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Abstract
Interactive 3D segmentation has emerged as a
promising solution for generating accurate ob-
ject masks in complex 3D scenes by incorpo-
rating user-provided clicks. However, two crit-
ical challenges remain underexplored: (1) ef-
fectively generalizing from sparse user clicks to
produce accurate segmentation and (2) quanti-
fying predictive uncertainty to help users iden-
tify unreliable regions. In this work, we propose
NPISeg3D, a novel probabilistic framework that
builds upon Neural Processes (NPs) to address
these challenges. Specifically, NPISeg3D intro-
duces a hierarchical latent variable structure with
scene-specific and object-specific latent variables
to enhance few-shot generalization by capturing
both global context and object-specific charac-
teristics. Additionally, we design a probabilistic
prototype modulator that adaptively modulates
click prototypes with object-specific latent vari-
ables, improving the model’s ability to capture
object-aware context and quantify predictive un-
certainty. Experiments on four 3D point cloud
datasets demonstrate that NPISeg3D achieves
superior segmentation performance with fewer
clicks while providing reliable uncertainty esti-
mations. Project Page: https://jliu4ai.
github.io/NPISeg3D_projectpage/.

1. Introduction
Interactive 3D segmentation (Kontogianni et al., 2023; Yue
et al., 2023; Valentin et al., 2015; Shen et al., 2020; Zhi
et al., 2022; Zhang et al., 2024) seeks to generate precise
object masks in complex 3D environments by incorporating
user-provided feedback, typically in the form of positive and
negative clicks. Positive clicks indicate regions belonging
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to target objects, while negative clicks define background
areas. Through iterative user interaction, models can pro-
gressively refine their segmentation predictions, ensuring
adaptability and improved accuracy. This inherent flexibility
has made interactive 3D segmentation a vital tool for a wide
range of real-world applications, including autonomous driv-
ing (Ando et al., 2023), robotic manipulation (Zhuang et al.,
2023), and augmented reality (Alhaija et al., 2017).

Recent advancements in the field have made substantial
progress. For instance, single-object segmentation meth-
ods for 3D point clouds (Kontogianni et al., 2023) and
multi-object segmentation frameworks (Yue et al., 2023)
have significantly pushed the boundaries of interactive 3D
segmentation. However, two critical challenges remain in-
sufficiently addressed, hindering the broader adoption and
effectiveness of existing methods. The first one is effective
few-shot generalization. Interactive 3D segmentation re-
quires models to deliver accurate results with minimal user
input. In real-world scenarios, users expect precise segmen-
tation with only a few clicks, requiring models to generalize
effectively from sparse user-provided cues. This challenge
is amplified in diverse environments with complex scenes
and a wide variety of objects, where limited supervision
must suffice for reliable segmentation (Schult et al., 2023;
Takmaz et al., 2023; Kweon et al., 2024).

The second one is robust uncertainty estimation. The re-
liability of interactive 3D segmentation models is highly
sensitive to variability in user clicks, particularly when in-
put is sparse or ambiguous (Zhou et al., 2023). Uncertainty
estimation is critical for interpreting model predictions, such
as in model reliability assessment (Wu et al., 2023; Xu et al.,
2023; Gong et al., 2023), identifying regions that require
further user refinement, and guiding subsequent user inter-
actions. Furthermore, reliable uncertainty quantification is
essential in high-stakes applications, such as medical imag-
ing (Rakic et al., 2024) and autonomous driving (Michel-
more et al., 2020; Shafaei et al., 2018), where erroneous
predictions can have significant consequences. Addressing
these challenges is pivotal for advancing the capabilities
of interactive 3D segmentation and enabling its effective
application across complex real-world scenarios.

Contributions. This work proposes NPISeg3D, a novel
probabilistic interactive 3D segmentation framework based
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on hierarchical neural processes (NPs), to simultaneously
address the challenges of few-shot generalization and uncer-
tainty estimation. Our contributions are highlighted below.

Firstly, we introduce the first NP-based framework for in-
teractive 3D segmentation, leveraging the strong few-shot
generalization and uncertainty estimation capabilities of
NPs (Jha et al., 2022; Garnelo et al., 2018b) as shown in
other domains like continual learning (Jha et al., 2024) and
semi-supervised learning (Wang et al., 2022; 2023). In
our NP segmentation framework, user-provided clicks are
treated as the context set providing partial observations
about objects of interest, while the remaining unlabeled
3D points in the scene constitute the target set for predic-
tion. Then, our NP framework formulates interactive 3D
segmentation as a probabilistic modeling problem, where
user-provided clicks (context set) are used to infer object-
specific latent variables, and segmentation predictions are
generated as a predictive distribution over the target set. This
probabilistic formulation enables the model to adaptively
update predictions based on user-provided clicks while in-
herently quantifying uncertainty in its predictions.

Moreover, we develop a hierarchical latent variable struc-
ture to further improve the few-shot generalization of our
NP segmentation framework. In complex scenes, NP mod-
els with a single latent variable often struggle to capture
the global structure and adequately model uncertainty (Guo
et al., 2023). This challenge is particularly critical in multi-
object interactive 3D segmentation setting (Yue et al., 2023)
where understanding intricate scene layouts and inter-object
relationships is crucial for accurate segmentation. To solve
this issue, we introduce a hierarchical latent variable struc-
ture with scene-specific and object-specific latent variables.
The former models the global scene context and spatial re-
lationships between objects, while the latter, derived from
user-provided clicks, captures the fine-grained character-
istics of each individual object. This hierarchical design
enables the model to effectively integrate global scene un-
derstanding with object-aware and click-guided refinement,
significantly enhancing its few-shot generalization.

Finally, we propose a probabilistic prototype modulator that
dynamically integrates object-specific latent variables into
each click prototype, which serves as a localized classi-
fier to guide the segmentation process. By enriching these
prototypes with object-aware context, the model derives
more informative and adaptive click prototypes, thereby im-
proving its ability to generalize from limited localized user
clicks. Furthermore, the probabilistic nature of the modu-
lator, achieved by latent space sampling, enables explicit
modeling of prediction uncertainty, offering more reliable
and interpretable insights into segmentation confidence.

Extensive experiments on four benchmark datasets demon-
strate the superiority of NPISeg3D over state-of-the-arts

(SoTAs) in both single- and multi-object interactive 3D seg-
mentation tasks. For instance, on the KITTI-360 dataset,
NPISeg3D achieves a significant performance improvement
of 8.4% and 4.2% over AGILE3D for single- and multi-
object segmentation, respectively. Moreover, unlike exist-
ing SoTA approaches such as InterObject3D and AGILE3D
which neglect uncertainty estimation, NPISeg3D provides
reliable and interpretable uncertainty qualification in model
predictions for interactive 3D segmentation.

2. Related Work
Interactive 3D Segmentation. Despite its importance, in-
teractive 3D segmentation (Valentin et al., 2015; Shen et al.,
2020; Zhi et al., 2022; Kontogianni et al., 2020; Yue et al.,
2023; Zhang et al., 2024; Zhou et al., 2024) remains rela-
tively underexplored. Pioneering works such as InterOb-
ject3D (Kontogianni et al., 2023) and CRSNet (Sun et al.,
2023) have established click-based simulation schemes for
interactive point cloud segmentation. AGILE3D (Yue et al.,
2023) further advances the field by introducing an attention-
based model to facilitate interactive multi-object segmenta-
tion in 3D point clouds. Additionally, InterPCSeg (Zhang
et al., 2024) integrates off-the-shelf semantic segmentation
networks to improve their performance using corrective
clicks at test-time. Unlike the aforementioned deterministic
models, this work introduces the first probabilistic frame-
work for interactive 3D segmentation, providing reliable and
insightful uncertainty estimation to guide user interaction.

Neural Processes. Neural Processes (NPs) (Garnelo et al.,
2018b) learn to approximate stochastic processes by mod-
eling marginal distributions over functions. Conditional
Neural Processes (CNPs) (Garnelo et al., 2018a) extend this
framework by learning predictive distributions conditioned
on context and target sets. Various extensions have been
proposed, such as Attentive Neural Processes (ANPs) (Kim
et al., 2019), which leverage attention mechanisms for im-
proved representation aggregation, and Transformer Neural
Processes (TNPs) (Nguyen & Grover, 2022), which employ
transformer architectures to model long-range dependencies.
Further advancements focus on enhancing predictive accu-
racy (Lee et al., 2020), stationarity (Foong et al., 2020), and
robustness to noise (Kim et al., 2022). In this work, we ex-
tend NPs to interactive 3D segmentation, enabling effective
few-shot generalization and uncertainty estimation.

3. Preliminary: Neural Processes
Neural Processes (NPs) (Garnelo et al., 2018a;b) are a
family of methods designed to approximate the proba-
bilistic distribution over continuous functions conditioned
on partial observations. Formally, given a context set
DC = (XC ,YC) and a target set DT = (XT ,YT ), where
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Figure 1. Overview of NPISeg3D. We formulate interactive 3D segmentation as a probabilistic modeling problem with neural processes.
Given a 3D scene S and a user click set C, a point encoder encodes them into click prototypes XC (context data) and scene features XT

(target data). Then, we introduce two hierarchical latent variables: scene-level latent variable zs and object-level latent variable zo, to
enable probabilistic modeling and capture contextual information across hierarchical levels. In probabilistic prototype modulator, each
object-specific latent variable is utilized to generate object-specific weights (γ, β), which modulate its corresponding click prototypes,
thereby enhancing few-shot generalization and providing reliable uncertainty estimation. The posterior distributions of the latent variables
are inferred from the target set (XT ,YT ), which supervise the prior during training.

X and Y represent input-output pairs, NPs aim to model
the conditional distribution p(YT |XT ,DC).

Generally, NPs model the distribution over functions
by introducing a global latent variable z, which cap-
tures the underlying uncertainty in the function space.
This latent variable is sampled from a prior distribution
p(z|DC)conditioned on the context set DC . Given z, the
model infers the target ouputs YT based on the conditional
distribution p(YT |XT , z), where XT denotes the target in-
puts. Thus, the overall NPs model is formulated as:

p(YT |XT ,DC) =

∫
p(YT |XT , z)p(z|DC)dz. (1)

Due to the intractable true posterior, previous work resort
amortized variational inference (Kingma & Welling, 2013)
to optimize the NPs model. Specifically, let q(z|DT ) repre-
sent the variational posterior of the latent variable z inferred
from the target set DT during training, the evidence lower
bound (ELBO) for NPs is derived as:

log p(YT |XT ,DC) ≥ Eq(z|DT ) [log p(YT |XT , z)]

− DKL [q(z|DT )∥p(z|DC)] . (2)

The first term of the ELBO is the predictive log-likelihood,
which encourages the model generate accurate predictions
for the target outputs YT . The second term is a Kullback-
Leibler (KL) divergence that regularizes the variational pos-
terior q(z|DT ) to stay close to the prior p(z|DC). This
probabilistic formulation enables the model to generalize
from few observed samples (context) to make predictions
on unseen data (target), inherently supporting few-shot gen-
eralization and uncertainty estimation (Jakkala, 2021; Wang
& Van Hoof, 2022; Shen et al., 2023; Wang et al., 2025).

4. Methodology
Task Definition. Interactive multi-object 3D segmentation
operates on a 3D scene represented as a point cloud, denoted
by S ∈ RN×6, where N is the number of 3D points. Each
point is characterized by its spatial coordinates (x, y, z) and
color features (r, g, b). Then, users provide a sequence of in-
teraction clicks C = {(ck, ok)}Kk=1, where ck = (xk, yk, zk)
denotes the 3D coordinates of the k-th click, ok ∈ {l}Ml=0

is the click label, with l = 0 representing the background
and l ∈ {1, . . . ,M} denoting the remaining M (> 1) ob-
jects. Given the 3D scene S and click sequence C, the goal
is to predict the segmentation mask Y ∈ RN , where each
element Yi ∈ {l}Ml=0 denotes the label of the i-th point in
the scene. Users can iteratively provide corrective clicks to
refine segmentation results until they are satisfactory.

4.1. NP Framework for Interactive Segmentation

To enable effective few-shot generalization for interactive
3D segmentation with robust uncertainty estimation, we for-
mulate the problem within Neural Processes (NPs) frame-
work, a probabilistic approach. The NPs framework pro-
vides a natural formulation for interactive 3D segmentation,
where user-provided clicks serve as the context set, and the
unclicked points constitute the target set to be predicted. We
define the context set and target set in the feature space. As
shown in Figure 1, given the 3D scene S and input clicks set
C, a point encoder (Kontogianni et al., 2023; Yue et al., 2023)
generates corresponding features XT ∈RN×d for the 3D
points and XC={Xm

C }Mm=0 for the clicked points. For ob-
ject m, Xm

C ={Xm,i
C }N

m
C

i=1 is the features of Nm
C clicks with

each click feature Xm,i
C ∈ Rd, and Ym

C = {Ym,i
C }N

m
C

i=1 are
corresponding one-hot labels. We refer to Xm

C as “click pro-
totypes” for object m, as they serve as click-wise classifiers
for segmentation (Yue et al., 2023). Then, the context set is
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DC =(XC ,YC)= {(Xm
C ,Ym

C )}Mm=0, while the target set
is DT = (XT ,YT ). Given the context and target set, NP
aims to model the prediction distribution p(YT |XT ,DC).

To effectively model the diverse and complex structures
of multiple objects within a 3D scene, we assume that the
segmentation functions for each object m are conditionally
independent given their respective context information. In
interactive segmentation, user clicks are typically provided
for distinct objects, which aligns with our assumption of
processing each object independently. Specifically, for each
object, we introduce an object-specific latent variable zmo ∈
Rd to capture fine-grained object-specific characteristics.
The latent variable zmo is conditioned on the context set
Dm

C = (Xm
C ,Ym

C ) for object m. Considering that click
prototypes Xm

C inherently encapsulates both feature and
label information of clicks, we represent the context set
Dm

C as Xm
C for simplicity in the following equations. Then,

the segmentation function for object m is defined by the
following conditional distribution:

p(Ym
T |XT ,Dm

C )=

∫
p(Ym

T |XT , z
m
o ) p(zmo |Xm

C ) dzmo ,

(3)
where p(zmo |Xm

C ) denotes the prior distribution of the latent
variable zmo , inferred from the context click prototypes Xm

C .
p(Ym

T |XT , z
m
o ) is the predictive distribution conditioned

on the latent variable zmo , modeling the probability of each
point in XT belonging to object m. By considering multiple
objects, the joint conditional distribution is formulated as:

p(YT |XT ,DC)=

M∏
m=0

∫
p(Ym

T |XT , z
m
o ) p(zmo |Xm

C ) dzmo .

(4)
In practice, the prior distribution p(zmo |Xm

C ) is parameter-
ized by a small learnable network. During training, the
prior is optimized to approximate the posterior inferred
from target data, as described in Eq. (2). This enables the
NP framework to effectively capture object-specific char-
acteristics from a limited number of user-provided clicks,
facilitating rapid adaptation to unseen objects and enhancing
the model’s few-shot generalization capability in interac-
tive segmentation. Moreover, the probabilistic formulation
in Eq. (4) inherently enables the model to provide uncer-
tainty estimation for segmentation results, offering valuable
feedback for guiding user interactions.

Despite its effectiveness, modeling the distribution of func-
tions with only object-level latent variables potentially limits
the few-shot generalization capacity of the model (Guo et al.,
2023; Shen et al., 2021). This limitation becomes more
pronounced in complex scenes, particularly multi-object in-
teractive segmentation settings, where understanding global
scene context and inter-object relationships is crucial. To
address this challenge, we propose the solution in Sec. 4.2.
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Figure 2. Computational Graph of our NPISeg3D. The frame-
work incorporates a hierarchical inference structure with a scene-
level latent variable (zs) and an object-level latent variable (zo),
capturing contextual information at different spatial levels.

4.2. Hierarchical NP Framework for segmentation

To enhance few-shot generalization in complex scenes, we
introduce a hierarchical latent variable structure into the
NP framework in Eq. (4). As illustrated in Figure 2, this
hierarchal structure consists of a scene-specific latent vari-
able zs ∈ Rd and M + 1 object-specific latent variable
zmo . Generally, the scene-specific latent variable zs is de-
signed to capture the global scene context and inter-object
relationships, providing a holistic understanding of the 3D
scene. Simultaneously, the object-specific latent variables
zmo focus on encoding fine-grained and object-specific de-
tails specified by user-provided clicks. By incorporating the
hierarchal latent variables structure, the NP framework in
Eq. (4) is reformulated as:

p(YT |XT ,DC) =

∫ M∏
m=0

{∫
p(Ym

T |XT ,X
m
C , zmo , zs)

· p(zmo |zs,Xm
C )dzmo

}
p(zs|XC) dzs, (5)

where p(zs|XC) denotes the prior distribution of the scene-
specific latent variable, encoding holistic scene context from
all user clicks. p(zmo |zs,Xm

C ) models the object-specific
latent variable conditioned on the scene-specific latent vari-
able zs and click prototypes Xm

C of object m. Lastly,
p(Ym

T |XT ,X
m
C , zmo , zs) defines the predictive distribution

over the target set for object m, and here we introduce an
additional condition, i.e., the click prototypes Xm

C , to incor-
porate click-level details.

This hierarchical design allows the model to seamlessly
integrate fine-grained object-specific guidance with global
scene understanding, effectively enhancing few-shot gener-
alization and leading to more accurate segmentation. Next,
we describe the inference process of these latent variables.

Scene-Specific Latent Variable. As illustrated in Figure 1,
we infer the distribution of the scene-specific latent variable
via a scene-level aggregator. Specifically, we first compute
object-level prototypes X̄m

C by averaging Nm
C click pro-

totypes {Xm,i
C }N

m
C

i=1 for each object m. Then, object-level
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prototypes {Xm
C }Mm=0 are averaged to construct a scene-

level prototype X̄C . To capture interactions between the
scene- and object-level prototypes, we employ a lightweight
single-layered transformer (Trans), and the scene-specific
latent variable is inferred as follows:

[µs, σs] = MLP
(
Trans([X̄C ; X̄

m
C ])

)
, (6)

where [µs, σs] are the mean and variance of the Gaussian
distribution p(zs|XC), generated using a two-layer multi-
layer perceptron (MLP). The scene-specific latent variable
zs captures the global scene context, which is crucial in chal-
lenging scenarios with overlapping objects or ambiguous
boundaries, where localized guidance alone is insufficient.

Object-Specific Latent Variables. For each object m,
the object-specific latent variable zmo is conditioned on
the scene-specific latent variable zs and the correspond-
ing object-specific click prototypes Xm

C . This allows zmo to
integrate global scene context while adapting to fine-grained
and click-specific details. Formally, zmo is generated through
an object-level aggregator, as illustrated in Figure 1. This
process is formulated as follows:

[µm
o , σm

o ] = MLP
(
αzs + (1− α)

∑Nm
C

i=1
Xm,i

C

)
, (7)

where zs is a Monte Carlo sample drawn from the prior dis-
tribution p(zs|XC), and α ∈ [0, 1] balances the scene-level
context and the object-level context introduced by clicks.
The object-specific latent variables zmo effectively capture
object-aware context and model object-level uncertainty,
enabling robust few-shot generalization.

4.3. Probabilistic Prototype Modulator

Click prototypes Xm
C encapsulate fine-grained and localized

cues for segmenting object m and collectively define its de-
cision boundary as an ensemble classifier (Yue et al., 2023).
However, each individual click prototype Xm,i

C often lacks
awareness of the broader object-level or scene-level context
and struggles to effectively capture predictive uncertainty.

To this end, we introduce a probabilistic prototype mod-
ulator that dynamically adjusts click prototypes using the
corresponding object-specific latent variables zmo . These
latent variables, derived from our hierarchical modeling ap-
proach, capture object-specific uncertainty while integrating
global scene context, effectively enriching click prototypes
with high-level semantic information. Specifically, the mod-
ulated click prototype X̃m,i,j

C for object m is defined as:

X̃m,i,j
C = γ(zm,j

o )⊙Xm,i
C + β(zm,j

o ), (8)

where Xm,i
C ∈ Rd is the i-th click prototype for object m,

zm,j
o ∈ Rd is the j-th Monte Carlo sample drawn from the

prior distribution p(zmo |zs,Xm
C ), introducing stochasticity

into the model to represent uncertainty. γ(zm,j
o ) ∈ Rd and

β(zm,j
o ) ∈ Rd are the scale and shift parameters, respec-

tively, computed via a two-layer multi-Layer perceptron
(MLP) conditioned on zm,j

o . ⊙ denotes element-wise multi-
plication, enabling feature-wise modulation. X̃m,i,j

C denotes
the modulated click prototype for object m derived from the
i-th user-provided click and the j-th Monte Carlo sample.

By coupling latent variables with click prototype modula-
tion, the framework creates a seamless information flow:
Scene → Objects → Clicks. This hierarchical struc-
ture captures multi-granularity context, including global
scene layout, object-specific characteristics, and click-level
details, significantly improving few-shot generalization and
leading to more accurate segmentation. Moreover, by draw-
ing multiple samples zm,j

o from the prior distribution, we
enable the prototype modulator to be probabilistic, allowing
the model to estimate uncertainty in its predictions.

4.4. NPISeg3D Pipeline

Evidence Lower Bound. To optimize NPISeg3D in Eq. (5),
we adopt variational inference (Kingma & Welling, 2013)
and derive the evidence lower bound (ELBO) as:

log p(YT |XT ,DC) ≥

Eq(zs|XT )

{ M∑
m=0

Eq(zm
o |zs,Xm

T ) log p(Y
m
T |XT ,X

m
C , zmo , zs)

− DKL

[
q(zmo |zs,Xm

T )∥p(zmo |zs,Xm
C )

]}
− DKL

[
q(zs|XT )∥p(zs|XC)

]
, (9)

where qθ(zs|XT ) and qϕ(z
m
o |zs,Xm

T ) denote the varia-
tional posteriors of latent variables zs and zmo , and parame-
terized by θ and ϕ, respectively. The variational posteriors
are inferred from the target set (XT ,YT ), and Xm

T denotes
all target point features belonging to object m. The prior
distributions are supervised by the variational posterior us-
ing Kullback–Leibler (KL) divergence, guiding the model
to effectively capture richer object-specific information with
limited context data and enabling better generalization to
unseen target data. See derivations in Appendix A.

Model Training. The loss function for NPISeg3D is derived
from the ELBO in Eq. (9). In practice, the first term is
implemented as a segmentation loss that enforces alignment
between predictions and ground truth. The second term
consists of two KL divergence regularization terms that
constrain the latent variable distributions. Therefore, the
overall training objective is formulated as:

L =Lseg(ŶT ,YT ) + λkl

(
DKL

[
q(zs|XT )∥p(zs|XC)

]
+

M∑
m=0

DKL

[
q(zmo |zs,Xm

T )∥p(zmo |zs,Xm
C )

])
, (10)
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Methods Train→ Eval IoU@5 ↑ IoU@10 ↑ IoU@15 ↑ Avg ↑ NoC@80 ↓ NoC@85 ↓ NoC@90 ↓ Avg ↓

InterObject3D
ScanNet40→ScanNet40

(In-domain)

75.1 80.3 81.6 79.0 10.2 13.5 16.6 13.4
InterObject3D++ 79.2 82.6 83.3 81.7 8.6 12.4 15.7 12.2
AGILE3D 82.3 85.0 86.0 84.4 6.3 10.0 14.4 10.2
NPISeg3D (Ours) 82.6 85.2 86.2 84.7 5.9 10.0 14.4 10.1

InterObject3D
ScanNet40→S3DIS-A5

(Out-of-domain)

76.9 85.0 87.3 83.1 6.8 8.8 13.5 9.7
InterObject3D++ 81.9 88.3 89.3 86.5 5.7 7.6 11.6 8.3
AGILE3D 86.3 88.3 90.3 88.3 3.4 5.7 9.6 6.2
NPISeg3D (Ours) 89.0 90.9 91.5 90.5 2.8 4.4 7.8 5.0

InterObject3D
ScanNet40→Replica

(Out-of-domain)

73.2 83.7 87.0 81.3 7.7 10.8 18.4 12.3
InterObject3D++ 80.4 87.5 88.8 85.6 5.9 7.5 15.7 9.7
AGILE3D 83.5 87.9 89.5 86.9 3.6 5.8 14.1 7.8
NPISeg3D (Ours) 85.7 89.3 90.4 88.5 2.9 4.7 13.0 6.9

InterObject3D
ScanNet40→KITTI-360

(Out-of-domain)

10.5 22.1 31.0 21.2 19.8 19.8 19.9 19.8
InterObject3D++ 16.7 37.1 52.2 35.3 18.3 18.9 19.3 18.8
AGILE3D 40.5 44.3 48.2 44.3 17.4 18.3 18.8 18.2
NPISeg3D (Ours) 44.0 48.5 52.9 48.5 16.4 17.0 17.6 17.0

Table 1. Quantitative results on interactive multi-object segmentation. Avg denotes the mean IoU across 5, 10, and 15 clicks, or the
mean NoC across 80%, 85%, and 90% IoU thresholds. NPISeg3D is a consistent top-performer, particularly on out-of-domain datasets.

where Lseg(ŶT ,YT ) is the segmentation loss implemented
as the combination of dice loss and cross-entropy loss (Yue
et al., 2023; Schult et al., 2023), ŶT denotes the predicted
mask for the target point cloud XT , and λkl is a balancing
coefficient for the regularization terms.

Model Inference. As shown in Figure 1, given the mod-
ulated click prototypes and target points, we generate the
final segmentation mask via a mask head. Specifically, we
first compute the segmentation logits Ŷm

T for object m by
aggregating predictions across multiple Monte Carlo sam-
ples. This captures the uncertainty introduced by the prob-
abilistic latent variables. Then, a per-point max operation
is applied to select the most confident response across all
user-provided clicks. This process is formulated as:

Ŷm
T = max

i∈{1,...,Nm
C }

1

Nzo

Nzo∑
j=1

cos(XT , X̃
m,i,j
C ), (11)

where cos(·, ·) represents the cosine similarity, and Nzo is
the number of Monte Carlo samples used to approximate the
latent distribution. After computing the logits {Ŷm

T }Mm=0

for M +1 objects (including background), the final segmen-
tation mask ŶT by assigning each point to the object with
the highest similarity score. We further obtain the uncer-
tainty map by replacing the mean aggregation in Eq. (11)
with their variances, see details in Appendix B.5.

5. Experiments
Datasets. We follow the dataset setup as in prior work (Yue
et al., 2023) and train our model on the ScanNetV2-Train
dataset (Dai et al., 2017). For evaluation, we consider
two types of datasets: (1) In-domain dataset: ScanNetV2-
Val (Dai et al., 2017), which shares the same distribu-
tion as the training data; (2) Out-of-domain datasets:
S3DIS (Armeni et al., 2016), collected using different sen-
sors; Replica (Straub et al., 2019), a synthetic indoor dataset;
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Figure 3. Qualitative results on interactive multi-object segmen-
tation on S3DIS and KITTI360. Newly added clicks are repre-
sented by dark-colored dots. Please zoom in for more details.

and KITTI-360 (Liao et al., 2022), an outdoor LiDAR
dataset designed for autonomous driving scenarios. Further
details on the dataset setup are provided in Appendix D.1.

Evaluation Metrics. We follow prior works (Kontogianni
et al., 2023; Yue et al., 2023; Zhang et al., 2024) and evaluate
model performance using two key metrics: (1) NoC@q%
↓, which measures the average number of clicks required
to reach target IoUs of 80%, 85%, and 90%, denoted as
NoC@80, NoC@85, and NoC@90. (2) IoU@k ↑, which
evaluates the average IoU achieved after 5, 10, and 15 clicks,
represented as IoU@5, IoU@10, and IoU@15. A maximum
of 20 clicks is allowed per instance, and results are averaged
across all instances in the multi-object segmentation setting.

Baselines. We compare NPISeg3D with three interactive 3D
segmentation methods: InterObject3D (Kontogianni et al.,
2023), InterObject3D++ (Yue et al., 2023), and AGILE3D
(Yue et al., 2023). InterObject3D processes objects sequen-
tially in multi-object scenarios, while InterObject3D++ en-
hances its performance in multi-object settings with iterative
training. AGILE3D adopts an attention-based framework,
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Methods Train→Eval IoU@5 ↑ IoU@10 ↑ IoU@15 ↑ Avg ↑ NoC@80 ↓ NoC@85 ↓ NoC@90 ↓ Avg ↓

InterObject3D
ScanNet40→ScanNet

(In-domain)

72.4 79.9 82.4 78.2 8.9 11.2 14.2 11.4
InterObject3D++ 78.0 82.9 84.2 81.7 7.7 10.0 13.2 10.3
AGILE3D 79.9 83.7 85.0 82.9 7.1 9.6 12.9 9.9
NPISeg3D (Ours) 80.5 83.8 85.0 83.1 7.0 9.5 12.8 9.8

InterObject3D
ScanNet40→S3DIS-A5

(Out-of-domain)

72.4 83.6 88.3 81.4 6.8 8.4 11.0 8.7
InterObject3D++ 80.8 89.2 91.5 87.2 5.2 6.7 9.3 7.1
AGILE3D 83.5 88.2 89.5 87.1 4.8 6.4 9.5 6.9
NPISeg3D (Ours) 85.3 89.2 90.1 88.2 4.4 6.0 8.9 6.4

InterObject3D
ScanNet40→Replica

(Out-of-domain)

64.4 80.1 86.1 76.9 8.4 10.0 12.4 10.3
InterObject3D++ 72.6 83.8 86.7 81.0 6.9 8.1 11.2 8.7
AGILE3D 76.3 85.6 87.1 83.0 5.7 7.9 10.6 8.1
NPISeg3D (Ours) 78.9 87.4 88.7 85.0 4.8 6.3 9.7 6.9

InterObject3D
ScanNet40→KITTI-360

(Out-of-domain)

14.3 26.3 35.0 25.2 19.1 19.4 19.7 19.4
InterObject3D++ 19.9 40.6 55.1 38.5 17.0 17.7 18.4 17.7
AGILE3D 44.4 49.6 54.9 49.6 14.2 15.5 16.8 15.5
NPISeg3D (Ours) 55.7 57.5 60.9 58.0 11.5 13.0 14.7 13.1

Table 2. Quantitative results on interactive single-object segmentation. Avg denotes the mean IoU across 5, 10, and 15 clicks, or the
mean NoC across 80%, 85%, and 90% IoU thresholds. NPISeg3D is a consistent top-performer, particularly on out-of-domain datasets.

Methods Datasets IoU@1 ↑ IoU@2 ↑ IoU@3 ↑

InterObject3D 38.5 54.0 62.5
InterObject3D++ S3DIS 32.7 55.8 69.0
AGILE3D 58.5 70.7 77.4
NPISeg3D 60.5 74.0 80.0

InterObject3D 34.7 46.7 56.7
InterObject3D++ Replica 21.5 41.5 55.1
AGILE3D 53.4 63.7 67.4
NPISeg3D 54.6 65.7 70.3

InterObject3D 2.0 5.1 8.5
InterObject3D++ KITTI-360 3.4 7.0 11.0
AGILE3D 34.8 40.7 42.7
NPISeg3D 36.9 46.5 52.0

Table 3. Quantitative results on single-object segmentation task
with limited clicks (≤ 3). The best results are highlighted in bold.

achieving state-of-the-art (SoTA) performance.

5.1. Evaluation on Multi-object Segmentation

In-domain Results. As shown in Table 1, NPISeg3D per-
forms competitive and even better than baseline methods
on the ScanNet40 dataset by achieving higher segmentation
accuracy with fewer user interactions. For example, it at-
tains an IoU@5 of 82.6 and reduces the number of clicks
required to achieve 80% IoU (NoC@80) to 5.9, compared
to 6.3 for AGILE3D. These results highlight the superiority
of NPISeg3D in achieving high-quality interactive segmen-
tation on data distributions similar to the training set.

Generalization to Out-of-domain. Notably, NPISeg3D
demonstrates strong few-shot generalization capabilities on
out-of-domain datasets, including S3DIS-A5, Replica, and
KITTI-360, achieving superior segmentation performance
with fewer user interactions. As shown in Table 1 (ln. 2),
on the S3DIS-A5 dataset, NPISeg3D achieves an impres-
sive 89.0% IoU@5 (+2.7% over AGILE3D) while reduc-
ing NoC@80 to 2.8 compared to 3.4 for AGILE3D. Simi-
larly, on the challenging KITTI-360 dataset, it attains 52.9%
IoU@5 (+4.7% over AGILE3D) and lowers NoC@90 to
17.6, outperforming AGILE3D’s 18.8. These results demon-

Zs Zo Mp
S3DIS KITTI360

mIoU@10↑ NoC@85↓ mIoU@10↑ NoC@85↓
- - - 88.7 5.5 45.4 18.1
✓ - ✓ 90.3 5.0 46.1 17.7
- ✓ ✓ 90.7 4.7 46.7 17.4
✓ ✓ - 90.4 4.7 47.8 17.2
✓ ✓ ✓ 90.9 4.4 48.5 17.0

Table 4. Ablation study of model components on multi-object
segmentation task. Zs and Zo denote the scene-specific and
object-specific latent variables, respectively, while Mp represents
the probabilistic prototype modulator.

strate the superiority of NPISeg3D in enhancing few-shot
generalization on out-of-domain datasets, attributed to our
probabilistic framework with hierarchical NPs.

Qualitative results. Figure 3 presents the qualitative com-
parison between AGILE3D and NPISeg3D under the same
number of clicks. NPISeg3D predicts more accurate seg-
mentation masks, especially on the challenging KITTI-360
dataset, where it achieves 42.4% IoU@5, significantly out-
performing AGILE3D’s 18.6% IoU@5. These results un-
derscore NPISeg3D’s capability to achieve high-quality seg-
mentation with a limited number of user clicks.

5.2. Evaluation on Single-object Segmentation

Results. As shown in Table 2, NPISeg3D achieves com-
petitive or superior performance compared to AGILE3D on
the ScanNet dataset, attaining an IoU@5 of 80.9% versus
AGILE3D’s 79.9%. Moreover, NPISeg3D again outper-
forms most baselines on the out-of-domain datasets. For
instance, on KITTI-360, which features complex outdoor
LiDAR scenes with substantial domain shifts, NPISeg3D
achieves an IoU of 55.7% with 5 clicks, markedly surpass-
ing AGILE3D’s 44.4%. These results highlight the superior
generalization capability of NPISeg3D in the single-object
segmentation setting. See more results in Appendix B.7.

Low-click Results. Our method demonstrates remarkable
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Modulation S3DIS KITTI360

mIoU@10↑ NoC@85↓ mIoU@10↑ NoC@85↓
♦Concat 90.6 4.7 47.8 17.4
♦Add 90.4 4.9 48.2 17.2
♢Ours 89.6 5.0 46.1 17.8
♦Ours 90.9 4.4 48.5 17.0

Table 5. Ablation study of prototype modulation strategies. ♦
and ♢ denote probabilistic and deterministic modulations.

Method S3DIS KITTI360

mIoU@10↑ NoC@85↓ mIoU@10↑ NoC@85↓
MC dropout (r = 0.1) 90.1 5.0 40.6 18.2
MC dropout (r = 0.3) 90.4 4.8 38.8 18.9
MC dropout (r = 0.5) 88.9 6.3 24.9 19.3

NPISeg3D (n = 5) 90.8 4.5 48.6 17.0
NPISeg3D (n = 10) 90.9 4.4 48.5 17.0
NPISeg3D (n = 20) 90.8 4.5 48.5 17.0

Table 6. Ablation study of different uncertainty estimation
methods with different parameters. r denotes the dropout rate,
and n is the sampling number of latent variables in NPs.

performance in the low-click regime (≤ 3 clicks) and out-
of-domain scenarios. As shown in Table 3, with only two
clicks, NPISeg3D attains IoU scores of 74.0% on S3DIS
and 65.7% on KITTI-360. When increased to three clicks,
the IoU further improves to 80.0% on S3DIS and 52.0% on
KITTI-360, significantly outperforming the state-of-the-art
AGILE3D. These results furhter highlight superior few-shot
generalization of our NPISeg3D with limited clicks.

5.3. Ablation and Analysis

Effect of Hierarchical Latent Variables. We conduct
an ablation study on the S3DIS and KITTI-360 datasets
to assess the impact of the hierarchical latent variables in
NPISeg3D. As shown in Table 4, both the scene-specific
latent variable zs and the object-specific latent variable zo
contribute to improved segmentation performance. For in-
stance, on S3DIS, introducing zo reduces NoC@85 from 5.0
to 4.4 (ln. 2 vs. ln. 6), highlighting its effectiveness in captur-
ing object-specific context. With both zs and zo (ln. 6), our
NPISeg3D achieves the best results, validating the advan-
tage of the hierarchical modeling in capturing multi-granular
context and improving few-shot generalization.

Effect of Probabilistic Prototype Modulator. As shown
in Table 4 (ln. 5 vs. ln. 6), incorporating probabilistic proto-
type modulator yields notable performance improvements,
demonstrating its beneficial effect in improving segmenta-
tion accuracy. Furthermore, Table 5 (ln. 3 vs. ln. 4) presents
a comparison with a deterministic modulator, where the
object-level prototype X̄m

C is directly used to generate mod-
ulator parameters. The probabilistic approach offers sub-
stantial performance gains by capturing uncertainty and
enabling more adaptive responses to user inputs. We further

User Data Source IoU@3 ↑ IoU@5 ↑ NoC@80 ↓ t@80 ↓
Simulator S3DIS 84.8 92.7 2.2 -
Human 83.2 ± 0.6 93.5 ± 0.7 1.7±0.3 3 min

Simulator KITTI-360 79.3 86.6 3.5 -
Human 81.1 ± 1.4 88.1 ± 0.4 2.8 ± 0.4 5 min

Table 7. User study on annotating 20 objects. t@80 represents
the time required to reach 80% IoU.

3D scene

IoU@2=44.5 IoU@4=74.6 IoU@6=81.6Ground Truth

uncertainty@2 uncertainty@4 uncertainty@6

Figure 4. Uncertainty maps of predictions with increasing
clicks. We show mask predictions and uncertainty after K clicks.

explore alternative modulation strategies, such as Concat
and Add, to assess different ways of integrating object-
specific latent variables with click prototypes. The results
validate the superiority of our method in achieving accurate
segmentation with improved generalization.

Effect of Uncertainty Estimation Strategies. Table 6
compares MC Dropout (Xiang et al., 2022; Wang et al.,
2023) with varying dropout rates (r = 0.1, 0.3, 0.5) and
NPISeg3D with different latent variable sampling numbers
(n = 5, 10, 20). Generally, MC Dropout shows a decline
in performance as the dropout rate increases, indicating
reduced reliability in uncertainty estimation with higher
dropout. In contrast, NPISeg3D maintains stable and supe-
rior performance across different sampling numbers, demon-
strating its robustness and more effective uncertainty mod-
eling. This highlights the superior uncertainty modeling of
our NPISeg3D with hierarchical latent variables.

User Study. We conducted a user study with real hu-
man clicks to evaluate NPISeg3D in practical scenarios. As
shown in Table 7, real users achieved performance compa-
rable to the simulator, demonstrating the reliability of our
method. Notably, our method consistently achieves superior
and robust results across different user behaviors. This im-
provement is attributed to its uncertainty estimation, which
effectively guides user interactions by identifying uncertain
regions, reducing the time spent searching for high-error
regions. See Appendix C for further details.

Qualitative Analysis of Uncertainty Estimation. As
shown in Figure 4, NPISeg3D generates reliable and infor-
mative uncertainty estimations. Notably, high uncertainty
is primarily concentrated in incorrectly segmented regions,
along the edges of the predicted mask, and in areas distant
from user clicks, reflecting inherently challenging cases in
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interactive 3D segmentation. Moreover, uncertainty progres-
sively decreases as more user clicks are provided, indicating
the model’s increasing confidence in segmentation. For
additional examples, see Appendix B.5 and Figure 7 and 8.

6. Conclusion
We present NPISeg3D, the first probabilistic framework for
interactive 3D segmentation. NPISeg3D formulates the task
within the NP framework, incorporating a hierarchical latent
variable structure and a probabilistic prototype modulator to
enhance the model’s capability in few-shot generalization
and uncertainty estimation. Experiments demonstrate that
NPISeg3D achieves high-quality segmentation and provides
reliable uncertainty estimation across diverse 3D scenarios.

Limitations. While NPISeg3D demonstrates strong effec-
tiveness, its out-of-domain performance still lags behind
in-domain scenarios. Future work could address this by ex-
panding the training set or incorporating domain adaptation
techniques to further improve generalization.
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A. Derivation of ELBO
The proposed NPISEG3D is formulated as:

p(YT |XT ,DC) =

∫ M∏
m=0

{∫
p(Ym

T |XT ,X
m
C , zmo , zs)p(z

m
o |zs,Xm

C )dzmo

}
p(zs|XC) dzs, (12)

where p(zs|XC) and p(zmo |zs,Xm
C ) denote the prior distributions of a scene-specific latent variable and each object-specific

latent variables, respectively. Considering that XC contains both click features and click label information, we substitute
DC with XC on the right-hand side of the above equation and throughout the following derivation. Then, the evidence lower
bound is derived as follows:

log p(YT |XT ,DC)

= log

∫ M∏
m=0

{∫
p(Ym

T |XT ,X
m
C , zmo , zs)pϕ(z

m
o |zs,Xm

C ) dzmo

}
pθ(zs|XC) dzs

= log
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m
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pϕ(z
m
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C )qϕ(z
m
o |zs,Xm

T )

qϕ(zmo |zs,Xm
T )

dzmo

}
pθ(zs|XC)qθ(zs|XT )

qθ(zs|XT )
dzs

≥ Eqθ(zs|XT )

{ M∑
m=0

log
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m
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}
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[
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]
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T ) log p(Y
m
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C , zmo , zs)− DKL

[
qϕ(z
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T )∥pϕ(zmo |zs,Xm
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]}
− DKL

[
qθ(zs|XT )∥pθ(zs|XC)

]
,

where qθ(zs|XT ) and qϕ(z
m
o |zs,Xm

T ) are variation posteriors of their corresponding latent variables, θ and ϕ are parameters
of inference modules for zs and zmo . This ELBO effectively decomposes the log-likelihood into three terms: (1) a
reconstruction term, which maximizes the expected log-likelihood of the predictions Ym

T under the latent variables; (2) a
KL divergence term for each object-specific latent variable zmo , which aligns the approximate posterior with the prior; and
(3) a KL divergence term for the scene-specific latent variable zs, ensuring that the global context is appropriately captured.
This formulation explicitly models uncertainty at both the scene and object levels, enabling the framework to effectively
handle complex 3D segmentation tasks with both global and localized user interactions.

B. Additional Results.
B.1. Part Segmentation Results.

Methods IoU@5 ↑ IoU@10 ↑ IoU@15 ↑ NoC@80 ↓ NoC@85 ↓ NoC@90 ↓
InterObject3D 61.9 70.2 73.2 14.5 16.7 18.2
InterObject3D++ 60.0 70.8 72.6 13.9 16.4 17.8
AGILE3D 59.6 70.1 74.4 14.5 16.7 18.0
NPISeg (Ours) 63.2 73.2 77.0 13.0 15.2 17.3

Table 8. Quantitative results on part-wise segmentation using the PartNet dataset. The results are reported for multi-part segmentation
tasks, where the models are trained on ScanNet40. The best-performing results are highlighted in bold. Our model consistently
outperforms others in part segmentation accuracy.

To further evaluate the effectiveness of our method in part-wise segmentation, we conduct additional experiments on PartNet
under the multi-part interactive segmentation setting, where multiple parts of an object must be segmented simultaneously.

For evaluation, we select six of the most common objects with multiple parts, namely chairs, beds, scissors, sofas, tables,
and lamps. To ensure diversity in the evaluation set, we randomly sample ten point clouds for each object category. This
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setup allows us to assess the generalization ability of our model across different object geometries and part compositions.
Since such selection involves randomness, we plan to release the object ids for a fair comparison with our method.

Table B.1 presents the quantitative results on the PartNet dataset for multi-part segmentation tasks. Our proposed NPISeg3D
consistently outperforms existing methods, achieving the highest IoU across all evaluation thresholds (IoU@5, IoU@10,
and IoU@15), demonstrating its superior segmentation accuracy. Notably, NPISeg3D requires fewer user clicks to reach
the desired IoU targets, as evidenced by the lowest NoC@80, NoC@85, and NoC@90 values. These results indicate that
our hierarchical probabilistic modeling effectively captures fine-grained part-level details while maintaining global scene
context, addressing the limitations of prior approaches like AGILE3D, which struggled with part-wise segmentation. The
improved performance highlights the robustness of NPISeg3D in handling complex multi-part segmentation scenarios with
minimal user interaction. The qualitative results in Figure 6 further demonstrate effectiveness of our framework.

B.2. Benefits of Incorporating Previous Mask.

Methods Datasets IoU@5 ↑ IoU@10 ↑ IoU@15 ↑ NoC@80 ↓ NoC@85 ↓ NoC@90 ↓
w/o Prev. Mask S3DIS 89.0 90.5 91.0 2.9 4.6 7.8
w/ Prev. Mask 89.0 90.9 91.5 2.8 4.4 7.8

w/o Prev. Mask KITTI360 43.5 47.8 52.3 16.6 17.3 17.8
w/ Prev. Mask 44.0 48.5 52.9 16.4 17.0 17.6

Table 9. Benefit of incorporating previous mask into our framework. Results are reported for multi-object segmentation tasks, with
models trained on the ScanNet40 dataset. Better results are highlighted in Bold.

In our approach, we leverage the previous segmentation mask to enhance the interactive segmentation process by incorpo-
rating historical predictions into the current interaction. Specifically, the previous mask is first converted into a one-hot
representation, capturing class-wise information at each point. This one-hot encoding is then processed through a learnable
mask encoder, implemented as a four-layer Multi-Layer Perceptron (MLP), which outputs a refined representation of size
N×15. The encoded mask features are subsequently concatenated with the point-wise features, providing enriched contextual
information that facilitates more accurate predictions in subsequent interactions.

The results in Table 9 validate the effectiveness of incorporating the previous mask in both the S3DIS and KITTI360
datasets. The inclusion of previous mask information leads to consistently improved IoU scores across different click counts,
demonstrating the model’s ability to leverage past segmentation knowledge for better refinement. Moreover, the number
of clicks required to reach target IoU thresholds (NoC metrics) is significantly reduced, highlighting the efficiency gains
achieved through this strategy. These results affirm that utilizing prior segmentation masks effectively guides the model
towards more precise and efficient interactive segmentation.

B.3. Ablation on Click Simulation Strategy during Training

Methods Datasets IoU@5 ↑ IoU@10 ↑ IoU@15 ↑ NoC@80 ↓ NoC@85 ↓ NoC@90 ↓
Iterative S3DIS 89.3 91.1 91.7 2.9 4.5 7.8
RITM 89.0 90.9 91.5 2.8 4.4 7.8

Iterative KITTI360 44.5 46.7 50.5 17.1 17.6 18.3
RITM 44.0 48.5 52.9 16.4 17.0 17.6

Table 10. Comparison of our model with different click simulation strategies during training. Results are reported for multi-object
segmentation tasks, with models trained on the ScanNet40 dataset. Better results are highlighted in Bold.

AGILE3D (Yue et al., 2023) demonstrated the effectiveness of iterative training for interactive multi-object segmentation.
However, iterative training incurs high computational costs, making it less practical for large-scale applications. In
contrast, we adopt the more efficient RITM sampling strategy (Sofiiuk et al., 2022), which balances training efficiency and
segmentation performance. See more analysis in Sec. D.2.

Table 10 compares our method using Iterative and RITM click simulation strategies during training on the S3DIS and
KITTI360 datasets. For the S3DIS dataset, the Iterative method achieves slightly higher IoU scores across all click counts,
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with IoU@5 reaching 89.3 compared to RITM’s 89.0. However, RITM exhibits a lower NoC@80 (2.8 vs. 2.9), suggesting
that it requires fewer clicks to achieve the same segmentation quality at the 80% IoU threshold. Both methods perform
similarly in NoC@85 and NoC@90.

On the KITTI360 dataset, which poses greater challenges due to its outdoor LiDAR environment, the RITM strategy
significantly outperforms the Iterative method in IoU@10 and IoU@15, with improvements of 1.5 and 2.4 points, respectively.
Additionally, RITM achieves better NoC performance, indicating its superior efficiency in complex scenarios.

Overall, while the Iterative method slightly excels in high-quality indoor segmentation (S3DIS), RITM demonstrates better
generalization to challenging outdoor environments (KITTI360) by achieving higher IoU with fewer user interactions.
Considering the balance between computation efficiency and performance, we adopt RITM as the click sampling strategy
during our model training.

B.4. Computation Analysis

Model Params/MB FLOPs/G Train Speed/days Inference Speed/ms

Inter3D 37.86 0.47 - 80
Inter3D++ 37.86 0.47 - 80
AGILE3D 39.30 4.73 6.4 60
NPISeg3D 40.00 4.94 2.7 65

Table 11. Computational analysis of NPISeg and state-of-the-art (SOTA) methods. The traing and inference speed are evaluated on a
single NVIDIA A6000 GPU.

Table 11 presents a comparative analysis of NPISeg3D and state-of-the-art methods in terms of model size, computational
complexity, and efficiency. NPISeg3D has a slightly larger parameter size (40.00 MB) compared to AGILE3D (39.30
MB) and Inter3D variants (37.86 MB), primarily due to the inclusion of the scene-level and object-level aggregators, as
formulated in Eq. (6) and Eq. (7). Despite the increased FLOPs (4.94G), NPISeg3D achieves a significantly faster training
time of 2.7 days, outperforming AGILE3D’s 6.4 days, attributed to the efficient random and iterative training strategy (see
more details in Sec. D.2). At inference, NPISeg3D runs at 65 ms per scan—slightly slower than AGILE3D (60 ms) but
substantially faster than Inter3D (80 ms). This demonstrates that NPISeg3D balances the added complexity of probabilistic
modeling with competitive runtime efficiency, making it well-suited for real-time applications.

Overall, these results confirm that NPISeg3D achieves a favorable balance between computational efficiency and segmenta-
tion performance, demonstrating its potential in practical applications.

B.5. Uncertainty Estimation

In our probabilistic segmentation framework, uncertainty estimation plays a crucial role in guiding user interactions and
improving model reliability. To achieve this, we replace the mean operation used in segmentation logits computation (Eq. 11)
with variance, leveraging multiple Monte Carlo samples to quantify the model’s confidence. Specifically, our approach
estimates uncertainty by measuring the variability across different latent samples. Since multiple click classifiers exist for
each object, we further aggregate uncertainty by selecting the maximum value across all clicks, ensuring that the regions
with the highest ambiguity are highlighted for further refinement.

Formally, the uncertainty map for object m at each point is computed as:

Um
T = max

i∈1,...,Nm
C

 1

Nzo

Nzo∑
j=1

(
cos(XT , X̃

m,i,j
C )− E[cos(XT , X̃

m,i,j
C )],

)2

 (13)

where Um
T denotes the uncertainty map for object m, Nm

C represents the number of click prototypes for object m, and E[·]
denotes the expectation over Monte Carlo samples. The variance quantifies the spread of predictions across different latent
samples, while the max operation identifies the highest uncertainty value among all click prototypes. The overall uncertainty
map UT is obtained by taking the maximum uncertainty across all object classes, including the background, ensuring a
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comprehensive representation of segmentation confidence across the entire scene. Formally, it is computed as:

UT = max
m∈{0,...,M}

Um
T . (14)

This aggregated uncertainty map helps identify the most uncertain regions, guiding user interactions for more efficient
refinement. This probabilistic formulation provides an interpretable measure of segmentation confidence, allowing the
model to identify regions requiring further corrective interactions. Such an approach enhances the interactive segmentation
process by focusing user efforts on the most uncertain areas, thereby improving the overall segmentation quality in complex
multi-object 3D environments.

We provide visualization examples of uncertainty maps in Figure 7 and Figure 8.
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Figure 5. Qualitative comparison between the state-of-the-art (SoTA) method AGILE3D and our proposed NPISeg3D on the
interactive multi-object segmentation task. Newly added clicks are represented by dark-colored dots. Our NPISeg3D consistently
achieves higher IoU scores with the same number of clicks, particularly on the challenging outdoor LiDAR dataset KITTI-360.
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Figure 6. Qualitative comparison between the state-of-the-art (SoTA) method AGILE3D and our proposed NPISeg3D on the
interactive single-object segmentation task. Newly added clicks are represented by dark-colored dots. Our NPISeg3D consistently
achieves higher IoU scores with the same number of clicks. Notably, our NPISeg3D also achieve decent segmentation performance on
part-wise segmentation on the PartNet dataset.
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B.6. Qualitative Comparison with SoTA method.

In Figure 5 and Figure 6, we provide additional comparisons between the state-of-the-art (SoTA) method AGILE3D and
our proposed NPISeg3D on the multi-object and single-object segmentation tasks, respectively. Generally, our NPISeg3D
consistently achieves higher IoU scores than AGILE3D with the same number of clicks across diverse datasets. The
improvement is particularly pronounced on the challenging outdoor LiDAR dataset KITTI-360. For example, in Figure 5,
our NPISeg3D achieves an IoU of 42.4 after 5 clicks, significantly outperforming AGILE3D’s 18.6. These results further
demonstrate the strong few-shot generalization derived from the NP framework with hierarchical latent variable modeling.

B.7. More Qualitative Results.

We present more qualitative results regarding segmentation performance and uncertainty estimation in Figure 7 and Figure 8.
As shown in these figures, our method not only demonstrates strong few-shot generalization capability—i.e., generating
accurate segmentation masks with minimal user input—but also provides reliable and meaningful uncertainty estimation.
Notably, high uncertainty is concentrated around erroneous regions and object boundaries. This insight suggests that
uncertainty maps could be leveraged to guide the selection of click candidates for subsequent interaction rounds. We leave
this exploration for future work.

C. User Study.

Figure 9. User interface for interactive segmentation with integrated uncertainty estimation as guidance. In the main window, users
provide input clicks, and the model generates a segmentation prediction. The upper-right window displays uncertainty estimation for the
current segmentation, guiding users on where to focus in the next interaction round.

To move beyond simulated user clicks and evaluate performance with real human interactions, we conduct user studies.

User Interface. To this end, we extend the user-friendly interface from (Yue et al., 2023) to incorporate uncertainty
estimation. As shown in Figure 9, the enhanced interface consists of two windows: a main window where users provide
clicks and receive corresponding segmentation predictions, and a sub-window in the upper-right corner that visualizes
uncertainty estimation for the current segmentation, guiding users on where to focus in the next interaction round. The
software is cross-platform and browser-compatible, supporting both interactive single- and multi-object segmentation. To
enhance user interaction, various keyboard shortcuts are designed for efficiency. For example, Ctrl + Click designates a
background region, while Number + Click specifies an object. We appreciate the open-source tool provided by (Yue et al.,
2023) and will release our code, along with the improved annotation tool, to facilitate future research.
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Figure 7. Qualitative Results on Interactive Single-Object Segmentation. In the multi-object segmentation task, IoU@k denotes the
average Intersection over Union (IoU) after k clicks per object. For clarity, only the first click per object is visualized, with subsequent
clicks omitted. The uncertainty map highlights regions of model uncertainty, where brighter areas correspond to higher uncertainty.
Notably, high uncertainty is predominantly localized to object boundaries and regions distant from user-provided clicks.
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Figure 8. More qualitative results on the interactive single-object segmentation task. In multi-object segmentation task, IoU@k
denotes the average IoU after k clicks per object. We show the first click per object, and omit following clicks for better visualization.
In the uncertainty map, brighter regions indicate higher uncertainty. Our method provides reliable uncertainty estimation, with high
uncertainty primarily focused on object edges and areas far from user clicks.
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Design. We conducted a user study involving 10 participants with no prior experience with point cloud annotation. Firstly,
each participant was as assigned the task to annotate 4 scenes, where two of the scenes from the S3DIS dataset and the other
two from the KITTI-360 dataset. Each of these scenes consists of 4-7 objects, which cover various categories, including
chairs, tables, cars, etc. Participants were allowed to refine the segmentation results step by step based on their own
preferences, rather than being constrained to selecting the regions with the highest error as the next click candidate, as done
in simulation. Secondly, during annotation, each participant continued annotating until they were satisfied with the results.
Throughout the process, we recorded the average intersection-over-union (IoU) score and the number of clicks. Finally, we
computed the average of these metrics across all participants and present the results in Table 7.

D. Experimental Setup Details.
D.1. Dataset Details.

We adopt the experimental setting from prior work (Yue et al., 2023) and train our model on the ScanNetV2-Train dataset (Dai
et al., 2017), which contains 1,200 indoor scenes. Evaluation is conducted across four diverse datasets, covering both indoor
and outdoor environments: ScanNetV2-Val (Dai et al., 2017), S3DIS (Armeni et al., 2016), Replica (Straub et al., 2019),
and KITTI-360 (Liao et al., 2022). Additionally, we further evaluate the part-level segmentation capability of our NPISeg3D
and existing models on the PartNet dataset (Mo et al., 2019).

ScanNetV2 (Dai et al., 2017) consists of richly annotated indoor scenes, serving as the primary dataset for training and
validation. S3DIS (Armeni et al., 2016) features 272 indoor scenes across six large areas, presenting a significant domain gap
from ScanNetV2. Replica (Straub et al., 2019) is a photorealistic indoor dataset comprising high-quality 3D reconstructions
of real-world environments, offering diverse scene layouts and materials for testing model generalization. KITTI-360 (Liao
et al., 2022), an outdoor LiDAR point cloud dataset, is designed for 3D perception tasks in autonomous driving and provides
large-scale outdoor scenes.

PartNet (Mo et al., 2019) focuses on part-level segmentation, offering hierarchical annotations of 3D objects. This dataset
challenges the model’s ability to perform fine-grained segmentation by decomposing objects into semantic subcomponents.
These datasets collectively provide a diverse and comprehensive benchmark to evaluate the robustness and generalizability
of our model across varying domains and tasks.

D.2. Implementation Details.

Detailed Model Setting. In NPISeg3D, the point encoder consists of a backbone network and an attention network to
effectively process 3D point cloud data. Specifically, we adopt the Minkowski Res16UNet34C (Choy et al., 2019) backbone,
following prior works (Kontogianni et al., 2023; Yue et al., 2023; Schult et al., 2023). The 3D scene is first quantized
into N

′
spare voxels with a fixed resolution of 5cm, ensuring efficient and consistent representation, as done in previous

studies (Kontogianni et al., 2023; Yue et al., 2023; Schult et al., 2023). The backbone processes the sparse voxelized input
and outputs a feature map of size N

′ ×96, which is further projected to 128 channels by a 1×1 convolution. Following (Yue
et al., 2023), we employ an attention network composed of multiple layers that facilitate interaction between click and scene
features. These layers include click-to-scene, scene-to-click, and click-to-click attention mechanisms, enabling effective
fusion of user-provided inputs with the global scene context to enhance segmentation performance.

Model Training. We train NPISeg3D end-to-end for 600 epochs using the Adam optimizer with an initial learning rate of
0.0005. The learning rate is reduced by a factor of 0.1 after 500 epochs to facilitate convergence. Training is performed on a
single Tesla A6000 GPU with a batch size of 5. The KL loss coefficient λklin Eq. (10) is set to 0.005. For the segmentation
loss Lseg , we use a combination of cross-entropy loss and dice loss, with coefficients of 1 and 2, respectively.

Click Simulation Strategy for Training. In interactive 3D segmentation, click simulation during training plays a crucial
role in aligning the model’s behavior with real-world user interactions. The multi-object iterative training strategy proposed
in (Yue et al., 2023) has been demonstrated to effectively improve segmentation performance by simulating user clicks
iteratively based on the model’s predictions from previous rounds. This iterative approach closely mimics the test-time click
sampling strategy, enhancing the model’s ability to refine segmentation with progressive user feedback.

However, despite its effectiveness, this iterative simulation strategy is computationally expensive and time-consuming (Sofi-
iuk et al., 2022), as evidenced by the runtime analysis in Table 11. The high computational cost makes it impractical for
large-scale training scenarios. In contrast, interactive 2D segmentation commonly employs a more efficient strategy, known
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as Random and Iterative Training Mechanism (RITM) (Sofiiuk et al., 2022), which strikes a balance between training
efficiency and performance. RITM initializes the training process by randomly sampling an initial set of clicks, followed by
a limited number of iteratively sampled clicks to refine segmentation predictions.

Inspired by RITM, we extend its application to the interactive 3D segmentation task, including the multi-object segmentation
setting. Specifically, our approach combines random and iterative sampling strategies to optimize both efficiency and
accuracy. First, an initial set of user clicks is randomly sampled, providing diverse training samples across different objects.
Then, a variable number of iterative clicks, ranging from 0 to Niter, are added progressively based on the model’s prediction
errors, ensuring better alignment with real-world interaction scenarios.

Click Simulation Strategy for Inference. Following prior works (Kontogianni et al., 2023; Yue et al., 2023; Zhang et al.,
2024), we adopt a standardized automated click simulation strategy to ensure reproducible evaluation. Specifically, the
first click is placed at the center of the object within the ground truth mask. Subsequent clicks are iteratively placed at the
centroid of the largest misclassified region by comparing the predicted segmentation with the ground truth mask. This
process continues until the segmentation reaches the maximum click limit is reached, i.e., totally 20 clicks.
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