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Abstract

Although significant advancements have been001
made in end-to-end speech recognition, it still002
remains a challenging task when dealing with003
low-resource scenarios, even with the utiliza-004
tion of traditional data augmentation methods.005
Recent technological progress, demonstrated006
by the success of VITS and its variations, has007
spurred interest in exploring Text-to-Speech008
(TTS) synthesis for data augmentation to ad-009
dress the aforementioned difficulties. In this010
study, we investigate the effectiveness of in-011
tegrating synthetic speech generated by VITS012
into the train sets of ASR systems. Through013
comprehensive experiments, we assess the im-014
pact of this approach on improving the general-015
ization and performance of ASR models in En-016
glish, Mandarin, and Japanese. Experimental017
results indicate that the average character-level018
accuracy of the VITS-based data augmentation019
method matches the best performance observed020
among traditional data augmentation methods021
before model transfer. After model transfer, the022
average character-level accuracy of the VITS-023
based data augmentation method significantly024
outperforms all traditional methods, surpassing025
Speed Perturbation, the best-performing tradi-026
tional method, by 3.5%, as well as Tacotron2027
and Fastspeech. Our findings indicate that028
models trained with the VITS-based data aug-029
mentation method exhibit enhanced resilience030
towards domain shift challenges, demonstrat-031
ing improved adaptability across varied linguis-032
tic contexts, thus highlighting the potential of033
VITS as a valuable data augmentation tech-034
nique.035

1 Introduction036

Automatic Speech Recognition (ASR) tasks play037

a critical role in enabling human-computer interac-038

tion, information retrieval, and the advancement039

of speech-based applications across diverse do-040

mains. The performance of ASR models relies041

heavily on the quality and quantity of training042

data. With an ample supply of high-quality train- 043

ing data, both hybrid models (integrating deep neu- 044

ral networks with Hidden Markov models (DNN- 045

HMM)) and end-to-end models (jointly trained neu- 046

ral network systems) demonstrate nearly equiva- 047

lent performance (Lüscher et al., 2019). However, 048

acquiring large amounts of high-quality labeled 049

speech data tends to be time-consuming and costly. 050

This challenge, particularly pronounced for low- 051

resource languages or specific domains, exacer- 052

bates the difficulty of achieving high performance 053

in low-resource tasks, where end-to-end models, 054

compared to hybrid models, notably lag behind 055

(Medennikov et al., 2020). Moreover, trained ASR 056

models often encounter domain shift when trans- 057

ferred to other datasets(Fan et al., 2022; Hiday- 058

aturrahman et al., 2023; Chakrabarty et al., 2023). 059

Domain shift occurs when the distribution of data 060

in the target domain, where the model is deployed, 061

differs significantly from that in the source domain, 062

where the model is trained. This difference can 063

lead to a significant decrease in model performance. 064

Addressing domain shift is therefore crucial for en- 065

suring the robustness and generalization ability of 066

machine learning models across diverse and evolv- 067

ing scenarios. 068

Data augmentation, as an effective method to en- 069

hance the diversity of training data through various 070

transformations and expansions, has been widely 071

applied in fields such as computer vision and natu- 072

ral language processing (Pradana et al., 2023; Joshi 073

et al., 2023; Muthumari et al., 2022). In ASR, data 074

augmentation can not only alleviate the problem of 075

insufficient data but also enhance the robustness of 076

the model, especially in coping with different noise 077

environments and speaker variations. Moreover, 078

data augmentation methods can mitigate the per- 079

formance degradation of models caused by domain 080

shift to some extent. 081

Common speech data augmentation methods in- 082

clude Noise Augmentation (Ko et al., 2015), Vol- 083
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ume Augmentation, Speed Perturbation (Ko et al.,084

2015), and Specaugment (Park et al., 2019) which085

involves time and frequency domain masking. Nev-086

ertheless, traditional data augmentation methods087

have limitations, such as being unable to generate088

entirely new speech patterns and linguistic vari-089

ations. They rely on manipulating existing au-090

dio, which may not fully capture the diversity and091

complexity of natural speech. In contrast, Text-to-092

Speech (TTS) methods represented by the VITS093

model offer a solution by synthesizing diverse and094

natural-sounding speech from text as a data aug-095

mentation technique. This approach expands the096

range of available speech patterns and linguistic097

variations beyond what traditional methods can098

achieve, thus addressing the shortcomings of tradi-099

tional data augmentation.100

In this paper, we compare the character-level ac-101

curacy of four traditional data augmentation meth-102

ods (Noise Augmentation, Volume Augmentation,103

Speed Perturbation, and SpecAugment) with VITS,104

Tacotron2, and Fastspeech, three TTS-based data105

augmentation methods, on ASR tasks at different106

multiples of train set expansion. To ensure the gen-107

erality of our experimental results, we evaluate per-108

formance across English, Mandarin, and Japanese109

languages. Specifically, we use the AN4, Ljspeech110

(Ito and Johnson, 2017) and VCTK datases (Veaux111

et al., 2016) for English, the THCHS30 (Wang and112

Zhang, 2015), CSMSC and AISHELL3 (Shi et al.,113

2020) datasets for Mandarin, the JUST (Kawahara114

et al., 2000), JVS (Takamichi et al., 2019) and115

CSJ datasets (Maekawa, 2003) for Japanese. Our116

findings indicate that the VITS-based data augmen-117

tation method achieves comparable performance118

to traditional methods, Tacotron2, and Fastspeech119

before migration, and demonstrates superior per-120

formance after migration.121

The contributions of our paper are as follows: 1)122

We conduct a comparative analysis between TTS-123

based data augmentation methods (Tacotron2, Fast-124

speech, and VITS) and traditional data augmen-125

tation methods on multilingual small datasets to126

simulate tasks with limited resources. This ap-127

proach aims to enhance the universality of our ex-128

perimental findings, providing insights into the ef-129

fectiveness of different augmentation methods. 2)130

We validate that models trained using VITS-based131

data augmentation method exhibit superior gen-132

eralization performance after transfer compared133

to models trained using other data augmentation134

methods. This validation underscores the poten- 135

tial of VITS in enhancing model robustness and 136

mitigating domain shift issues, thus contributing to 137

advancements in the field of machine learning and 138

speech processing. 139

2 Related Work 140

End-to-End Speech Recognition: End-to-end 141

speech recognition (ASR) has witnessed significant 142

advancements in recent years with models such as 143

Deep Speech (Hannun et al., 2014), Wav2Letter 144

(Collobert et al., 2016), and Listen, Attend and 145

Spell (LAS) (Chan et al., 2015) demonstrating high 146

accuracy in various applications. These models 147

simplify the traditional ASR pipeline by integrat- 148

ing acoustic, language, and pronunciation models 149

into a single neural network. 150

However, their performance heavily depends on 151

the availability of large amounts of labeled data, 152

which poses a challenge in low-resource scenarios. 153

To address data scarcity, various data augmentation 154

techniques have been employed, such as SpecAug- 155

ment and Speed Perturbation. 156

Text-to-Speech (TTS) Synthesis for Data Aug- 157

mentation: Recent advancements in TTS technol- 158

ogy have provided new opportunities for data aug- 159

mentation in ASR. Models like Tacotron2 (Shen 160

et al., 2017), FastSpeech (Ren et al., 2019), and 161

VITS (Kim et al., 2021) can generate high-quality 162

synthetic speech, which can be used to augment 163

training datasets for ASR systems. Tacotron2 syn- 164

thesizes natural-sounding speech by converting text 165

into mel-spectrograms and then using a vocoder 166

to generate waveforms. FastSpeech improves on 167

Tacotron2 by using a non-autoregressive approach, 168

making it faster and more stable. VITS combines 169

variational inference with adversarial learning to 170

produce even more natural and diverse speech. 171

Despite the significant advances in TTS technol- 172

ogy over recent years, research on using TTS for 173

data augmentation to address data scarcity in low- 174

resource tasks remains scarce. Within the limited 175

research available, most studies have focused nar- 176

rowly on the straightforward application of TTS 177

for data augmentation in ASR, without thorough 178

comparisons between TTS as a novel augmentation 179

method and traditional augmentation techniques. 180

For example, Rosenberg et al. evaluated the feasi- 181

bility of enhancing speech recognition performance 182

by synthesizing speech using two corpora from dif- 183

ferent domains. Wang et al. explored using text- 184
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to-speech data augmentation to enhance children’s185

speech recognition systems. Additionally, there186

has been insufficient investigation into how the use187

of these methods affects domain shift issues.188

3 Methods189

3.1 Traditional Data Augmentation Methods190

Speed Perturbation augments the train set by191

adjusting the playback speed of speech signals.192

Employing the data augmentation technique, mod-193

els become more adept at accommodating diverse194

speaking rates and intonations, consequently bol-195

stering its resilience and generalization capacity.196

Suppose the original audio signal is x(t), then the197

signal after Speed Perturbation, y(t), can be ex-198

pressed as:199

y(t) = x

(
t

α

)
(1)200

where α is the Speed Perturbation factor. When201

α < 1, the playback speed of the audio speeds202

up; when α > 1, the playback speed of the audio203

slows down. In this paper, we set α to 0.9, 1.1, and204

1.2, corresponding to accelerating to 111% of the205

original speed, and slowing down to 91% and 83%206

of the original speed, respectively.207

SpecAugment is a data augmentation technique208

commonly used in automatic speech recognition209

(ASR) to enhance model robustness and general-210

ization. It operates by applying three types of trans-211

formations to the spectrograms of speech signals:212

Time Warping (TW), Frequency Masking (FM),213

and Time Masking (TM). The augmented spectro-214

gram S′ is obtained by sequentially applying these215

transformations to the original spectrogram S:216

S′(t, f) = TW(FM(TM(S(t, f)))) (2)217

The formulas for Frequency Masking (FM),218

Time Masking (TM), and Time Warping (TW) are219

as follows:220

TW(S(t, f)) = S(t+ δt, f) (3)221

222

FM(S(t, f)) =

{
0 if f0 ≤ f ≤ f0 + δf

S(t, f) otherwise
(4)223224

TM(S(t, f)) =

{
0 if t0 ≤ t ≤ t0 + δt

S(t, f) otherwise
(5)225

In this context, f0 denotes the random starting226

frequency for FM, t0 represents the random starting227

time for TM, δf stands for the masking width for 228

FM, and δt serves as both the masking width for 229

TM and a random time offset for TW. 230

Noise Augmentation is also a widely used tech- 231

nique in speech data augmentation. It aims to sim- 232

ulate different noise conditions found in real-world 233

environments, helping to strengthen the model’s 234

robustness. In this paper, we implement Noise 235

Augmentation by injecting white noise into the 236

original audio. The amplitude of the added white 237

noise is set to specific proportions of the original 238

audio amplitude. The calculation formula for Noise 239

Augmentation is as follows: 240

y(t) = x(t) + β · n(t) (6) 241

where y(t) is the augmented audio signal, x(t) is 242

the original audio signal, n(t) is the white noise 243

signal, β is the scaling factor for the white noise 244

amplitude. In our case, β takes the values 0.01, 245

0.02, and 0.05. 246

Volume Augmentation is a data augmentation 247

technique designed to create varied datasets by ad- 248

justing the volume of audio signals. By modulating 249

the amplitude of these signals, it simulates record- 250

ings with different volume levels, thereby diversify- 251

ing the training data. The corresponding formulas 252

are given below: 253

y(t) = γ · x(t) (7) 254

γ is the scaling factor for the audio signal’s am- 255

plitude, representing the volume adjustment. In 256

this paper, γ is set to 0.5, 0.9, and 1.1. 257

Figure 1 illustrates the comparison between the 258

mel spectrogram of the original speech data and 259

the mel spectrograms of the speech data after ap- 260

plying four different traditional data augmentation 261

methods. From left to right in Figure 1 are the 262

original spectrogram, the spectrogram after Speed 263

Perturbation, the spectrogram after SpecAugment, 264

the spectrogram after Noise Augmentation, and 265

the spectrogram after Volume Augmentation. This 266

comparison can provide insights into the effective- 267

ness of these augmentation techniques in enhancing 268

the robustness and generalization capability of the 269

speech recognition model. 270

3.2 VITS 271

Our approach leverages the Conditional Varia- 272

tional Autoencoder with Adversarial Learning for 273

End-to-End Text-to-Speech (VITS) model. VITS 274
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Figure 1: Comparison of Mel Spectrograms: Original Audio and Audio Augmented with Traditional Data Augmen-
tation Methods

is a cutting-edge architecture designed for text-to-275

speech (TTS) synthesis. It integrates a variational276

autoencoder (VAE) with adversarial learning tech-277

niques to generate high-quality speech waveforms278

directly from input text. Unlike traditional TTS279

models, VITS incorporates a conditional mecha-280

nism, enabling fine-grained control over the syn-281

thesized speech characteristics.282

The VITS model consists of an encoder-decoder283

architecture, where the encoder processes input284

text into a latent representation that captures the285

underlying features of the speech. The decoder286

then generates speech waveforms from this latent287

representation, producing natural-sounding speech288

with desired characteristics.289

During training, VITS utilizes a combination290

of loss functions, including spectral loss, duration291

loss, and adversarial loss, to ensure the synthesized292

speech’s quality and fidelity to the input text. The293

corresponding equations are shown below.294

Lspec = MSE(Ssynth, Star) (8)295

296
Ldur = MSE(Dsynth, Dtar) (9)297

298
Ladv = log(1−D(Ssynth))− log(D(Star)) (10)299

Ssynth and Star represent the synthesized and tar-300

get speech spectrograms, respectively, in Equation301

(7). Dsynth and Dtar denote the synthesized and tar-302

get speech durations, respectively, in Equation (8).303

D(Ssynth) and D(Star) are the discriminator’s out-304

puts for the synthesized and target speech spectro-305

grams, respectively, in Equation (9). MSE stands306

for Mean Squared Error.307

VITS offers several advantages, including high-308

quality speech synthesis, fine-grained control over309

synthesized speech characteristics, and simplified310

training and inference procedures. These attributes311

make it a compelling choice for various TTS ap-312

plications, ranging from assistive technologies to313

entertainment and communication systems. The 314

comparison of Mel Spectrograms between the orig- 315

inal audio and its corresponding VITS-synthesized 316

audio can be seen in Figure 2. 317

3.3 ASR 318

In our approach, we utilized a Transformer- 319

based ASR model architecture, consisting of Con- 320

former encoders and Transformer decoders. The 321

encoder module incorporated Conformer blocks, 322

which combined convolutional and self-attention 323

layers to capture both local and global information 324

from the input speech features. Meanwhile, the 325

decoder module employed Transformer blocks to 326

decode the encoded features and generate the final 327

transcript. 328

The Conformer block and Transformer decoder 329

can be defined as follows: 330

Conformer = Conv1D(SelfAttn(x)) (11) 331
332

Decoder = SelfAttn(h) + FFN(h) (12) 333

In the provided equations, x denotes the input 334

sequence, which constitutes the raw sequential data 335

processed by the model. h represents the output 336

of the encoder, which serves as the input to the de- 337

coder operation. FFN() refers to the feed-forward 338

neural network. SelfAttn() represents the opera- 339

tion of applying self-attention mechanism. 340

During training, the model also optimized a com- 341

bination of loss functions, comprising spectral loss, 342

duration loss, and adversarial loss, to maintain the 343

accuracy of synthesized speech in relation to the 344

input text. 345

Optimization was performed using the Adam 346

optimizer with gradient accumulation and gradient 347

clipping to stabilize training. Learning rate schedul- 348

ing was implemented using the Noam scheduler, 349

gradually increasing the learning rate during the 350

warm-up phase. 351
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Figure 2: Comparison of Mel Spectrograms: Original Audio and VITS-synthesized Audio

In addition, traditional data augmentation tech-352

niques along with VITS-based data augmentation353

methods were introduced at this stage to augment354

the training dataset for the ASR task, aiming to355

enhance the model’s performance. These augmen-356

tation methods are used to expand the diversity and357

quantity of training samples, thus providing the358

model with more varied and representative data359

to learn from. By exposing the model to a wider360

range of acoustic variations and perturbations, the361

augmentation techniques encourage the model to362

learn more robust and invariant features, thereby363

improving its ability to generalize to unseen data364

and challenging acoustic environments.365

4 Experiments366

In this paper, we train corresponding end-to-end367

ASR models using the AN4, JSUT, and THCHS30368

datasets, and augment the data using synthesized369

speech obtained from VITS, Tacotron2, and Fast-370

speech models trained on the VCTK, ASHELL3,371

and JVS datasets. After migration, the trained ASR372

models will be tested for their performance on the373

LJSpeech, CSMSC, and CSJ datasets using newly374

sampled test sets containing an equivalent number 375

of samples as the original test sets. The details of 376

the train set, dev set, and test set for the aforemen- 377

tioned datasets can be found in Table 1. 378

During the experiments, we introduce four tra- 379

ditional data augmentation techniques alongside 380

three TTS-based data augmentation methods led 381

by VITS to enhance the train sets. To assess the ef- 382

fectiveness of these augmentation methods, we con- 383

duct a comparative analysis of model performance 384

at the character level on the test sets. These evalua- 385

tions enable us to gauge the models’ performance 386

post-migration and investigate the impact of differ- 387

ent augmentation techniques on model generaliza- 388

tion capabilities. Through meticulous comparisons, 389

we provide evidence supporting the superiority of 390

the VITS-based data augmentation method. 391

4.1 Datasets 392

AN4: The AN4 dataset encompasses a diverse col- 393

lection of speech recordings. With a sample rate 394

of 16000 Hz, it provides a comprehensive resource 395

for developing and evaluating speech recognition 396

algorithms. 397

LJSpeech: The LJSpeech dataset is a public do- 398
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End-to-end ASR Model Training End-to-end TTS Model Training Migration Testing
Dataset train set dev set test set Dataset train set dev set test set Dataset test set

AN4 878 100 100 VCTK 36000 4000 4000 LJSpeech 100

THCHS30 10708 1340 1340 AISHELL3 68035 10000 10000 CSMSC 1340

JSUT 7196 250 250 JVS 15000 1000 1000 CSJ 250

Table 1: Datasets for ASR Model Training, TTS Model Training, and Migration Testing

main speech dataset consisting of 13,100 short au-399

dio clips of a single speaker. Each clip is accom-400

panied by a transcription. The clips vary in length401

from 1 to 10 seconds, totaling approximately 24402

hours of audio. The dataset has a sampling rate of403

22.05 kHz.404

VCTK: The VCTK Corpus consists of speech data405

from 110 English speakers with diverse accents.406

Each speaker reads approximately 400 sentences.407

All recordings were downsampled to 48 kHz, and408

manually end-pointed.409

THCHS30: The THCHS30 dataset is an open410

Mandarin speech database. It contains speech data411

recorded in a quiet office environment, with a total412

duration exceeding 30 hours. The recordings have413

a sampling rate of 16 kHz.414

CSMSC: CSMSC is a dataset containing approx-415

imately 12 hours of effective speech data. The416

recordings are made by a female speaker aged be-417

tween 20 to 30 years. The speech data is provided418

with a sampling rate of 48 kHz.419

AISHELL3: The AISHELL-3 dataset is a multi-420

speaker Mandarin audio corpus. It comprises421

88,035 recordings from 218 native speakers reading422

text from provided scripts with neutral emotions.423

The recordings were captured at a sampling rate of424

44.1 kHz.425

JSUT: The JSUT dataset, a novel Japanese speech426

corpus, comprises approximately 10 hours of427

speech data recorded by a female native Japanese428

speaker. It offers speech data in 16-bit/sample RIFF429

WAV format with a sampling rate of 48 kHz, along430

with UTF-8 encoded transcriptions of the speech431

utterances.432

CSJ: The Corpus of Spontaneous Japanese (CSJ) is433

a comprehensive Japanese corpus extensively used434

for research in phonetics, linguistics, and pragmat-435

ics. It comprises approximately 650 hours of spon-436

taneous speech, equivalent to about 7,000k words.437

The speech materials are recorded using head-worn438

close-talking microphones and DAT, and down-439

sampled to 16 kHz with 16-bit accuracy. In this440

experiment, only a portion of the data was utilized 441

for testing purposes. 442

JVS: The JVS corpus provides high-quality au- 443

dio recordings from 100 native Japanese speakers, 444

including voice actors and actresses. It features 445

various speech styles such as normal, whispering 446

and falsetto voices, ensuring a diverse dataset. The 447

audio files are sampled at 24 kHz and encoded at 448

16-bit depth, ensuring excellent fidelity and clarity. 449

These datasets collectively support the develop- 450

ment and evaluation of end-to-end speech recog- 451

nition models across English, Mandarin, and 452

Japanese languages, enabling a thorough analysis 453

of different data augmentation techniques. 454

4.2 ASR setup 455

We utilize the train set, dev set, and test set de- 456

rived from the AN4, THCHS30, and JSUT datasets 457

for training, model tuning, and evaluation of the 458

ASR models, respectively. The acoustic features, 459

extracted from the raw audio data, consist of 80- 460

dimensional log Mel filterbank coefficients, which 461

have undergone cepstral mean and variance nor- 462

malization. 463

Text data is tokenized into subwords using 464

SentencePiece, incorporating special characters 465

"<unknown>", "<blank>", underscore "_", and 466

"<sos/eos>" as sentence boundary markers. For 467

the AN4 English dataset, the vocabulary size is 30. 468

For the THCHS30 Mandarin dataset, it is 2669. For 469

the JSUT Japanese dataset, it is 2742. 470

The model architecture primarily utilizes the 471

Transformer framework for training the automatic 472

speech recognition model. It employs a folded 473

batch type with a batch size of 64 and sets a max- 474

imum of 200 training epochs. Model parameters 475

are initialized using Xavier uniform distribution. 476

The selection criterion for the best model is based 477

on the maximum accuracy achieved on the dev set, 478

retaining the top 10 best models. 479

Taking into account the linguistic and dataset- 480

specific characteristics, we made slight adjustments 481
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English 1x (%) 2x (%) 3x (%) 4x (%) 4x Post-migration (%)
Raw 86.1 86.4 87.0 86.2 61.9 (-24.3)

Speed Perturbation 86.1 91.8 94.2 95.5 72.2 (-23.3)
SpecAugment 86.1 88.2 90.5 92.5 65.9 (-26.6)

Noise Augmentation 86.1 84.8 83.5 83.1 58.2 (-24.9)
Volume Augmentation 86.1 87.5 88.7 88.0 61.6 (-26.4)

Tacotron2 86.1 87.1 89.5 92.4 69.3 (-23.1)
Fastspeech 86.1 86.9 88.1 89.7 65.8 (-23.9)

VITS 86.1 87.8 90.3 93.4 77.1 (-16.3)
Mandarin 1x (%) 2x (%) 3x (%) 4x (%) 4x Post-migration (%)

Raw 47.9 48.1 48.2 47.9 43.1 (-4.8)
Speed Perturbation 47.9 48.6 48.8 49.0 43.7 (-5.3)

SpecAugment 47.9 48.5 48.9 49.1 39.0 (-10.1)
Noise Augmentation 47.9 47.4 47.7 46.6 40.6 (-6)

Volume Augmentation 47.9 46.9 47.5 48.1 42.8 (-5.3)
Tacotron2 47.9 48.3 48.7 47.6 44.1 (-3.5)
Fastspeech 47.9 48.1 48.5 48.5 43.8 (-4.7)

VITS 47.9 48.0 48.6 49.3 44.8 (-4.5)
Japanese 1x (%) 2x (%) 3x (%) 4x (%) 4x Post-migration (%)

Raw 82.4 86.5 86.7 86.5 70.4 (-16.1)
Speed Perturbation 82.4 86.8 87.8 88.1 72.7 (-15.4)

SpecAugment 82.4 86.5 87.4 87.4 71.6 (-15.8)
Noise Augmentation 82.4 86.6 87.0 87.0 70.2 (-16.8)

Volume Augmentation 82.4 86.2 86.7 87.4 70.7 (-16.7)
Tacotron2 82.4 86.3 87.7 88.0 72.6 (-15.4)
Fastspeech 82.4 85.5 87.1 86.8 71.7 (-15.1)

VITS 82.4 86.7 87.9 88.5 77.3 (-11.2)

Table 2: The table illustrates the character-level accuracy of ASR models on the test sets, achieved by expanding
train sets using different data augmentation methods to various multiples. The labels 1x, 2x, 3x, and 4x denote the
expansion multiples of the train sets. 4x Post-migration represents the accuracy of the ASR models after transfer,
when the train sets have been expanded to four times its original size.

to the structures of the ASR models for the three482

languages, aiming to achieve optimal performance.483

For the end-to-end ASR model trained on the AN4484

dataset and THCHS30 dataset, the encoder pro-485

duces a 256-dimensional output, with 4 attention486

heads per mechanism and 12 Transformer blocks.487

Similarly, the decoder includes 4 attention heads488

per mechanism and 6 Transformer blocks. The489

model uses a hybrid loss function that combines490

spectral loss, duration loss, and adversarial loss,491

each with specific weights. It adopts the Adam op-492

timizer with a learning rate of 0.001 and employs a493

warm-up learning rate scheduler with 2500 warm-494

up steps. During the inference phase, the beam495

search algorithm is used, with a beam size set to496

10.497

For the end-to-end ASR model trained on the498

JSUT dataset, the encoder consists of 12 blocks499

with 2048 linear units, 4 attention heads per mech- 500

anism, and a 256-dimensional output. It incorpo- 501

rates dropout with a rate of 0.1 and utilizes a swish 502

activation function. Additionally, it includes rel- 503

ative position encoding and self-attention mecha- 504

nisms, as well as a convolutional neural network 505

(CNN) module with a kernel size of 15. The de- 506

coder comprises 6 transformer blocks with 2048 507

linear units and a dropout rate of 0.1. The beam size 508

for the beam search algorithm during the inference 509

phase is set to 20. 510

4.3 TTS setup 511

In our experimental setup for Text-to-Speech 512

(TTS), we leveraged the advanced capabilities of 513

the VITS (Variational Inference Transformer for 514

Speech Synthesis) model. This state-of-the-art 515

model, renowned for its remarkable performance 516

in generating natural-sounding speech, formed the 517
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cornerstone of our TTS experiments.518

For the end-to-end TTS models in three lan-519

guages, we loaded pre-trained multi-speaker TTS520

model parameters trained on Aishell3, VCTK, and521

JVS datasets. By leveraging these pre-trained mod-522

els, we synthesized speech based on the text from523

the train sets of the ASR task, thereby augment-524

ing the scale of the training data and enhancing525

diversity.526

4.4 Comparison527

In our experiments, we expand the train set to528

double, triple, and quadruple its original size us-529

ing different data augmentation techniques. Subse-530

quently, we evaluate the performance of the trained531

ASR models on the corresponding test sets in terms532

of character-level accuracy.533

As shown in Table 2, introducing either the TTS-534

based data augmentation method or traditional data535

augmentation techniques can enhance the perfor-536

mance of the trained models in English, Mandarin,537

and Japanese. In the scenarios of Mandarin and538

Japanese, the ASR models trained using the VITS-539

based data augmentation method achieved the high-540

est accuracy. In the scenario where the training541

datasets for all three languages are quadrupled, the542

accuracy of ASR models trained using the VITS-543

based data augmentation method consistently ranks544

within the top two. The average accuracy across545

the three scenarios is 77%. This performance546

is comparable to that of the Speed Perturbation547

and SpecAugment methods and significantly sur-548

passes the Noise Augmentation and Volume Aug-549

mentation methods, with an average accuracy im-550

provement of 4.8% and 2.5%, respectively, across551

all three scenarios. Besides, the performance of552

the VITS-based data augmentation method outper-553

forms Tacotron2 and Fastspeech, both of which are554

also TTS-based data augmentation methods.555

Due to differences in data distribution between556

datasets, often referred to as the domain shift prob-557

lem, trained models tend to suffer performance558

degradation when transferred to new datasets. In559

our experiments, we transferred the ASR models560

trained with various data augmentation methods to561

new datasets—LJSpeech, CSMSC, and CSJ—and562

tested their character-level accuracy on these new563

datasets. From Table 2, it can be observed that564

under the condition of a fourfold expansion of the565

train set in three languages, the performance degra-566

dation of the ASR models trained using the VITS-567

based data augmentation method is the least when 568

transferred to new datasets, averaging a decrease 569

of 10.7%. Conversely, among other data augmenta- 570

tion methods, Speed Perturbation exhibits the best 571

performance post-migration, with an average de- 572

crease of 14.7% across the three scenarios. Follow- 573

ing model transfer, the ASR models trained using 574

the VITS-based data augmentation method con- 575

sistently achieve the highest accuracy in all three 576

scenarios, with an average character-level accu- 577

racy of 66.4%, surpassing Speed Perturbation, the 578

second-best performer, by approximately 3.5%. 579

Overall, ASR models trained using the VITS- 580

based data augmentation method outperform most 581

data augmentation methods in terms of perfor- 582

mance before model transfer, slightly outpacing 583

SpecAugment and Speed Perturbation. After 584

model transfer, the character-level accuracy of ASR 585

models trained using the VITS-based data augmen- 586

tation method significantly surpasses that of other 587

data augmentation methods in all scenarios, with 588

the smallest decrease in accuracy compared to other 589

methods. 590

These experimental results clearly demonstrate 591

the advantages of the VITS-based data augmen- 592

tation method over traditional data augmentation 593

methods. Additionally, they also confirm the superi- 594

ority of the VITS-based data augmentation method 595

among TTS-based data augmentation methods. 596

5 Conclusion and Future Work 597

Through comprehensive experiments, we 598

demonstrate that integrating synthetic speech 599

generated by VITS-based data augmentation 600

into ASR train sets significantly improves the 601

performance and generalization of ASR systems in 602

low-resource scenarios. Moreover, ASR models 603

trained with VITS-based data augmentation exhibit 604

enhanced resilience to domain shifts and better 605

adaptability across various linguistic contexts 606

compared to the remaining data augmentation 607

methods. Our study underscores the potential 608

of TTS represented by VITS as a valuable data 609

augmentation method, offering a practical solution 610

to the challenges faced by ASR systems in 611

low-resource scenarios. Future research could 612

concentrate on advancing VITS-based TTS 613

models to maximize augmentation benefits by 614

enhancing fidelity, adaptability across languages, 615

and scalability to broader ASR applications. 616
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Limitations617

Despite the promising results obtained, several618

limitations should be acknowledged. First, the eval-619

uation was conducted on a limited set of languages620

(English, Mandarin, and Japanese), potentially lim-621

iting the generalizability of findings to other low-622

resource languages with different phonetic struc-623

tures or linguistic characteristics, for example, Ti-624

betan. Second, the impact of hyperparameter set-625

tings and specific implementation details of the626

VITS-based augmentation method were not exten-627

sively explored, which could influence its effective-628

ness across different datasets and tasks. Finally,629

while improvements in model robustness were ob-630

served during testing, longitudinal studies to assess631

the long-term stability of models under varying con-632

ditions are warranted. Further in-depth research is633

needed to fully understand and address these limita-634

tions, and the path ahead requires continuous effort635

and dedication.636

Ethical Statement637

This study adheres strictly to ethical principles,638

ensuring the confidentiality of data and ethical con-639

duct in all research practices. The research rigor-640

ously upholds the principles of beneficence, non-641

maleficence, and justice. All data utilized in this642

study are sourced exclusively from publicly avail-643

able datasets.644
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