583 0.472 0.629

0.417 0.526 0.559 0.385 0.583 1.000 0.543 0.812

0.469 0.588 0.400 0.429 0.472 0.543 1.000 0.588

0.342 0.450 0.514 0.385 0.629 0.812 0.588 1.000

Error Overlap (Jaccard) - IMDB-BINARY

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ConvNeXtV2ViT Swin
ResNet

GPS GCN GIN GAT

ConvNeXtV2

ViT

Swin

ResNet

GPS

GCN

GIN

GAT

1.000 0.395 0.391 0.373 0.238 0.303 0.310 0.315

0.395 1.000 0.405 0.427 0.203 0.290 0.283 0.271

0.391 0.405 1.000 0.412 0.226 0.335 0.280 0.314

0.373 0.427 0.412 1.000 0.214 0.262 0.265 0.266

0.238 0.203 0.226 0.214 1.000 0.309 0.377 0.351

0.303 0.290 0.335 0.262 0.309 1.000 0.476 0.684

0.310 0.283 0.280 0.265 0.377 0.476 1.000 0.589

0.315 0.271 0.314 0.266 0.351 0.684 0.589 1.000

Error Overlap (Jaccard) - NCI1
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0.5
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0.7
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0.9

1.0

ConvNeXtV2ViT Swin
ResNet

GPS GCN GIN GAT

ConvNeXtV2

ViT

Swin

ResNet

GPS

GCN

GIN

GAT

1.000 0.405 0.500 0.400 0.209 0.167 0.196 0.184

0.405 1.000 0.459 0.475 0.279 0.204 0.208 0.196

0.500 0.459 1.000 0.342 0.205 0.186 0.190 0.178

0.400 0.475 0.342 1.000 0.182 0.098 0.122 0.115

0.209 0.279 0.205 0.182 1.000 0.444 0.545 0.500

0.167 0.204 0.186 0.098 0.444 1.000 0.719 0.758

0.196 0.208 0.190 0.122 0.545 0.719 1.000 0.839

0.184 0.196 0.178 0.115 0.500 0.758 0.839 1.000

Error Overlap (Jaccard) - PROTEINS

0.2

0.4

0.6

0.8

1.0

Figure 1: Prediction overlap analysis across different datasets. Top row: correct prediction overlap;
Bottom row: error pattern overlap. GNN variants show high internal consistency, suggesting
homogeneous learning behavior, while GNN and Vision models exhibit distinct prediction patterns.

Training dynamics & confidence. We report the training curves in Figure 3 and provide detailed
results for all datasets in Appendix J.2. The training dynamics reveal striking differences in learning
behaviors across architectures. Vision models, regardless of their specific architectures, demonstrate
strong memorization capabilities but with different learning speeds. CNN-based models show
aggressive training dynamics, rapidly achieving near-perfect training accuracy while their training
loss approaches zero. Transformer-based models exhibit somewhat slower learning progression,
but ultimately reach similar training performance levels. However, all vision models suffer from
substantial generalization gaps, with validation accuracy significantly lower than their training
performance. GNN variants display notably different learning patterns. Traditional GNNs show
more modest training performance, with both training and validation metrics evolving gradually
and plateauing at lower levels. The GPS model, featuring additional global processing capabilities,
achieves higher training accuracy but still exhibits limited validation performance similar to other
GNN variants. These empirical observations suggest that the key challenge in vision-based graph
learning lies not in improving models’ pattern recognition capabilities, which are already remarkably
strong, but in developing effective mechanisms to bridge the substantial memorization-generalization
gap. This consistent pattern across all vision architectures points to a fundamental challenge that may
require solutions beyond architectural modifications alone, such as specialized pre-training strategies
or graph-specific data augmentation techniques.
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Figure 2: Case Studies for PROTEINS dataset.

Why an intuitive topology benchmark is essential. Our analysis shows that different types of models
process graphs differently, but existing benchmarks fail to measure how closely these approaches align
with human visual perception of graph structures. Current evaluations mix structural understanding
with domain-specific features, leading to cases where models perform well even with random graph
topologies [4]. This gap between intuitive human understanding and current evaluation practices
highlights the need for a dedicated benchmark to specifically assess intuitive topological perception.
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Figure 3: Training dynamics across different architectures on NCI1 dataset. For each model, we plot
the training loss (blue), training accuracy (red), and validation accuracy (green) over 100 epochs. The
shaded areas represent the standard deviation across multiple runs.

4 A New Benchmark: GraphAbstract

4.1 Motivation and Design Principles

Building on our analysis of cognitive divergence between model families, we introduce GraphAb-
stract, a benchmark specifically designed to evaluate fundamental graph understanding capabilities
that align with human visual reasoning. Traditional benchmarks in domains like molecular prediction,
citation networks, and protein interaction graphs inadvertently couple domain-specific node features
with topology, often allowing models to succeed through feature-based shortcuts rather than genuine
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structural understanding. This limitation becomes particularly evident in recent studies [4, 65],
where models using fixed-structure expander graphs rather than true molecular topologies match or
exceed performance on multiple benchmarks. The theoretical evaluation of graph neural networks
has primarily centered on the Weisfeiler-Lehman (WL) test, which measures a model’s ability to
distinguish between pairs of non-isomorphic graphs of the same size. While valuable for theoretical
analysis, this approach is inherently limited to binary discrimination between fixed-size graph pairs
rather than evaluating models’ ability to recognize abstract structural patterns across varying scales
and contexts. What remains missing is a rigorous evaluation framework that targets explicitly models’
ability to perceive, abstract, and reason about fundamental graph properties in ways that mirror human
visual cognition.

GraphAbstract addresses these limitations through four carefully designed tasks that isolate pure
structural comprehension from domain-specific attributes. Each task evaluates a different aspect of
how humans intuitively perceive graphs: recognizing organizational archetypes, detecting symmetry
patterns, sensing connectivity strength, and identifying critical structural elements. By focusing on
these fundamental perceptual capabilities and systematically varying graph scale between training
and testing, we can rigorously assess whether graph learning approaches develop the scale-invariant
structural understanding that characterizes human visual cognition.

4.2 Benchmark Details

4.2.1 High-level Topology Classification

The first and core task of our benchmark is high-level topology classification, where models must
identify the dominant topological pattern in a graph G = (V,E). We carefully design six fundamental
topological patterns commonly observed in real-world networks, each representing distinct organiza-
tional principles that humans can readily identify through visual inspection. This task evaluates a
model’s ability to perceive global structural organization beyond local connectivity patterns, mirroring
how humans naturally identify network archetypes across diverse domains.

The following six graph types represent our core taxonomy of high-level topological patterns: The
Cyclic Structure is generated as an annular random geometric graph where nodes are distributed
within a ring-shaped region and connections are established based on spatial proximity [23]. The
Random Geometric Graph structure emerges from spatial constraints, where connections are
determined by the proximity of nodes in an underlying metric space. This topology is ubiquitous
in wireless sensor networks, urban infrastructure, and physical systems governed by geographical
limitations [49]. Hierarchical Structures organize nodes into multiple levels where higher tiers
have fewer, more densely connected nodes controlling numerous nodes in lower layers. Commu-
nity Structures feature multiple densely connected subgroups with relatively sparse inter-group
connections, representing common patterns in social networks and biological networks [25]. The
Bottleneck Configuration contains critical narrow passages between larger substructures, similar to
traffic networks, information flow channels, and metabolic networks. These structures are particularly
important for testing models’ ability to identify crucial connecting components that often represent
vulnerability points in real systems. Multicore-periphery Networks [72] exhibit multiple densely
connected centers with their respective peripheral nodes, reflecting patterns found in distributed
computing systems, multi-center urban structures, and neural networks.

4.2.2 Symmetry Classification

Symmetry perception represents one of the most fundamental pattern recognition capabilities in
human cognition. Humans can readily identify symmetric patterns through visual inspection, even
without explicit mathematical analysis, when examining graph structures. This capacity has pro-
found practical importance across domains: in chemical structures, symmetry determines molecular
properties and reactivity; in network design, engineers leverage symmetry for resilience and load
balancing; while cryptographers specifically construct asymmetric structures to enhance security.
Our Symmetry Classification task challenges models to develop this same intuitive capability by
determining whether a graph possesses non-trivial symmetry based on its automorphism properties.

To precisely characterize graph symmetry, we employ the concept of graph automorphism. Using the
automorphism group, we can precisely categorize graphs based on their symmetry properties:
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Definition 1 (Graph Automorphism). Given a graph G = (V,E), an automorphism is a bijection
ϕ : V → V such that (u, v) ∈ E if and only if (ϕ(u), ϕ(v)) ∈ E. The set of all automorphisms forms
a group Aut(G) under composition:

Aut(G) = {ϕ : V → V | ϕ is bijective and (u, v) ∈ E ⇐⇒ (ϕ(u), ϕ(v)) ∈ E} (1)

Definition 2 (Symmetric and Asymmetric Graphs). A graph is classified as symmetric if |Aut(G)| >
1, indicating the existence of at least one non-identity automorphism, and asymmetric if |Aut(G)| = 1,
where the only automorphism is the identity mapping.

To construct a diverse symmetry classification dataset, we implement several carefully designed
generation strategies for both symmetric and asymmetric graphs. As part of our approach, we also
extract a collection of base graphs from real-world datasets using multiple sampling strategies to
enhance structural diversity, as detailed in Appendix D.1.2. For symmetric graphs, we employ four
principled approaches based on group-theoretic constructions. Our first symmetric graph generation
method utilizes Cayley graphs, which are constructed from algebraic groups and naturally exhibit
rich symmetry properties:
Definition 3 (Cayley Graph). Given a group Γ and a generating set S ⊂ Γ where S = S−1 (closed
under inverses), the Cayley graph Cay(Γ, S) has vertices V = Γ and edges E = {(g, gs) | g ∈
Γ, s ∈ S}.

Using this definition, we construct Cayley graphs Cay(Zn, S) where Zn is the cyclic group of order
n and S contains generators of the group (elements coprime to n). These graphs inherently possess
rich symmetry patterns with automorphism groups containing at least n elements.

The second approach leverages bipartite double covers, which provide a systematic way to construct
symmetric graphs from arbitrary base graphs:

Definition 4 (Bipartite Double Cover). For a graph G = (V,E), its bipartite double cover G̃ =

(Ṽ , Ẽ) is defined as:

Ṽ = V × {0, 1} = {(v, i) | v ∈ V, i ∈ {0, 1}} (2)

Ẽ = {((u, 0), (v, 1)), ((u, 1), (v, 0)) | (u, v) ∈ E} (3)

We generate bipartite double covers from various base graphs, including random graphs, community
graphs, bottleneck graphs, and real-world data. Each cover naturally possesses a non-trivial automor-
phism σ((v, i)) = (v, 1− i) that swaps the two layers, guaranteeing |Aut(G̃)| ≥ 2 and ensuring the
graph is symmetric by definition. Appendix E provides a detailed proof of this property.

Our third method creates symmetric structures through the Cartesian product:
Definition 5 (Cartesian Product). For graphs G1 = (V1, E1) and G2 = (V2, E2), their Cartesian
product G1□G2 = (V,E) is defined as:

V = V1 × V2 = {(u, v) | u ∈ V1, v ∈ V2} (4)
E = {((u1, v), (u2, v)) | (u1, u2) ∈ E1, v ∈ V2} ∪ {((u, v1), (u, v2)) | u ∈ V1, (v1, v2) ∈ E2}

(5)

We create symmetric graphs through Cartesian products of known symmetric components (e.g., cycle
graphs Cn, path graphs Pn, star graphs Sn), resulting in structures like prism graphs Cn□K2 and torus
grids Cm□Cn. For products involving real-world graphs (which we also use to generate asymmetric
graphs), we rigorously verify and filter based on the actual automorphism group properties, as the
Cartesian product preserves symmetry only when both factor graphs are symmetric.

Additionally, we employ multi-layer cyclic covers using real-world data as base graphs. These covers
possess a natural cyclic symmetry where the automorphism τ((v, i)) = (v, (i+1) mod k) generates
a cyclic group isomorphic to Zk, ensuring |Aut(Gk)| ≥ k. The full mathematical definition and
additional properties of these structures are provided in Appendix E.

For asymmetric graphs, we employ two primary strategies. First, we create perturbed graphs using
Double-Edge Swap perturbations [46], where we start with symmetric structures and systematically
transform them through edge swaps. Specifically, we repeatedly select two edges (vi, vj) and (vk, vl)
and replace them with (vi, vl) and (vk, vj) if these new edges don’t already exist. After each swap, we
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verify both connectivity preservation and symmetry breaking using automorphism group computation.
This method maintains the degree distribution of the original graph while disrupting its symmetry
structure. Second, we leverage real-world graph patterns through Cartesian products of real-world
graphs, whose inherent irregularity typically leads to asymmetric structures.

4.2.3 Spectral Gap Regression

While humans cannot directly “see” mathematical properties of networks, we intuitively perceive net-
work conductance, bottleneck structures, and overall connectivity strength through visual inspection.
These perceptual judgments closely align with what graph theory formalizes as the spectral gap λ2(G),
the second-smallest eigenvalue of the normalized Laplacian matrix [10]. This fundamental parameter
quantifies a graph’s global connectivity characteristics, determining how quickly random walks
mix (tmix ∝ 1/λ2) and providing lower bounds on critical connectivity measures. Our regression
task challenges models to develop representations that can infer this abstract property directly from
topology, mirroring human ability to estimate network efficiency without explicit computation.

To ensure diverse spectral properties, we generate graphs using stochastic block models with varying
mixing parameters, geometric graphs with different connection radii, and configuration models with
targeted degree distributions. This design forces models to develop structural intuitions equivalent
to understanding that bottlenecked networks (low λ2) exhibit restricted information flow, while
expander-like graphs (high λ2) enable rapid diffusion. This reflects precisely the type of reasoning
humans employ when analyzing network resilience in domains ranging from transportation systems
to communication infrastructure.

4.2.4 Bridge Counting

Bridge counting evaluates a model’s ability to identify critical edges whose removal would increase
the number of connected components in a graph. Formally, given a graph G = (V,E), we define the
set of bridges B(G) as:

B(G) = {e ∈ E | κ(G \ {e}) > κ(G)} (6)
where κ(G) denotes the number of connected components in graph G. The objective is to predict
|B(G)|, the total number of bridges in the input graph.

This regression task requires models to understand both local edge importance and global connectivity
patterns. Bridges serve as critical connectors between biconnected components of a graph, with each
bridge e = (u, v) satisfying the property that there exists no alternative path between u and v when e
is removed.

The bridge identification challenge varies systematically with graph structure, requiring models
to adapt their reasoning across different topological contexts. Models lacking this capability face
limitations in practical applications requiring critical connectivity awareness, such as molecular
stability analysis and retrosynthetic planning [11, 56].

These four tasks systematically probe models’ ability to perceive and reason about fundamental graph
properties. While representing a subset of human topological capabilities, they provide diagnostic
tests for structural understanding that underlies many practical applications. Systematically measuring
these capability gaps offers insights into current limitations and directions for developing more robust
graph learning models.

4.3 Evaluation Protocol

To rigorously assess the generalization capabilities of graph learning models, we introduce a system-
atic evaluation framework incorporating progressively challenging distribution shifts based on graph
scale. This framework enables us to quantify how well models can transfer topological understanding
across varying graph sizes, a capability that humans demonstrate naturally.

Our evaluation includes three test settings of increasing difficulty: ID (In-Distribution) setting
uses test graphs containing 20-50 nodes, matching the training distribution. Near-OOD (Near
Out-of-Distribution) setting contains graphs with 40-100 nodes, representing a moderate scale
shift. Far-OOD (Far Out-of-Distribution) setting features graphs with 60-150 nodes, constituting a
significant scale shift. These examples challenge models to recognize the same topological patterns
at dramatically larger scales, testing their ability to abstract core structural principles independent of
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Table 2: Performance comparison across different tasks and models. First and second best perfor-
mances are highlighted in each setting and model family.

Model Topology Symmetry Spectral Bridge
ID Near-OOD Far-OOD ID Near-OOD Far-OOD ID Near-OOD Far-OOD ID Near-OOD Far-OOD

GCN+Degree 80.67 ± 0.60 54.67 ± 2.69 33.67 ± 3.56 69.73 ± 0.87 66.87 ± 1.08 65.13 ± 1.94 0.1325 ± 0.0022 0.2517 ± 0.0036 0.3167 ± 0.0046 1.3995 ± 0.0294 3.1067 ± 0.1171 5.6302 ± 0.0898
GPS+Degree 81.40 ± 1.81 64.33 ± 2.18 37.87 ± 4.60 72.73 ± 0.87 70.87 ± 1.52 66.53 ± 2.44 0.0696 ± 0.0020 0.1844 ± 0.0136 0.4271 ± 0.0494 1.5226 ± 0.1512 3.3043 ± 0.2873 5.9010 ± 0.3702
GIN+Degree 79.87 ± 1.05 62.47 ± 2.79 39.33 ± 4.31 71.57 ± 1.54 69.13 ± 1.54 68.47 ± 0.51 0.1159 ± 0.0025 0.2885 ± 0.0474 0.6460 ± 0.2373 1.2953 ± 0.0373 3.3695 ± 0.3631 7.0563 ± 1.0770
GAT+Degree 81.87 ± 1.67 58.40 ± 3.52 42.80 ± 3.07 69.47 ± 0.89 67.40 ± 0.76 65.70 ± 1.36 0.1329 ± 0.0004 0.2512 ± 0.0133 0.3149 ± 0.0158 1.3775 ± 0.0472 3.1871 ± 0.1867 5.6034 ± 0.1339

GCN+LapPE 86.83 ± 1.64 70.97 ± 3.99 55.00 ± 3.08 68.63 ± 1.02 66.19 ± 0.88 65.35 ± 2.30 0.0442 ± 0.0211 0.1076 ± 0.0526 0.1840 ± 0.0807 0.9961 ± 0.0762 2.8534 ± 0.2058 5.7156 ± 0.3173
GPS+LapPE 93.07 ± 1.14 81.00 ± 2.77 47.40 ± 2.16 71.52 ± 1.50 69.89 ± 1.58 66.80 ± 1.88 0.0263 ± 0.0084 0.0706 ± 0.0313 0.1781 ± 0.0881 1.1665 ± 0.6545 2.4846 ± 0.5410 5.3825 ± 0.6990
GIN+LapPE 93.37 ± 0.62 82.13 ± 2.96 51.13 ± 4.34 71.37 ± 1.19 68.83 ± 1.17 67.17 ± 1.55 0.0217 ± 0.0057 0.0538 ± 0.0145 0.1268 ± 0.0415 0.8683 ± 0.1112 2.4427 ± 0.2064 5.1461 ± 0.3576
GAT+LapPE 84.90 ± 2.77 72.07 ± 3.13 54.07 ± 7.26 69.15 ± 1.09 66.46 ± 1.28 66.22 ± 1.71 0.0182 ± 0.0026 0.0419 ± 0.0039 0.0722 ± 0.0048 0.9603 ± 0.0701 2.4669 ± 0.1743 5.2778 ± 0.2455
GCN+SignNet 94.47 ± 1.54 94.20 ± 1.65 77.93 ± 2.77 69.03 ± 0.93 67.07 ± 0.83 65.60 ± 1.43 0.0203 ± 0.0018 0.0274 ± 0.0034 0.0523 ± 0.0147 0.6750 ± 0.1104 2.4387 ± 0.5131 6.3090 ± 1.5907
GPS+SignNet 81.80 ± 14.38 87.67 ± 5.19 75.20 ± 6.53 70.73 ± 1.46 69.47 ± 1.24 67.73 ± 1.03 0.0244 ± 0.0060 0.0783 ± 0.0134 0.3133 ± 0.0529 0.9872 ± 0.3033 1.9819 ± 0.4649 4.5278 ± 0.8672
GIN+SignNet 94.20 ± 1.80 84.73 ± 6.50 61.00 ± 8.72 70.43 ± 0.69 68.60 ± 2.14 67.50 ± 2.11 0.0237 ± 0.0039 0.0750 ± 0.0195 0.2417 ± 0.0904 0.6303 ± 0.1828 2.4745 ± 0.3013 7.1992 ± 1.0679
GAT+SignNet 94.00 ± 1.21 96.47 ± 1.60 85.27 ± 6.83 69.90 ± 0.98 67.60 ± 1.47 67.27 ± 1.37 0.0204 ± 0.0047 0.0303 ± 0.0030 0.0571 ± 0.0154 0.5713 ± 0.0973 1.7152 ± 0.1943 4.1380 ± 0.2873
GCN+SPE 93.20 ± 2.16 90.60 ± 4.77 72.33 ± 7.90 68.90 ± 0.79 66.80 ± 1.40 64.80 ± 2.85 0.0255 ± 0.0025 0.0507 ± 0.0039 0.1351 ± 0.0284 0.5503 ± 0.0777 1.4143 ± 0.2405 3.8632 ± 1.2460
GPS+SPE 84.80 ± 13.75 84.07 ± 16.04 72.20 ± 14.51 71.97 ± 1.65 70.67 ± 1.23 67.70 ± 1.37 0.0681 ± 0.0298 0.1537 ± 0.0839 0.6716 ± 0.2709 0.6402 ± 0.1753 1.4666 ± 0.0713 3.8021 ± 1.0492
GIN+SPE 94.53 ± 1.76 87.80 ± 9.89 70.33 ± 12.09 70.87 ± 1.11 68.80 ± 1.12 68.63 ± 0.97 0.0376 ± 0.0028 0.1491 ± 0.0382 0.8412 ± 0.3343 0.6011 ± 0.1649 2.4499 ± 0.6701 7.8487 ± 2.0425
GAT+SPE 93.53 ± 4.66 92.60 ± 6.95 85.33 ± 9.94 68.07 ± 1.07 66.87 ± 0.98 67.47 ± 0.64 0.0296 ± 0.0029 0.0784 ± 0.0044 0.2210 ± 0.0347 0.4854 ± 0.0622 1.5176 ± 0.4072 4.1430 ± 1.7660

Swin 94.80 ± 0.54 97.73 ± 0.57 89.13 ± 3.26 92.50 ± 0.43 90.77 ± 0.81 84.70 ± 1.36 0.0312 ± 0.0037 0.0594 ± 0.0024 0.0946 ± 0.0094 0.6526 ± 0.0547 1.6338 ± 0.1675 3.7918 ± 0.3361
ConvNeXtV2 95.20 ± 0.34 97.20 ± 1.48 90.33 ± 4.60 92.83 ± 0.53 89.13 ± 0.57 84.67 ± 0.77 0.0279 ± 0.0047 0.0578 ± 0.0056 0.1006 ± 0.0047 0.6261 ± 0.0702 1.8045 ± 0.2007 4.1809 ± 0.2742
ResNet 95.87 ± 0.62 96.27 ± 1.02 87.40 ± 3.33 93.47 ± 0.66 88.83 ± 0.64 84.20 ± 0.39 0.0335 ± 0.0021 0.0600 ± 0.0063 0.1102 ± 0.0100 0.7771 ± 0.1095 1.6356 ± 0.1643 3.6814 ± 0.1217
ViT 94.00 ± 0.99 95.20 ± 1.20 86.40 ± 1.61 94.03 ± 1.04 91.03 ± 0.56 85.67 ± 1.06 0.0345 ± 0.0046 0.0746 ± 0.0081 0.1154 ± 0.0080 0.7406 ± 0.1167 1.8263 ± 0.0679 4.3765 ± 0.1214

scale. This evaluation framework serves as an analog to human cognitive flexibility, where people
can seamlessly recognize familiar patterns at vastly different scales. For instance, humans can
readily identify the same community structure whether it appears in a small departmental network
of dozens of people or a large organizational chart with hundreds of employees. The ability to
maintain consistent performance across these distribution shifts reflects the kind of scale-invariant
understanding that advanced graph reasoning systems should aspire to develop.

Baselines. We evaluate two primary model families: graph neural networks and vision-based
models. For GNNs, we implement four architectures using one-hot degree encoding as node features:
GCN [37], GIN [71], GAT [59], and GPS [50], combined with three positional encoding schemes:
LapPE [17], SignNet [41], SPE [31]. For vision-based approaches, we evaluate four backbone
architectures: ResNet-50 [28], Swin Transformer-Tiny [43], ViT-B/16 [15], and ConvNeXtV2-
Tiny [66], with three graph layout algorithms: Kamada-Kawai [35], Spectral layout [26], and
ForceAtlas2 [33]. Benchmark statistics, implementation details, and examples of graphs from all four
tasks are provided in Appendices C, D, and H, respectively.

4.4 Main Results

Our benchmark isolates the challenge of topology understanding from feature-based learning prevalent
in tasks like node classification and molecular property prediction. This design enables us to focus
specifically on evaluating models’ capability to comprehend graph structural patterns. Our extensive
experiments reveal several key findings.

Vision Models Exhibit Superior Scale-Invariant Understanding. Tables 2 and 3 demonstrate that
pure vision-based models show remarkable proficiency in abstracting global topological patterns
across varying scales. Vision models maintain consistent performance across increasing distribution
shifts, while GNNs exhibit severe degradation. On topology classification, vision models drop
only 5-6% accuracy from ID to Far-OOD settings, while basic GNNs with one-hot degree feature
experience dramatic declines of over 45%. This stark contrast highlights vision models’ human-like
ability to recognize organizational patterns regardless of scale. The vision advantage is particularly
pronounced in symmetry detection, where vision models with spectral layouts achieve 20% higher
accuracy than even the best GNN variants. This task directly evaluates a model’s capacity to perceive
global structural properties that humans naturally identify through visual inspection.

Layout Algorithms Critically Shape Visual Graph Understanding. Different layout algorithms
significantly impact how easily humans and models perceive key structural properties. Spectral
layouts, for instance, excel at symmetry detection (8-10% higher accuracy than force-directed
approaches). Their use of Laplacian eigenvectors often leads to node overlap when visualizing
graphs with symmetries or highly repetitive patterns. This simplification of complex structures
into more recognizable forms makes global properties more apparent (detailed in Appendix I.2).
Similarly, circular layouts [21], with detailed performance reported in Appendix I.3, arrange nodes
in perfect circles. This allows for straightforward symmetry assessment through edge density:
symmetric graphs show uniform connections, while in asymmetric graphs, humans can easily spot
irregular densities or specific edges that break the symmetry. In contrast, force-directed methods
like Kamada Kawai prioritize preserving the graph’s intrinsic shape by optimizing for clear visual
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Table 3: Performance comparison between KK, ForceAtlas2, and Spectral layout algorithms across
different tasks and vision models

Model Topology Symmetry Spectral Bridge
KK ForceAtlas2 Spectral KK ForceAtlas2 Spectral KK ForceAtlas2 Spectral KK ForceAtlas2 Spectral

ID
Swin 93.80 ± 1.31 94.80 ± 0.54 87.27 ± 0.57 85.07 ± 1.05 80.93 ± 1.09 92.50 ± 0.43 0.0324 ± 0.0035 0.0312 ± 0.0037 0.0333 ± 0.0025 0.6526 ± 0.0547 0.9867 ± 0.1587 1.2524 ± 0.0543
ConvNeXtV2 95.20 ± 0.34 94.93 ± 0.13 87.53 ± 0.78 87.30 ± 1.20 80.73 ± 0.98 92.83 ± 0.53 0.0284 ± 0.0024 0.0279 ± 0.0047 0.0403 ± 0.0032 0.6261 ± 0.0702 0.9226 ± 0.0540 1.3579 ± 0.0320
ResNet 95.87 ± 0.62 94.93 ± 1.08 85.67 ± 0.47 85.63 ± 0.84 79.53 ± 0.90 93.47 ± 0.66 0.0335 ± 0.0021 0.0376 ± 0.0098 0.0463 ± 0.0071 0.7771 ± 0.1095 1.0602 ± 0.0759 1.5106 ± 0.1855
ViT 94.00 ± 0.99 92.93 ± 0.65 86.13 ± 0.65 86.47 ± 1.75 80.07 ± 1.96 94.03 ± 1.04 0.0367 ± 0.0045 0.0345 ± 0.0046 0.0441 ± 0.0067 0.7406 ± 0.1167 1.0883 ± 0.0887 1.3944 ± 0.0493

Near-OOD
Swin 97.73 ± 0.57 92.20 ± 0.65 93.27 ± 1.77 81.80 ± 1.31 79.87 ± 0.51 90.77 ± 0.81 0.0819 ± 0.0141 0.0594 ± 0.0024 0.0690 ± 0.0084 1.6338 ± 0.1675 2.2916 ± 0.1672 2.4495 ± 0.2141
ConvNeXtV2 97.20 ± 1.48 92.40 ± 0.83 93.20 ± 1.89 81.83 ± 1.51 80.70 ± 0.49 89.13 ± 0.57 0.0728 ± 0.0122 0.0578 ± 0.0056 0.0750 ± 0.0109 1.8045 ± 0.2007 2.4521 ± 0.1678 2.5207 ± 0.1870
ResNet 96.27 ± 1.02 93.67 ± 1.15 94.60 ± 1.00 82.60 ± 1.05 79.07 ± 0.67 88.83 ± 0.64 0.0936 ± 0.0120 0.0600 ± 0.0063 0.0914 ± 0.0052 1.6356 ± 0.1643 2.3661 ± 0.2173 2.9001 ± 0.3499
ViT 95.20 ± 1.20 92.53 ± 0.88 92.67 ± 1.01 82.47 ± 1.89 79.87 ± 1.31 91.03 ± 0.56 0.1058 ± 0.0132 0.0746 ± 0.0081 0.0828 ± 0.0068 1.8263 ± 0.0679 2.4940 ± 0.1665 2.6900 ± 0.0848

Far-OOD
Swin 89.13 ± 3.26 81.93 ± 1.73 87.13 ± 2.95 74.20 ± 2.05 77.23 ± 1.15 84.70 ± 1.36 0.1668 ± 0.0142 0.1182 ± 0.0050 0.0946 ± 0.0094 3.7918 ± 0.3361 4.9075 ± 0.2818 4.9141 ± 0.2744
ConvNeXtV2 90.33 ± 4.60 87.47 ± 1.39 89.00 ± 1.62 75.90 ± 2.30 77.03 ± 1.10 84.67 ± 0.77 0.1419 ± 0.0149 0.1006 ± 0.0047 0.1018 ± 0.0112 4.1809 ± 0.2742 5.3567 ± 0.2295 5.0889 ± 0.1948
ResNet 87.40 ± 3.30 76.93 ± 1.16 85.20 ± 2.08 74.80 ± 1.36 74.93 ± 1.10 84.20 ± 0.39 0.1739 ± 0.0120 0.1102 ± 0.0100 0.1179 ± 0.0075 3.6814 ± 0.1217 4.9441 ± 0.2304 5.5314 ± 0.4061
ViT 79.53 ± 0.69 86.40 ± 1.61 81.80 ± 0.69 76.87 ± 2.27 74.17 ± 1.55 85.67 ± 1.06 0.1837 ± 0.0101 0.1471 ± 0.0143 0.1154 ± 0.0080 4.3765 ± 0.1214 5.1766 ± 0.1582 5.3629 ± 0.1370

separation of nodes and sensible edge routing. This makes individual elements and local relationships
more distinguishable, often excelling at revealing community structures and general topological
arrangements. These observations highlight the importance of task-aware layout selection in visual
graph understanding. Different layout algorithms naturally emphasize different structural properties,
suggesting opportunities for developing adaptive visualization strategies that match layout choices to
specific reasoning objectives. The intuitions behind how layout algorithms enable vision models to
access structural information are discussed in Appendix G.

Global Structural Priors Help GNNs Bridge the Cognitive Gap. Our experiments reveal that
incorporating positional encodings (PEs) that inject pre-computed global structural information sig-
nificantly outperforms innovations in message passing architectures alone. This approach represents
an alternative “global-first” strategy within the message-passing framework, providing GNNs with
structural context before local propagation begins. All three PE schemes substantially improve
performance and generalization capability, with some advanced PE-enhanced GNNs approaching
vision model performance on topology tasks. This finding suggests a unified insight: successful graph
understanding fundamentally requires access to global topological information, whether through
visual perception or explicitly injected structural priors. It also indicates promising directions for
future development where vision models could potentially benefit from more explicit structural priors
through specialized pre-training or augmentation strategies that emphasize key topological features.

Computational Trade-offs and Model Capacity. Vision models require approximately 10× more
computational time than GNN+PE approaches in our standard experimental setting (detailed in
Table 5 of Appendix F). To better attribute the performance differences, we conducted parameter
scaling experiments with GPS+SPE, expanding it to match or exceed the vision model capacity.
Consistent with known challenges in scaling GNNs, performance degraded rather than improved (full
results in Table 6 of Appendix F). This confirms that the observed advantages stem from architectural
differences, not simply parameter count. The two paradigms understand graph structure through
fundamentally different mechanisms: GNNs process topology through abstract message passing and
structural priors, while vision models directly recognize patterns in visual representations. The supe-
rior out-of-distribution generalization of vision models on global structural understanding tasks aligns
with this direct pattern recognition approach. When selecting approaches for practical applications,
the computational overhead must be weighed against these advantages in scale generalization and
structural reasoning.

5 Conclusion

Our work reveals the underappreciated power of vision models for graph structural understanding,
demonstrating that vision-based methods better align with human cognitive processes in captur-
ing global topological properties. Through GraphAbstract, we systematically quantified these
advantages on tasks requiring holistic understanding and scale-invariant reasoning, particularly their
ability to maintain consistent performance across varying graph scales. These findings establish
visual processing as a complementary pathway to traditional graph learning. While GNNs excel
through explicit structural priors and domain-specific inductive biases, vision models offer distinctive
strengths in perceiving global patterns through direct pattern recognition. This suggests promising
directions for graph foundation models that integrate visual perception with structural reasoning,
combining the strengths of both paradigms for more robust and generalizable graph understanding.
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A Limitations and Future Work

A.1 Limitations

Theoretical Foundations for Layout Algorithms. While our experiments demonstrate that layout
algorithms critically shape performance, we lack complete theoretical characterizations of why certain
layouts benefit particular reasoning tasks. The relationship between geometric properties of layouts
and their learnability by neural networks remains an open theoretical question. Early work by Eades
& Lin [18] connected spring algorithms to geometric automorphisms, but the graph visualization
community has since focused primarily on human aesthetics rather than machine learning objectives.
Establishing rigorous theoretical frameworks connecting layout properties to learning guarantees
represents an essential direction for bridging graph visualization and machine learning research.

Human Cognition Alignment: While tasks in GraphAbstract are designed to mirror human cognitive
capabilities, we do not directly compare model performance with human behavior on these tasks.
Future studies could incorporate human experiments (e.g., eye-tracking studies or timed reasoning
tasks) to establish quantitative benchmarks for cognitive alignment.

A.2 Future Work

Vision-centric Graph Foundation Models. Our work establishes visual processing as a viable
pathway for graph understanding, demonstrating competitive performance and superior scale general-
ization on structural reasoning tasks. Realizing this potential requires developing a comprehensive
ecosystem for vision-based graph learning, ultimately enabling vision-centric graph foundation
models.

Key directions include curating large-scale pretraining datasets of graph visualizations across diverse
domains, designing graph-specific augmentation strategies that preserve topological properties in the
visual domain, developing visual encoding schemes for node and edge attributes (e.g., color mapping,
size encoding, visual markers), creating specialized architectures optimized for processing graph
images, and exploring new application scenarios such as interactive graph visualization and visual
graph analytics. Such infrastructure could enable foundation models that leverage visual perception
for robust and generalizable structural understanding while incorporating rich semantic information.

B Extended Related Work

Graph Neural Networks and Positional Encodings. Graph Neural Networks have achieved
remarkable success across diverse domains through learnable aggregation of neighborhood infor-
mation [37, 24, 27, 59, 71]. The field has developed various architectural innovations to enhance
structural understanding capabilities. Subgraph-based methods [81, 20, 80, 32] extract features
from local structural patterns around nodes. Graph transformers [16, 39, 74, 50] enable broader
context aggregation through global attention mechanisms. Particularly relevant to our work are
positional encodings (PE) that augment graph models with pre-computed global information. Spec-
tral approaches [17, 39] leverage Laplacian eigenvectors to encode global connectivity patterns.
SPE [31] learns continuous soft-partition mappings that weight each eigenvector by its eigenvalue,
ensuring both provable Lipschitz stability under graph perturbations and universal expressivity
for basis-invariant functions. SignNet [41] addresses the ambiguity of eigenvectors by computing
node-wise features through a learned function, followed by MLPs to produce sign-invariant represen-
tations. These methods demonstrate that injecting pre-computed global structural information can
substantially improve performance on tasks requiring holistic graph understanding.

C Benchmark Statistics

Table 4 provides a comprehensive overview of our benchmark statistics across all four tasks. Each
task is carefully designed with appropriate sample sizes and node ranges to enable robust evaluation.
To gain deeper insights into the distribution characteristics of our regression tasks, we visualized
the distributions of bridge counts and spectral gaps across different graph types and dataset splits in
Figures 4 and 5.
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Table 4: Dataset statistics across our four benchmark tasks. Each cell shows the number of graphs
followed by the node count range in parentheses. Topology Classification is a 6-way classification
task, Symmetry Classification is a 2-way classification task, while Spectral Gap and Bridge Count
are regression tasks.

Split Topology Symmetry Spectral Gap Bridge Count
Train 3000 2000 3000 2500

(20-50) (30-60) (20-50) (20-50)

Val 300 200 300 250
(20-50) (30-60) (20-50) (20-50)

Test (ID) 300 600 300 250
(20-50) (30-60) (20-50) (20-50)

Test (Near-OOD) 300 600 300 250
(40-100) (50-100) (40-100) (40-100)

Test (Far-OOD) 300 600 300 250
(60-150) (70-150) (60-150) (60-150)
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Figure 4: Distribution of bridge counts across different graph types under various settings (Train, ID,
Near-OOD, and Far-OOD). The plots reveal distinct bridge count patterns for each graph structure
(Geometric, Community, Hierarchical, Bottleneck, and Multicore). Notably, the distributions exhibit
shifts as graph sizes increase, particularly visible in the OOD scenarios.

D Implementation Details

This appendix provides comprehensive implementation details for our benchmark tasks, including
dataset generation methodology, model architectures, and training protocols.

D.1 Dataset Generation

Our benchmark consists of four distinct graph understanding tasks. For each task, we generate three
test sets with varying difficulty: ID (same distribution as training), Near-OOD (moderate distribution
shift), and Far-OOD (significant distribution shift). All datasets are implemented using PyTorch
Geometric.

D.1.1 Topology Classification Dataset Generation

For the topology classification task, we implemented six distinct topology generators, each producing
graphs with visually and structurally distinct patterns.

Cyclic Structure. We generate annular random geometric graphs (ARGG) with inner radius randomly
sampled from [0.7, 1.2], outer radius set as rinner + random(0.05, 0.3), and connection radius
randomly sampled from [0.5, 0.8].

Random Geometric Graph. Nodes are distributed uniformly in a unit square with connection
radius randomly sampled from [0.15, 0.25]. Connections are established between nodes within this
radius of each other. We ensure connectedness by adding edges between disconnected components if
necessary.
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Figure 5: Distribution of spectral gaps across different graph types under various settings (Train, ID,
Near-OOD, and Far-OOD). The plots reveal distinct spectral gap patterns for each graph structure.
Notably, the distributions exhibit shifts as graph sizes increase.

Community Structure. We generate communities with 3 to 5 groups (based on graph size), intra-
community edge probability from [0.6, 0.8], and inter-community edge probability from [0.01, 0.05].
This creates densely connected communities with sparse connections between them, reflecting
real-world community structures.

Hierarchical Hub Structure. We implement a multi-level hierarchical organization with 2 to 4
levels. Level size ratio decreases by a factor of approximately 0.4 with higher levels. Intra-level
connectivity decreases for lower levels, calculated as 0.7× num_levels−level

num_levels . Each node connects to 1-3
nodes in the level above it, creating graphs with clear hierarchical organization from top to bottom.

Bottleneck Structure. We generate bottleneck topologies with 2 to 4 communities, intra-community
edge probability from [0.4, 0.6], and bottleneck width of 1 to 3nodes connecting adjacent communities.
This creates graphs with distinct modules connected by narrow pathways.

Multi-core Periphery Structure. We generate multi-core networks with 2 to 3 cores occupying
50-60% of total nodes (minimum 4 nodes per core). Core internal probability ranges from [0.6, 0.8]
with 1-2 bridging nodes between each core pair. Periphery nodes are randomly connected to 1-2 nodes
in a randomly selected core, creating structures with multiple highly connected centers surrounded by
sparsely connected peripheral nodes.

D.1.2 Symmetry Classification Dataset Generation

For symmetry classification, we employ several theoretically grounded approaches to generate both
symmetric and asymmetric graphs.

Real-world Base Graph Extraction. To enhance diversity and realism in our generated graphs, we
extracted a collection of base graphs from real-world datasets. For MUTAG, we directly utilized the
molecular graphs. For Cora, which is a large citation network, we employed three different sampling
techniques to obtain a diverse set of subgraphs: (1) BFS sampling from random starting nodes. (2)
Random walks with restart probability α = 0.2, which were explored by previous work [55]. (3)
GraphSAGE-style neighborhood sampling with controlled layer expansion. For each target node size
range (5-50 nodes), we ensured a sufficient number of base graphs (approximately 30 graphs per size)
to support subsequent operations like Cartesian products and graph covers. These real-world base
graphs were cached and reused across different generation methods, providing consistent structural
patterns while maintaining diversity. All base graphs were processed to ensure connectedness, and
their node indices were normalized to ensure compatibility with our generation pipelines.

We implemented five distinct methods to generate symmetric graphs:

Cayley Cyclic Graphs. We construct Cayley graphs based on cyclic groups Zn. For a given node
count n, we identify valid generators (elements coprime to n), randomly select 1-3 generators, and
create connections according to the Cayley graph definition. Each node i ∈ Zn is connected to nodes
(i+ g) mod n and (i− g) mod n for each generator g, ensuring that the graph exhibits the algebraic
symmetry of the cyclic group.

Bipartite Double Cover. We create bipartite double covers from various base graphs (random
graphs, community structures, bottleneck structures, and real-world data). For a base graph G =
(V,E), the bipartite double cover G̃ = (Ṽ , Ẽ) is constructed with Ṽ = V × 0, 1 and edges Ẽ =
((u, 0), (v, 1)), ((u, 1), (v, 0)) | (u, v) ∈ E. Base graphs have approximately half the target node
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count. For random base graphs, edge probability is from [0.15, 0.3]. For community-based graphs,
intra-community probability is from [0.3, 0.7] and inter-community probability is from [0.05, 0.15].
For bottleneck base graphs, internal connectivity probability is from [0.3, 0.6] with bottleneck width
of 1-3 nodes.

Cartesian Product. We generate cartesian products of known symmetric components with combina-
tions including cycle graphs Cn□Pm (cycle □ path), Cn□Cm (cycle □ cycle), and Pn□Sm (path □
star). The cartesian product G1□G2 contains vertices V (G1)× V (G2) with edges between (u1, v1)
and (u2, v2) if either u1 = u2 and (v1, v2) ∈ E(G2), or v1 = v2 and (u1, u2) ∈ E(G1). Factors are
chosen to optimize the product size to be close to the target node count.

Cartesian Product with Real Data. We compute Cartesian products using real-world graph data,
selected from the MUTAG and Cora datasets. It is important to note that the Cartesian product
preserves symmetry only when both base graphs are symmetric. Since real-world graphs typically
lack perfect symmetry, we use the pynauty1 library to verify the symmetry of each generated graph
and filter accordingly. The introduction of real-world graphs enables us to generate more diverse
and structurally realistic graphs, including both symmetric and asymmetric variants with complex
topological features that purely synthetic generators cannot easily produce.

Real Data Cyclic Cover. We construct k-fold cyclic covers using real data as base graphs, with the
number of layers (k) from 2 to 5 based on target size. For a base graph G = (V,E), the k-fold cyclic
cover creates k copies of V with edges connecting corresponding vertices across consecutive layers
in a cyclic pattern. Formally, vertices in the cover are V × Zk, and for each edge (u, v) ∈ E, we add
edges ((u, i), (v, (i+ 1) mod k)) and ((v, i), (u, (i+ 1) mod k)) for all i ∈ Zk.

We implemented two primary approaches to generate asymmetric graphs:

Perturbed Asymmetric Graphs. We start with symmetric graphs and apply targeted edge perturba-
tions via double-edge swap operations. We select two edges (a, b) and (c, d) and replace them with
edges (a, d) and (c, b) if they don’t already exist. This operation maintains the degree distribution
while potentially breaking symmetry. We verify that connectivity is preserved and symmetry is
broken, applying up to 20 swap attempts. Each generated graph is verified to ensure |Aut(G)| = 1,
meaning the only automorphism is the identity mapping.

Cartesian Products with Real Graphs. We leverage the inherent asymmetry of real-world data
through Cartesian products involving the previously extracted real-world networks. It’s important to
note that while the Cartesian product operation naturally creates repeating structural patterns (as each
vertex from one graph is combined with every vertex from the other graph), these repeating patterns
do not necessarily translate into mathematical symmetry (automorphisms). The resulting structure
may contain similar local neighborhoods but still lack the global permutation invariance required for
true symmetry. This distinction is crucial - Cartesian products create structural regularity that can be
challenging for models to analyze, but often without introducing the simplifying symmetry properties
that might make the task easier. All generated graphs are rigorously verified using pynauty to
confirm their asymmetric nature (|Aut(G)| = 1) before inclusion in the dataset.

D.1.3 Spectral Gap Regression

For spectral gap regression, we employed a mixture of techniques to generate graphs with diverse
spectral properties:

SBM Evolution. Using Stochastic Block Models(SBM) with controlled mixing, including SBM-
dumbbell structure (two equal-sized communities) and SBM-multi communities structure (3-5
communities). Within-block probability ranges from [0.6, 0.8]. Between-block probability varies
with mixing parameter µ ∈ [0, 1]: [0.001, 0.02] when µ < 0.1, [0.02, 0.1] when µ < 0.3, [0.1, 0.3]
when µ < 0.7, and [0.3, µ] when µ ≥ 0.7. The spectral gap λ2 of these graphs is strongly influenced
by the between-block connectivity.

Geometric Evolution. Modified random geometric graphs with base radius calculated to ensure
basic connectivity. Additional connections are added based on mixing parameter µ, with the number
of extra connections approximately equal to µ × 0.1 × n × ln(n). Higher µ values create more
small-world-like properties, affecting the spectral gap.

1https://github.com/pdobsan/pynauty
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Configuration Model. Starting with an SBM or geometric base graph, we rewire edges using the
configuration model while preserving the degree distribution. The randomization level controls the
fraction of edges rewired, ranging from [0.3, 0.8]. This process disrupts the original structure while
maintaining the degree sequence, often resulting in graphs with different spectral properties.

To ensure comprehensive coverage of the spectral gap value range, we strategically sample the mixing
parameter µ, with 40% of samples using low connectivity (µ < 0.2), 30% using medium connectivity
(µ ∈ [0.2, 0.5]), and 30% using higher connectivity (µ ∈ [0.5, 0.8]). The spectral gap λ2 is computed
as the second-smallest eigenvalue of the normalized Laplacian matrix L = I − D−1/2AD−1/2,
where D is the degree matrix and A is the adjacency matrix.

D.1.4 Bridge Counting Dataset Generation

For the bridge counting task, we generate diverse graph structures using five topology generators
similar to those used in the topology classification task. These include Random Geometric Graphs
with connection radius r ∈ [0.15, 0.25], Community Structures with 3-5 communities and controlled
density parameters, Hierarchical Structures with 2-4 levels, Bottleneck Configurations with single-
connection bottlenecks between adjacent communities, and Multi-core Structures with 2-3 cores and
peripheral attachments. For each graph, we compute the exact number of bridges using NetworkX’s
bridge detection algorithm2, which identifies edges whose removal would increase the number of
connected components in the graph.

D.2 Node Features and Positional Encodings

All positional encodings are incorporated into our GNN models with 16 dimensions. For node
features, we use one-hot degree encoding with a maximum degree of 100 across all graph datasets.

D.3 Model Architecture and Hyperparameters

For our graph neural network models, we experiment with varying numbers of layers ranging from
2 to 4, with a consistent hidden dimension size of 128 across all architectures. Dropout with a rate
of 0.5 is applied throughout the networks to prevent overfitting. For vision-based models, we use
standard architectures: ResNet-50, ViT-B/16, Swin Transformer-Tiny, and ConvNeXtV2-Tiny. All
models resize graph images to 224×224 resolution as input.

D.4 Training Protocol

All models are trained with a batch size of 128 for a maximum of 200 epochs, employing early
stopping with a patience of 30 epochs to prevent overfitting. We use the Adam optimizer with
different learning rates: 1e− 5 for vision backbone parameters, 1e− 3 for GNN models and classifier
heads. Weight decay is set to 1e−4 for vision models. For classification tasks (Topology, Symmetry),
we use cross-entropy loss, while for regression tasks (Spectral Gap, Bridge Counting), we employ
mean squared error loss. All experiments are conducted on 4 NVIDIA A800 GPUs. For consistent
evaluation, we measure accuracy for classification tasks, while regression tasks use Mean Absolute
Error (MAE). To ensure reproducibility, we set fixed random seeds ∈ [0, 1, 2, 3, 4] for all experiments,
controlling the initialization of model parameters, data splitting.

D.5 Graph Image Generation for Vision Models

For vision-based models, we render graph visualizations with specific parameters to ensure visual
consistency. Nodes are rendered as skyblue circles with white borders and size 50, while edges are
rendered as white lines with width 1.5 and alpha 0.8. Each graph is rendered once for each dataset
split, ensuring consistent visual representation across training and evaluation.

2https://networkx.org
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E Proof of Symmetry in Graph Coverings

In this section, we provide formal proofs of the symmetry properties stated in the main text. For
notational simplicity, we use H to denote a cover graph throughout these proofs. This corresponds to
G̃ (bipartite double cover) and Gk (k-fold cyclic cover) in the main text.

E.1 Definitions

Definition 1 (Automorphism). An automorphism of a graph G is a bijection ϕ : V (G) → V (G) such
that for any u, v ∈ V (G):

(u, v) ∈ E(G) ⇐⇒ (ϕ(u), ϕ(v)) ∈ E(G) (7)

Definition 2 (Automorphism Group). The set of all automorphisms of G, denoted Aut(G), forms a
group under function composition.

Definition 3 (Symmetry). A graph G is symmetric if |Aut(G)| > 1, i.e., it admits at least one
non-identity automorphism.

Definition 4 (Bipartite Double Cover). For a graph G, its bipartite double cover H is constructed by:

• Creating two vertices (v, 0) and (v, 1) in H for each vertex v in G

• Creating edges ((u, 0), (v, 1)) and ((u, 1), (v, 0)) in H for each edge (u, v) in G
Definition 5 (k-fold Cyclic Cover). For a graph G (without self-loops), its k-fold cyclic cover H is
constructed by:

• Creating k vertices (v, 0), (v, 1), . . . , (v, k − 1) in H for each vertex v in G

• Creating edges ((u, i), (v, (i+ 1) mod k)) and ((v, i), (u, (i+ 1) mod k)) in H for each
edge (u, v) in G and each i ∈ {0, 1, . . . , k − 1}

E.2 Symmetry of Bipartite Double Cover

Theorem 1. For any graph G, its bipartite double cover H satisfies |Aut(H)| > 1.

Proof. We define a mapping σ : V (H) → V (H) as follows:

σ((v, i)) = (v, 1− i) ∀v ∈ V (G), i ∈ {0, 1} (8)

Step 1: We prove σ is a bijection.
Since for each (v, i) ∈ V (H), σ maps to exactly one element (v, 1 − i) ∈ V (H), and since
σ(σ((v, i))) = σ((v, 1− i)) = (v, i), σ is its own inverse. Therefore, σ is a bijection.

Step 2: We verify σ preserves edges.
For any edge e = ((u, i), (v, j)) ∈ E(H), by the definition of double cover:

(u, v) ∈ E(G) and j = 1− i (9)

Applying σ to both endpoints:

σ((u, i)) = (u, 1− i) and σ((v, j)) = σ((v, 1− i)) = (v, i) (10)

Since (u, v) ∈ E(G), by the definition of double cover:

((u, 1− i), (v, i)) ∈ E(H) (11)

Thus, (σ(u, i), σ(v, j)) ∈ E(H).

Step 3: We verify σ preserves non-edges.
For any non-edge ((u, i), (v, j)) /∈ E(H), there are two cases:

1. (u, v) /∈ E(G): Then ((u, 1− i), (v, 1− j)) /∈ E(H) by definition of double cover.
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2. (u, v) ∈ E(G) but j ̸= 1 − i: Then either i = j = 0 or i = j = 1. After applying σ,
we have σ((u, i)) = (u, 1 − i) and σ((v, j)) = (v, 1 − j). Since 1 − i = 1 − j, we have
(σ(u, i), σ(v, j)) /∈ E(H).

Step 4: We show σ is not the identity mapping.
For any vertex (v, 0) ∈ V (H):

σ((v, 0)) = (v, 1) ̸= (v, 0) (12)

Therefore, σ is a non-identity automorphism of H , which proves |Aut(H)| > 1.

Corollary 1. If |Aut(G)| = m, then |Aut(H)| ≥ 2m.

Proof. Every automorphism ϕ ∈ Aut(G) induces two automorphisms on H:

ϕ1((v, i)) = (ϕ(v), i) and ϕ2((v, i)) = (ϕ(v), 1− i) (13)

These 2m automorphisms are all distinct, hence |Aut(H)| ≥ 2m.

E.3 Symmetry of k-fold Cyclic Cover

Lemma 1. For k ≥ 2, the map τ : V (H) → V (H) defined by τ((v, i)) = (v, (i+ 1) mod k) is an
automorphism of the k-fold cyclic cover H of any graph G.

Proof. Step 1: We prove τ is a bijection.
For each (v, i) ∈ V (H), τ maps to exactly one element (v, (i+ 1) mod k). The inverse is defined
by τ−1((v, i)) = (v, (i− 1) mod k). Hence, τ is a bijection.

Step 2: We verify τ preserves edges.
Let e = ((u, i), (v, (i+ 1) mod k)) ∈ E(H). By definition of k-fold cover, (u, v) ∈ E(G).
Applying τ to both endpoints:

τ((u, i)) = (u, (i+ 1) mod k)

τ((v, (i+ 1) mod k)) = (v, (i+ 2) mod k)
(14)

Since (u, v) ∈ E(G), by definition of k-fold cover:

((u, (i+ 1) mod k), (v, (i+ 2) mod k)) ∈ E(H) (15)

Step 3: We verify τ preserves non-edges.
For any non-edge ((u, i), (v, j)) /∈ E(H), there are two cases:

1. (u, v) /∈ E(G): Then ((u, (i+ 1) mod k), (v, (j + 1) mod k)) /∈ E(H) by definition.

2. (u, v) ∈ E(G) but j ̸= (i+ 1) mod k: After applying τ , we have

τ((u, i)) = (u, (i+ 1) mod k)

τ((v, j)) = (v, (j + 1) mod k)
(16)

Since (j+1) mod k ̸= (i+2) mod k when j ̸= (i+1) mod k, we have (τ(u, i), τ(v, j)) /∈
E(H).

Step 4: For k ≥ 2, τ is not the identity mapping.
For any vertex (v, 0) ∈ V (H):

τ((v, 0)) = (v, 1) ̸= (v, 0) (17)

Therefore, τ is a non-identity automorphism of H .

Theorem 2. For any graph G and k ≥ 2, the k-fold cyclic cover H admits an automorphism group
containing a subgroup isomorphic to Zk, thus satisfying |Aut(H)| ≥ k.
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Proof. Consider the mappings τ, τ2, . . . , τk−1, τk, where τ is the automorphism defined in the
lemma above. We have:

τ j((v, i)) = (v, (i+ j) mod k) (18)

Step 1: The mappings τ0 = id, τ1, τ2, . . . , τk−1 are all distinct.
For 0 ≤ j1 < j2 < k, there exists (v, 0) ∈ V (H) such that:

τ j1((v, 0)) = (v, j1) ̸= (v, j2) = τ j2((v, 0)) (19)

Step 2: These mappings form a cyclic subgroup of order k.
Since τk((v, i)) = (v, (i+ k) mod k) = (v, i), we have τk = id. This means τ generates a cyclic
group of order k isomorphic to Zk.

Therefore, Aut(H) contains a subgroup isomorphic to Zk, implying |Aut(H)| ≥ k.

E.4 Algorithmic Implementation

The implementation of graph coverings in our code precisely follows the mathematical constructions
in the above definitions:

Algorithm 1 Generate Bipartite Double Cover

Require: Base graph G(V,E)
Ensure: Double cover graph H

1: Initialize H as empty graph
2: for each v ∈ V do
3: Add vertices (v, 0) and (v, 1) to H
4: end for
5: for each (u, v) ∈ E do
6: Add edges ((u, 0), (v, 1)) and ((u, 1), (v, 0)) to H
7: end for
8: return H

Algorithm 2 Generate k-fold Cyclic Cover from Real-world Network

Require: Real-world base graph G(V,E), integer k ≥ 2
Ensure: k-fold cyclic cover graph H

1: Initialize H as empty graph
2: for each v ∈ V do
3: for i = 0 to k − 1 do
4: Add vertex (v, i) to H
5: end for
6: end for
7: for each (u, v) ∈ E do
8: for i = 0 to k − 1 do
9: Add edges ((u, i), (v, (i+ 1) mod k)) and ((v, i), (u, (i+ 1) mod k)) to H

10: end for
11: end for
12: return H
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F Extended Experimental Results

This section provides detailed experimental results that support our main findings, including compre-
hensive computational cost analysis, model scaling experiments, advanced GNN comparisons, and
resolution robustness studies.

Computational Cost Analysis. Table 5 presents a detailed breakdown of computational requirements
across all four benchmark tasks. We report both time per epoch and total time to reach best validation
accuracy. Vision models require approximately 10× more time per epoch than GNN+SPE models
across all tasks, with the ratio ranging from 8.2× to 12.2× depending on the specific task. This
computational overhead primarily stems from the larger model capacity and more complex feature
extraction in vision backbones compared to compact GNN architectures.

Model Scaling Analysis. To investigate whether performance differences stem from model capacity,
we conducted systematic scaling experiments with GPS+SPE. Table 6 shows results for models with
53.2M and 212.2M parameters, substantially exceeding vision model sizes (ResNet-50: 25.6M). Con-
sistent with known limitations of message-passing architectures, performance degraded rather than
improved with increased capacity across all tasks. For topology classification, accuracy dropped from
84.80% (baseline) to 82.53% (212.2M model) on Near-OOD tasks. This confirms that architectural
differences, rather than parameter count, drive the observed advantages of vision models.

Comparison with Advanced GNNs. Table 7 compares our results with I²-GNN [32], an advanced
structure-aware GNN. While I²-GNN achieves competitive in-distribution performance, it shows
significantly worse generalization on out-of-distribution tasks, particularly on Far-OOD settings. This
demonstrates that even advanced GNN architectures with enhanced expressiveness face challenges in
scale generalization compared to vision-based approaches.

Resolution Robustness. Table 8 examines how image resolution affects vision model performance.
Performance remains relatively stable across different resolutions (64×64 to 448×448), with some
tasks even performing better at lower resolutions. This suggests that the structural patterns captured
by vision models are robust to resolution changes, and extremely high resolution may not be necessary
for graph structural understanding tasks.

Table 5: Computational cost analysis across all benchmark tasks, showing time per epoch and time to
best validation accuracy.

Model Topology Symmetry Bridge Spectral Gap
Time/Epoch (s) Time to Best (s) Time/Epoch (s) Time to Best (s) Time/Epoch (s) Time to Best (s) Time/Epoch (s) Time to Best (s)

ConvNeXt 13.1 329.5 9.4 245.2 11.2 573.6 13.2 717.7
ResNet 5.5 120.7 4.2 76.5 4.8 127.5 5.6 312.0
Swin 11.5 368.9 8.2 123.1 9.8 227.1 11.6 348.2
ViT 23.1 509.9 15.8 127.0 19.5 858.6 23.2 1139.7

GAT+SPE 1.2 43.2 0.9 16.3 1.1 2.5 1.2 107.7
GCN+SPE 1.2 45.1 0.8 5.3 1.0 93.3 1.2 35.1
GIN+SPE 1.1 47.0 0.8 6.1 1.1 56.0 1.2 30.6
GPS+SPE 1.4 26.9 1.0 22.0 1.2 34.9 1.5 32.7

Avg. Vision 13.3 332.2 9.4 142.9 11.3 446.7 13.4 629.4
Avg. GNN+SPE 1.2 40.6 0.9 12.4 1.1 46.7 1.3 51.5

Ratio (V/G) 10.9× 8.2× 10.7× 11.5× 10.3× 9.6× 10.5× 12.2×
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Table 6: Model scaling analysis across all benchmark tasks. Scaled GPS+SPE models show degraded
performance compared to baseline, confirming that architectural constraints rather than parameter
count limit GNN performance.

Task Model ID Near-OOD Far-OOD

Topology (%)

Baseline GPS+SPE 84.80 ± 13.75 84.07 ± 16.04 72.20 ± 14.51
GPS+SPE (53.2M) 87.73 ± 6.87 70.13 ± 13.03 40.53 ± 11.06
GPS+SPE (212.2M) 82.53 ± 5.58 66.20 ± 11.42 34.80 ± 8.16
ResNet (25.6M) 95.87 ± 0.62 96.27 ± 1.02 87.40 ± 3.33

Symmetry (%)

Baseline GPS+SPE 71.97 ± 1.65 70.67 ± 1.23 67.70 ± 1.37
GPS+SPE (53.2M) 65.83 ± 2.21 65.83 ± 2.83 67.63 ± 3.94
GPS+SPE (212.2M) 56.10 ± 4.47 55.67 ± 5.75 54.97 ± 4.53
ResNet (25.6M) 93.47 ± 0.66 88.83 ± 0.64 84.20 ± 0.39

Spectral Gap (MAE)

Baseline GPS+SPE 0.0681 ± 0.0298 0.1537 ± 0.0839 0.6716 ± 0.2709
GPS+SPE (53.2M) 0.1483 ± 0.0210 0.1901 ± 0.0167 0.7497 ± 0.4243
GPS+SPE (212.2M) 0.1214 ± 0.0365 0.2125 ± 0.0373 0.9101 ± 0.5625
ResNet (25.6M) 0.0335 ± 0.0021 0.0600 ± 0.0063 0.1102 ± 0.0100

Bridge Count (MAE)

Baseline GPS+SPE 0.6402 ± 0.1753 1.4666 ± 0.0713 3.8021 ± 1.0492
GPS+SPE (53.2M) 1.4502 ± 0.2315 3.0053 ± 0.5616 5.6101 ± 0.8129
GPS+SPE (212.2M) 2.1581 ± 0.8106 3.3334 ± 0.7540 5.7994 ± 1.1003
ResNet (25.6M) 0.7771 ± 0.1095 1.6356 ± 0.1643 3.6814 ± 0.1217

Table 7: Comparison with I²-GNN across all benchmark tasks. I²-GNN shows strong symmetry
detection but poor scale generalization.

Task Model ID Near-OOD Far-OOD

Topology (%) I²-GNN 94.67 ± 1.49 87.87 ± 4.90 63.33 ± 5.83
Best Vision 95.87 ± 0.62 97.73 ± 0.57 90.33 ± 4.60

Symmetry (%) I²-GNN 90.80 ± 3.49 84.00 ± 2.53 83.40 ± 3.56
Best Vision 94.03 ± 1.04 91.03 ± 0.56 85.67 ± 1.06

Spectral (MAE) I²-GNN 0.1044 ± 0.0091 0.3315 ± 0.0941 0.7893 ± 0.2709
Best Vision 0.0279 ± 0.0047 0.0578 ± 0.0056 0.0946 ± 0.0094

Bridge (MAE) I²-GNN 0.4580 ± 0.1131 1.0459 ± 0.1523 3.7353 ± 1.0961
Best Vision 0.6261 ± 0.0702 1.6338 ± 0.1675 3.6814 ± 0.1217

Table 8: Impact of image resolution on vision model performance (ResNet on Symmetry classifica-
tion).

Resolution ID Near-OOD Far-OOD
Kamada-Kawai Layout

448×448 80.87 ± 1.80 76.27 ± 2.99 72.60 ± 4.15
224×224 84.30 ± 0.36 81.07 ± 0.56 75.60 ± 2.19
128×128 84.50 ± 0.46 82.73 ± 0.90 74.77 ± 1.60
64×64 86.20 ± 0.69 81.03 ± 1.50 72.73 ± 2.22

Spectral Layout
448×448 93.97 ± 0.96 91.53 ± 0.71 85.93 ± 0.23
224×224 93.17 ± 1.15 89.47 ± 0.46 83.20 ± 0.97
128×128 93.53 ± 0.69 88.30 ± 0.40 81.23 ± 0.88
64×64 91.97 ± 1.27 87.17 ± 1.48 80.93 ± 1.08
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G Discussion: Visual vs. Message-Passing Paradigms

In this section, we provide an informal analysis of why vision models achieve strong performance on
graph structural understanding despite lacking graph-specific inductive biases. While we lack formal
theoretical proofs, several observations from our community’s own research practices offer intuitions
about the complementary computational mechanisms underlying these approaches.

Different Computational Paradigms. The two paradigms solve fundamentally different problems.
GNNs take graph structure (adjacency matrices, edge lists) as input and build understanding through
iterative local message passing. Layout algorithms, in contrast, perform global computations upfront:
eigendecomposition for spectral layouts, energy minimization for force-directed methods. Once
graphs are rendered as images, the task transforms from graph analysis to visual pattern recognition.
Vision models then process geometric patterns where structural properties manifest as directly
observable visual features: symmetric graphs produce symmetric layouts, clustered graphs show
dense regional connections, bridges appear as narrow connectors between substructures.

Evidence from Known GNN Limitations. This difference becomes evident when examining
tasks where GNNs face theoretical limitations. When researchers construct counterexamples for the
Weisfeiler-Lehman test and its k-dimensional variants, they invariably use graph visualizations to
illustrate why graphs are non-isomorphic despite fooling the WL algorithm [61]. Visual represen-
tations make structural distinctions immediately apparent that iterative refinement procedures miss.
Horn et al. [29] explicitly present datasets containing graphs they describe as “easily distinguished by
humans” visually. Their NECKLACES dataset shows graphs with identical cycle counts but different
connectivity patterns: two individual cycles versus a merged one. While humans immediately see
this difference, standard message-passing approaches fail to distinguish them, requiring sophisticated
persistent homology calculations. Similarly, Zhang et al. [79] proved that standard GNNs cannot
identify bridges, yet these structures manifest as obvious visual bottlenecks in graph layouts.

These observations suggest that layout algorithms and vision models provide a complementary
pathway to graph understanding: layout algorithms convert abstract topological properties into spatial
patterns through global computation, while vision models recognize these geometric features through
hierarchical processing. This explains why vision models maintain strong performance despite
lacking graph-specific inductive biases: they access structural information through a fundamentally
different computational mechanism than message passing.
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H Visualization Examples from GraphAbstract

In this section, we provide visualizations of representative graphs in our benchmark. Figures 6–8
illustrate the diverse topological patterns across the four tasks: topology classification, symmetry
classification, and spectral gap regression.

(a) Cyclic (b) Random geometric (c) Hierarchical hub (d) Community

(e) Bottleneck (f) Multi-core

Figure 6: Training examples of topology classification. For bridge counting task, similar graph
structures are used except for the cyclic structure, as bridge counting focuses on identifying edges
whose removal would disconnect the graph.

(a) Cayley cyclic (b) Bipartite double cover (c) Cartesian product (d) Cartesian w/ real (S)

(e) Real data cover (f) Cartesian w/ real (NS) (g) Perturbed graph

Figure 7: Training examples of symmetric classification. (a)-(e) are symmetric graphs, while (f)-(g)
are asymmetric graphs. S: symmetric, NS: non-symmetric.
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(a) SBM-DB, λ2 = 0.04 (b) SBM-DB, λ2 = 0.35 (c) SBM-M, λ2 = 0.01 (d) SBM-M, λ2 = 0.25

(e) Geo, λ2 = 0.12 (f) Geo, λ2 = 0.16 (g) Cfg, λ2 = 0.62 (h) Cfg, λ2 = 0.78

Figure 8: Training examples of spectral gap regression, where λ2 is the second smallest eigenvalue
of the normalized Laplacian. SBM-DB: SBM dumbbell, SBM-M: SBM multi-community, Geo:
Geometric, Cfg: Configuration model.
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I Analysis of Graph Layout Algorithms

I.1 Layout Algorithm Details

Graph layout algorithms aim to produce 2D (or 3D) representations of graphs that are interpretable
and reveal underlying structures. Different algorithms employ distinct heuristics and optimization
criteria, leading to varied visual outputs. In this work, we primarily consider four common layout
types:

Kamada-Kawai. This is a force-directed algorithm that models the graph as a system of springs. It
aims to position nodes such that the geometric distance between them in the layout is proportional
to their graph-theoretic distance (shortest path length). This often results in aesthetically pleasing
layouts that emphasize the overall shape and connectivity.

ForceAtlas2. Another popular force-directed algorithm, particularly well-suited for larger graphs. It
simulates attraction forces between connected nodes and repulsion forces between all nodes, often
effectively revealing clusters and community structures within the network.

Spectral Layout. This method uses the eigenvectors of the graph Laplacian (or a related matrix)
as coordinates for the nodes. Typically, the eigenvectors corresponding to the smallest non-zero
eigenvalues are used. Spectral layouts are mathematically principled and often highlight global
symmetries and Cheeger-type cuts. A characteristic feature is that structurally equivalent or highly
similar nodes can overlap in the visualization.

Circular Layout. One of the simplest layout algorithms, it places all nodes equidistant on the
circumference of a circle. The ordering of nodes around the circle can be arbitrary, based on node
IDs, or determined by other properties like node degree.

I.2 Visualizing Asymmetric Graphs

To illustrate how different layout algorithms can affect the visual perception of graph properties,
particularly symmetry and structural regularity, we present visualizations of a non-symmetric graph
in Figure 9. This graph is generated via the Cartesian product of two distinct real-world graphs,
resulting in a structure with high local regularity but no global symmetry. As detailed in the caption,
force-directed layouts (Kamada-Kawai and ForceAtlas2) tend to faithfully represent the resulting
complex structure. Consequently, to determine its asymmetry, one might need to mentally deconstruct
the layout to infer the properties of the underlying, distinct base graphs and recognize that their
product would not yield simple visual symmetry. In contrast, the spectral and circular layouts render
the graph such that its lack of global symmetry is more immediately visually evident.

Figure 9: Visualizations of a non-symmetric graph generated by the Cartesian product of real-world
base graphs. Despite its high structural regularity, this graph lacks symmetry. In Kamada-Kawai
(first) and ForceAtlas2 (second) layouts, determining asymmetry requires mentally reconstructing
the base graphs and analyzing their properties. In contrast, the Spectral layout (third) reveals the
grid-like product structure. However, critical visual cues about its asymmetry are evident in the lack
of perfect geometric regularity and the varying thickness/brightness of lines due to edge overlap.
These imperfections prevent a global geometric symmetry axis (like a vertical line through the center)
from mapping the graph onto itself, serving as clear visual signals of the underlying asymmetry.
Circular layout (fourth) displays nodes on a circle and visually emphasizes the lack of uniformity in
edge distribution, also clearly indicating the absence of symmetry. Both Spectral and Circular layouts
facilitate a more direct visual assessment of asymmetry.
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I.3 Characteristics and Performance of Circular Layout

We present the performance of vision models using circular-layout generated graph visualization
in Table 9. Despite circular layouts significantly disrupting many visual topological properties,
evidenced by the sharp performance drop on Topology classification in Far-OOD settings, they
prove remarkably effective for tasks like symmetry detection. This effectiveness stems from how
symmetry (or its absence) becomes visually apparent: for symmetric graphs, edge densities are
balanced across the circle, while for asymmetric graphs, humans can readily perceive uneven edge
densities or specific edges that break the expected uniform pattern. This allows both humans and
models to assess symmetry without needing to discern complex topological features that the circular
layout inherently obscures.

Table 9: Performance comparison of circular layout across different tasks and models

Task/Model Swin ConvNeXtV2 ResNet ViT
Topology

ID 92.00 ± 0.56 90.89 ± 1.29 92.27 ± 1.00 91.47 ± 0.98
Near-OOD 81.13 ± 1.09 79.22 ± 2.01 75.40 ± 2.35 80.33 ± 2.80
Far-OOD 58.93 ± 2.17 56.22 ± 4.84 47.87 ± 5.46 59.13 ± 3.31

Symmetry
ID 85.17 ± 1.12 85.08 ± 1.25 86.07 ± 0.95 83.87 ± 0.88
Near-OOD 85.07 ± 1.03 83.67 ± 1.33 82.17 ± 1.05 84.53 ± 0.87
Far-OOD 83.67 ± 0.73 82.50 ± 1.00 76.00 ± 2.74 80.13 ± 1.86

Spectral
ID 0.0503 ± 0.0030 0.0454 ± 0.0017 0.0627 ± 0.0057 0.0538 ± 0.0020
Near-OOD 0.1330 ± 0.0111 0.1503 ± 0.0149 0.1569 ± 0.0078 0.1457 ± 0.0139
Far-OOD 0.2090 ± 0.0141 0.2325 ± 0.0127 0.2296 ± 0.0083 0.2194 ± 0.0184

Bridge
ID 1.1834 ± 0.1239 1.1461 ± 0.0842 1.2615 ± 0.0825 1.2484 ± 0.0609
Near-OOD 2.5184 ± 0.2428 2.8263 ± 0.1644 2.8143 ± 0.1015 2.3876 ± 0.1618
Far-OOD 6.1317 ± 0.2053 6.7032 ± 0.1245 6.8447 ± 0.1495 5.8798 ± 0.2176
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J Preliminary Experiments and Implementation

J.1 Implementation Details of Preliminary Experiments

We implemented eight neural architectures adapted to graph data. For GNNs, we used GCN, GIN,
GAT, and GPS, with 2–5 layers, 128 hidden units, ReLU activation, dropout with 0.5, and global
mean pooling. GIN and GPS included MLPs in each block, GAT used multi-head attention, and GPS
combined local GIN aggregation with global attention. For vision models (ResNet-50, ViT-B/16,
Swin-Tiny, ConvNeXtV2-Tiny), graphs were converted to 2D image representations (e.g., adjacency
layouts or distance matrices). Models were initialized with ImageNet-1K weights, classification
heads replaced by MLPs, and inputs resized to 224×224. All dataset splits were generated using
seed 0, with experiments conducted across five random seeds ∈ [0, 1, 2, 3, 4] for robust evaluation.
Models were trained using Adam optimizer (learning rate 5e− 6, weight decay 1e− 4) with batch
size 64 and early stopping. For early stopping, the patience settings are set as: 30 epochs for all GNN
models, and for vision models, 5 epochs on PROTEINS and 15 epochs on all other datasets.

J.2 Training dynamics and confidence

Figures 10–13 present training dynamics across four datasets, showing model differences in conver-
gence and generalization. Figures 14 and 15 display confidence distributions for two representative
datasets, one from the biological domain (PROTEINS) and one from social networks (IMDB-
BINARY), highlighting the contrast between GNNs and vision models in prediction certainty.
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Figure 10: Training dynamics across different architectures on PROTEINS datasets. For each model,
we plot the training loss (blue), training accuracy (red), and validation accuracy (green) over 100
epochs. The shaded areas represent the standard deviation across multiple runs.
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Figure 11: Training dynamics across different architectures on IMDB-BINARY datasets. For each
model, we plot the training loss (blue), training accuracy (red), and validation accuracy (green) over
100 epochs. The shaded areas represent the standard deviation across multiple runs.
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Figure 12: Training dynamics across different architectures on IMDB-MULTI and enzymes datasets.
For each model, we plot the training loss (blue), training accuracy (red), and validation accuracy
(green) over 100 epochs. The shaded areas represent the standard deviation across multiple runs.
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Figure 13: Training dynamics across different architectures on ENZYMES dataset. For each model,
we plot the training loss (blue), training accuracy (red), and validation accuracy (green) over 100
epochs. The shaded areas represent the standard deviation across multiple runs.
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Figure 14: Confidence distribution across different model architectures on the PROTEINS dataset.
The first two rows show results from the training set, while the last two rows present the test set.
Vision models demonstrate a strong tendency toward high-confidence predictions (0.8-1.0) in both
splits, while traditional GNNs typically make lower-confidence predictions. The GPS model, featuring
global message passing, uniquely exhibits high-confidence predictions among GNN variants.

35



0.0 0.2 0.4 0.6 0.8 1.0
Confidence Score

0

50

100

150

200

250

N
um

be
r 

of
 S

am
pl

es Accuracy: 82.38%

Confidence Distribution of gnn_gcn

Correct Predictions (659)
Wrong Predictions (141)

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Score

0

50

100

150

200

250

300

N
um

be
r 

of
 S

am
pl

es Accuracy: 84.25%

Confidence Distribution of gnn_gat

Correct Predictions (674)
Wrong Predictions (126)

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Score

0

100

200

300

400

500

N
um

be
r 

of
 S

am
pl

es Accuracy: 87.12%

Confidence Distribution of gnn_gin

Correct Predictions (697)
Wrong Predictions (103)

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Score

0

50

100

150

200

250

300

350

400

N
um

be
r 

of
 S

am
pl

es Accuracy: 85.38%

Confidence Distribution of gnn_gps

Correct Predictions (683)
Wrong Predictions (117)

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Score

0

100

200

300

400

500

600

700

N
um

be
r 

of
 S

am
pl

es Accuracy: 97.75%

Confidence Distribution of vision_resnet

Correct Predictions (782)
Wrong Predictions (18)

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Score

0

100

200

300

400

500

600

N
um

be
r 

of
 S

am
pl

es Accuracy: 97.12%

Confidence Distribution of vision_convnext

Correct Predictions (777)
Wrong Predictions (23)

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Score

0

50

100

150

200

250

300

350

400

N
um

be
r 

of
 S

am
pl

es Accuracy: 91.38%

Confidence Distribution of vision_vit

Correct Predictions (731)
Wrong Predictions (69)

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Score

0

50

100

150

200

250

300

350

400

N
um

be
r 

of
 S

am
pl

es Accuracy: 94.75%

Confidence Distribution of vision_swin

Correct Predictions (758)
Wrong Predictions (42)

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Score

0

5

10

15

20

25

N
um

be
r 

of
 S

am
pl

es Accuracy: 67.00%

Confidence Distribution of gnn_gcn

Correct Predictions (67)
Wrong Predictions (33)

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Score

0

5

10

15

20

25

N
um

be
r 

of
 S

am
pl

es Accuracy: 66.00%

Confidence Distribution of gnn_gat

Correct Predictions (66)
Wrong Predictions (34)

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Score

0

5

10

15

20

25

30

35

40

N
um

be
r 

of
 S

am
pl

es Accuracy: 68.00%

Confidence Distribution of gnn_gin

Correct Predictions (68)
Wrong Predictions (32)

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Score

0

5

10

15

20

25

N
um

be
r 

of
 S

am
pl

es Accuracy: 62.00%

Confidence Distribution of gnn_gps

Correct Predictions (62)
Wrong Predictions (38)

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Score

0

10

20

30

40

50

N
um

be
r 

of
 S

am
pl

es Accuracy: 76.00%

Confidence Distribution of vision_resnet

Correct Predictions (76)
Wrong Predictions (24)

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Score

0

10

20

30

40

50

N
um

be
r 

of
 S

am
pl

es Accuracy: 70.00%

Confidence Distribution of vision_convnext

Correct Predictions (70)
Wrong Predictions (30)

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Score

0

5

10

15

20

25

30

N
um

be
r 

of
 S

am
pl

es Accuracy: 65.00%

Confidence Distribution of vision_vit

Correct Predictions (65)
Wrong Predictions (35)

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Score

0

5

10

15

20

25

30

35

N
um

be
r 

of
 S

am
pl

es Accuracy: 73.00%

Confidence Distribution of vision_swin

Correct Predictions (73)
Wrong Predictions (27)

Figure 15: Confidence distribution across different model architectures on the IMDB-BINARY
dataset. The first two rows show results from the training set, while the last two rows present the
test set.
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J.3 Case Studies

To understand how different models make decisions in graph classification, we explore interpretability
methods for both GCN and ConvNeXtV2 as examples. For GCN, we used the GNNExplainer to
identify important substructures within input graphs. This approach optimizes masks over edges
to highlight influential connections for classification decisions, with visualizations created using
NetworkX to display node and edge importance. Results across different model depths were compared
side by side. For ConvNeXtV2, we applied a Grad-CAM-based approach by registering hooks on
target layers to extract activation maps and gradients. The resulting class-specific heatmaps were
overlaid on the input images and uniformly displayed to highlight attention differences between
models. Figures 16–19 illustrate additional explanation results for GNNs (via GNNExplainer) and
vision models (via Grad-CAM) in the first three samples in the testing set of four datasets.

To delve deeper into how these models utilize underlying graph structures for prediction, especially
in the presence of known important features, we highlight a specific case study on the ENZYMES
dataset. Amongst the datasets considered in our study, ENZYMES offers a unique opportunity for
this detailed interpretability analysis, as prior work by [12] has already identified and characterized
discriminative pattern for it. This pre-existing knowledge allows us to assess alignment with
established important features. Figure 16 presents this analysis:

GCN 2-Layer GCN 3-Layer GCN 4-Layer

GCN GNN Explainer

Low-level Features Mid-level Features High-level Features
The Grad-CAM Visualization of Vision Models

GCN 2-Layer GCN 3-Layer GCN 4-Layer

GCN GNN Explainer

Low-level Features Mid-level Features High-level Features
The Grad-CAM Visualization of Vision Models

GCN 2-Layer GCN 3-Layer GCN 4-Layer

GCN GNN Explainer

Low-level Features Mid-level Features High-level Features
The Grad-CAM Visualization of Vision Models

Figure 16: Comparison of GNN explainer (left) and Vision Model Grad-CAM (right) on ENZYMES
dataset. The discriminative pattern, defined in [12] as a square with two diagonal connections that
appears in >90% of graphs within one class but <10% in others, is are key feature for classification.
In the top row, where two discriminative patterns exist (one at each end of the graph), while both
approaches identify these patterns, the Vision model’s Grad-CAM shows particularly sharp focus
on them at high-level features, compared to the GNNExplainer’s more uniform attribution. In the
middle row, the Vision model effectively highlights multiple discriminative patterns near cut-vertices
and cut-edges where the graph structure narrows. In contrast, the GNNExplainer shows scattered
attention without emphasizing these critical patterns. The bottom row, containing no pre-defined
discriminative patterns, demonstrates the different attention patterns of both approaches on non-
characteristic structures. These results suggest that Vision models have learned to effectively leverage
these discriminative patterns as reliable shortcuts for classification, while GNNExplainers maintain
relatively uniform attention distributions.
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Figure 17: Case Studies for NCI1 dataset.
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Figure 18: Case Studies for IMDB-BINARY dataset.
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Figure 19: Case Studies for IMDB-MULTI dataset.
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J.4 Heatmap

In this section, we present detailed prediction overlap analysis for all evaluated models across five
benchmark datasets. Figures 20–24 illustrate the prediction overlap patterns between GNN models of
varying depths (1-6 layers) and vision-based models. Consistent with our main findings, the results
show high intra-family similarity among GNNs regardless of layer depth, while maintaining distinctly
different prediction patterns compared to vision models.
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(c) ENZYMES (3 layers) - Correct
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(d) ENZYMES (4 layers) - Correct
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(e) ENZYMES (5 layers) - Correct
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Figure 20: Prediction overlap patterns for ENZYMES dataset with varying GNN layer depths. Top
row shows correct prediction overlap, while bottom row shows error overlap patterns across different
layer configurations.
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Figure 21: Prediction overlap patterns for NCI1 dataset with varying GNN layer depths. Top row
shows correct prediction overlap, while bottom row shows error overlap patterns across different
layer configurations.
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Figure 22: Prediction overlap patterns for PROTEINS dataset with varying GNN layer depths. Top
row shows correct prediction overlap, while bottom row shows error overlap patterns across different
layer configurations.
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(g) IMDB-BINARY (1 layers) - Er-
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(h) IMDB-BINARY (2 layers) - Er-
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(j) IMDB-BINARY (4 layers) - Er-
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(k) IMDB-BINARY (5 layers) - Er-
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Figure 23: Prediction overlap patterns for IMDB-BINARY dataset with varying GNN layer depths.
Top row shows correct prediction overlap, while bottom row shows error overlap patterns across
different layer configurations.

43



ConvNeXtV2 ViT Swin
ResNet

GPS GCN GIN GAT

ConvNeXtV2

ViT

Swin

ResNet

GPS

GCN

GIN

GAT

1.000 0.709 0.812 0.644 0.805 0.762 0.753 0.747

0.709 1.000 0.698 0.620 0.795 0.733 0.744 0.718

0.812 0.698 1.000 0.670 0.793 0.750 0.762 0.714

0.644 0.620 0.670 1.000 0.648 0.724 0.624 0.709

0.805 0.795 0.793 0.648 1.000 0.852 0.887 0.838

0.762 0.733 0.750 0.724 0.852 1.000 0.776 0.909

0.753 0.744 0.762 0.624 0.887 0.776 1.000 0.850

0.747 0.718 0.714 0.709 0.838 0.909 0.850 1.000

Correct Prediction Overlap (Jaccard) - IMDB-MULTI

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(a) IMDB-MULTI (1 layers) - Cor-
rect

ConvNeXtV2 ViT Swin
ResNet

GPS GCN GIN GAT

ConvNeXtV2

ViT

Swin

ResNet

GPS

GCN

GIN

GAT

1.000 0.709 0.812 0.644 0.685 0.735 0.724 0.771

0.709 1.000 0.698 0.620 0.697 0.686 0.716 0.721

0.812 0.698 1.000 0.670 0.693 0.744 0.713 0.738

0.644 0.620 0.670 1.000 0.689 0.718 0.689 0.693

0.685 0.697 0.693 0.689 1.000 0.783 0.878 0.819

0.735 0.686 0.744 0.718 0.783 1.000 0.850 0.908

0.724 0.716 0.713 0.689 0.878 0.850 1.000 0.911

0.771 0.721 0.738 0.693 0.819 0.908 0.911 1.000

Correct Prediction Overlap (Jaccard) - IMDB-MULTI

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(b) IMDB-MULTI (2 layers) - Cor-
rect

ConvNeXtV2 ViT Swin
ResNet

GPS GCN GIN GAT

ConvNeXtV2

ViT

Swin

ResNet

GPS

GCN

GIN

GAT

1.000 0.709 0.812 0.644 0.738 0.690 0.798 0.774

0.709 1.000 0.698 0.620 0.750 0.682 0.747 0.724

0.812 0.698 1.000 0.670 0.790 0.678 0.744 0.741

0.644 0.620 0.670 1.000 0.626 0.693 0.663 0.716

0.738 0.750 0.790 0.626 1.000 0.750 0.841 0.774

0.690 0.682 0.678 0.693 0.750 1.000 0.767 0.899

0.798 0.747 0.744 0.663 0.841 0.767 1.000 0.833

0.774 0.724 0.741 0.716 0.774 0.899 0.833 1.000

Correct Prediction Overlap (Jaccard) - IMDB-MULTI

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(c) IMDB-MULTI (3 layers) - Cor-
rect

ConvNeXtV2 ViT Swin
ResNet

GPS GCN GIN GAT

ConvNeXtV2

ViT

Swin

ResNet

GPS

GCN

GIN

GAT

1.000 0.709 0.812 0.644 0.756 0.780 0.762 0.827

0.709 1.000 0.698 0.620 0.727 0.729 0.713 0.774

0.812 0.698 1.000 0.670 0.744 0.790 0.771 0.771

0.644 0.620 0.670 1.000 0.663 0.663 0.648 0.648

0.756 0.727 0.744 0.663 1.000 0.841 0.843 0.843

0.780 0.729 0.790 0.663 0.841 1.000 0.850 0.897

0.762 0.713 0.771 0.648 0.843 0.850 1.000 0.807

0.827 0.774 0.771 0.648 0.843 0.897 0.807 1.000

Correct Prediction Overlap (Jaccard) - IMDB-MULTI

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(d) IMDB-MULTI (4 layers) - Cor-
rect

ConvNeXtV2 ViT Swin
ResNet

GPS GCN GIN GAT

ConvNeXtV2

ViT

Swin

ResNet

GPS

GCN

GIN

GAT

1.000 0.709 0.812 0.644 0.651 0.774 0.759 0.819

0.709 1.000 0.698 0.620 0.644 0.724 0.729 0.767

0.812 0.698 1.000 0.670 0.659 0.805 0.706 0.807

0.644 0.620 0.670 1.000 0.655 0.659 0.721 0.645

0.651 0.644 0.659 0.655 1.000 0.686 0.797 0.729

0.774 0.724 0.805 0.659 0.686 1.000 0.753 0.901

0.759 0.729 0.706 0.721 0.797 0.753 1.000 0.776

0.819 0.767 0.807 0.645 0.729 0.901 0.776 1.000

Correct Prediction Overlap (Jaccard) - IMDB-MULTI

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(e) IMDB-MULTI (5 layers) - Cor-
rect

ConvNeXtV2 ViT Swin
ResNet

GPS GCN GIN GAT

ConvNeXtV2

ViT

Swin

ResNet

GPS

GCN

GIN

GAT

1.000 0.709 0.812 0.644 0.721 0.780 0.747 0.805

0.709 1.000 0.698 0.620 0.753 0.709 0.663 0.713

0.812 0.698 1.000 0.670 0.690 0.812 0.776 0.771

0.644 0.620 0.670 1.000 0.613 0.682 0.674 0.648

0.721 0.753 0.690 0.613 1.000 0.783 0.711 0.744

0.780 0.709 0.812 0.682 0.783 1.000 0.831 0.873

0.747 0.663 0.776 0.674 0.711 0.831 1.000 0.791

0.805 0.713 0.771 0.648 0.744 0.873 0.791 1.000

Correct Prediction Overlap (Jaccard) - IMDB-MULTI

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(f) IMDB-MULTI (6 layers) - Cor-
rect

ConvNeXtV2ViT Swin
ResNet

GPS GCN GIN GAT

ConvNeXtV2

ViT

Swin

ResNet

GPS

GCN

GIN

GAT

1.000 0.719 0.824 0.652 0.810 0.767 0.756 0.761

0.719 1.000 0.711 0.624 0.798 0.736 0.744 0.730

0.824 0.711 1.000 0.681 0.800 0.759 0.767 0.733

0.652 0.624 0.681 1.000 0.648 0.724 0.620 0.719

0.810 0.798 0.800 0.648 1.000 0.852 0.886 0.843

0.767 0.736 0.759 0.724 0.852 1.000 0.774 0.912

0.756 0.744 0.767 0.620 0.886 0.774 1.000 0.854

0.761 0.730 0.733 0.719 0.843 0.912 0.854 1.000

Error Overlap (Jaccard) - IMDB-MULTI

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(g) IMDB-MULTI (1 layers) - Error

ConvNeXtV2ViT Swin
ResNet

GPS GCN GIN GAT

ConvNeXtV2

ViT

Swin

ResNet

GPS

GCN

GIN

GAT

1.000 0.719 0.824 0.652 0.685 0.753 0.724 0.779

0.719 1.000 0.711 0.624 0.693 0.703 0.713 0.727

0.824 0.711 1.000 0.681 0.697 0.764 0.716 0.750

0.652 0.624 0.681 1.000 0.682 0.730 0.682 0.697

0.685 0.693 0.697 0.682 1.000 0.788 0.872 0.817

0.753 0.703 0.764 0.730 0.788 1.000 0.854 0.914

0.724 0.713 0.716 0.682 0.872 0.854 1.000 0.910

0.779 0.727 0.750 0.697 0.817 0.914 0.910 1.000

Error Overlap (Jaccard) - IMDB-MULTI

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(h) IMDB-MULTI (2 layers) - Error

ConvNeXtV2ViT Swin
ResNet

GPS GCN GIN GAT

ConvNeXtV2

ViT

Swin

ResNet

GPS

GCN

GIN

GAT

1.000 0.719 0.824 0.652 0.750 0.700 0.795 0.776

0.719 1.000 0.711 0.624 0.759 0.689 0.741 0.724

0.824 0.711 1.000 0.681 0.802 0.692 0.744 0.747

0.652 0.624 0.681 1.000 0.634 0.697 0.652 0.713

0.750 0.759 0.802 0.634 1.000 0.759 0.840 0.776

0.700 0.689 0.692 0.697 0.759 1.000 0.762 0.899

0.795 0.741 0.744 0.652 0.840 0.762 1.000 0.825

0.776 0.724 0.747 0.713 0.776 0.899 0.825 1.000

Error Overlap (Jaccard) - IMDB-MULTI

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(i) IMDB-MULTI (3 layers) - Error

ConvNeXtV2ViT Swin
ResNet

GPS GCN GIN GAT

ConvNeXtV2

ViT

Swin

ResNet

GPS

GCN

GIN

GAT

1.000 0.719 0.824 0.652 0.753 0.791 0.767 0.831

0.719 1.000 0.711 0.624 0.721 0.739 0.716 0.776

0.824 0.711 1.000 0.681 0.744 0.802 0.779 0.779

0.652 0.624 0.681 1.000 0.652 0.670 0.648 0.648

0.753 0.721 0.744 0.652 1.000 0.840 0.838 0.838

0.791 0.739 0.802 0.670 0.840 1.000 0.854 0.900

0.767 0.716 0.779 0.648 0.838 0.854 1.000 0.807

0.831 0.776 0.779 0.648 0.838 0.900 0.807 1.000

Error Overlap (Jaccard) - IMDB-MULTI

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(j) IMDB-MULTI (4 layers) - Error

ConvNeXtV2ViT Swin
ResNet

GPS GCN GIN GAT

ConvNeXtV2

ViT

Swin

ResNet

GPS

GCN

GIN

GAT

1.000 0.719 0.824 0.652 0.681 0.776 0.770 0.817

0.719 1.000 0.711 0.624 0.670 0.724 0.739 0.762

0.824 0.711 1.000 0.681 0.691 0.810 0.722 0.807

0.652 0.624 0.681 1.000 0.677 0.656 0.727 0.633

0.681 0.670 0.691 0.677 1.000 0.703 0.816 0.739

0.776 0.724 0.810 0.656 0.703 1.000 0.756 0.896

0.770 0.739 0.722 0.727 0.816 0.756 1.000 0.774

0.817 0.762 0.807 0.633 0.739 0.896 0.774 1.000

Error Overlap (Jaccard) - IMDB-MULTI

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(k) IMDB-MULTI (5 layers) - Error

ConvNeXtV2ViT Swin
ResNet

GPS GCN GIN GAT

ConvNeXtV2

ViT

Swin

ResNet

GPS

GCN

GIN

GAT

1.000 0.719 0.824 0.652 0.727 0.791 0.741 0.810

0.719 1.000 0.711 0.624 0.756 0.719 0.652 0.716

0.824 0.711 1.000 0.681 0.700 0.824 0.774 0.779

0.652 0.624 0.681 1.000 0.613 0.689 0.659 0.648

0.727 0.756 0.700 0.613 1.000 0.788 0.698 0.744

0.791 0.719 0.824 0.689 0.788 1.000 0.827 0.877

0.741 0.652 0.774 0.659 0.698 0.827 1.000 0.780

0.810 0.716 0.779 0.648 0.744 0.877 0.780 1.000

Error Overlap (Jaccard) - IMDB-MULTI

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(l) IMDB-MULTI (6 layers) - Error

Figure 24: Prediction overlap patterns for IMDB-MULTI dataset with varying GNN layer depths.
Top row shows correct prediction overlap, while bottom row shows error overlap patterns across
different layer configurations.

44



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In Section 3 and 4.4, we provide comprehensive experimental evidence and
case studies to support our claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Appendix A, We discuss the limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: In Section E, we provide the full set of assumptions and a complete proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We present the implementation detail in Appendix D and also submit the code
in the supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The code for generating the datasets and running the experiments will be
submitted via the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We state the experimental setup in Section 4.4 and Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All experiments were run multiple times using multiple random seeds, with
the final mean and standard deviation reported.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide sufficient information on the computer resources in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We make sure that the research conducted in the paper conform, in every
respect, with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact on the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will release the code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is used only for writing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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