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Abstract

Even with a plenty amount of normal samples,
anomaly detection has been considered as a chal-
lenging machine learning task due to its one-class
nature, i.e., the lack of anomalous samples in train-
ing time. It is only recently that a few-shot regime
of anomaly detection became feasible in this re-
gard, e.g., with a help from large vision-language
pre-trained models such as CLIP, despite its wide
applicability. In this paper, we explore the poten-
tial of large text-to-image generative models in
performing few-shot anomaly detection. Specif-
ically, recent text-to-image models have shown
unprecedented ability to generalize from few im-
ages to extract their common and unique concepts,
and even encode them into a textual token to “per-
sonalize” the model: so-called textual inversion.
Here, we question whether this personalization is
specific enough to discriminate the given images
from their potential anomalies, which are often,
e.g., open-ended, local, and hard-to-detect. We
observe that the standard textual inversion is not
enough for detecting anomalies accurately, and
thus we propose a simple-yet an effective regular-
ization scheme to enhance its specificity derived
from the zero-shot transferability of CLIP. We
also propose a self-tuning scheme to further op-
timize the performance of our detection pipeline,
leveraging synthetic data generated from the per-
sonalized generative model. Our experiments
show that the proposed inversion scheme could
achieve state-of-the-art results on a wide range of
few-shot anomaly detection benchmarks.

1. Introduction

The ability to identify unusual patterns in images is a natural
capability of human cognition. Even when provided with
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only a small number of normal examples, humans can adapt
to discriminate abnormality from the examples, whereas
this remains as a challenging task in the field of computer vi-
sion. Anomaly detection (AD), where the task is formulated,
faces fundamental challenges due to several reasons. Firstly,
objects and their defects can vary widely in terms of color,
texture, and size across numerous industrial domains: e.g.,
aerospace, automobiles, pharmaceuticals, and electronics.
Besides, some types of anomaly can be fine-grained which
has only little differences between normal and anomalous
data while other can be coarse-grained. Secondly, obtaining
and specifying the expected variations in defects is limited
and costly in real-world situations.

Upon these fundamental challenges, significant efforts have
been made to approach AD: e.g., either in one-class, unsu-
pervised setting (Bergmann et al., 2022; Cohen & Hoshen,
2020; Defard et al., 2021; Li et al., 2021; Ristea et al.,
2022; Roth et al., 2022; Zavrtanik et al., 2021), or in semi-
supervised setting (Zou et al., 2022), to name a few. In-
tuitively, the major technical bottleneck here is to learn
features expressive enough to encode inter-class variability
without knowing anomalous data, while maintaining intra-
class variability induced from normal data. To overcome
this, there have been two representative approaches: (a)
feature-based approaches (Ruff et al., 2018; Yi & Yoon,
2020; Defard et al., 2021; Roth et al., 2022; Cohen &
Hoshen, 2020; Deng & Li, 2022; Gudovskiy et al., 2022)
leverage an external, pre-trained feature extractor, e.g.,on
ImageNet, to retrieve its richer features in modeling AD; and
(b) reconstruction-based approaches (Akcay et al., 2018;
Zavrtanik et al., 2021; Ristea et al., 2022; Baur et al., 2019;
Gong et al., 2019) instead model a generative model to ex-
tract faithful features in the normal data available, in an
attempt to improve the sensitivity of features. With hun-
dreds to thousands of normal images, such approaches have
shown effectiveness to achieve high-enough detection per-
formances, e.g., on existing industrial anomaly detection
benchmarks (Bergmann et al., 2019; Zou et al., 2022).

Anomaly detection with limited data, e.g., with only few
normal images, has been still challenging even until re-
cently. The cost-efficiency of a language-driven prior has
emerged as an effective way to mitigate the challenge, par-
ticularly since CLIP (Radford et al., 2021), a recent large
vision-language model. For example, Jeong et al. (2023)



Few-shot Anomaly Detection via Personalization

Stage2. Anomaly-aware concept learning CZ

*
Stagel. Normal-aware concept learning Cn ’

* " Stable
C = Diffusion

a photo of a flawless c*

a photo of my flawless ¢*

P L

Inputimages

CLIP CLIP CLIP
text image image
encoder encoder encoder

Pseudo-anomalies

Stage3. Self-tuning with synthetic validation set

/

" CLIP
Cn———> text
encoder

PCLIP(CZ‘X7C» T)
® e
CLIP .Pc]__Ip(C:L|X7 C7 T)

C text
encoder

Weighted
average of
concepts

/\

7’

CLIP
image
encoder

\

Stable
L
Diffusion

-

4

Pseudo-anomalies normal

Figure 1. Overview of Anomaly Detection via Personalization (ADP). In Stagel, normal concepts are converted into c,, by guiding the
normal prompt incorporating c;, to be closer to the given images (Section 3.1). In Stage2, anomalous concepts are converted into ¢}, by
additionally distancing pseudo-anomalies to the normal prompt ¢, incorporating (Section 3.2). In Stage3, by utilizing CLIP, the use of c;,
and c}, are further tuned with synthesized pseudo-anomalies (Section 3.3).

have demonstrated state-of-the-art performances in few-shot
AD by incorporating a “zero-shot”, language-driven AD
pipeline from CLIP, e.g., by additionally comparing similar-
ities to words “normal” vs. “damaged” for a given image:
a similar exploration has been made in the context of nov-
elty detection (or so-called out-of-distribution detection) by
Ming et al. (2022).

Although it is evident that language can be a useful prior for
AD, e.g., to clarify the vague concepts of abnormality by
supplying label words (e.g., bottle, capsule, efc.), the current
interface of “hand-crafting” language prompts becomes a
limiting bottleneck as the given AD task gets more specific
to the (few-shot) data: and accordingly as it gets “harder-
to-describe”. In turn, it is observed that the performance
of current language-based AD is highly dependent by the
prompt design, which is heuristic in nature and requires a
careful tuning by humans. For example, Jeong et al. (2023)
indeed assumed the knowledge of class labels as text words
in performing their zero-/few-shot AD.

Contribution. In this paper, we propose a new design
of language-based AD, coined Anomaly Detection via Per-
sonalization (ADP), which leverages model personalization
(Gal et al., 2022; Ruiz et al., 2022; Kumari et al., 2022)
that is recently enabled by large-scale text-to-image gener-
ative models (Rombach et al., 2021; Saharia et al., 2022).
Specifically, recent text-to-image generative models have
shown capabilities to extract detailed concepts shared across
a few given images, and encode them as a fextual token to
compose natural language sentences associated with the gen-
erative model: it can “personalize” the model to generate im-

ages containing the concepts. Here, we focus on exploring
whether this new ability of textual inversion could replace
the current brittleness in crafting few-shot, language-based
AD in practice. We first observe that the current objective
for textual inversion (in the context of generative modeling)
may not be specific enough to perform accurate few-shot
AD. Motivated by this, we propose a novel textual inversion
scheme to improve its specificity, based on a richer guid-
ance induced by CLIP (Radford et al., 2021). We develop a
two-stage inversion scheme designed for general AD: the
former to personalize from normal samples, and the latter
to refine itself based on the personalized model, particularly
leveraging the “synthetic” anomaly samples that the model
can generate. In this way, the inversion can better capture
fine-grained visual semantics which is demanded to perform
an accurate AD. We also propose to re-utilize the anomaly
synthesis scheme for a self-tuning of our AD model, which
is a unique ability to our framework.

With the proposed method, we tackle extreme few-normal-
shot AD, viz., 2 to 16, an under-explored setup due to its
difficulty (Rudolph et al., 2021; Sheynin et al., 2021; Huang
et al., 2022). We summarize our main contributions in what
follows:

* We introduce a novel method to capture unique concepts
of anomalies into the token, which improves few-shot
AD.

 Using the anomaly-aware token, we show that we can ef-
fectively synthesize pseudo-anomalies with pre-trained
text-to-image diffusion model.
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* We propose a simple yet effective self-tuning method
to utilize the tokens in the pre-trained vision-language
model for AD.

* Through an extensive evaluation on MVTec-AD and
VisA, we report new state-of-the-art results on few-shot
AD, e.g., 97.1% on MVTec-AD and 89.7% on VisA
in AUROC in 16-shot AD, notably even without text
descriptions on the object labels as assumed in prior art
(Jeong et al., 2023).

2. Preliminaries
2.1. Problem setup

Anomaly detection (AD) aims to determine the presence of
“abnormality” given an image x € X. We formulate AD
as a binary classification problem X — {0, 1}, where “1”
indicates the presence of abnormality. Due to the lack of
anomalous samples in practice, AD is often assumed to be
one-class, i.e., its training data D := {(z;,0)} | consists
of only normal (or negative) samples. In this work, we fol-
low this one-class protocol, particularly focusing on extreme
few-shot scenarios where the training data only consists of
K = 2 to 16 normal images. It is also a practice to cast AD
as a problem of assigning anomaly score rather than a direct
classification, again due to the high-imbalance in data: the
actual classification in practice is done by thresholding the
score.

To solve this extreme few-shot AD task, we utilize vision-
language foundation models, a contrastive encoder (e.g.,
CLIP (Radford et al., 2021)) and a diffusion model (e.g.,
LDMs (Rombach et al., 2021)), pre-trained on external
datasets. Our approach is widely applicable as the foun-
dation models have shown to be generalizable across vari-
ous downstream tasks and they are publicly available. We
will describe the vision-language contrastive encoder and
diffusion model in Section 2.2 and Section 2.3, respectively.

2.2. Contrastive language image pre-training

Contrastive language image pre-training (CLIP) (Radford
et al., 2021) is a large-scale pre-training method that offers a
joint vision-language representation by training an image en-
coder f(-) and a text encoder ¢(-) using contrastive learning
(Chen et al., 2020; Zhang et al., 2020) with the million-scale
image-text pairs from the web. One attractive ability of
CLIP is zero-shot transfer, especially for image classifica-
tion. To be specific, given a set of labels C = {cy,...,cn},
an image x can be classified by the following probability:

exp (sim (f(x),G(ci)) /7)
S exp (sim (£(x),G(c;)) /)
(1)

PCLIP(Ci|X7 C, T) =

where G(c;) = ﬁ > rer 9(T(c;)), sim(:,-) is the cosine
similarity, 7 > 0 is the temperature hyperparameter, and
T € T is a prompt template attached to a label ¢ such
as “a photo of a [c]”. Note that using multiple tem-
plates, i.e., template ensemble, can improve the zero-shot
classification accuracy (Radford et al., 2021).

2.3. Textual inversion

Textual inversion (Gal et al., 2022) aims to extract the com-
mon concept ¢ of images into a text embedding and use
it for a personalized generation, i.e., to sample from the
distribution p(x|c). To this end, we use a pre-trained text-
to-image latent diffusion model (Rombach et al., 2021),
Proi(X|s), where s is a conditioning text. Given a set of
images {x;} X ,, the textual inversion finds their common
concept c¢* by solving the following optimization problem:

K
c’ = arg méiXZ Z log proi (x:|T'(c)), )

i=1TeT

where T is a set of prompt templates. After textual inversion,
one can generate a new image of the concept c* with a
template T € T, i.e., X ~ peoi (|T(c*)). Gal et al. (2022)
found that the concept is well-optimized with only a few
images, e.g., K = 4. In addition, since the model uses the
CLIP text encoder g for text conditioning, one can use the
concept on the CLIP representation space.

3. Anomaly detection via personalization

In this section, we introduce Anomaly Detection via Person-
alization (ADP), a novel framework for few-shot anomaly
detection utilizing the ground knowledge in vision-language
foundation models. To be specific, ADP finds the concept
that can (i) generate both normal and abnormal images via
textual inversion and also (ii) detect the abnormality via
CLIP zero-shot classification. ADP then performs anomaly
detection using the concept and multi-level image features.

To perform anomaly detection (i.e., 2-way classification)
without label information, we utilize normal and anomalous
state templates, .S,, and S,, respectively, for a concept c,
following Jeong et al. (2023):

Sy (c) := “flawless [c|”, S,(c):= “damaged [c]”.
Given a set of a few normal images {x;} X |, the state tem-
plates S,, and S,, and a set of prompt templates 7 (e.g.,
“a photo of [c,]”), ADP follows the following proce-
dure:

Step 1. Find the normal-aware concept c, by guiding nor-
mal images to be close to the normal state prompts
(Section 3.1).
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Step 2. Find the anomaly-aware concept c, by guiding
pseudo-anomalous images to put distance to the
normal state prompts (Section 3.2).

Step 3. Perform anomaly detection using the concepts, c,
and c}, (Section 3.3).

3.1. Normal-aware concept learning

In normal-aware concept learning, we aim to capture the
visual normal concept S, (c’) from the normal images
{x;}X . To this end, in addition to textual inversion, we
make CLIP embeddings of the images similar with that of
the normal state prompt 7'(S,,(c)), e.g., “a photo of a
flawless [c]”, while dissimilar with that of the anoma-
lous state prompt 7'(S,(c)), e.g., “a rendering of a
damaged [c]”. Formally, the normal-aware concept c,
can be obtained by solving the following optimization prob-
lem:

¢; = argmax T, (c: {x:}15,)

K
— Z Z log peos (xi|T'(c))

i=1TeT

+ OZPCLIP(Sn(C)‘Xia C(c), T) (3

where C(c) = {Snh(c),Sa(c)} is the set of normal and
anomalous labels of the concept ¢ and « is a hyperparameter.
We initialize the concept c as the word “ob ject” which is
applicable to regardless of the domain and dataset.

3.2. Anomaly-aware concept learning

We here aim to further capture the “anomalous” concept
Sa(ck) from anomalous images while maintaining the
normal concept S, (c’) of the normal images {x;}X .
To this end, we first synthesize pseudo-anomalous im-
ages via text-guided image manipulation (Meng et al.,
2021) using the text-to-image diffusion model pyo; (X|s).
We here use a normal image x; as a reference image
and “a photo with damage” or “a photo of an
object with damage” as a conditioning text s. To
give more diversity, the manipulated images are further
augmented with random resizing and cropping. We de-
note {X; } 5:1 as synthesized pseudo-anomalous images (i.e.,
pseudo-anomalies). The examples of pseudo-anomalies are
illustrated in the supplementary.

In addition to normal-aware concept learning, we put dis-
tance between the pseudo-anomalous images {X; }JL:1 and
the normal state prompt S,,(c’). Formally, the anomaly-
aware concept c;, can be obtained by solving the following

optimization problem:

c, = argmax J,(c; {x;}, {X;})

= Jn(c; {xi})

L
—a ) (Pae(Sa(e)|%;,C(), T) =), )

where (-)T := max(-,0), C(c) = {S,(c), Sa(c)}, a and
v are hyperparameters. We initialize the concept c as the
normal-aware concept c;, described in Section 3.1. Since
c; captures high-level visual features of normal images,
initializing the concept with the normal-aware helps learning
fine-grained anomalous features.

3.3. Anomaly detection with learned concepts

We now introduce a simple yet effective detection scheme
using the learned concepts. At a high-level, our scheme first
extracts CLIP text embeddings of all available prompt state
templates with the concepts and then mix them to construct
effective 2-way classification prototypes via self-tuning.
Given a test image, we detect whether it is in-distribution or
not using its CLIP image embedding.

Self-tuning. To utilize both concepts effectively, we mix
the concepts using importance weights obtained by a pseudo-
validation set, which consists of the normal images {x;}%
and new pseudo-anomalous images {x; } f;l synthesized by
conditioning texts, “a photo of a damaged [c}]”
and “a photo of a [ci] with damage”, as de-
scribed in Section 3.2. The importance weight w(c) of each
concept ¢ can be computed by evaluating CLIP zero-shot
classification as follows:

1 K
’U}(C) = ? E PCLIP(Sn(C)|Xi7 C(C), T)
=1

1 & i
+ f; Perp(Sa(c)|x5,C(c), T). (5)

We then compute the weighted average of the CLIP text
embeddings to construct the classification prototype vectors
using the CLIP text encoder g as follows:

1
Ps ‘= =
7|

Z w(ep)-9(T(Ss(cy)))+w(cy) g(T(Ss(cz))) (©6)
w(cy)+w(ey) ’
TeT

Anomaly detection. Given a test image x, our detection
score ADP(x) is formally defined by

exp (sin(f(x).pn)/7)

ADP = .
) exp (sim(f(x).pn)/7) +exp (sin(f(x).pa)/7)

(N
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To further improve detection performance, we utilize visual
features (i.e., feature maps) using the CLIP image encoder
as Jeong et al. (2023). Specifically, we add the feature
similarity score computed by patch-wise spatial feature as-
sociation between the test image x and the given normal
images {x;}X | into our score ADP(x).

4. Experiments

We conduct an extensive evaluation on the proposed method,
ADP, on MVTec-AD (Bergmann et al., 2019) and VisA (Zou
et al., 2022) benckmarks, two popular datasets in AD cap-
turing real-world scenarios of industrial defect detection.
In particular, we mainly evaluate under extreme few-shot
regimes, i.e., by assuming K-shot of normal images for
each task. The detailed experimental setups, e.g., hyperpa-
rameters, preprocessing, are provided in the supplementary.

Implementation details. Throughout our experiments, we
use Stable Diffusion v2-1! as the backbone text-to-image
model, which uses the CLIP text encoder for conditioning:
so that compatible with our framework which utilizes CLIP
as well. We use the OpenCLIP implementation® of CLIP
ViT-H/14 model trained on the LAION-2B English subset
of LAION-5B, following the choice of the Stable Diffusion
v2-1 model we are based on. We use our re-implementation
of WinCLIP (Jeong et al., 2023) for our experiments, which
we have confirmed the reproducibility of the results.

4.1. Results

For each setup, we report two versions of our method: (a)
ADP, the default version introduced in (7) that does not
relying on specific label texts (e.g., “transistor” ) as consid-
ered in WinCLIP+ (Jeong et al., 2023); in addition, we also
report (b) ADP,; which also incorporate the knowledge of
label texts by weight-averaging also the class label ¢ at (6)
as well as ¢ and ¢ using w(¥¢) as the weight. We use Area
Under Receiver Operator Characteristic-curve (AUROC)
as the major evaluation metric. We report our results with
standard deviation across 3 different random seeds.

In Table 1, we report the overall performances of our meth-
ods, “ADP” and “ADP,”, for 2-, 4-, 8- and 16- shots AD
compared to the baseline on MVTec-AD and VisA:* ADP
and ADPy significantly outperform the state-of-the-art re-
sults of WinCLIP+ on both datasets. On both MVTec-AD
and VisA, we observe that our approach of ADP exhibits a
wider performance gap over WinCLIP+ as more shots are
given: specifically, on the 4-shot MVTec-AD, ADP outper-
forms WinCLIP+ by 1.7% in AUROC, while it does by 2.3%

'nttps://github.com/Stability-AI/
stablediffusion

https://github.com/openai/CLIP

3We report the detailed results of Table 1 in the supplementary.

on the 16-shot scenario. Similarly, in the case of VisA, ADP
improves over WinCLIP+ by 3.1% in AUROC on 4-shot,
while it does by 4.7% on the 16-shot setup. Regarding the
performance of ADP, over ADP: although the knowledge
of label texts in ADP, does helpful to improve our results
on low-shot setups, e.g., 4-shot, we observe that ADP gradu-
ally matches the performance with ADP, having with more
shots: in the 16-shot scenario of MVTec-AD, ADP even
shows a consistently better performances over ADP, when
viewed in class-wise, achieving 97.1% in AUROC.

4.2. Ablation study

Comparison with textual inversion. In Table 2, we
compare our proposed concepts with the standard textual
inversion (Gal et al., 2022) in the context of AD. Specif-
ically, we compare our results on 4-shot MVTec-AD and
VisA with an ablation that the steps for concept optimization
are replaced by the standard version of textual inversion (as
reported by “TIT” in Table 2). We examine the results ob-
tained by incorporating only ¢, and c in the text prompts,
as well as by incorporating both concepts ¢, + c;, denoted
as ADP. Overall, we observe that converting only via tex-
tual inversion, e.g., encoding tokens simply through the
reconstruction loss, falls short specifically in few-shot AD.
For example, on the VisA dataset we observe that ADP
improves upon the original textual inversion by 9.2% in
AUROC. These results highlight the suitability of ADP to
effectively capture the concepts related to abnormality into
tokens through an additional guidance via CLIP.

In terms of learned concepts, mixing c;, and c}, via ADP
(Section 3.3) leads to a better performance, confirming the
effectiveness of our self-tuning scheme.6 We observe that
the performance itself of ¢ as an individual concept may
not be significantly better compared to c;,. A clear per-
formance gain could be obtained by combining the two
concepts, however, confirming that c,, and ¢, complement
each other.

Qualitative comparison. Prior studies have proposed syn-
thesizing anomalous images by adding visually irregular
appearances into normal images (Li et al., 2021; Yang et al.,
2022; Zavrtanik et al., 2021). In this paper, we take a dif-
ferent approach which generates pseudo-anomalies using
a pre-trained text-to-image diffusion model (Meng et al.,
2021). Specifically, this is achieved by adding noise to
a given reference image and conditioning the reconstruc-
tion process on text prompts. We investigate two types of
prompts: (1) simple text prompts, such as “a photo with
damage”, (2) prompts incorporating the anomaly-aware con-
cept ¢, such as “a photo of a ¢, with damage”. The results
are given in the supplementary. It demonstrates that the
use of anomaly-aware concept ¢, leads to the generation of
fine-grained anomalies, compared to simple text prompts.
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Table 1. Anomaly detection (AD) performance on MVTec-AD and VisA benchmark on 2-, 4-, 8-, and 16- shots. We report the mean
AUROC (%) and standard deviation over three random seeds for each measurement, which highest AUROC (%) is marked as bold.

2-shot 4-shot 8-shot 16-shot
Data \ Method WinCLIP+ ADP ADP, WinCLIP+ ADP ADP, WinCLIP+ ADP ADP, WinCLIP+ ADP ADP,
MVTec-AD 93.8+10 944112 95.4.400 94.1+07 95.8+11 96.2.408 94.6+0.1 96.8+04  97.0+02 94.80.1 971405 97.0403
V]gA 84.2i(!2 85.7i\)9 86-9i09 84.6i04 87.7i\)3 88.4i\)4 85.0i00 88.6i\)3 89.2i\) 1 85.0i0 1 89.7:&\)9 90.1i\)5

Table 2. Comparison of anomaly detection (AD) with naive textual
inversion and across the use of learned concepts in MVTec-AD and
ViSA dataset for 4-shot. “TI” denotes the naive textual inversion.

Data \ Method  TI ch c. ADP

MVTec-AD 88.6 959 952 96.0

VisA 785 87.1 853 817
5. Related work

Anomaly detection. In the field of anomaly detection,
the focus has been on one-class methods that utilize a large
amount of normal images (Li et al., 2021; Defard et al.,
2021; Cohen & Hoshen, 2020; Yi & Yoon, 2020; Zavrtanik
et al., 2021; Yu et al., 2021). Specifically, in industrial
anomaly detection, which requires to learn unique nominal
features, recent works suggest utilizing pre-trained mod-
els with external image dataset (Cohen & Hoshen, 2020;
Defard et al., 2021). However, these existing approaches
encounter limitations when applied to specific applications
due to the challenges posed by the full-normal-shot setup
in MVTec-AD benchmark (Bergmann et al., 2019). Re-
cent studies (Rudolph et al., 2021; Sheynin et al., 2021)
have investigated few-shot setups by employing augmen-
tation techniques to expand the small support set, leading
to enhanced modeling of normality. Another approach, Re-
gAD (Huang et al., 2022), introduces the concept of model
re-using which pre-trains an object-agnostic registration net-
work with diverse images to establish normality for unseen
objects. Additionally, utilizing pre-trained vision-language
model to extract the prior knowledge has shown remarkable
improvement in few-normal-shot anomaly detection (Jeong
et al., 2023). The few-shot setups in anomaly detection is
still under-explored and has room for improvement.

Text-to-image diffusion models. At a high level, diffu-
sion models (Ho et al., 2020; Song et al., 2020), class of
generative models, learn the target distribution pg,, (x) by
learning a gradual denoising process from Gaussian prior
distribution to reach pg,, (x). The field of diffusion models
has seen a wide range of applications, including text-to-
image generation. Text-to-image diffusion models are able
to generate images conditioned by text prompts (Ramesh
et al., 2022; Saharia et al., 2022; Rombach et al., 2021),
which show promising result in image synthesis. Among
them, one notable approach is Stable Diffusion (Rombach
et al., 2021), which is a popular variant of latent diffusion

models (LDMs) (Rombach et al., 2021). This is trained on
extremely large-scale data, have demonstrated remarkable
generalization ability. To utilize the strong generalizability
in synthesizing images, we incorporate Stable Diffusion to
address anomaly detection task.

Personalization of text-to-image models. With the out-
standing scalability of pre-trained text-to-image diffusion
models, recent works make great efforts to generate specific
instances like personal animals or rare categories. To inject
the new concept to the pre-trained models while preserv-
ing the previous knowledge, recent works suggest several
approaches. This includes fine-tuning only subset of the pa-
rameters (Kumari et al., 2022), fine-tuning with the method
to preserve prior knowledge (Ruiz et al., 2022) and introduc-
ing and optimizing a word vector for the new concept (Gal
et al., 2022). In this way, models excel at integrating new
information into their domain without forgetting the prior or
overfitting to a small subset of training images. Motivated
from this, we suggest utilizing model personalization in
identifying anomalies, which enables addressing few-shot
setting in anomaly detection task.

6. Conclusion

In this paper, we propose Anomaly Detection via Personal-
ization (ADP), a novel approach to address the challenging
problem of few-shot anomaly detection based on recent
text-to-image diffusion models. We show that aligning state
prompts with image features effectively guides the model to
learn concepts related to normal and anomalous instances.
Additionally, we introduce synthesizing pseudo-anomalies
using a personalized generative model based on the learned
concepts. By incorporating these pseudo-anomalies, ADP
further optimizes the use of concepts with simple self-tuning
scheme. ADP could outperform state-of-the-arts in recent
few-shot benchmarks. Moreover, ADP can be applied in sce-
narios where text labels are scarce, without experiencing a
significant drop compared to using the label. We believe our
work could shed a light in exploring model personalization
for downstream tasks beyond generative modeling.
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