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Abstract

Although significant advancements have been
made in end-to-end speech recognition, it still
remains a challenging task when dealing with
low-resource scenarios, even with the utiliza-
tion of traditional data augmentation methods.
Recent technological progress, demonstrated
by the success of VITS and its variations, has
spurred interest in exploring Text-to-Speech
(TTS) synthesis for data augmentation to ad-
dress the aforementioned difficulties. In this
study, we investigate the effectiveness of in-
tegrating synthetic speech generated by VITS
into the train sets of ASR systems. Through
comprehensive experiments, we assess the im-
pact of this approach on improving the general-
ization and performance of ASR models in En-
glish, Mandarin, and Japanese. Experimental
results indicate that the average character-level
accuracy of the VITS-based data augmentation
method matches the best performance observed
among traditional data augmentation methods
before model transfer. After model transfer, the
average character-level accuracy of the VITS-
based data augmentation method significantly
outperforms all traditional methods, surpassing
Speed Perturbation, the best-performing tradi-
tional method, by 3.5%, as well as Tacotron2
and Fastspeech. Our findings indicate that
models trained with the VITS-based data aug-
mentation method exhibit enhanced resilience
towards domain shift challenges, demonstrat-
ing improved adaptability across varied linguis-
tic contexts, thus highlighting the potential of
VITS as a valuable data augmentation tech-
nique.

1 Introduction

Automatic Speech Recognition (ASR) tasks play
a critical role in enabling human-computer interac-
tion, information retrieval, and the advancement
of speech-based applications across diverse do-
mains. The performance of ASR models relies
heavily on the quality and quantity of training

data. With an ample supply of high-quality train-
ing data, both hybrid models (integrating deep neu-
ral networks with Hidden Markov models (DNN-
HMM)) and end-to-end models (jointly trained neu-
ral network systems) demonstrate nearly equiva-
lent performance (Liischer et al., 2019). However,
acquiring large amounts of high-quality labeled
speech data tends to be time-consuming and costly.
This challenge, particularly pronounced for low-
resource languages or specific domains, exacer-
bates the difficulty of achieving high performance
in low-resource tasks, where end-to-end models,
compared to hybrid models, notably lag behind
(Medennikov et al., 2020). Moreover, trained ASR
models often encounter domain shift when trans-
ferred to other datasets(Fan et al., 2022; Hiday-
aturrahman et al., 2023; Chakrabarty et al., 2023).
Domain shift occurs when the distribution of data
in the target domain, where the model is deployed,
differs significantly from that in the source domain,
where the model is trained. This difference can
lead to a significant decrease in model performance.
Addressing domain shift is therefore crucial for en-
suring the robustness and generalization ability of
machine learning models across diverse and evolv-
ing scenarios.

Data augmentation, as an effective method to en-
hance the diversity of training data through various
transformations and expansions, has been widely
applied in fields such as computer vision and natu-
ral language processing (Pradana et al., 2023; Joshi
et al., 2023; Muthumari et al., 2022). In ASR, data
augmentation can not only alleviate the problem of
insufficient data but also enhance the robustness of
the model, especially in coping with different noise
environments and speaker variations. Moreover,
data augmentation methods can mitigate the per-
formance degradation of models caused by domain
shift to some extent.

Common speech data augmentation methods in-
clude Noise Augmentation (Ko et al., 2015), Vol-



ume Augmentation, Speed Perturbation (Ko et al.,
2015), and Specaugment (Park et al., 2019) which
involves time and frequency domain masking. Nev-
ertheless, traditional data augmentation methods
have limitations, such as being unable to generate
entirely new speech patterns and linguistic vari-
ations. They rely on manipulating existing au-
dio, which may not fully capture the diversity and
complexity of natural speech. In contrast, Text-to-
Speech (TTS) methods represented by the VITS
model offer a solution by synthesizing diverse and
natural-sounding speech from text as a data aug-
mentation technique. This approach expands the
range of available speech patterns and linguistic
variations beyond what traditional methods can
achieve, thus addressing the shortcomings of tradi-
tional data augmentation.

In this paper, we compare the character-level ac-
curacy of four traditional data augmentation meth-
ods (Noise Augmentation, Volume Augmentation,
Speed Perturbation, and SpecAugment) with VITS,
Tacotron2, and Fastspeech, three TTS-based data
augmentation methods, on ASR tasks at different
multiples of train set expansion. To ensure the gen-
erality of our experimental results, we evaluate per-
formance across English, Mandarin, and Japanese
languages. Specifically, we use the AN4, Ljspeech
(Ito and Johnson, 2017) and VCTK datases (Veaux
et al., 2016) for English, the THCHS30 (Wang and
Zhang, 2015), CSMSC and AISHELLS3 (Shi et al.,
2020) datasets for Mandarin, the JUST (Kawahara
et al., 2000), JVS (Takamichi et al., 2019) and
CSJ datasets (Maekawa, 2003) for Japanese. Our
findings indicate that the VITS-based data augmen-
tation method achieves comparable performance
to traditional methods, Tacotron2, and Fastspeech
before migration, and demonstrates superior per-
formance after migration.

The contributions of our paper are as follows: 1)
We conduct a comparative analysis between TTS-
based data augmentation methods (Tacotron2, Fast-
speech, and VITS) and traditional data augmen-
tation methods on multilingual small datasets to
simulate tasks with limited resources. This ap-
proach aims to enhance the universality of our ex-
perimental findings, providing insights into the ef-
fectiveness of different augmentation methods. 2)
We validate that models trained using VITS-based
data augmentation method exhibit superior gen-
eralization performance after transfer compared
to models trained using other data augmentation

methods. This validation underscores the poten-
tial of VITS in enhancing model robustness and
mitigating domain shift issues, thus contributing to
advancements in the field of machine learning and
speech processing.

2 Related Work

End-to-End Speech Recognition: End-to-end
speech recognition (ASR) has witnessed significant
advancements in recent years with models such as
Deep Speech (Hannun et al., 2014), Wav2Letter
(Collobert et al., 2016), and Listen, Attend and
Spell (LAS) (Chan et al., 2015) demonstrating high
accuracy in various applications. These models
simplify the traditional ASR pipeline by integrat-
ing acoustic, language, and pronunciation models
into a single neural network.

However, their performance heavily depends on

the availability of large amounts of labeled data,
which poses a challenge in low-resource scenarios.
To address data scarcity, various data augmentation
techniques have been employed, such as SpecAug-
ment and Speed Perturbation.
Text-to-Speech (TTS) Synthesis for Data Aug-
mentation: Recent advancements in TTS technol-
ogy have provided new opportunities for data aug-
mentation in ASR. Models like Tacotron2 (Shen
et al., 2017), FastSpeech (Ren et al., 2019), and
VITS (Kim et al., 2021) can generate high-quality
synthetic speech, which can be used to augment
training datasets for ASR systems. Tacotron2 syn-
thesizes natural-sounding speech by converting text
into mel-spectrograms and then using a vocoder
to generate waveforms. FastSpeech improves on
Tacotron2 by using a non-autoregressive approach,
making it faster and more stable. VITS combines
variational inference with adversarial learning to
produce even more natural and diverse speech.

Despite the significant advances in TTS technol-
ogy over recent years, research on using TTS for
data augmentation to address data scarcity in low-
resource tasks remains scarce. Within the limited
research available, most studies have focused nar-
rowly on the straightforward application of TTS
for data augmentation in ASR, without thorough
comparisons between TTS as a novel augmentation
method and traditional augmentation techniques.
For example, Rosenberg et al. evaluated the feasi-
bility of enhancing speech recognition performance
by synthesizing speech using two corpora from dif-
ferent domains. Wang et al. explored using text-



to-speech data augmentation to enhance children’s
speech recognition systems. Additionally, there
has been insufficient investigation into how the use
of these methods affects domain shift issues.

3 Methods
3.1 Traditional Data Augmentation Methods

Speed Perturbation augments the train set by
adjusting the playback speed of speech signals.
Employing the data augmentation technique, mod-
els become more adept at accommodating diverse
speaking rates and intonations, consequently bol-
stering its resilience and generalization capacity.
Suppose the original audio signal is x(t), then the
signal after Speed Perturbation, y(t), can be ex-

pressed as:
t
y(t) = <a> )

where « is the Speed Perturbation factor. When
a < 1, the playback speed of the audio speeds
up; when o > 1, the playback speed of the audio
slows down. In this paper, we set o to 0.9, 1.1, and
1.2, corresponding to accelerating to 111% of the
original speed, and slowing down to 91% and 83%
of the original speed, respectively.

SpecAugment is a data augmentation technique
commonly used in automatic speech recognition
(ASR) to enhance model robustness and general-
ization. It operates by applying three types of trans-
formations to the spectrograms of speech signals:
Time Warping (TW), Frequency Masking (FM),
and Time Masking (TM). The augmented spectro-
gram S’ is obtained by sequentially applying these
transformations to the original spectrogram S

S'(t, f) = TWEM(TM(S(, ) @

The formulas for Frequency Masking (FM),
Time Masking (TM), and Time Warping (TW) are
as follows:

TW(S(t, f)) = S(t + dt, f) 3)
’ S(t, f) otherwise
C))
. 0 iftg <t <tg+dt
M 1) = {S(t, f) otherwise
(5)

In this context, fy denotes the random starting
frequency for FM, ¢ represents the random starting

time for TM, ¢ f stands for the masking width for
FM, and dt serves as both the masking width for
TM and a random time offset for TW.

Noise Augmentation is also a widely used tech-
nique in speech data augmentation. It aims to sim-
ulate different noise conditions found in real-world
environments, helping to strengthen the model’s
robustness. In this paper, we implement Noise
Augmentation by injecting white noise into the
original audio. The amplitude of the added white
noise is set to specific proportions of the original
audio amplitude. The calculation formula for Noise
Augmentation is as follows:

y(t) =z(t) + B - n(t) ©6)

where y(t) is the augmented audio signal, z(t) is
the original audio signal, n(¢) is the white noise
signal, § is the scaling factor for the white noise
amplitude. In our case, (3 takes the values 0.01,
0.02, and 0.05.

Volume Augmentation is a data augmentation
technique designed to create varied datasets by ad-
justing the volume of audio signals. By modulating
the amplitude of these signals, it simulates record-
ings with different volume levels, thereby diversify-
ing the training data. The corresponding formulas
are given below:

y(t) = - =(t) )

~y is the scaling factor for the audio signal’s am-
plitude, representing the volume adjustment. In
this paper, -y is set to 0.5, 0.9, and 1.1.

Figure 1 illustrates the comparison between the
mel spectrogram of the original speech data and
the mel spectrograms of the speech data after ap-
plying four different traditional data augmentation
methods. From left to right in Figure 1 are the
original spectrogram, the spectrogram after Speed
Perturbation, the spectrogram after SpecAugment,
the spectrogram after Noise Augmentation, and
the spectrogram after Volume Augmentation. This
comparison can provide insights into the effective-
ness of these augmentation techniques in enhancing
the robustness and generalization capability of the
speech recognition model.

3.2 VITS

Our approach leverages the Conditional Varia-
tional Autoencoder with Adversarial Learning for
End-to-End Text-to-Speech (VITS) model. VITS
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Figure 1: Comparison of Mel Spectrograms: Original Audio and Audio Augmented with Traditional Data Augmen-

tation Methods

is a cutting-edge architecture designed for text-to-
speech (TTS) synthesis. It integrates a variational
autoencoder (VAE) with adversarial learning tech-
niques to generate high-quality speech waveforms
directly from input text. Unlike traditional TTS
models, VITS incorporates a conditional mecha-
nism, enabling fine-grained control over the syn-
thesized speech characteristics.

The VITS model consists of an encoder-decoder
architecture, where the encoder processes input
text into a latent representation that captures the
underlying features of the speech. The decoder
then generates speech waveforms from this latent
representation, producing natural-sounding speech
with desired characteristics.

During training, VITS utilizes a combination
of loss functions, including spectral loss, duration
loss, and adversarial loss, to ensure the synthesized
speech’s quality and fidelity to the input text. The
corresponding equations are shown below.

»Cspec = MSE(Ssyntha Star) (8)

Edur - MSE(Dsyntm Dtar) (9)
Lagy = 10g(1 - D(Ssynth)) - log(D(Star)) (10)

Ssynth and Sy, represent the synthesized and tar-
get speech spectrograms, respectively, in Equation
(7). Dgynn and Dy, denote the synthesized and tar-
get speech durations, respectively, in Equation (8).
D(Sgynin) and D(Sg) are the discriminator’s out-
puts for the synthesized and target speech spectro-
grams, respectively, in Equation (9). MSE stands
for Mean Squared Error.

VITS offers several advantages, including high-
quality speech synthesis, fine-grained control over
synthesized speech characteristics, and simplified
training and inference procedures. These attributes
make it a compelling choice for various TTS ap-
plications, ranging from assistive technologies to

entertainment and communication systems. The
comparison of Mel Spectrograms between the orig-
inal audio and its corresponding VITS-synthesized
audio can be seen in Figure 2.

3.3 ASR

In our approach, we utilized a Transformer-
based ASR model architecture, consisting of Con-
former encoders and Transformer decoders. The
encoder module incorporated Conformer blocks,
which combined convolutional and self-attention
layers to capture both local and global information
from the input speech features. Meanwhile, the
decoder module employed Transformer blocks to
decode the encoded features and generate the final
transcript.

The Conformer block and Transformer decoder
can be defined as follows:

Conformer = Conv1D(SelfAttn(xz))  (11)

Decoder = SelfAttn(h) + FFN(h) (12)

In the provided equations, = denotes the input
sequence, which constitutes the raw sequential data
processed by the model. h represents the output
of the encoder, which serves as the input to the de-
coder operation. FFN() refers to the feed-forward
neural network. SelfAttn() represents the opera-
tion of applying self-attention mechanism.

During training, the model also optimized a com-
bination of loss functions, comprising spectral loss,
duration loss, and adversarial loss, to maintain the
accuracy of synthesized speech in relation to the
input text.

Optimization was performed using the Adam
optimizer with gradient accumulation and gradient
clipping to stabilize training. Learning rate schedul-
ing was implemented using the Noam scheduler,
gradually increasing the learning rate during the
warm-up phase.
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Figure 2: Comparison of Mel Spectrograms: Original Audio and VITS-synthesized Audio

In addition, traditional data augmentation tech-
niques along with VITS-based data augmentation
methods were introduced at this stage to augment
the training dataset for the ASR task, aiming to
enhance the model’s performance. These augmen-
tation methods are used to expand the diversity and
quantity of training samples, thus providing the
model with more varied and representative data
to learn from. By exposing the model to a wider
range of acoustic variations and perturbations, the
augmentation techniques encourage the model to
learn more robust and invariant features, thereby
improving its ability to generalize to unseen data
and challenging acoustic environments.

4 Experiments

In this paper, we train corresponding end-to-end
ASR models using the AN4, JSUT, and THCHS30
datasets, and augment the data using synthesized
speech obtained from VITS, Tacotron2, and Fast-
speech models trained on the VCTK, ASHELLS3,
and JVS datasets. After migration, the trained ASR
models will be tested for their performance on the
LJSpeech, CSMSC, and CSJ datasets using newly

sampled test sets containing an equivalent number
of samples as the original test sets. The details of
the train set, dev set, and test set for the aforemen-
tioned datasets can be found in Table 1.

During the experiments, we introduce four tra-
ditional data augmentation techniques alongside
three TTS-based data augmentation methods led
by VITS to enhance the train sets. To assess the ef-
fectiveness of these augmentation methods, we con-
duct a comparative analysis of model performance
at the character level on the test sets. These evalua-
tions enable us to gauge the models’ performance
post-migration and investigate the impact of differ-
ent augmentation techniques on model generaliza-
tion capabilities. Through meticulous comparisons,
we provide evidence supporting the superiority of
the VITS-based data augmentation method.

4.1 Datasets

AN4: The AN4 dataset encompasses a diverse col-
lection of speech recordings. With a sample rate
of 16000 Hz, it provides a comprehensive resource
for developing and evaluating speech recognition
algorithms.

LJSpeech: The LISpeech dataset is a public do-
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End-to-end ASR Model Training End-to-end TTS Model Training Migration Testing

Dataset  train set devset test set Dataset train set devset testset | Dataset test set
AN4 878 100 100 VCTK 36000 4000 4000 | LISpeech 100
THCHS30 10708 1340 1340 | AISHELL3 68035 10000 10000 | CSMSC 1340
JSUT 7196 250 250 JVS 15000 1000 1000 CSJ 250

Table 1: Datasets for ASR Model Training, TTS Model Training, and Migration Testing

main speech dataset consisting of 13,100 short au-
dio clips of a single speaker. Each clip is accom-
panied by a transcription. The clips vary in length
from 1 to 10 seconds, totaling approximately 24
hours of audio. The dataset has a sampling rate of
22.05 kHz.

VCTK: The VCTK Corpus consists of speech data
from 110 English speakers with diverse accents.
Each speaker reads approximately 400 sentences.
All recordings were downsampled to 48 kHz, and
manually end-pointed.

THCHS30: The THCHS30 dataset is an open
Mandarin speech database. It contains speech data
recorded in a quiet office environment, with a total
duration exceeding 30 hours. The recordings have
a sampling rate of 16 kHz.

CSMSC: CSMSC is a dataset containing approx-
imately 12 hours of effective speech data. The
recordings are made by a female speaker aged be-
tween 20 to 30 years. The speech data is provided
with a sampling rate of 48 kHz.

AISHELL3: The AISHELL-3 dataset is a multi-
speaker Mandarin audio corpus. It comprises
88,035 recordings from 218 native speakers reading
text from provided scripts with neutral emotions.
The recordings were captured at a sampling rate of
44.1 kHz.

JSUT: The JSUT dataset, a novel Japanese speech
corpus, comprises approximately 10 hours of
speech data recorded by a female native Japanese
speaker. It offers speech data in 16-bit/sample RIFF
WAV format with a sampling rate of 48 kHz, along
with UTF-8 encoded transcriptions of the speech
utterances.

CSJ: The Corpus of Spontaneous Japanese (CSJ) is
a comprehensive Japanese corpus extensively used
for research in phonetics, linguistics, and pragmat-
ics. It comprises approximately 650 hours of spon-
taneous speech, equivalent to about 7,000k words.
The speech materials are recorded using head-worn
close-talking microphones and DAT, and down-
sampled to 16 kHz with 16-bit accuracy. In this

experiment, only a portion of the data was utilized
for testing purposes.
JVS: The JVS corpus provides high-quality au-
dio recordings from 100 native Japanese speakers,
including voice actors and actresses. It features
various speech styles such as normal, whispering
and falsetto voices, ensuring a diverse dataset. The
audio files are sampled at 24 kHz and encoded at
16-bit depth, ensuring excellent fidelity and clarity.
These datasets collectively support the develop-
ment and evaluation of end-to-end speech recog-
nition models across English, Mandarin, and
Japanese languages, enabling a thorough analysis
of different data augmentation techniques.

4.2 ASR setup

We utilize the train set, dev set, and test set de-
rived from the AN4, THCHS30, and JSUT datasets
for training, model tuning, and evaluation of the
ASR models, respectively. The acoustic features,
extracted from the raw audio data, consist of 80-
dimensional log Mel filterbank coefficients, which
have undergone cepstral mean and variance nor-
malization.

Text data is tokenized into subwords using
SentencePiece, incorporating special characters
"<unknown>", "<blank>", underscore "_", and
"<sos/eos>" as sentence boundary markers. For
the AN4 English dataset, the vocabulary size is 30.
For the THCHS30 Mandarin dataset, it is 2669. For
the JSUT Japanese dataset, it is 2742.

The model architecture primarily utilizes the
Transformer framework for training the automatic
speech recognition model. It employs a folded
batch type with a batch size of 64 and sets a max-
imum of 200 training epochs. Model parameters
are initialized using Xavier uniform distribution.
The selection criterion for the best model is based
on the maximum accuracy achieved on the dev set,
retaining the top 10 best models.

Taking into account the linguistic and dataset-
specific characteristics, we made slight adjustments



English 1x (%) 2x (%) 3x (%) 4x (%) 4x Post-migration (%)
Raw 86.1 86.4 87.0 86.2 61.9 (-24.3)
Speed Perturbation 86.1 91.8 94.2 95.5 72.2 (-23.3)
SpecAugment 86.1 88.2 90.5 92.5 65.9 (-26.6)
Noise Augmentation 86.1 84.8 83.5 83.1 58.2 (-24.9)
Volume Augmentation 86.1 87.5 88.7 88.0 61.6 (-26.4)
Tacotron2 86.1 87.1 89.5 92.4 69.3 (-23.1)
Fastspeech 86.1 86.9 88.1 89.7 65.8 (-23.9)
VITS 86.1 87.8 90.3 93.4 77.1 (-16.3)
Mandarin 1x (%) 2x (%) 3x (%) 4x (%) 4x Post-migration (%)
Raw 47.9 48.1 48.2 47.9 43.1 (-4.8)
Speed Perturbation 479 48.6 48.8 49.0 43.7 (-5.3)
SpecAugment 47.9 48.5 48.9 49.1 39.0 (-10.1)
Noise Augmentation 479 47.4 47.7 46.6 40.6 (-6)
Volume Augmentation 47.9 46.9 47.5 48.1 42.8 (-5.3)
Tacotron2 479 48.3 48.7 47.6 44.1 (-3.5)
Fastspeech 47.9 48.1 48.5 48.5 43.8 (-4.7)
VITS 47.9 48.0 48.6 49.3 44.8 (-4.5)
Japanese 1x (%) 2x (%) 3x (%) 4x (%) 4x Post-migration (%)
Raw 82.4 86.5 86.7 86.5 70.4 (-16.1)
Speed Perturbation 82.4 86.8 87.8 88.1 72.7 (-15.4)
SpecAugment 82.4 86.5 87.4 87.4 71.6 (-15.8)
Noise Augmentation 82.4 86.6 87.0 87.0 70.2 (-16.8)
Volume Augmentation 82.4 86.2 86.7 87.4 70.7 (-16.7)
Tacotron2 82.4 86.3 87.7 88.0 72.6 (-15.4)
Fastspeech 82.4 85.5 87.1 86.8 71.7 (-15.1)
VITS 82.4 86.7 87.9 88.5 77.3 (-11.2)

Table 2: The table illustrates the character-level accuracy of ASR models on the test sets, achieved by expanding
train sets using different data augmentation methods to various multiples. The labels 1x, 2x, 3x, and 4x denote the
expansion multiples of the train sets. 4x Post-migration represents the accuracy of the ASR models after transfer,
when the train sets have been expanded to four times its original size.

to the structures of the ASR models for the three
languages, aiming to achieve optimal performance.
For the end-to-end ASR model trained on the AN4
dataset and THCHS30 dataset, the encoder pro-
duces a 256-dimensional output, with 4 attention
heads per mechanism and 12 Transformer blocks.
Similarly, the decoder includes 4 attention heads
per mechanism and 6 Transformer blocks. The
model uses a hybrid loss function that combines
spectral loss, duration loss, and adversarial loss,
each with specific weights. It adopts the Adam op-
timizer with a learning rate of 0.001 and employs a
warm-up learning rate scheduler with 2500 warm-
up steps. During the inference phase, the beam
search algorithm is used, with a beam size set to
10.

For the end-to-end ASR model trained on the
JSUT dataset, the encoder consists of 12 blocks

with 2048 linear units, 4 attention heads per mech-
anism, and a 256-dimensional output. It incorpo-
rates dropout with a rate of 0.1 and utilizes a swish
activation function. Additionally, it includes rel-
ative position encoding and self-attention mecha-
nisms, as well as a convolutional neural network
(CNN) module with a kernel size of 15. The de-
coder comprises 6 transformer blocks with 2048
linear units and a dropout rate of 0.1. The beam size
for the beam search algorithm during the inference
phase is set to 20.

4.3 TTS setup

In our experimental setup for Text-to-Speech
(TTS), we leveraged the advanced capabilities of
the VITS (Variational Inference Transformer for
Speech Synthesis) model. This state-of-the-art
model, renowned for its remarkable performance
in generating natural-sounding speech, formed the



cornerstone of our TTS experiments.

For the end-to-end TTS models in three lan-
guages, we loaded pre-trained multi-speaker TTS
model parameters trained on Aishell3, VCTK, and
JVS datasets. By leveraging these pre-trained mod-
els, we synthesized speech based on the text from
the train sets of the ASR task, thereby augment-
ing the scale of the training data and enhancing
diversity.

4.4 Comparison

In our experiments, we expand the train set to
double, triple, and quadruple its original size us-
ing different data augmentation techniques. Subse-
quently, we evaluate the performance of the trained
ASR models on the corresponding test sets in terms
of character-level accuracy.

As shown in Table 2, introducing either the TTS-
based data augmentation method or traditional data
augmentation techniques can enhance the perfor-
mance of the trained models in English, Mandarin,
and Japanese. In the scenarios of Mandarin and
Japanese, the ASR models trained using the VITS-
based data augmentation method achieved the high-
est accuracy. In the scenario where the training
datasets for all three languages are quadrupled, the
accuracy of ASR models trained using the VITS-
based data augmentation method consistently ranks
within the top two. The average accuracy across
the three scenarios is 77%. This performance
is comparable to that of the Speed Perturbation
and SpecAugment methods and significantly sur-
passes the Noise Augmentation and Volume Aug-
mentation methods, with an average accuracy im-
provement of 4.8% and 2.5%, respectively, across
all three scenarios. Besides, the performance of
the VITS-based data augmentation method outper-
forms Tacotron2 and Fastspeech, both of which are
also TTS-based data augmentation methods.

Due to differences in data distribution between
datasets, often referred to as the domain shift prob-
lem, trained models tend to suffer performance
degradation when transferred to new datasets. In
our experiments, we transferred the ASR models
trained with various data augmentation methods to
new datasets—LJSpeech, CSMSC, and CSJ—and
tested their character-level accuracy on these new
datasets. From Table 2, it can be observed that
under the condition of a fourfold expansion of the
train set in three languages, the performance degra-
dation of the ASR models trained using the VITS-

based data augmentation method is the least when
transferred to new datasets, averaging a decrease
of 10.7%. Conversely, among other data augmenta-
tion methods, Speed Perturbation exhibits the best
performance post-migration, with an average de-
crease of 14.7% across the three scenarios. Follow-
ing model transfer, the ASR models trained using
the VITS-based data augmentation method con-
sistently achieve the highest accuracy in all three
scenarios, with an average character-level accu-
racy of 66.4%, surpassing Speed Perturbation, the
second-best performer, by approximately 3.5%.

Overall, ASR models trained using the VITS-
based data augmentation method outperform most
data augmentation methods in terms of perfor-
mance before model transfer, slightly outpacing
SpecAugment and Speed Perturbation. After
model transfer, the character-level accuracy of ASR
models trained using the VITS-based data augmen-
tation method significantly surpasses that of other
data augmentation methods in all scenarios, with
the smallest decrease in accuracy compared to other
methods.

These experimental results clearly demonstrate
the advantages of the VITS-based data augmen-
tation method over traditional data augmentation
methods. Additionally, they also confirm the superi-
ority of the VITS-based data augmentation method
among TTS-based data augmentation methods.

5 Conclusion and Future Work

Through comprehensive experiments, we
demonstrate that integrating synthetic speech
generated by VITS-based data augmentation
into ASR train sets significantly improves the
performance and generalization of ASR systems in
low-resource scenarios. Moreover, ASR models
trained with VITS-based data augmentation exhibit
enhanced resilience to domain shifts and better
adaptability across various linguistic contexts
compared to the remaining data augmentation
methods. Our study underscores the potential
of TTS represented by VITS as a valuable data
augmentation method, offering a practical solution
to the challenges faced by ASR systems in
low-resource scenarios. Future research could
concentrate on advancing VITS-based TTS
models to maximize augmentation benefits by
enhancing fidelity, adaptability across languages,
and scalability to broader ASR applications.



Limitations

Despite the promising results obtained, several
limitations should be acknowledged. First, the eval-
uation was conducted on a limited set of languages
(English, Mandarin, and Japanese), potentially lim-
iting the generalizability of findings to other low-
resource languages with different phonetic struc-
tures or linguistic characteristics, for example, Ti-
betan. Second, the impact of hyperparameter set-
tings and specific implementation details of the
VITS-based augmentation method were not exten-
sively explored, which could influence its effective-
ness across different datasets and tasks. Finally,
while improvements in model robustness were ob-
served during testing, longitudinal studies to assess
the long-term stability of models under varying con-
ditions are warranted. Further in-depth research is
needed to fully understand and address these limita-
tions, and the path ahead requires continuous effort
and dedication.
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able datasets.
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