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Abstract

This paper introduces a general method for the exploration of equivalence classes in1

the input space of Transformer models. The proposed approach is based on sound2

mathematical theory which describes the internal layers of a Transformer architec-3

ture as sequential deformations of the input manifold. Using eigendecomposition4

of the pullback of the distance metric defined on the output space through the5

Jacobian of the model, we are able to reconstruct equivalence classes in the input6

space and navigate across them. We illustrate how this method can be used as a7

powerful tool for investigating how a Transformer sees the input space, facilitating8

local and task-agnostic explainability in Computer Vision and Natural Language9

Processing tasks.10

1 Introduction11

In this paper, we propose a method for exploring the input space of Transformer models by identifying12

equivalence classes with respect to their predictions. We define an equivalence class of a Transformer13

model as the set of vectors in the embedding space whose outcomes under the Transformer process14

are the same. The study of the input manifold on which the inverse image of models lies provides15

insights for both explainability and sensitivity analyses. Existing methods aiming at the exploration16

of the input space of Deep Neural Networks and Transformers either rely on perturbations of input17

data using heuristic or gradient-based criteria [16, 22, 17, 14], or they analyze specific properties of18

the embedding space [5].19

Our approach is based on sound mathematical theory which describes the internal layers of a20

Transformer architecture as sequential deformations of the input manifold. Using eigendecomposition21

of the pullback of the distance metric defined on the output space through the Jacobian of the model,22

we are able to reconstruct equivalence classes in the input space and navigate across them. In the23

XAI scenario, our framework can facilitate local and task-agnostic explainability methods applicable24

to Computer Vision (CV) and Natural Language Processing (NLP) tasks, among others.25

In Section 2, we summarise the preliminaries of the mathematical foundations of our approach.26

In Section 3, we present our method for the exploration of equivalence classes in the input of the27

Transformer models. In Section 4, we perform a preliminary investigation of some applicability28

options of our method on textual and visual data. In Section 5, we discuss the relevant literature about29

embedding space exploration and feature importance. Finally, in Section 6, we give our concluding30

remarks1.31

1The code to reproduce our experiments can be found in the Supplementary Materials.
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2 Preliminaries32

In this Section, we provide the theoretical foundation of the proposed approach, namely the Geometric33

Deep Learning framework based on Riemannian Geometry [2].34

A neural network is considered as a sequence of maps, the layers of the network, between manifolds,35

and the latter are the spaces where the input and the outputs of the layers belong to.36

Definition 1 (Neural Network). A neural network is a sequence of C1 maps Λi between manifolds of37

the form:38

M0 M1 M2 · · · Mn−1 Mn
Λ1 Λ2 Λ4 Λn−1 Λn (1)

We call M0 the input manifold and Mn the output manifold. All the other manifolds of the sequence39

are called representation manifolds. The maps Λi are the layers of the neural network. We denote40

with N(i) = Λn ◦ · · · ◦ Λi : Mi → Mn the mapping from the i-th representation layer to the output41

layer.42

As an example, consider a shallow network with just one layer, the composition of a linear operator43

A ·+b with a sigmoid function σ, where A ∈ Rm×n and b ∈ Rm: then, the input manifold M0 and44

the output manifold M1 shall be Rn and Rm, respectively, and the map Λ1(·) = σ(A · +b). We45

generalize this observation into the following definition.46

Definition 2 (Smooth layer). A map Λi : Mi−1 → Mi is called a smooth layer if it is the restriction47

to Mi−1 of a function Λ
(i)
(x) : Rdi−1 → Rdi of the form48

Λ
(i)

α (x) = F (i)
α

∑
β

A
(i)
αβxβ + b(i)α

 (2)

for i = 1, · · · , n, x ∈ Rdi , b(i) ∈ Rdi and A(i) ∈ Rdi×di−1 , with F (i) : Rdi → Rdi a diffeomor-49

phism.50

Remark 1. Transformers implicitly apply for this framework, since their modules are smooth51

functions, such as fully connected layers, GeLU and sigmoid activations.52

Our aim is to transport the geometric information on the data lying in the output manifold to the53

input manifold: this allows us to obtain insight on how the network "sees" the input space, how it54

manipulates it for reaching its final conclusion. For fulfilling this objective, we need several tools55

from differential geometry. The first key ingredient is the notion of singular Riemannian metric,56

which has the intuitive meaning of a degenerate scalar product which changes point to point.57

Definition 3 (Singular Riemannian metric). Let M = Rn or an open subset of Rn. A singular58

Riemannian metric g over M is a map g : M → Bil(Rn × Rn) that associates to each point p a59

positive semidefinite symmetric bilinear form gp : Rn × Rn → R in a smooth way.60

Without loss of generality, we can assume the following hypotheses on the sequence (1): i) The61

manifolds Mi are open and path-connected sets of dimension dimMi = di. ii) The maps Λi are C162

submersions. iii) Λi(Mi−1) = Mi for every i = 1, · · · , n. iv) The manifold Mn is equipped with63

the structure of Riemannian manifold, with metric g(n). Definition 3 naturally leads to the definition64

of the pseudolength and of energy of a curve.65

Definition 4 (Pseudolength and energy of a curve). Let γ : [a, b] → Rn a curve defined on the66

interval [a, b] ⊂ R and ∥v∥p =
√
gp(v, v) the pseudo–norm induced by the pseudo–metric gp at67

point p. Then the pseudolength of γ and its energy are defined as68

Pl(γ) =

∫ b

a

∥γ̇(s)∥γ(s)ds =
∫ b

a

√
gγ(s)(γ̇(s), γ̇(s))ds, E(γ) =

∫ b

a

∥γ̇(s)∥2γ(s)ds (3)

The notion of pseudolength leads naturally to define the distance between two points.69

Definition 5 (Pseudodistance). Let x, y ∈ M = Rn. The pseudodistance between x and y is then70

Pd(x, y) = inf{Pl(γ) | γ : [0, 1] → M, γ ∈ C1([0, 1]), γ(0) = x, γ(1) = y}. (4)
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One can observe that endowing the space Rn with a singular Riemannian metric leads to have71

non trivial curves whose length is zero. A straightforward consequence is that there are distinct72

points whose pseudodistance is therefore zero: a natural equivalence relation arises, i.e. x ∼ y ⇔73

Pd(x, y) = 0, obtaining thus a metric space (Rn/ ∼, Pd).74

The second crucial tool is the notion of pullback of a function. Let f be a function from Rp to Rq,75

and fix the coordinate systems x = (x1, . . . , xp) and y = (y1, . . . , yq) on Rp and on Rq , respectively.76

Moreover, we endow Rq with the standard Euclidean metric g, whose associated matrix is the identity.77

The space Rp can be equipped with the pullback metric f∗g whose representation matrix reads as78

(f∗g)ij =

q∑
h,k=1

(
∂fh
∂xi

)
ghk

(
∂fk
∂xj

)
. (5)

The sequence (1) shows that a neural network can be considered simply as a function, a composition79

of maps: hence, taking f = Λn ◦ Λn−1 ◦ · · · ◦ Λ1 and supposing that M0 = Rp,Mn = Rq, the80

generalization of (5) applied to (1) provides with the pullback of a generic neural network.81

Hereafter, we consider in (1) the case Mn = Rq, equipped with the trivial metric g(n) = Iq, i.e.,82

the identity. Each manifold Mi of the sequence (1) is equipped with a Riemannian singular metric,83

denoted with g(i), obtained via the pullback of N(i). The pseudolength of a curve γ on the i-th84

manifold, namely Pli(γ), is computed via the relative metric g(i) via (3).85

2.1 General results86

We depict hereafter the theoretical bases of our approach. We denote with Ni the submap Λi◦· · ·◦Λn :87

Mi → Mn, and with N ≡ N0 the map describing the action of the complete network. The starting88

point is to consider the pair (Mi, Pdi): this is a pseudometric space, which can be turned into a89

full-fledged metric space Mi/ ∼i by the metric identification x ∼i y ⇔ Pdi(x, y) = 0. The first90

result states that the length of a curve on the i-th manifold is preserved among the mapping on the91

subsequent manifolds.92

Proposition 1. Let γ : [0, 1] → Mi be a piecewise C1 curve. Let k ∈ {i, i+ 1, · · · , n} and consider93

the curve γk = Λk ◦ · · · ◦ Λi ◦ γ on Mk. Then Pli(γ) = Plk(γk).94

In particular this is true when k = n, i.e., the length of a curve is preserved in the last manifold. This95

result leads naturally to claim that if two points are in the same class of equivalence, then they are96

mapped into the same point under the action of the neural network.97

Proposition 2. If two points p, q ∈ Mi are in the same class of equivalence, then Ni(p) = Ni(q).98

The next step is to prove that the sets Mi/ ∼i are actually smooth manifolds: to this aim, we introduce99

another equivalence relation: x ∼Ni
y if and only if there exists a piecewise γ : [0, 1] → Mi such100

that γ(0) = x, γ(1) = y and Ni ◦ γ(s) = Ni(x) ∀s ∈ [0, 1]. The introduction of this equivalence101

relation allows us to easily state the following proposition.102

Proposition 3. Let x, y ∈ Mi, then x ∼i y if and only if x ∼Ni
y.103

The following corollary contains the natural consequences of the previous result; the second point of104

the claim below is the counterpart of Proposition 2.105

Corollary 1. Under the hypothesis of Proposition 3, one has that Mi/∼i = Mi/∼Ni+1
. Moreover,106

if two points p, q ∈ Mi are connected by a C1 curve γ : [0, 1] → Mi satisfying Ni(p) = Ni ◦ γ(s)107

for every s ∈ [0, 1], then they lie in the same class of equivalence.108

Making use of the Godement’s criterion, we are now able to prove that the set Mi/ ∼i is a smooth109

manifold, together with its dimension.110

Proposition 4.
Mi

∼i
is a smooth manifold of dimension dim(N (M0)).111

This last achievement provides practical insights about the projection πi on the quotient space, that112

consists the building block of the algorithms used for recovering and exploring the equivalence113

classes of a neural network.114
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Proposition 5. πi : Mi → Mi/ ∼i is a smooth fiber bundle, with Ker(dπi) = VMi, which is115

therefore an integrable distribution. VMi is the vertical bundle of Mi. Every class of equivalence116

[p] is a path-connected submanifold of Mi and coincide with the fiber of the bundle over the point117

p ∈ Mi.118

3 Methodology119

The results depicted in Section 2.1 provide powerful tools for investigating how a neural network120

sees the input space starting from a point x. In particular we point out the following remarks: i) If121

two points x, y belonging to the input manifold M0 are are such that x ∼0 y, then N (x) = N (y); ii)122

given a point p ∈ Mn, the counterimage N−1(p) is a smooth manifold, whose connected components123

are classes of equivalences in M0 with respect to ∼0. A necessary condition for two points x, y ∈ M0124

to be in the same class of equivalence is that N (x) = N (y); iii) any class of equivalence [x], x ∈ M0,125

is a maximal integral submanifold of VM0. The above observations directly provide with a strategy126

to build up the equivalence class of an input point x ∈ M0. Proposition 5 tells us that VM0 is an127

integrable distribution, with dimension equal to the dimension of the kernel of g(0): we can hence find128

dim(Ker(g(0))) vector fields which are a base for the tangent space of M0. This means that we can129

compute the eigenvalue decomposition of g(0)x and consider the L linearly independent eigenvectors,130

namely {vl}l=1,...,L, associated to the null eigenvalue: these eigenvectors depend smoothly on the131

point, a fact that is not trivial when the matrix associated to the metric depends on several parameters132

[15]. We can build then all the null curves by randomly selecting one eigenvector ṽ ∈ {vl} and then133

reconstruct the curve along the direction ṽ from the starting point x. From a practical point of view,134

one is led to solve the Cauchy problem, a first order differential equation, with γ̇ = ṽ and initial135

condition γ(0) = x.136

3.1 Input Space Exploration137

This whole procedure is coded in the Singular Metric Equivalence Class (SiMEC) and the Singular138

Metric Exploration (SiMExp) algorithms, whose general schemes are depicted in Algorithms 1 and 2.139

SiMEC reconstructs the class of equivalence of the input via the exploration of the input space by140

randomly selecting one of the eigenvectors related to the zero eigenvalue. On the opposite, in SiMExp,141

in order to move from a class of equivalence to another we consider the eigenvectors relative to the142

nonzero eigenvalues. This requires the slight difference in lines 5 to 7 between Algorithm 1 and143

Algorithm 2.144

Algorithm 1 The Singular Metric Equivalence Class
(SiMEC) algorithm.

1: Set the networkN ; choose the maximum number
of iterations. Choose the input p0.

2: for k = 0, 1, . . . ,K − 1 do
3: Compute gnN (pk)

4: Compute the pullback metric g0pk
5: Diagonalize g0pk and find the eigenvectors
{vl}l associated to the zero eigenvalue

6: Randomly select ṽ ∈ {vl}l
7: δ = 1/

√
max(eigenvalues of g0pk )

8: pk+1 ← pk + δṽ
9: end for

10: Optionally: store {pk}k=0,...,K for optimizing
future computations

11: Project pk to the nearest feasible region

Algorithm 2 The Singular Metric Exploration (SiM-
Exp) algorithm.

1: Set the networkN ; choose the maximum number
of iterations. Choose the input p0.

2: for k = 0, 1, . . . ,K − 1 do
3: Compute gnN (pk)

4: Compute the pullback metric g0pk
5: Diagonalize g0pk and find the eigenvectors
{wl}l associated to the non-zero eigenvalue

6: Randomly select w̃ ∈ {wl}l
7: δ = 2/

√
max(eigenvalues of g0pk )

8: pk+1 ← pk + δw̃
9: end for

10: Optionally: store {pk}k=0,...,K for optimizing
future computations

11: Project pk to the nearest feasible region

145

There are some remarks to point out. From a numerical point of view, the diagonalization of the146

pullback may lead to have even negative eigenvalues: hence one may use the notion of energy of147

a curve, related to the pseudolength. The update rule for the new point (line 8) amounts to solve148

the differential problem via the Euler method: for a reliable solution, we suggest to choose a small149

step-length δ. On the other hand, if the value of δ is too small more iterations are needed to move150
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away from the starting point sensibly. Therefore there is a trade-off between the reliability of the151

solution and the exploration pace. The proof of the well-posedness theorem for Cauchy problems,152

cf. [18, Theorem 2.1], yields some insights, suggesting to set δ equal to the inverse of the Lipschitz153

constant of the map N – which in practice we can estimate with the inverse of the square root of the154

largest eigenvalue λM of the pullback metric g0pk
. This is our default choice for Algorithm 1. We also155

note that Algorithm 1 is more sensitive to the choice of the parameter δ compared to Algorithm 2.156

To build points in the same equivalence class Algorithm 1 needs to follow a null curve closely with157

as little approximations as possible, namely with a small δ. In contrast Algorithm 2, whose goal is158

to change the equivalence class from one iteration to the next, does not have the same problem and159

larger δ are allowed. Out default choice is therefore to set δ = 2λ
−1/2
M for Algorithm 2. As for the160

computational complexity of the two algorithms, the most demanding step is the computation of the161

eigenvalues and eigenvectors, which is O(n3), with n the dimension of the square matrix g0pk
[20].162

Since all the other operations are either O(n) or O(n2), we conclude that the complexity of both163

Algorithms 1 and 2 is O(n3).164

3.2 Interpretability165

Algorithms 1 and 2 allow for the exploration of the equivalence classes in the input space of a Trans-166

former model. However, the points explored by these algorithms may not be directly interpretable167

by a human perspective. For instance, an image or a piece of text may need to be decoded to be168

“readable” by a human observer. Furthermore, we present an interpretation of the eigenvalues of the169

pullback metric which allows us to define a feature importance metric. We present two interpretability170

methods for Transformers based on input space exploration. Both methods are then demonstrated on171

a Vision Transformer (ViT) trained for digit classification [8], and two BERT models, one trained for172

hate speech classification and the other trained for MLM [7, 19].173

Algorithm 3 Feature Importance Analysis Using Pull-
back Metric g0xe

1: Inputs:
2: Transformer model T with: Tokenizer tT , Em-

bedding layer eT , Intermediate layers lT
3: Input data x
4: Tokenize input x to obtain tokens xt = tT (x)
5: Compute embeddings xe = eT (x

t)
6: Compute intermediate representations gnlT (xe)

7: Calculate the pullback metric g0xe

8: Diagonalize g0xe to extract eigenvalues
9: Identify the maximum eigenvalue for each embed-

ding, indicating its importance
10: Output: Heatmap of embedding importance based

on the eigenvalues

Algorithm 4 Exploration of Embedding Space in
Transformers
1: Inputs:
2: Transformer model T with: Tokenizer tT , Em-

bedding layer eT , Intermediate layers lT
3: Input data x (image or text)
4: Retrieve segments xt = tT (x).
5: Choose segments P = {p|p ∈ xt} for updates;

keep others unchanged.
6: Compute embeddings xe = eT (x

t).
7: Apply SiMEC or SiMExp on xe, updating embed-

dings for segments in P .
8: Outputs: Modified input embedding, one for each

SiMEC/SiMExp iteration.

174

Feature importance. Consider a Transformer model T whose architecture includes a tokenizer tT175

(or patcher for images) that segments the input so that each segment can be converted into a continuous176

representation by an embedding layer eT . This results in a matrix of dimensions ns × h, where ns177

represents the number of segments, and h denotes the hidden size of the model’s embeddings. The178

eigenvalues of the pullback metric can be used to deduce the importance of each embedding and, by179

extension, the significance of the segments they represent, with respect to the final prediction. The180

process for determining the importance of textual tokens or image patches is outlined in Algorithm 3.181

The appearance of the resulting heatmaps varies according to the type of input used. An example182

of experiments with ViT on the MNIST dataset [12] is shown in Figure 1 that depicts heatmaps for183

two MNIST instances. Figure 2, on the left, illustrates two experiment using Algorithm 3 on both a184

BERT model for hate speech detection and a BERT model for MLM.185

Interpretation of input space exploration. Using SiMEC and SiMExp to explore the embedding186

space reveals how Transformer models perceive equivalence among different data points. Specifically,187

these methodologies facilitate the sequential acquisition of embedding matrices p0 . . . pK at each188

iteration, as detailed in Algorithms 1 and 2. Algorithm 4 implements a practical application of the189
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Figure 1: Example output from Algorithm 3 applied to digit classification. These two instances are
predicted as 3 (left) and 4 (right). The brightness of the color indicates the eigenvalue’s magnitude.
The brighter the color, the more sensitive the patch. This indicates that changes in the values of these
sensitive patches are likely to have a greater impact on the prediction probabilities. Each patch in the
heatmap corresponds to a 2× 2 square pixel.

Figure 2: Example outputs from Algorithm 3. The darker the color, the higher the token’s eigenvalue.
Left: The sentence analysed is classified as “offensive” by the BERT for hate speech detection, with
significant contributions from tokens [CLS], politicians, corrupt, and ##eit (part of the word
deceitful). Right: Example instance processed by a BERT model for masked language modeling.
[MASK] is predicted as “ham”, with the most influential tokens being pizza and cheese.

SiMEC/SiMExp approach with Transformer models. A key feature of this method is its ability190

to selectively update specific tokens (for text inputs) or patches (for image inputs) during each191

iteration. This selective updating allows us to explore targeted modifications that prompt the model192

to either categorize different inputs as the same class or recognize them as distinct. Unlike traditional193

approaches where modifications are predetermined, this method lets the model itself guide us to194

understand which data points belong to specific equivalence classes. To interpret embeddings resulted195

from the exploration process, they must be mapped back into a human-understandable form, such as196

text or images. The interpretation of an embedding vector depends on the operations performed by197

the Transformer’s embedding module eT . If eT consists only of invertible operations, it is feasible to198

construct a layer that performs the inverse operation relative to eT . The output can then be visualized199

and directly interpreted by humans, allowing for a comparison with the original input to discern200

how differences in embeddings reflect differences in their representations (e.g., text, images). If the201

operations in eT are non-invertible, a trained decoder is required to reconstruct an interpretable output202

from each embedding matrix p0 . . . pK . When using a BERT model, it is feasible to utilize layers203

that are specialized for the masked language modeling (MLM) task to map input embeddings back to204

tokens. This approach is effective whether the BERT model in question is specifically designed for205

MLM or for sentence classification. In the case of sentence classification models, it is necessary to206

select a corresponding MLM BERT model that shares the same internal architecture, including the207

number of layers and embedding size.208

Algorithm 5 depicts the process of interpreting Algorithm 4 outputs for both ViT and BERT experi-209

ments. After initializing the decoder according to the model type, the embeddings p0 . . . pK need to210

be constrained to a feasible region. This region is defined by the distribution of embeddings derived211

from the original input instances. Next, the embeddings are decoded, and the selected segments212

for exploration are extracted. These segments are then used to replace the corresponding parts of213

the original input instance. Figure 3 depicts an example outcome of Algorithm 5 applied on a ViT214

exploration experiment. Given that the interpretation process includes both a capping step and a215

decoding step (lines 10 and 11 of Algorithm 5), it’s important to note that there isn’t a direct 1:1216

correspondence between each iteration’s update and the interpretation outcomes. Our primary focus217

is on exploring the input embedding space, rather than the input image or input sentence spaces.218

For further investigation, we provide a detailed discussion on considering interpretation outputs as219

alternative prompts in Section 4.220
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Algorithm 5 Interpretation for Exploration results for ViT and BERT models.
1: Inputs:
2: Transformer model T with: Tokenizer tT , Embedding layer eT , Intermediate layers lT
3: Modified embeddings p0 . . . pK resulted from Algorithm 4 applied on an input x
4: P = {p|p ∈ xt} indices of updated segments
5: If T is ViT:
6: Initialize decoder d with weights from eT .
7: If T is BERT:
8: Initialize decoder with intermediate and final layers of a BERT for MLM task.
9: Compute embeddings distributions for original input data

10: Use the original embeddings distributions to cap p0 . . . pK
11: Decode modified embeddings p0 . . . pK using d to generate the corresponding images/sentences X ′ =

x′
0 . . . x

′
K .

12: For each x′ ∈ X ′: replace segments relative to indices P in x with those in x′.
13: Outputs:
14: Modified input images/sentences, one for each SiMEC/SiMExp iteration.

Figure 3: Example of SiMEC and SiMExp output interpretation for ViT digit classification. Left:
Original MNIST image of an “8”. Center: Interpretation of a p1000 from a SiMEC experiment, where
p1000 is predicted as “8”. Right: Interpretation of a p1000 from a SiMExp experiment, where p1000 is
predicted as “4”. All patches are subject to SiMEC and SiMExp updates.

4 Experiments221

Experiments are conducted on textual and visual data. We aim to perform a preliminary investigation222

of 3 features of our approach: (i) how the class probability changes on the decoded output of223

SiMEC/SiMExp, (ii) what is the trade-off between the quantity and the quality of the output, and (iii)224

how our method can be used to extract feature importance-based explanations.225

In the textual case, we experiment with hate speech classification datasets: we use HateXplain2 [13],226

which provides a ground truth for feature importance, plus a sample of 100 hate speech sentences227

generated by prompting ChatGPT3, which serve purposes (i) and (ii). In the visual case, we perform228

experiments on MNIST [12] dataset.229

Using interpretation outputs as alternative prompts An interesting investigation is to determine230

if our interpretation algorithm (Algorithm 5) can generate alternative prompts that stay in the same231

equivalence class as the original input data or move to a different one, based on SiMEC and SiMExp232

explorations. We test how the probability assigned to the original equivalence class by the Transformer233

model changes as the SiMEC and SiMExp algorithms explore the input embedding manifold.234

For BERT experiments we generate prompts to inspect the probability distribution over the vocabulary235

for tokens updated by Algorithms 1 and 2. We decode the updated p0 . . . pK using Algorithm 5,236

focusing on tokens updated through the iterations. For each of these decoded tokens, we extract237

the top-5 scores to obtain 5 alternative tokens to replace the original ones, creating 5 alternate238

prompts. We then extract the prediction i∗ = argmaxi yi for the original sentence, which represents239

the output whose equivalence class we aim to explore. Finally, we classify the new prompts,240

obtaining the corresponding predictions Y = y(0) . . .y(K), where each y(k) ∈ RN , N being241

the number of prediction classes. We visualize the prediction trend for the i∗th value in every242

y(0) . . .y(K) categorizing the images into two subsets: those that lead to a change in prediction243

Yc = {y(k) ∈ Y | argmaxi y
(k)
i ̸= i∗} and those that don’t Ys = {yi ∈ Y | argmaxi y

(k)
i = i∗}.244

2MIT License
3Used prompts are included in the Supplementary Materials.
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Figure 4: Analysis involving results SiMEC and SiMExp applied to BERT for hate speech detection.
Left: Prediction values for i∗ for each y ∈ Yc. Right: Prediction values for y ∈ Ys.

Sentence classification experiments4 involved 1000 iterations from both SiMEC and SiMExp, applied245

to a subset of 8 sentences from the ChatGPT hate speech dataset. The plot on the left side of Figure 4246

illustrates that, as the original embeddings are increasingly modified, SiMExp tends to produce247

alternatives with lower prediction values for i∗ compared to SiMEC. Thus, even if predictions change248

in SiMEC experiments, the equivalence class prediction value remains approximately constant and249

higher than in SiMExp. Considering the plot on the right side of Figure 4, SiMExp identifies prompts250

that lower the prediction value for i∗. ViT and MLM experiments are detailed in the Supplementary251

Materials.252

Input space exploration We measure the time required to explore the input space of a ViT with253

the SiMEC algorithm and compare it with a perturbation-based method. The perturbation-based254

method mimics a trial-and-error approach as it takes an input image and, at each iteration, perturbs255

it by a semi-random vector vt+1 = atvt + ηϵ, where at = 1 if yt = yt−1, at = −1 otherwise, ϵ is256

an orthogonal random vector from a standard normal distribution and η is the step length. With the257

perturbation, we obtain a new image, then check whether the model yields the same label for the258

new image. The perturbation vector is re-initialized at random from a normal distribution 20% of the259

times to allow for exploration. We construct this method to have a direct comparison with ours in the260

absence of a consolidated literature about the task.261

We train a ViT model having 4 layers and 4 heads per layer on the MNIST dataset5. The SiMEC262

algorithm is run for 1000 iterations, so that it can generate 1000 examples starting from a single263

image. In a sample of 100 images, the average time is approximately 339 seconds.6 In the same264

time, the perturbation-based algorithm can produce up to 36000 images. However, we notice that265

the perturbation-based algorithm ends up producing monochrome (pixel color has zero variance) or266

totally noisy images, which provide little information about the behavior of the model. Excluding267

only the images with low color variance (< 0.01), we are left, on average, with 19 images (standard268

deviation 13.9). SiMEC, in contrast, doesn’t present this behavior, as all 1000 images have high269

enough intensity variance and are thus useful for explainability purposes.270

As BERT has many more parameters with respect to our ViT model, processing textual data takes271

longer. Specifically, in a sample of 16 sentences, the average time needed to run 1000 iterations on a272

sentence is 7089 seconds, taking into account both MLM and classification experiments.273

Feature importance-based explanations We compare our method against Attention Rollout274

(AR) [1] and the Relevancy method proposed by Chefer et al. [6]. In the textual case, we provide a275

quantitative evaluation using the HateXplain dataset, which contains 20147 sentences (of which 1924276

in the test set) annotated with normal, offensive and hate speech labels as well as the positions of277

words that support the label decision. We then measure the cosine similarity between the importance278

assigned by each method to each word in a sentence and the ground truth. Notice that, since the279

4Model used: huggingface.co/ctoraman/hate-speech-bert
5Using Adam optimizer, the model achieved the highest validation accuracy (96.25%) in 20 epochs.
6All experiments are based on the current PyTorch implementation of the algorithms and run on a Ubuntu

20.04 machine endowed with one NVIDIA A100 GPU and CUDA 12.4.
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dataset contains multiple annotations, the ground truth y for each word w is obtained as the average280

of the binary labels assigned by each annotator, and therefore y(w) ∈ [0; 1]. We also normalize all281

scores in [0; 1] so to have them on the same scale. The average similarity achieved by our method is282

0.707 (standard deviation σ = 0.302), against 0.7 (σ = 0.315) for Relevancy and 0.583 (σ = 0.318) for283

AR. This proves our method to be more effective in finding the most sensitive tokens for classification.284

We provide an example on image classification in the Supplementary Materials.285

5 Related work286

Our work relates to embedding space exploration literature, and has at least one collateral applications287

in the XAI domain, namely producing feature importance-based explanations.288

Embedding space exploration. Works dealing with embedding space exploration mostly focus289

on the study of specific properties of the embedding space of Transformers, especially in NLP. For290

instance, Cai et al. [5] challenge the idea that the embedding space is inherently anisotropic [10]291

discovering local isotropy, and find low-dimensional manifold structures in the embedding space292

of GPT and BERT. Biś et al. [3] argue that the anisotropy of the embedding space derives from293

embeddings shifting in common directions during training. In the field of CV, Vilas et al. [21] map294

internal representations of a ViT onto the output class manifold, enabling the early identification of295

class-related patches and the computation of saliency maps on the input image for each layer and296

head. Applying Singular Value Decomposition to the Jacobian matrix of a ViT, Salman et al. [17]297

treat the input space as the union of two subspaces: one in which image embedding doesn’t change,298

and another one for which it changes. Except for the last one, all the aforementioned approaches rely299

on data samples. By studying the inverse image of the model, instead, we can do away with data300

samples.301

Feature importance-based explanations. Feature importance is a measure of the contribution of302

each data feature to a model prediction. In the context of Computer Vision and Natural Language303

Processing, it amounts to giving a weight to pixels (or patches of pixels) in an image and tokens304

in a piece of text, respectively. In recent years, much research has focused on Transformers in305

both CV and NLP. Most approaches are based on the attention mechanism of the Transformer306

architecture. Abnar and Zuidema [1] quantify the overall attention of the output on the input by307

computing a linear combination of layer attentions (Attention Rollout) or applying a maximum308

flow algorithm (Attention Flow). To overcome the limitations [4] of attention-based methods, Hao309

et al. [11] use the concept of attribution, which is obtained by multiplying attention matrices by310

the integrated gradient of the model with respect to them. Chefer et al. [6] propose the Relevancy311

metric to generalize attribution to bi-modal and encoder-decoder architectures. Other methods are312

perturbation-based, where perturbations of input data are used to record any change in the output and313

draw a saliency map on the input. In order to overcome the main issue with such methods, i.e. the314

generation of outlier inputs, Englebert et al. [9] apply perturbations after the position encoding of the315

patches. In contrast with these methods, ours does not need arbitrary perturbations of inputs, and316

considers all parameters of the model, not only the attention query and key matrices.317

6 Conclusions318

Our exploration of the Transformer architecture through a theoretical framework grounded in Rie-319

mannian Geometry led to the application of our two algorithms, SiMEC and SiMExp, for examining320

equivalence classes in the Transformers’ input space. We demonstrated how the results of these explo-321

ration methods can be interpreted in a human-readable form and conducted preliminary investigations322

into their potential applications. Notably, our methods show promise for ranking feature importance323

and generating alternative prompts within the same or different equivalence classes.324

Future research directions include expanding our experimental results and delving deeper into the po-325

tential of our framework for controlled input generation within an equivalence class. This application326

holds significant promise for enhancing the explainability of Transformer models’ decisions and for327

addressing issues related to bias and hallucinations.328
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NeurIPS Paper Checklist393

1. Claims394

Question: Do the main claims made in the abstract and introduction accurately reflect the395

paper’s contributions and scope?396

Answer: [Yes]397

Justification: In the abstract and introduction we claim that we present a method for the398

exploration of equivalence classes in the input space of Transformer models, which is399

analyzed in depth in Section 3. The mathematical theory we refer to is deepened in Section400

2.401

Guidelines:402

• The answer NA means that the abstract and introduction do not include the claims403

made in the paper.404

• The abstract and/or introduction should clearly state the claims made, including the405

contributions made in the paper and important assumptions and limitations. A No or406

NA answer to this question will not be perceived well by the reviewers.407

• The claims made should match theoretical and experimental results, and reflect how408

much the results can be expected to generalize to other settings.409

• It is fine to include aspirational goals as motivation as long as it is clear that these goals410

are not attained by the paper.411

2. Limitations412

Question: Does the paper discuss the limitations of the work performed by the authors?413

Answer: [Yes]414

Justification: We discuss the limitations and tradeoff given by numeric integration in415

Subsection 3.1 and theoretical assumptions are enumerated in Section 2. Computational416

efficiency of our algorithms is discussed in Subsection 3.1. We conducted experiments on 3417

datasets only, one of which of small dimensions since our main focus is on the mathematical418

theory grounding the application of the method to Transformers, as stated at the beginning419

of Section 4. Other limitations are mentioned throughout Section 4, including the fact that420

our investigations in the human-readable scenario are at a preliminary stage.421

Guidelines:422

• The answer NA means that the paper has no limitation while the answer No means that423

the paper has limitations, but those are not discussed in the paper.424

• The authors are encouraged to create a separate "Limitations" section in their paper.425

• The paper should point out any strong assumptions and how robust the results are to426

violations of these assumptions (e.g., independence assumptions, noiseless settings,427

model well-specification, asymptotic approximations only holding locally). The authors428

should reflect on how these assumptions might be violated in practice and what the429

implications would be.430

• The authors should reflect on the scope of the claims made, e.g., if the approach was431

only tested on a few datasets or with a few runs. In general, empirical results often432

depend on implicit assumptions, which should be articulated.433

• The authors should reflect on the factors that influence the performance of the approach.434

For example, a facial recognition algorithm may perform poorly when image resolution435

is low or images are taken in low lighting. Or a speech-to-text system might not be436

used reliably to provide closed captions for online lectures because it fails to handle437

technical jargon.438

• The authors should discuss the computational efficiency of the proposed algorithms439

and how they scale with dataset size.440

• If applicable, the authors should discuss possible limitations of their approach to441

address problems of privacy and fairness.442

• While the authors might fear that complete honesty about limitations might be used by443

reviewers as grounds for rejection, a worse outcome might be that reviewers discover444

limitations that aren’t acknowledged in the paper. The authors should use their best445
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judgment and recognize that individual actions in favor of transparency play an impor-446

tant role in developing norms that preserve the integrity of the community. Reviewers447

will be specifically instructed to not penalize honesty concerning limitations.448

3. Theory Assumptions and Proofs449

Question: For each theoretical result, does the paper provide the full set of assumptions and450

a complete (and correct) proof?451

Answer: [Yes]452

Justification: The full proofs are part of two previously published papers which we cannot453

disclose for anonymity requirements. We replicate the relevant proofs in the supplementary454

material, part of which will be removed from the final version of the paper, referencing to455

the other papers.456

Guidelines:457

• The answer NA means that the paper does not include theoretical results.458

• All the theorems, formulas, and proofs in the paper should be numbered and cross-459

referenced.460

• All assumptions should be clearly stated or referenced in the statement of any theorems.461

• The proofs can either appear in the main paper or the supplemental material, but if462

they appear in the supplemental material, the authors are encouraged to provide a short463

proof sketch to provide intuition.464

• Inversely, any informal proof provided in the core of the paper should be complemented465

by formal proofs provided in appendix or supplemental material.466

• Theorems and Lemmas that the proof relies upon should be properly referenced.467

4. Experimental Result Reproducibility468

Question: Does the paper fully disclose all the information needed to reproduce the main ex-469

perimental results of the paper to the extent that it affects the main claims and/or conclusions470

of the paper (regardless of whether the code and data are provided or not)?471

Answer: [Yes]472

Justification: Pseudo-code of the proposed algorithms is reported in Subsections 3.1 and 3.2473

so to make the algorithms reproducible, plus our implementation is made available in the474

supplementary material. Experiments, including the complete setting, and the respective475

baselines are described in Section 4.476

Guidelines:477

• The answer NA means that the paper does not include experiments.478

• If the paper includes experiments, a No answer to this question will not be perceived479

well by the reviewers: Making the paper reproducible is important, regardless of480

whether the code and data are provided or not.481

• If the contribution is a dataset and/or model, the authors should describe the steps taken482

to make their results reproducible or verifiable.483

• Depending on the contribution, reproducibility can be accomplished in various ways.484

For example, if the contribution is a novel architecture, describing the architecture fully485

might suffice, or if the contribution is a specific model and empirical evaluation, it may486

be necessary to either make it possible for others to replicate the model with the same487

dataset, or provide access to the model. In general. releasing code and data is often488

one good way to accomplish this, but reproducibility can also be provided via detailed489

instructions for how to replicate the results, access to a hosted model (e.g., in the case490

of a large language model), releasing of a model checkpoint, or other means that are491

appropriate to the research performed.492

• While NeurIPS does not require releasing code, the conference does require all submis-493

sions to provide some reasonable avenue for reproducibility, which may depend on the494

nature of the contribution. For example495

(a) If the contribution is primarily a new algorithm, the paper should make it clear how496

to reproduce that algorithm.497

(b) If the contribution is primarily a new model architecture, the paper should describe498

the architecture clearly and fully.499
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(c) If the contribution is a new model (e.g., a large language model), then there should500

either be a way to access this model for reproducing the results or a way to reproduce501

the model (e.g., with an open-source dataset or instructions for how to construct502

the dataset).503

(d) We recognize that reproducibility may be tricky in some cases, in which case504

authors are welcome to describe the particular way they provide for reproducibility.505

In the case of closed-source models, it may be that access to the model is limited in506

some way (e.g., to registered users), but it should be possible for other researchers507

to have some path to reproducing or verifying the results.508

5. Open access to data and code509

Question: Does the paper provide open access to the data and code, with sufficient instruc-510

tions to faithfully reproduce the main experimental results, as described in supplemental511

material?512

Answer: [Yes]513

Justification: All experiments are made reproducible through scripts provided as supplemen-514

tary material.515

Guidelines:516

• The answer NA means that paper does not include experiments requiring code.517

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/518

public/guides/CodeSubmissionPolicy) for more details.519

• While we encourage the release of code and data, we understand that this might not be520

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not521

including code, unless this is central to the contribution (e.g., for a new open-source522

benchmark).523

• The instructions should contain the exact command and environment needed to run to524

reproduce the results. See the NeurIPS code and data submission guidelines (https:525

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.526

• The authors should provide instructions on data access and preparation, including how527

to access the raw data, preprocessed data, intermediate data, and generated data, etc.528

• The authors should provide scripts to reproduce all experimental results for the new529

proposed method and baselines. If only a subset of experiments are reproducible, they530

should state which ones are omitted from the script and why.531

• At submission time, to preserve anonymity, the authors should release anonymized532

versions (if applicable).533

• Providing as much information as possible in supplemental material (appended to the534

paper) is recommended, but including URLs to data and code is permitted.535

6. Experimental Setting/Details536

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-537

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the538

results?539

Answer: [Yes]540

Justification: All details are provided in Section 4: details of the analyzed architectures,541

number of iterations of the SiMEC/SiMExp algorithms, technical infrastructure on which542

the experiments were performed, amount of data the experiments were performed on.543

Guidelines:544

• The answer NA means that the paper does not include experiments.545

• The experimental setting should be presented in the core of the paper to a level of detail546

that is necessary to appreciate the results and make sense of them.547

• The full details can be provided either with the code, in appendix, or as supplemental548

material.549

7. Experiment Statistical Significance550

Question: Does the paper report error bars suitably and correctly defined or other appropriate551

information about the statistical significance of the experiments?552
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Answer: [Yes]553

Justification: The standard deviation is reported for the experiment that supports the claims554

of the paper, i.e. the one on feature importance-based explanations, in Section 4. Stan-555

dard deviation is also reported for the number of uninformative images produced by the556

perturbation-based baseline method in the Input space exploration experiment.557

Guidelines:558

• The answer NA means that the paper does not include experiments.559

• The authors should answer "Yes" if the results are accompanied by error bars, confi-560

dence intervals, or statistical significance tests, at least for the experiments that support561

the main claims of the paper.562

• The factors of variability that the error bars are capturing should be clearly stated (for563

example, train/test split, initialization, random drawing of some parameter, or overall564

run with given experimental conditions).565

• The method for calculating the error bars should be explained (closed form formula,566

call to a library function, bootstrap, etc.)567

• The assumptions made should be given (e.g., Normally distributed errors).568

• It should be clear whether the error bar is the standard deviation or the standard error569

of the mean.570

• It is OK to report 1-sigma error bars, but one should state it. The authors should571

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis572

of Normality of errors is not verified.573

• For asymmetric distributions, the authors should be careful not to show in tables or574

figures symmetric error bars that would yield results that are out of range (e.g. negative575

error rates).576

• If error bars are reported in tables or plots, The authors should explain in the text how577

they were calculated and reference the corresponding figures or tables in the text.578

8. Experiments Compute Resources579

Question: For each experiment, does the paper provide sufficient information on the com-580

puter resources (type of compute workers, memory, time of execution) needed to reproduce581

the experiments?582

Answer: [Yes]583

Justification: All the experiments were performed on the same infrastructure, which is584

reported in a footnote in Section 4. Time of execution is one of the key indicators reported585

for the Input space exploration experiments. More computing power would be required for586

experiments on bigger Transformer models.587

Guidelines:588

• The answer NA means that the paper does not include experiments.589

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,590

or cloud provider, including relevant memory and storage.591

• The paper should provide the amount of compute required for each of the individual592

experimental runs as well as estimate the total compute.593

• The paper should disclose whether the full research project required more compute594

than the experiments reported in the paper (e.g., preliminary or failed experiments that595

didn’t make it into the paper).596

9. Code Of Ethics597

Question: Does the research conducted in the paper conform, in every respect, with the598

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?599

Answer: [Yes]600

Justification: We comply with the terms of use of the datasets employed in the experiments,601

and we deem our work has no potentially harmful effect on people safety, security, discrimi-602

nation, surveillance, harassment, nor on human rights. Our proposal does not contribute to603

spread bias and unfairness towards certain groups of people nor to harm the environment.604
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Guidelines:605

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.606

• If the authors answer No, they should explain the special circumstances that require a607

deviation from the Code of Ethics.608

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-609

eration due to laws or regulations in their jurisdiction).610

10. Broader Impacts611

Question: Does the paper discuss both potential positive societal impacts and negative612

societal impacts of the work performed?613

Answer: [No]614

Justification: Although the impacts of XAI on society is broad and deep, in this paper we615

focus only on the technical problem of exploring the equivalence classes in the input space616

of Transformers, which doesn’t add any specific impact to the discussion about XAI in617

general.618

Guidelines:619

• The answer NA means that there is no societal impact of the work performed.620

• If the authors answer NA or No, they should explain why their work has no societal621

impact or why the paper does not address societal impact.622

• Examples of negative societal impacts include potential malicious or unintended uses623

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations624

(e.g., deployment of technologies that could make decisions that unfairly impact specific625

groups), privacy considerations, and security considerations.626

• The conference expects that many papers will be foundational research and not tied627

to particular applications, let alone deployments. However, if there is a direct path to628

any negative applications, the authors should point it out. For example, it is legitimate629

to point out that an improvement in the quality of generative models could be used to630

generate deepfakes for disinformation. On the other hand, it is not needed to point out631

that a generic algorithm for optimizing neural networks could enable people to train632

models that generate Deepfakes faster.633

• The authors should consider possible harms that could arise when the technology is634

being used as intended and functioning correctly, harms that could arise when the635

technology is being used as intended but gives incorrect results, and harms following636

from (intentional or unintentional) misuse of the technology.637

• If there are negative societal impacts, the authors could also discuss possible mitigation638

strategies (e.g., gated release of models, providing defenses in addition to attacks,639

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from640

feedback over time, improving the efficiency and accessibility of ML).641

11. Safeguards642

Question: Does the paper describe safeguards that have been put in place for responsible643

release of data or models that have a high risk for misuse (e.g., pretrained language models,644

image generators, or scraped datasets)?645

Answer: [NA]646

Justification: The paper poses no such risks.647

Guidelines:648

• The answer NA means that the paper poses no such risks.649

• Released models that have a high risk for misuse or dual-use should be released with650

necessary safeguards to allow for controlled use of the model, for example by requiring651

that users adhere to usage guidelines or restrictions to access the model or implementing652

safety filters.653

• Datasets that have been scraped from the Internet could pose safety risks. The authors654

should describe how they avoided releasing unsafe images.655

• We recognize that providing effective safeguards is challenging, and many papers do656

not require this, but we encourage authors to take this into account and make a best657

faith effort.658
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12. Licenses for existing assets659

Question: Are the creators or original owners of assets (e.g., code, data, models), used in660

the paper, properly credited and are the license and terms of use explicitly mentioned and661

properly respected?662

Answer: [Yes]663

Justification: The datasets used in the paper are explicitely mentioned in the references, as664

required by the terms of use. Where applicable, the license is also reported.665

Guidelines:666

• The answer NA means that the paper does not use existing assets.667

• The authors should cite the original paper that produced the code package or dataset.668

• The authors should state which version of the asset is used and, if possible, include a669

URL.670

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.671

• For scraped data from a particular source (e.g., website), the copyright and terms of672

service of that source should be provided.673

• If assets are released, the license, copyright information, and terms of use in the674

package should be provided. For popular datasets, paperswithcode.com/datasets675

has curated licenses for some datasets. Their licensing guide can help determine the676

license of a dataset.677

• For existing datasets that are re-packaged, both the original license and the license of678

the derived asset (if it has changed) should be provided.679

• If this information is not available online, the authors are encouraged to reach out to680

the asset’s creators.681

13. New Assets682

Question: Are new assets introduced in the paper well documented and is the documentation683

provided alongside the assets?684

Answer: [NA]685

Justification: The paper does not release new assets.686

Guidelines:687

• The answer NA means that the paper does not release new assets.688

• Researchers should communicate the details of the dataset/code/model as part of their689

submissions via structured templates. This includes details about training, license,690

limitations, etc.691

• The paper should discuss whether and how consent was obtained from people whose692

asset is used.693

• At submission time, remember to anonymize your assets (if applicable). You can either694

create an anonymized URL or include an anonymized zip file.695

14. Crowdsourcing and Research with Human Subjects696

Question: For crowdsourcing experiments and research with human subjects, does the paper697

include the full text of instructions given to participants and screenshots, if applicable, as698

well as details about compensation (if any)?699

Answer: [NA]700

Justification: Our work doesn’t include crowdsourcing nor research with human subjects.701

Guidelines:702

• The answer NA means that the paper does not involve crowdsourcing nor research with703

human subjects.704

• Including this information in the supplemental material is fine, but if the main contribu-705

tion of the paper involves human subjects, then as much detail as possible should be706

included in the main paper.707

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,708

or other labor should be paid at least the minimum wage in the country of the data709

collector.710
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human711

Subjects712

Question: Does the paper describe potential risks incurred by study participants, whether713

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)714

approvals (or an equivalent approval/review based on the requirements of your country or715

institution) were obtained?716

Answer: [NA]717

Justification: Our work does not involve crowdsourcing nor research with human subjects.718

Guidelines:719

• The answer NA means that the paper does not involve crowdsourcing nor research with720

human subjects.721

• Depending on the country in which research is conducted, IRB approval (or equivalent)722

may be required for any human subjects research. If you obtained IRB approval, you723

should clearly state this in the paper.724

• We recognize that the procedures for this may vary significantly between institutions725

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the726

guidelines for their institution.727

• For initial submissions, do not include any information that would break anonymity (if728

applicable), such as the institution conducting the review.729
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