Infinigen-Sim: Procedural Generation of Articulated Simulation Assets

Abhishek Joshi', Beining Han', Jack Nugent!, Yiming Zuo!, Jonathan Liu', Hongyu Wen',
Stamatis Alexandropoulos®, Tao Sun'?, Alexander Raistrick!, Gaowen Liu?, Yi Shao?, Jia Deng!
!Department of Computer Science, Princeton University
2McGill University
3Cisco

Abstract

We introduce Infinigen-Sim, a toolkit for generating realis-
tic, procedurally generated articulated assets for robotics
simulation. We include procedural generators for 12 com-
mon articulated object categories along with high-level util-
ities for use creating custom articulated assets in Blender.
We also provide an export pipeline to integrate the result-
ing assets along with their physical properties into common
robotics simulators. Experiments show that assets sampled
from these generators are useful for movable object segmen-
tation, training generalizable reinforcement learning poli-
cies, and sim-to-real transfer of imitation learning policies.

1. Introduction

Interacting with articulated objects is an essential step in
many important applications for robotics. From using
hinged fridges and dishwashers, pushing buttons, opening
drawers, to traversing doors with various handles, robots
require the ability to manipulate articulated objects to ac-
complish useful tasks in the real world.

Learning in physical simulation [1, 5, 10, 20, 26, 34] has
proven a useful strategy for many robotics tasks [2, 8, 15,
16, 21, 21, 28, 32]. To best use this strategy for articulated
object manipulation, we require large-scale datasets of ar-
ticulated assets with as diverse geometry, joints, and visual
appearance as possible. Articulated assets are challenging
to acquire, as objects curated from the internet [4, 6] or 3D-
scanning [30] are typically static and lack joint annotations.
Widely used articulated object datasets instead use labor-
intensive human annotation [11, 14, 19, 24, 31] for joint
position and axes, which limits the number and quality of
unique geometries and articulation annotations.

To this end, we propose Infinigen-Sim, a tool which en-
ables the creation of high quality, diverse articulated assets
via procedural generation. Our tool has many advantages:

1. Unlimited kinematic variation: Procedural generators
can sample assets with dense coverage of important
physical dimensions which impact a robot’s trajectory,
e.g. the handle-to-hinge distance of a door. Continuous
variation also applies to geometry detail (e.g. edge bevel
radii) and tolerances (e.g. toaster slot width), which all
serve to create dense coverage and diverse training data.

2. High-quality assets: Joint locations, axes, and anno-
tations can be verified for correctness unlike previous
efforts which rely on human annotation or generative
methods. Our assets also utilize physics-based rendering
materials present in Infinigen [22, 23] along with mate-
rial physical properties such as friction and density.

3. Combinatorial coverage: Procedural generators can ran-
domly swap sub-parts to use different procedural gener-
ators (e.g. changes in handle style: knobs, levers, crash-
bars). We can also easily express variable-quantities of
articulated parts (e.g. 1-5 fridge drawers), including very
small parts (e.g. tiny buttons on a toaster), which are
challenging for annotators or image-based capture.

Experiments show that objects from procedural genera-
tors created with Infinigen-Sim are useful for tasks in both
vision and robot learning. We use Infinigen-Sim to create
articulated procedural generators for 12 object categories.
We hope Infinigen-Sim will provide an ever-growing library
of open-source articulated object generators, as to enable
more robust robot learning across many tasks using articu-
lated objects.

2. Infinigen-Sim

Infinigen-Sim consists of a variety of procedural generators
for common articulated object categories along with utilities
designed to aid in creating custom articulated procedural
generators. We also develop export code which produces a
file for use in robotics simulators. The overall workflow is
visualized in Figure 2.

U eer |
#) el [

E@gsew oy FlE=G
CTEV V. :

U 2 2 4
sElve s LW,

Figure 1. Procedurally generated assets for 12 common articulated
object categories.

2.1. Articulated Procedural Generator Tools

Infinigen-Sim leverages Blender’s procedural modeling
tools [3], namely Geometry Nodes and Shader Nodes,
which are an artist-friendly, GUI-based, domain specific
language for procedural generation. These tools allow users
to create meshes and materials by composing nodes rep-
resenting primitives, geometric transformations, and scalar
vector arithmetic in a directed acyclic graph. These node-
based tools are general purpose and can represent essen-
tially all desirable object geometries.

To design articulated assets within this system, we cre-
ate two new nodes that implement revolute and prismatic
joints. These nodes accept two incoming geometries (de-
fined via prior nodes) and introduce a parent-child relation-
ship annotated with the relevant joint type. Each joint node
also allows users to set the pivot position, axis, and joint
range, either as fixed values or through parameters passed
from other nodes. For the provided procedural generators,
we leverage Blender’s built-in math nodes to compute these
values directly from the asset’s geometry within the node
graph.

These joint nodes have four purposes. First, they di-
rectly speed up the procedural generator creation process
since they implement a commonly used operation which no
longer needs to be re-implemented for each object that uses
a hinge or sliding joint. Second, they provide immediate
visual feedback as to the effect of a joint: a hinge joint
node with a certain origin or angle extent input will imme-
diately transform the child geometry in the GUI according
to those inputs, which prevents erroneous values and can
be used to debug any arithmetic expressions responsible for
calculating the joint parameters. Third, this standardized
implementation of joints allows us to add logic to save all
joint metadata in a standard format for later use. Fourth,
these nodes can store semantic metadata, ensuring consis-

tent, fine-grained joint and geometry naming across all pro-
cedurally generated assets within a category.

Our joint nodes support the creation of many articulated
structure types such as jointing multiple meshes together in
a chain, jointing multiple meshes to one parent, and adding
multiple degrees of freedom between two geometries. We
also create an additional custom node group that supports
duplicating jointed bodies at defined points. This can be
effective for procedurally duplicating articulations such as
burners on a cooktop or shelves in a dishwasher without
having to manually define each joint. Finally, we provide a
utility script that checks if any two rigid parts of the asset
penetrate each other within a defined range of motion. This
helps users to adapt joint configurations and parts’ geome-
tries to avoid self-collision and penetration problems.

2.2. Exporting Assets to Simulation

Generating instances of procedurally articulated assets from
Blender to a simulation-ready format involves three steps,
all of which are automated. First, we use Infinigen’s [22]
transpiler to convert the procedural asset’s node graph to
Python code. Users can edit this code to customize asset pa-
rameter distributions or further tune node graph structures.
Thus, our tool gives users fine-grained control over gener-
ated assets. It also allows users to create dynamic graphs
that may change based on the procedural parameters.

Second, we sample random values for each procedural
parameter and spawn an instance of the asset, along with its
node graph, in Blender. We then use the Blender Python
API to parse and update the asset’s node graph. During
this step, we inject into the graph Blender-provided nodes
which assign values for attributes to different parts of the
geometry. These attributes enable us to construct a kine-
matic tree for the asset instance (inspired by [9, 13]) that
abstracts away the full procedural graph while preserving
the essential details required for articulation.

The final step is to export the asset into a simulation-
compatible format. We pass the asset instance along with
its corresponding kinematic tree to a native exporter for ei-
ther one of the URDEF, USD, and MICF file formats. To
construct the asset, the exporter recursively traverses the
kinematic tree in a depth-first fashion. To get individual
rigid bodies, the exporter queries the asset instance with at-
tributes and their values based on the current path in the
tree. We then extract the part of the asset that matches this
query and save it as an individual mesh. Users can also gen-
erate convex-decomposed collision meshes with third-party
tools like CoACD [29]. During this process, we use the
kinematic tree to build the final simulation-ready asset in-
cluding all joints, rigid geometries, and semantic metadata.

URDF Exporter

Kinematic Tree

I >

Construct Asset in Blender

Transpile and Spawn Instance

f3 Maniskill nﬁm vohosuite

Export to Simulation Format

Figure 2. We first create procedural assets using Blender’s Geometry Nodes feature. These assets are then transpiled and we have the
ability to define custom distributions for the procedural parameters (including materials) along with its dynamics properties. We sample
parameters to generate the asset and pass both the asset its kinematic tree to the exporter, which recursively builds a simulation-ready

articulated object.

3. Articulated Asset Procedural Generators

Using Infinigen-Sim, we create procedural generators for 12
categories of common articulated assets as shown in Fig. 1.
Each procedural generator includes distributions for joint
dynamics parameters (i.e. stiffness and damping) and pro-
duce kinematically diverse, photorealistic articulated assets.
We provide a list of articulated parts for each asset category
in5.1.

4. Experiments

We demonstrate that assets created with Infinigen-Sim help
downstream vision and robot learning tasks, including mov-
able part segmentation, RL generalization, and sim-to-real
transfer.

4.1. Movable Part Segmentation

Movable part segmentation [27, 31] is an important vision
task for embodied agents. Given an RGB image of an ob-
ject, the model must segment each articulated part. We fo-
cus on five categories of assets including doors, toasters, re-
frigerators' , dishwashers, and lamps. First, we generate 250
diverse assets per category using Infingen-Sim. Then, we
follow a similar setup as [31] to generate image datasets for
both PartNet-Mobility and Infinigen-Sim assets. We split
the PartNet dataset such that images rendered from 75% of
the assets are used for training and the remaining 25% are
used for evaluation. All models are evaluated on images of
unseen PartNet assets only. We finetune a pretrained Mask
R-CNN model with a ResNet-50-FPN backbone, as in [12],
for three datasets: 1) P15k, approximately 15k images of
PartNet assets only, 2) P30k, approximately 30k images of

I'The refrigerators used in the movable part segmentation experiments
have since been updated (Fig. 1) with more diverse handle types, more
realistic materials, and fewer vertices.

PartNet assets only, and 3) P15k+1I, a combination of ap-
proximately 15k images of PartNet assets and 15k images
of Infinigen-Sim assets.

As shown in Table 1, we observe that doubling the size of
the original dataset (P30k) yields only marginal improve-
ments, and in some cases decreases performance. This sug-
gests the model may not be learning new features that im-
prove generalization to unseen assets despite scaling the
training images from the original PartNet dataset alone. In
contrast, we observe an interesting result when adding the
same number of images of Infinigen-Sim assets. Specifi-
cally, we see a significant improvement across smaller artic-
ulated parts such as door handles, toaster levers, dishwasher
buttons, and lamp switches. This suggests a core benefit of
Infinigen-Sim. Namely, our tool allows users to procedu-
rally scale articulated parts that require a greater level of
detail. Achieving this level of granularity is labor-intensive
for manually annotated articulation datasets. We addition-
ally note that despite Infinigen-Sim assets being out of dis-
tribution compared to the evaluation set, we still see im-
provements for detailed parts.

4.2. Reinforcement Learning Generalization

We demonstrate that Infinigen-Sim assets help reinforce-
ment learning policies generalize to novel object instances.
For each task, we train three policies, namely one trained
with only Infinigen-Sim assets, one trained with only
Partnet-Mobility assets, and one trained on a combination
of both. We evaluate on the following tasks.

1. Push Door with Handle. The robot needs to push the
door open by first rotating the door handle clockwise
by approximately 17 degrees (0.3 radians). Only single,
push doors with a lever handle on the left are considered
for this task.

2. Push Down Toaster Lever. The robot is tasked with

Door | Toaster Refrigerator
Dataset | Frame Body Handle | Body Lever Knob Button | Body Door
P15k 57.41 71.87 41.08 96.96 59.76 55.31 4.20 81.35 66.37
P30k 59.21 74.65 40.31 97.15 59.05 57.50 3.70 82.76 69.00
P15k+I | 59.64 73.17 44.97 96.87 64.31 54.69 5.82 84.37 67.82
| Dishwasher | Lamp | mAP
Dataset | Body Door Shelf =~ Button Knob | Base Rod Head Switch | Overall
P15K 8423 7332 0.13 2459 0.00 5475 1.27 78.09 1145 | 4823
P30k 85.14 75.14 0.21 21.31 0.00 5172 722 77.86 1045 | 48.46
P15k+I | 86.59 7531 0.17 31.01 0.02 55.40 7.03 77.63 17.44 | 50.13

Table 1. Movable part segmentation performance per articulated part type. We train a model for 50 epochs and report the evaluation mAP
scores averaged across 3 seeds. Using Infinigen-Sim assets results in stronger model generalization for relatively smaller articulated parts,
e.g. door handles, toaster levers, dishwasher buttons, and lamp switches.

Push Door Open

—— Infinigen-Sim
PartNet-+Infinigen-Sim ,./\/\/\/\
/\A«_/\J

—— PartNet

14
S

oe
Now
?A

Success Once

0.0 0.2 0.4 0.6 0.8

Step

1.0

Push Toaster Lever

A A N AR TN

—— Infinigen-Sim
PartNet+Infinigen-Sim
—— PartNet

14
le7

0.4 0.6 1.0

o
@

12
Step

Pull Open Fridge

—— Infinigen-Sim
PartNet+Infinigen-Sim
—— PartNet

o
o
S

e o
BB
o O

Success Once

SN AN

o
o
&

o
=
3

Figure 3. Left: Environment setups for each task. Right: Success
once results on evaluation dataset averaged over 5 seeds.

pushing down the lever of the toaster. Only toasters with
a single lever are considered for this task.

Open Fridge Door. The robot is tasked with grasping
the handle and opening the fridge door by at least 9 de-
grees (7/20 radians). Only refrigerators with a single
door with a handle on the left are considered for this
task.

Towards the end of training (last approximately 1M
timesteps), we see a relative improvement of 4.329, 1.761,
2.5 times for the success rate for the door, toaster, and fridge
tasks, respectively, when using Infinigen-Sim assets over

PartNet-Mobility. We attribute this performance increase
to the scale and quality of Infinigen-Sim assets. PartNet-
Mobility assets are limited in quantity, and may have mis-
aligned joints and poor geometries that make it harder to
train policies. In contrast, our tool provides dynamically ac-
curate assets with both great visual and geometric diversity.
However, it is worth noting that during the earlier stages of
training, for the door and fridge opening tasks, the PartNet-
Mobility policy performed on par or better than policies
trained using Infinigen-Sim. This suggests that realizing the
benefits of more diverse assets may require longer training
times.

4.3. Sim-to-Real Transfer

We show that Infinigen-Sim assets are effective in sim-to-
real transfer. We create real-world versions of the door
opening, toaster pushing, and fridge opening tasks using
a Franka Panda robot (see Fig. 4). For each task, we col-
lect expert simulation trajectories using cuRobo [25] in an
IsaacGym [17] environment. We randomize environment
lighting, joint initialization, object position, and camera
views. As we have the ground truth joint axis and origin,
we rollout scripted trajectories and filter successful ones as
the demonstration dataset. The robot takes an RGB image
from its on-the-shoulder camera and the end effector pose
as inputs. We then train an ACT [33] policy on this dataset
and transfer zero-shot it to a physical robot.

| Door Toaster Fridge
PartNet-Mobility [31] | 6/30 0/30 0/30
Infinigen-Sim (Ours) | 22/30 11/30 10/30

Table 2. Zero-shot sim-to-real results.

We observe that policies trained using Infinigen-Sim per-
form better across all three tasks in the real world (see Ta-

Figure 4. Real world environment setup. From left to right: push
open door, push toaster lever, and pull open fridge door.

ble 2). Qualitatively, we notice that policies using our as-
sets tend to be smoother and fail less aggressively. For in-
stance, in the fridge task, our policy’s failures typically in-
volved either moving toward the handle and nearly grasping
it or opening the door less than the 45 degree threshold. In
contrast, policies trained on PartNet-Mobility often missed
the handle altogether. Similar to the RL experiments, we
attribute this success to the high diversity and quantity of
assets generated with our tool. This diversity likely helps
bridge the sim-to-real gap and allows the policy to focus
on important aspects of the task (e.g. the handle or lever).
These experiments show that our tool has the ability to cre-
ate articulated assets diverse enough to facilitate sim-to-real
transfer.

5. Conclusion

We introduce Infinigen-Sim, a toolkit for creating procedu-
rally generated, simulation-ready, articulated assets. These
assets are kinematically diverse, photorealistic, and have ac-
curate joint configurations. Our tool also gives users fine-
grained control over their assets. We use this system to cre-
ate expressive generators for 12 common articulated object
categories. Our experiments demonstrate that objects from
these generators can improve model generalization on both
perception and robot learning tasks in simulation and the
real world.

References

[1] Genesis Authors. Genesis: A universal and generative
physics engine for robotics and beyond, 2024. 1

[2] Johan Bjorck, Fernando Castafieda, Nikita Cherniadev,
Xingye Da, Runyu Ding, Linxi Fan, Yu Fang, Dieter Fox,
Fengyuan Hu, Spencer Huang, et al. GrOOt nl: An open
foundation model for generalist humanoid robots. arXiv
preprint arXiv:2503.14734, 2025. 1

[3] Blender Online Community. Blender - a 3d modelling
and rendering package. https://www.blender.org,
2018. Version 4.2. 2

[4] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012,2015. 1

[5] Matt Deitke, Eli VanderBilt, Alvaro Herrasti, Luca Weihs,
Jordi Salvador, Kiana Ehsani, Winson Han, Eric Kolve,
Ali Farhadi, Aniruddha Kembhavi, and Roozbeh Mottaghi.
ProcTHOR: Large-Scale Embodied AI Using Procedural
Generation. In NeurIPS, 2022. Outstanding Paper Award.
1

[6] Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong
Ngo, Oscar Michel, Aditya Kusupati, Alan Fan, Chris-
tian Laforte, Vikram WVoleti, Samir Yitzhak Gadre, Eli
VanderBilt, Aniruddha Kembhavi, Carl Vondrick, Georgia
Gkioxari, Kiana Ehsani, Ludwig Schmidt, and Ali Farhadi.
Objaverse-x1: A universe of 10m+ 3d objects. arXiv preprint
arXiv:2307.05663,2023. 1

[7]1 Long Le, Jason Xie, William Liang, Hung-Ju Wang, Yue
Yang, Yecheng Jason Ma, Kyle Vedder, Arjun Krishna, Di-
nesh Jayaraman, and Eric Eaton. Articulate-anything: Auto-
matic modeling of articulated objects via a vision-language

foundation model. arXiv preprint arXiv:2410.13882, 2024.
2

[8] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen
Koltun, and Marco Hutter. Learning quadrupedal locomotion
over challenging terrain. Science Robotics, 5(47):eabc5986,
2020. 1

[9] Jiahui Lei, Congyue Deng, William B Shen, Leonidas J
Guibas, and Kostas Daniilidis. Nap: Neural 3d articulated
object prior. In Advances in Neural Information Processing
Systems, pages 31878-31894. Curran Associates, Inc., 2023.
2

[10] Chengshu Li, Fei Xia, Roberto Martin-Martin, Michael
Lingelbach, Sanjana Srivastava, Bokui Shen, Kent Elliott
Vainio, Cem Gokmen, Gokul Dharan, Tanish Jain, Andrey
Kurenkov, Karen Liu, Hyowon Gweon, Jiajun Wu, Li Fei-
Fei, and Silvio Savarese. igibson 2.0: Object-centric sim-
ulation for robot learning of everyday household tasks. In
Proceedings of the 5th Conference on Robot Learning, pages
455-465. PMLR, 2022. |

[11] Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gokmen,
Sanjana Srivastava, Roberto Martin-Martin, Chen Wang,
Gabrael Levine, Michael Lingelbach, Jiankai Sun, Mona
Anvari, Minjune Hwang, Manasi Sharma, Arman Aydin,
Dhruva Bansal, Samuel Hunter, Kyu-Young Kim, Alan Lou,
Caleb R Matthews, Ivan Villa-Renteria, Jerry Huayang Tang,
Claire Tang, Fei Xia, Silvio Savarese, Hyowon Gweon,
Karen Liu, Jiajun Wu, and Li Fei-Fei. BEHAVIOR-1k: A
benchmark for embodied Al with 1,000 everyday activities
and realistic simulation. In 6th Annual Conference on Robot
Learning, 2022. 1

[12] Yanghao Li, Saining Xie, Xinlei Chen, Piotr Dollar, Kaim-
ing He, and Ross Girshick. Benchmarking detection transfer
learning with vision transformers, 2021. 3

[13] Jiayi Liu, Hou In Ivan Tam, Ali Mahdavi-Amiri, and Manolis
Savva. Cage: Controllable articulation generation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 17880-17889, 2024. 2

[14] Liu Liu, Wenqgiang Xu, Haoyuan Fu, Sucheng Qian, Qiao-
jun Yu, Yang Han, and Cewu Lu. Akb-48: A real-world
articulated object knowledge base. In Proceedings of the

https://www.blender.org

[15]

[16]

(17]

(18]

[19]

(20]

[21]

(22]

(23]

(24]

IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14809-14818, 2022. 1, 2

Yecheng Jason Ma, William Liang, Hungju Wang, Sam
Wang, Yuke Zhu, Linxi Fan, Osbert Bastani, and Dinesh
Jayaraman. Dreureka: Language model guided sim-to-real
transfer. In Robotics: Science and Systems (RSS), 2024. 1
Abhiram Maddukuri, Zhenyu Jiang, Lawrence Yunliang
Chen, Soroush Nasiriany, Yuqi Xie, Yu Fang, Wenqi Huang,
Zu Wang, Zhenjia Xu, Nikita Chernyadev, Scott Reed,
Ken Goldberg, Ajay Mandlekar, Linxi Fan, and Yuke Zhu.
Sim-and-real co-training: A simple recipe for vision-based
robotic manipulation. In Proceedings of Robotics: Science
and Systems (RSS), Los Angeles, CA, USA, 2025. 1

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo,
Michelle Lu, Kier Storey, Miles Macklin, David Hoeller,
Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel
State. Isaac gym: High performance gpu-based physics sim-
ulation for robot learning, 2021. 4

Zhao Mandi, Yijia Weng, Dominik Bauer, and Shuran Song.
Real2code: Reconstruct articulated objects via code genera-
tion. arXiv preprint arXiv:2406.08474, 2024. 2

Yongsen Mao, Yiming Zhang, Hanxiao Jiang, Angel Chang,
and Manolis Savva. Multiscan: Scalable rgbd scanning for
3d environments with articulated objects. Advances in neural
information processing systems, 35:9058-9071, 2022. 1
Mayank Mittal, Calvin Yu, Qinxi Yu, Jingzhou Liu, Nikita
Rudin, David Hoeller, Jia Lin Yuan, Ritvik Singh, Yun-
rong Guo, Hammad Mazhar, Ajay Mandlekar, Buck Babich,
Gavriel State, Marco Hutter, and Animesh Garg. Orbit: A
unified simulation framework for interactive robot learning
environments. IEEE Robotics and Automation Letters, 8(6):
3740-3747, 2023. 1

Soroush Nasiriany, Abhiram Maddukuri, Lance Zhang,
Adeet Parikh, Aaron Lo, Abhishek Joshi, Ajay Mandlekar,
and Yuke Zhu. Robocasa: Large-scale simulation of every-
day tasks for generalist robots. In Robotics: Science and
Systems, 2024. 1

Alexander Raistrick, Lahav Lipson, Zeyu Ma, Lingjie Mei,
Mingzhe Wang, Yiming Zuo, Karhan Kayan, Hongyu Wen,
Beining Han, Yihan Wang, Alejandro Newell, Hei Law,
Ankit Goyal, Kaiyu Yang, and Jia Deng. Infinite photore-
alistic worlds using procedural generation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 12630-12641, 2023. 1, 2
Alexander Raistrick, Lingjie Mei, Karhan Kayan, David
Yan, Yiming Zuo, Beining Han, Hongyu Wen, Meenal
Parakh, Stamatis Alexandropoulos, Lahav Lipson, Zeyu
Ma, and Jia Deng. Infinigen indoors: Photorealistic in-
door scenes using procedural generation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 21783-21794, 2024. 1

Sanjana Srivastava, Chengshu Li, Michael Lingelbach,
Roberto Martin-Martin, Fei Xia, Kent Elliott Vainio, Zheng
Lian, Cem Gokmen, Shyamal Buch, Karen Liu, Silvio
Savarese, Hyowon Gweon, Jiajun Wu, and Li Fei-Fei. Be-
havior: Benchmark for everyday household activities in vir-
tual, interactive, and ecological environments. In Proceed-

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

ings of the 5th Conference on Robot Learning, pages 477—
490. PMLR, 2022. |

Balakumar Sundaralingam, Siva Kumar Sastry Hari, Adam
Fishman, Caelan Garrett, Karl Van Wyk, Valts Blukis,
Alexander Millane, Helen Oleynikova, Ankur Handa, Fabio
Ramos, Nathan Ratliff, and Dieter Fox. curobo: Parallelized
collision-free minimum-jerk robot motion generation, 2023.
4

Stone Tao, Fanbo Xiang, Arth Shukla, Yuzhe Qin, Xander
Hinrichsen, Xiaodi Yuan, Chen Bao, Xinsong Lin, Yulin Liu,
Tse kai Chan, Yuan Gao, Xuanlin Li, Tongzhou Mu, Nan
Xiao, Arnav Gurha, Zhiao Huang, Roberto Calandra, Rui
Chen, Shan Luo, and Hao Su. Maniskill3: Gpu parallelized
robotics simulation and rendering for generalizable embod-
ied ai. arXiv preprint arXiv:2410.00425, 2024. 1

Ruiqi Wang, Akshay Gadi Patil, Fenggen Yu, and Hao
Zhang. Active coarse-to-fine segmentation of moveable parts
from real images. In Computer Vision — ECCV 2024: 18th
European Conference, Milan, Italy, September 29—October
4, 2024, Proceedings, Part XXXIV, page 111-127, Berlin,
Heidelberg, 2024. Springer-Verlag. 3

Adam Wei, Abhinav Agarwal, Boyuan Chen, Rohan
Bosworth, Nicholas Pfaff, and Russ Tedrake. Empirical anal-
ysis of sim-and-real cotraining of diffusion policies for pla-
nar pushing from pixels, 2025. 1

Xinyue Wei, Minghua Liu, Zhan Ling, and Hao Su. Approx-
imate convex decomposition for 3d meshes with collision-
aware concavity and tree search. ACM Transactions on
Graphics (TOG), 41(4):1-18, 2022. 2

Tong Wu, Jiarui Zhang, Xiao Fu, Yuxin Wang, Liang Pan
Jiawei Ren, Wayne Wu, Lei Yang, Jiaqi Wang, Chen Qian,
Dahua Lin, and Ziwei Liu. Omniobject3d: Large-vocabulary
3d object dataset for realistic perception, reconstruction and
generation. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2023. 1

Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao
Zhu, Fangchen Liu, Minghua Liu, Hanxiao Jiang, Yifu Yuan,
He Wang, Li Yi, Angel X. Chang, Leonidas J. Guibas, and
Hao Su. SAPIEN: A simulated part-based interactive envi-
ronment. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2020. 1, 3,4, 2

Kevin Zakka, Baruch Tabanpour, Qiayuan Liao, Mustafa
Haiderbhai, Samuel Holt, Jing Yuan Luo, Arthur Allshire,
Erik Frey, Koushil Sreenath, Lueder A. Kahrs, Carlo Sfer-
razza, Yuval Tassa, and Pieter Abbeel. Mujoco playground:
An open-source framework for gpu-accelerated robot learn-
ing and sim-to-real transfer., 2025. 1

Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea
Finn. Learning fine-grained bimanual manipulation with
low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.
4

Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto Martin-
Martin, Abhishek Joshi, Soroush Nasiriany, Yifeng Zhu,
and Kevin Lin. robosuite: A modular simulation frame-
work and benchmark for robot learning. In arXiv preprint
arXiv:2009.12293, 2020. |

Infinigen-Sim: Procedural Generation of Articulated Simulation Assets

Supplementary Material

5.1. Articulated Parts

We provide a list of articulated parts in Table 3 for each of
our procedural generators. Note that certain parts may have
their own procedural parameters including style, count, po-
sitioning, dimensions, etc. The articulated part may also
have multiple degrees of freedom relative to its parent asset
(e.g., a soap dispenser nozzle is connected to the base by
both a revolute and sliding joint).

Object Category Articulated Parts

Door Door, handle

Cooktop Burner dial

Lamp Lamp arms, shade,
switch/button/dial/pull chain

Oven Door, racks, drawer

Toaster Lever, buttons, knobs

Cabinet Doors

Drawer Doors

Refrigerator Doors, internal drawers,
external drawers

Dishwasher Door, buttons, racks, knobs

Faucet Spout, handles

Window Window panes, locks

Plier Plier hand

Table 3. Provided object categories and their articulations.

5.2. Example Articulations

In this section, we showcase minimal examples of how our
custom joint nodes can be used to create different types of
articulations within Blender. These articulated assets di-
rectly translate to simulation using our native exporters for
the URDF, USD, and MICF file types.

"
e00d000

000600

Figure 5. Simple Revolute Joint: Demonstrates a rod rotating
about a pivot point using our custom hinge joint node.

i

H
vagu
f
§

it

Figure 6. Simple Prismatic Joint: Demonstrates an articulated
button using our custom sliding joint node.

Figure 7. Duplicating Jointed Bodies: Demonstrates duplication
of multiple articulated knobs. Instead of manually defining a joint
for each knob, this node automatically replicates the articulated
body at a set of points (a grid in this example).

Figure 8. Connecting Multiple Jointed Bodies: Demonstrates
connecting multiple bodies together. We first joint the two rods
together, followed by jointing the combined body with the base.

Figure 9. Jointing to the Same Body: Demonstrates jointing two
rods to the same sphere. First, one rod is jointed to the sphere
to form a body. Then, the second rod is jointed to this body by
attaching it to the top-most parent object (i.e. the sphere).

Figure 10. Multi-Jointed Bodies: Demonstrates a multi-jointed
articulated cap. Combining a hinge and slide joint can achieve a
screw joint commonly used for assets such as water bottles.

5.3. Variability in Hinge-to-Handle Distance

\R\H
Figure 11. Comparison of asset parameter distributions. The
top row shows the default distribution used for handle length and

handle-to-hinge distance. The bottom row shows an expanded dis-
tribution where these parameters are varied over a wider range.

Assets created using Infinigen-Sim can have many continu-
ously varying input parameters, which can either be manu-
ally set or randomized according to a distribution. We show
a case study for just doors with lever handles in Fig. 11.
To open a door with a handle, two parameters are important
for manipulation: the length of the handle and the distance
between the handle hinge and the door hinge. The former
defines grasp poses and the motion of handle rotation. The
latter determines the trajectory required to successfully ro-
tate the door. Infinigen-Sim allows users to define widely

distributed combinations of these two parameters with di-
verse handle geometries. Users can tailor distributions of
parameters to their specific needs. Such properties cannot
be satisfied with existing articulated assets [14, 31] or mod-
eling tools [7, 18].

	Introduction
	Infinigen-Sim
	Articulated Procedural Generator Tools
	Exporting Assets to Simulation

	Articulated Asset Procedural Generators
	Experiments
	Movable Part Segmentation
	Reinforcement Learning Generalization
	Sim-to-Real Transfer

	Conclusion
	Articulated Parts
	Example Articulations
	Variability in Hinge-to-Handle Distance

